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Can we predict how challenging Spoken
Language Understanding corpora are across
sources, languages and domains?

Frederic Bechet!, Christian Raymondz, Achraf Hamanel, Rim Abrougui3, Gabriel
Marzinotto?, Géraldine Damnati>

Abstract State-of-the art Spoken Language Understanding models of Spoken Dia-
log Systems achieve remarkable results on benchmark corpora thanks to the winning
combination of pretraining on large collection of out-of-domain data with contex-
tual Transformer representations and fine tuning on in-domain data. On average,
performances are almost perfect on benchmark datasets such ATIS. However some
phenomena can affect greatly these performance, like unseen events or ambiguities.
They are the major sources of errors in real-life deployed systems although they
are not necessarily equally represented in benchmark corpora. This paper aims to
predict and characterize error-prone utterances and to explain what makes a given
corpus more or less challenging. After training such a predictor on benchmark cor-
pora from various languages and domains, we confront it to a new corpus collected
from a French deployed vocal assistant with different distributional properties. We
show that the predictor can highlight challenging utterances and explain the main
complexity factors even though this corpus was collected in a completely different
setting.

1 Introduction

In the Transformer era, Spoken Language Understanding models of Spoken Dialog
Systems have achieved remarkable results on a wide range of benchmark tasks. State
of the art models involve contextual embeddings trained on a very large quantity of
out-of-domain text, usually with a Transformer approach, followed by a fine-tune
training process on in-domain data to generate the semantic representation required,
often made of intent+concept/value labels [10].
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This winning strategy gives a boost in performance compared to previous models,
mostly because of the generalization power of pretrained contextual embeddings.
However, if on some SLU benchmark corpora like ATIS, such models have reached
almost perfect performance, other corpora remain challenging and performance can
be greatly affected by the amount and the quality of data available for training or by
the complexity and ambiguity of the semantic annotation scheme.

But how can we characterize how challenging a corpus is? What are the factors
that explain why some utterances still resist to Transformer-based models? And
can we predict automatically this complexity when dealing with a new corpora in
order to partition data into several sets representing different sources and levels of
difficulty?

Moreover, it was noticed in [3] and [9] that standard benchmark datasets don’t
contain enough difficult examples that can be found in real-life deployed services,
giving a false impression that there are no margin of improvement in current models.
Furthermore, the distribution of utterances in benchmark corpora doesn’t necessar-
ily reflect real-life usage. Distributions in corpora collected from deployed services
are more likely to be imbalanced, with on one hand possibly more easy utterances
that researchers may not consider interesting to integrate in benchmark corpora and
on the other hand a larger variety of complex phenomena that are under-represented
in benchmark corpora.

This paper aims to give some answers to these questions on benchmark SLU
corpora as well as a new dataset collected from a deployed voice assistant in order
to verify if knowledge extracted on artificial data can generalize to real human-
machine interactions.

2 Predicting corpus complexity

To predict corpus complexity we follow the approach proposed in [1] and [2] in-
spired by the NIST Recognizer output voting error reduction [7] method for scoring
Automatic Speech Recognition (ASR) performance. In this method, multiple recog-
nizers output are combined by voting on each decision, the most probable one being
the output with most votes. This method acknowledges the fact that there is some
kind of uncertainty in the output produced by statistically trained models, there-
fore using multiple decisions can help increasing robustness in the decision process.
This phenomenon is particularly true for current deep learning models which in-
volve some randomness in parameter initialization, leading to produced different
performance on different runs of the same model.

In [1] it was proposed to use a modified version of the ROVER method in or-
der to qualify each utterance of an evaluation corpus for an SLU task of semantic
concept recognition seen as a sequence labeling problem. By running multiple SLU
models on the same data, we obtain several concept recognition hypotheses at the
word level. According to the agreement between hypotheses, a cluster label is given
to each word : AC means that all models agree, and the output is correct; AE means
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word w; |label(ref,u,i)|label(my,u,i)|label(mo,u,i)|  cluster

find 0] [e) o AC
flights (0] (6] (0] AC
from (0] (6] (0] AC

new-york| B-from-city | B-from-city | B-from-city AC

new-york (0] B-from-city| B-to-city |NE — NCE
next | B-date-dep | B-date-dep (0} NC — NCE

7| saturday | I-date-dep | I-date-dep | B-date-arr [NC — NCE

A\ | | W] N = ~.

