
HAL Id: hal-03385977
https://hal.science/hal-03385977

Submitted on 19 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compatibility Checking Between Privacy and Utility
Policies: A Query-Based Approach

Hira Asghar, Christophe Bobineau, Marie-Christine Rousset

To cite this version:
Hira Asghar, Christophe Bobineau, Marie-Christine Rousset. Compatibility Checking Between Pri-
vacy and Utility Policies: A Query-Based Approach. [Research Report] Université Grenoble Alpes;
CNRS; Grenoble INP; Laboratoire d’informatique de Grenoble. 2021. �hal-03385977�

https://hal.science/hal-03385977
https://hal.archives-ouvertes.fr

Compatibility Checking Between Privacy and Utility
Policies: A Query-Based Approach
Hira Asghar

Christophe Bobineau
firstname.lastname@univ-grenoble-alpes.fr

Université Grenoble Alpes, CNRS, Grenoble INP, LIG
Grenoble, France

Marie-Christine Rousset
Marie-Christine.Rousset@univ-grenoble-alpes.fr

Université Grenoble Alpes, CNRS, Grenoble INP, IUF, LIG
Grenoble, France

Abstract
Data sharing over the internet through smart devices is sus-
ceptible to disclose sensitive information of data producers.
To protect the privacy of data producers, we propose a query-
based approach where data producers keep their data on
decentralized personal data servers and only disclose data to
data consumers over secure communication links according
to their privacy policies. Data consumers specify the data
needed to provide services as utility policies. In our approach,
we express the privacy and utility policies as sets of temporal
aggregated conjunctive queries. We make explicit several
sufficient conditions of compatibility between privacy and
utility policies based on their query expressions. On the basis
of these results, sensitive data breaches can be prevented
by checking whether one of these sufficient conditions