Table 1 Example of annotation of utterance u with two SLU models (m;, m;) and the resulting
cluster for each word

that all models agree, and the output is incorrect; NC means that some models dis-
agree but at least one of them is correct; NE means that some models disagree but
none of them is correct. It was hypothesized in [2] that cluster AC corresponds to
the easy samples, NC to the difficult ones, NE to the very difficult ones, and finally
AE to the problematic ones, often corresponding to annotation errors.

In this study we want to go further than just qualifying a sample as easy or dif-
ficult by understanding the reason behind this qualification. Moreover we want to
uncover generic principles, that can be applied to any SLU task, independently from
the language, the topic or the semantic model related to a given corpus. To this pur-
pose we propose the following method based on a 2-step process:

First step:

1. Select a set of L SLU corpora, with concept annotation at the word level (with
B.I,O info if multi-word concepts), partitioned into train, development and test.

2. Select a set of N Deep Neural Network (DNN) sequence tagger implementing
different DNN architectures and using different kinds of word pretraining.

3. Train the N sequence taggers separately on each train partition of the L corpora,
and evaluate the performance on their corresponding development and test sets.

4. Label each word in the development and test corpora with the AC, AE, NC and
NE labels according to the agreement and the correctness of the concept label
predicted by the N concept sequence taggers;

An example of such process is given in table 1 for two SLU concept taggers. Since
this utterance contains at least one word labeled NCE, it will belong to the NCE
cluster containing the difficult utterances.

The second step of the process aims at understanding what makes a sample easy
or difficult. AC samples stand for the easy one while labels AE, NC and NE are
grouped into a new label NCE for difficult samples.

Second step:

1. Describe each word in the development and test corpora of each SLU corpus
with language independent, topic independent and concept independent features
(Generic Features - GF), such as syntactic features and features related to the
coverage of the training corpus (e.g. how many times this word has been seen
with this label in the training corpus?).
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2. Train a glass-box classifier such as Adaboost on the union of the L development
corpora described by GF features to predict the complexity labels AC and NCE
and evaluate its performance on the SLU test corpora also labeled with AC and
NCE labels as in step 1.4.

3. Analyze the classification model obtained by uncovering the rules and their
weights automatically learned on GF features to predict label NCE in order to
qualify the major complexity factors on all the SLU corpora considered.

At the end of this 2-step process we obtain a complexity classifier that can process
any new SLU corpus, regardless of its language, topic and semantic model, as long
as each word is described by GF features, without the need to train and evaluate
any SLU system. This classifier labels each word with a complexity label (AC or
NCE), a score, and an explanation about this complexity, obtained by analyzing
the NCE rules learned and their weights. This kind of explanation is obtained by
characterizing each feature type in the GF set. This is presented in the next section.

3 Analyzing complexity factors

To analyze utterance complexity with respect to an SLU task such as concept tag-
ging, we make the following assumption, following previous work done on Named
Entity Recognition [3, 9]: the two main sources of complexity that can affect an
SLU model are ambiguity and lack of coverage of the training corpus.

e ambiguity: an utterance can be ambiguous if a word or a sequence of words
can correspond to multiple labels in the semantic model and if either there is not
enough context to help removing the ambiguity, or if the underlying structure of
the utterance is complex (long utterance, multiple verbs, disfluencies, ...);

* coverage: this source of complexity comes from a lack of coverage between
the training and the evaluation data. The most obvious phenomenon is Out-Of-
Vocabulary words, but it can also comes from a new or a rare association between
a known word and a label, or a new n-gram of known words.

The features we use in the GF set to describe a word W with label / in a sentence
S are either related to ambiguity or coverage. They are defined in table 2.

All the syntactic features are obtained through a parsing process on the train,
dev and test partitions of each corpus. In order to be language independent, we
use parsers [12] based on the Universal Dependency syntactic model [13]. Hence
syntactic features are shared across languages. Once a corpus is projected into the
GF feature set, there is no lexical information and no semantic labels left, therefore
corpora on different languages, topics and semantic models can be merged in order
to train the complexity classifier for producing the AC or NCE labels.

We use a glass-box classifier called Bonzaiboost' [8] based on boosting [14]
where a set of weak classifiers made of small decision trees on the features of GF

'http://bonzaiboost.gforge.inria. fr/
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Ambiguity

# of semantic labels acceptable for W

# of Part-Of-Speech (POS) acceptable for W + POS label
# of possible syntactic dependency for W + dependency label
distance between W and the sentence syntactic root.
utterance length (in words)

% of words in S belonging to a concept

Coverage

# of occurrences of W in train

# of occurrences of (W, /) in train

is bigrams (W — 1,W) and (W, W + 1) occurring in train?

Table 2 The Generic Feature (GF) set

corpora ATIS|MEDIA |SNIPS |Djingo_Spk
#word 8333| 25977| 6595 34938
#sent 893 3005 700 9984
vocabulary 485 1219| 1752 2637
#concept 84 70 39 34
#intent - - 7 109
%00D sentences 0 0 0 6.6%
Yosent € train (N test 19| 44.6%| 0.9% 76.9%
Yosent+concept 99.3%| 86.5%| 100% 59.3%
av. sent length 10.3 7.6 9.16 4.2

Table 3 Corpora characteristics

are weighted in order to predict the output labels. When processing a sentence, the
set of rules matching the input features are selected and the label chosen is the one
maximizing the score according to the rules weights. When the NCE label is pre-
dicted, we can check in the selected rules which ones have contributed positively to
predict the difficult label. Since each rule belongs either to the ambiguity or cover-
age set, we can estimate the % of weight in the NCE score that belongs to either set,
and thus explain if this difficulty comes from an ambiguity issue or lack of coverage
in the training data.

The classifier outputs decision at the word level, however they can be projected
at the sentence level with this simple rule: the easy utterances are those where all
words have been labeled as AC; the difficult utterances are those containing at least
one word labeled as NCE. Therefore we can use the complexity classifier output in
order to select utterances with a certain level of difficulty, expressed by the NCE
score, and belonging either to the ambiguity or coverage category.

4 Experiments on benchmark corpora

The method presented in the two previous sections has been implemented on 4 SLU
benchmark corpora described in table 3 split into train, dev and test partitions:
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pretraining|bigru|gru|self attention
BERT M1 (M3 M5
random M2 (M4 M6

Table 4 Description of models M1 to M6 in terms of pretraining conditions and DNN architecture

Model/F-measure| ATIS|MEDIA |SNIPS |M2M
M1 94.6 85. 7 954| 91.5
M2 93.8 81.7| 69.6| 91.7
M3 94.7 85.8] 95.2| 93.6
M4 79.0 60.1| 69.0|] 91.0
M5 94.8 85.3| 959 93.0
M6 77.4 59.8] 68.9| 91.0

Table 5 Concept detection performance (F-measure) for models M1...M6 on the 4 benchmark
corpora

1. M2M: this corpus is a fusion of two datasets containing dialogues for restaurant
and movie ticket booking. It has been released by [15] and collected using their
M2M framework (Machines Talking To Machines) that combines dialogue self-
play and crowd sourcing to generate dialogues.

2. ATIS: The Air Travel Information System (ATIS) task [6] is dedicated to provide
flight information.

3. MEDIA: this corpus is made of 1250 French dialogue, dedicated to provide
tourist information. It has been collected by ELDA, following a Wizard of Oz
protocol: 250 speakers have followed 5 hotel reservation scenarios. This corpus
has been transcribed manually and annotated with concepts from a rich semantic
ontology [4].

4. SNIPS: this corpus has been collected by the SNIPS company. It is dedicated to
7 in-house tasks, SearchCreativeWork, GetWeather, BookRestaurant,PlayMusic,
AddToPlaylist,RateBook, SearchScreeningEvent [5].

In order to obtain the complexity labels AC and NCE, we developed 6 SLU
sequence tagger models (M1...M6) in order to predict concept labels at the word
level on our 4 corpora. These 6 systems differ either by the pretraining condition
(BERT or random initialization) and the DNN architecture (GRU, BIGRU or self-
attention) as described in table 4 . These systems follow state-of-the-art architectures
for SLU concept tagging [10]. If BERT pretraining outperforms by a large margin
random initialization, it is interesting to keep this option for detecting easy utterance
that does not need any generalization capabilities outside the training data. Table 5
shows F-measure results obtained by all systems on the four corpora.

As we can see models without pretraining (M2, M4 and M6) obtain much worst
performance on all corpora except M2M, first indication that this corpus does not
need generalization capabilities.

From the automatic labelling with models M1 to M6, we can compute labels AC
and NCE at the word and sentence levels as presented in section 2. The repartition
between easy (AC) and difficult (NCE) utterances is presented in table 6 . We can
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label/ % ATIS|MEDIA |SNIPS| M2M
AC (word) |89.8%| 70.1%| 83.1%(96.1%
NCE (word)|10.2%| 29.9%| 16.9%| 3.9%
AC (sent) |46.2%| 54.3%| 35.1%(84.2%
NCE (sent) |53.8%| 45.7%| 64.9%(15.8%

Table 6 Repartition into easy (AC) and difficult (NCE) samples at the word and sentence levels

label/Fmes|ATIS [MEDIA |SNIPS|M2M
AC 98.7 98.5| 99.7| 99.0
NCE) 91.7 82.3| 93.1| 68.6

Table 7 Performance of model M1 on AC and NCE sentences

see that the amount of difficult tokens and sentences differ greatly from one corpus
to another, giving more insights about the complexity of a given corpus than just
looking at the average SLU performance. For example, although the M2M corpus
seems more challenging that ATIS and SNIPS according to the best model (M1) in
table 5, we can see in table 6 that it contains a lot more of easy tokens and sentences
than the other corpora.

Table 7 clearly indicates the relevance of the AC/NCE clustering since perfor-
mance obtained with a state-of-the-art model such as M1 obtain much worse results
on NCE utterances compared to AC utterances.

Following the method presented in section 3, we trained a Bonzaiboost classifier
to predict the complexity labels AC and NCE on the union of the 4 development
corpora. The results are presented in table 8. As we can see, if the classification re-
sults vary according to the corpus considered, we obtain an F-mesure over 93% for
label AC and almost 60% on label NCE. These are encouraging results considering
that no lexical nor semantic labels are used as features to predict utterance complex-
ity and that we mix in the training and test conditions very different SLU corpora
on different languages, topics and semantic models.

Table 9 shows the analysis of the NCE decisions in terms of the respective
weights of the ambiguity and coverage features as described in section 3. As we
can see it is interesting to notice that, depending on the corpus considered, the com-
plexity can come mostly because of coverage issues (ATIS and M2M), ambiguity
issues (MEDIA) or a mixt of both (SNIPS). The distribution obtained on partitions
obtained with predicted labels, rather than reference ones are very similar. This is
also encouraging showing that even if the complexity classifier makes errors (60%
Fmeasure), it can still be used to accurately partition a corpus according to criteria
linked to the utterance complexity and the sources of this complexity.
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ATIS  |Precision|Recall| F-measure
AC 91.75] 98.26 94.89
NCE 60.61| 23.26 33.61
MEDIA |Precision|Recall| F-measure
AC 82.55| 87.82 85.11
NCE 63.03| 52.80 57.46
SNIPS |Precision|Recall|F-measure
AC 92.54| 96.04 94.26
NCE 58.93| 42.31 49.25
M2M  |Precision|Recall| F-measure
AC 98.08| 99.89 98.98
NCE 97.00| 65.10 77.91
All corpora
all Precision|Recall| F-measure
AC 91.58| 95.57 93.53
NCE 68.42| 52.21 59.23
All 88.83| 88.83 88.83

Table 8 Classification performance on AC/NCE labels with the GF feature set. Training on the

union of all corpora.

ATIS weight(NCE,AMBIG) |weight(NCE,COVER)
reference 13.1% 86.9%
prediction 19.9% 80.1%
MEDIA |weight(NCE,AMBIG) |weight(NCE,COVER)
reference 84.4% 15.6%
prediction 84.3% 15.7%
SNIPS |weight(NCE,AMBIG) |weight(NCE,COVER)
reference 37.2% 62.8%
prediction 23.5% 76.5%
M2M weight(NCE,AMBIG) |weight(NCE,COVER)
reference 4.1% 95.9%
prediction 2.3% 97.7%
all weight(NCE,AMBIG) |weight(NCE,COVER)
reference 65.8% 34.2%
prediction 68.0% 32.0%

Table 9 % of weight for boosting rules belonging to the ambiguity (AMBIG) category vs. the

coverage (COVER) category.

5 Application to deployed SLU system data

In addition to the previous experiments on benchmark corpora obtained either
through a Wizard-Of-Oz paradigm (ATIS, MEDIA), or through an automatic pro-
cess with human supervision (SNIPS, M2M), we decided to test the genericity of
our approach on a corpus collected through a deployed service by Orange in France.

Orange, the French telco company, has experimented towards the general pub-
lic the Djingo vocal domestic assistant with a set of skills centred on interactions
with corporate services (Orange TV, music with its partner Deezer, Orange Radio,
telephony), general services (weather, shopping, calendar, news) and general inter-
action with the speaker (small talks, global commands). According to the customer
agreement, and in respect of the French GDPR law, log data have been anonymously
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collected and annotated in terms of intents and concept slots. The annotated corpus
is built on a weekly basis, and corresponds to a random sub sampling of a whole
week logs. The sub-sampling strategy is guided by the annotation capacity for a
given week (the average amount of annotations produced by annotators, denoted
N,) and is motivated by the objective of preserving the original distribution of utter-
ances in the test set. Note that the annotations are not produced by crowd sourcing
but by expert annotators. Let L be the set of logs gathered during a week, L. can
be divided into L, the subset of already seen utterances, present in the annotation
database and L, =L, the subset of unseen utterances that constitute the pool of can-
didates for annotation. In a first step, L, is randomly down-sampled to N, samples,
and the corresponding random sampling probability is applied to L in order to de-
rive a down-sampled subset from already annotated samples. The corpus also con-
tains out of domain utterances that are labelled as “Nolntent”. The data distribution
strategy and the presence of out of domain utterances constitute the most significant
differences between this data-set and public benchmark datasets.

Semantic annotations are directly performed on ASR transcriptions and anno-
tated automatic transcriptions are used both for training and testing the NLU model.

For these experiments, the test set is composed of 9984 utterances randomly
sub-sampled from a full week of logs. The training corpus is composed of a set
of anterior utterances, respecting the usage distribution except that the number of
duplicate occurrences for a given utterance is notched to a maximum value of 50
in order to avoid over representation of some very common commands. Overall,
the training corpus contains 279375 utterances (with 52132 different utterances).
The model ontology is composed of 233 intents and 42 concepts. As can be seen
in table 3, the characteristics of the Djingo corpus are different from benchmark
corpora from several perspectives.

The distribution of utterances reflects the usage and we observe for instance a
larger proportion of utterances that are observed in the training corpus, but also a
set of out-of-domain utterances and a significant amount of utterances without any
concepts.

The SLU model used for this study is a Camembert Transformer [11] fine-tuned
on the task of jointly predicting the concept slots with a BIO encoding and the
sample’s intent, with the intent label set on the [CLS] first token, as in the example
below.

[CLS] put france info
Set_Radio_Channel O B-channel I-channel

In early experiments we tested different pretrained models and different output
layer configurations. As they had similar performances we settle for the fine-tuned
Camembert baseline with a simple linear output layer. The model was trained us-
ing Pytorch and hyper parameters were chosen using an internal architecture hyper
parameter completion toolbox (batch size of 10, learning rate of 5.0e-05, samples
padded to a maximum of 50 word pieces, Adam optimizer and 5 epochs).
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partition AC |[NCE | all
coverage 86.5%|13.5%|100%
token accuracy 98.6 | 92.4 | 97.3
F1 concepts 95.6 | 83.8 | 92.2
intent+concepts OK| 95.7 | 79.7 | 93.5
weight(AMBIG) - 28.9 -
weight(COVER) - 71.1 -

Table 10 Evaluation of easy (AC) and difficult (NCE) partitions of the Djingo corpus thanks to the
AC/NCE labels predicted by the complexity classifier

The evaluation of this SLU model on the Djingo corpus is given in the last col-
umn of table 10. We show 3 metrics: token accuracy, F-measure on concepts and
sentence accuracy where a sentence is correct only if both the intent and the con-
cept sequence are correct. As can be seen, the performance are in line with those
obtained in table 5

We applied our complexity classifier on the Djingo corpus without any retraining
or adaptation. We partitioned the corpus into an easy set and a difficult one according
to the label predicted by the classifier. As we can see in table 10, 86.5% of the
sentences were labeled as AC sentences are 13.5% as NCE. By measuring the SLU
performance on these 2 subsets, we can check if the AC/NCE prediction are indeed
predicting sentence complexity. Results in 10 show that the predicted labels are
meaningful since there is a drop of an absolute 16% between results on partition
AC (95.7) compared to the NCE (79.7) partition.

By looking at the distribution of the weights between the ambiguity rules and
the coverage ones, we observed that if issues linked to a lack of coverage in the
training date represent 71.1% of the weights, nearly 30% come from ambiguity
issues, making this corpus more challenging than ATIS or M2M where a very large
majority of rules came from a lack in the training data.

In addition to the use of the AC/NCE prediction, we wanted also to check if the
confidence scores given by Bonzaiboost on the NCE label predictions, could be use
to partition further this corpus into sets of different complexity. To this purpose we
tested a very simple approach consisting of fixing a threshold 9, then selecting all
sentences containing at least one word labeled NCE with a score above threshold d.

By varying 8 we obtain the curve of figure 1 which plots the F-measure on con-
cept with respect to the coverage of the corresponding partition. This curve clearly
indicates that the NCE label scores are meaningfull as they allow to select sentences
of various complexity.

6 Conclusion

We have shown in this study that it was possible to predict sentence complexity
without running an SLU system on the data. Just by defining very generic features
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70 T T T T

max score(NCE) ——
60 | —
50

40

coverage

30 [

20 -

10 " | | | | | | |
82 83 84 8 8 87 88 89 90 091

F-measure(concept)

Fig. 1 F-measure vs. coverage for different partitions of the eval corpus according to thresholds
applied on the predicted difficulty (NCE) score

that could be related either to ambiguity issues, or lack of coverage in the training
data, we can process corpora in different languages, topics and semantic models
without adaptation. Furthermore the complexity classification model can be ana-
lyzed to explain the major complexity factors on the corpus considered, leading to a
better characterisation of corpora. Finally, the model was successfully applied on a
new corpus collected from a deployed vocal assistant with real-usage distributions,
enabling to predict and explain complex utterances.

References

1. Béchet, F., Raymond, C.: Is ATIS too shallow to go deeper for benchmarking Spoken Lan-
guage Understanding models? In: InterSpeech 2018, pp. 1-5. Hyderabad, India (2018). URL
https://hal.inria.fr/hal-01835425

2. Béchet, F., Raymond, C.: Benchmarking benchmarks: introducing new automatic indicators
for benchmarking Spoken Language Understanding corpora. In: InterSpeech. Graz, Austria
(2019). URL https://hal.archives-ouvertes.fr/hal-02270633

3. Bernier-Colborne, G., Langlais, P.: HardEval: Focusing on challenging tokens to assess robust-
ness of NER. In: Proceedings of the 12th Language Resources and Evaluation Conference,
pp. 1704-1711. European Language Resources Association, Marseille, France (2020). URL
https://www.aclweb.org/anthology/2020.1rec-1.211

4. Bonneau-Maynard, H., Rosset, S., Ayache, C., Kuhn, A., Mostefa, D.: Semantic Anno-
tation of the French Media Dialog Corpus. In: InterSpeech. Lisbon (2005). URL
ftp://tlp.Jimsi.fr/public/IS052010.PDF

5. Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gissel-
brecht, T., Caltagirone, F., Lavril, T., Primet, M., Dureau, J.: Snips voice platform: an em-
bedded spoken language understanding system for private-by-design voice interfaces. CoRR
abs/1805.10190 (2018). URL http://arxiv.org/abs/1805.10190



12

10.

11.

12.

13.

14.

15.

Bechet F.,, Raymond C., Hamane H., Abrougui R., Marzinotto G., Damnati G.

Dahl, D.A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D., Pao, C., Rud-
nicky, A., Shriberg, E.: Expanding the scope of the ATIS task: the ATIS-3 corpus. In: HLT,
pp. 43-48 (1994)

. Fiscus, J.G.: A post-processing system to yield reduced word error rates: Recognizer output

voting error reduction (rover). In: 1997 IEEE Workshop on Automatic Speech Recognition
and Understanding Proceedings, pp. 347-354. IEEE (1997)

Laurent, A., Camelin, N., Raymond, C.: Boosting bonsai trees for efficient features combina-
tion : application to speaker role identification. In: Interspeech. Singapour, Singapore (2014).
URL https://hal.inria.fr/hal-01025171

. Lin, H,, Lu, Y., Tang, J., Han, X., Sun, L., Wei, Z., Yuan, N.J.: A rigorous study on named

entity recognition: Can fine-tuning pretrained model lead to the promised land? In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 7291-7300. Association for Computational Linguistics, Online (2020). DOI
10.18653/v1/2020.emnlp-main.592.  URL https://www.aclweb.org/anthology/2020.emnlp-
main.592

Louvan, S., Magnini, B.: Recent neural methods on slot filling and intent classification for
task-oriented dialogue systems: A survey. arXiv preprint arXiv:2011.00564 (2020)

Martin, L., Muller, B., Ortiz Suarez, PJ., Dupont, Y., Romary, L., de la Clergerie,
E., Seddah, D., Sagot, B.: CamemBERT: a tasty French language model. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics, pp. 7203-7219. Association for Computational Linguistics, Online (2020). URL
https://www.aclweb.org/anthology/2020.acl-main.645

Nasr, A., Dary, F., Bechet, F., Favre, B.: Annotation syntaxique automatique de la partie orale
du CEFC. Langages (2020). URL https://hal.archives-ouvertes.fr/hal-02973242

Nivre, J., De Marneffe, M.C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C.D., McDonald, R.,
Petrov, S., Pyysalo, S., Silveira, N., et al.: Universal dependencies v1: A multilingual treebank
collection. In: Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC’16), pp. 1659-1666 (2016)

Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text categorization. Ma-
chine learning 39(2), 135-168 (2000)

Shah, P., Hakkani-Tiir, D., Tiir, G., Rastogi, A., Bapna, A., Nayak, N., Heck, L.: Building
a conversational agent overnight with dialogue self-play. arXiv preprint arXiv:1801.04871
(2018)



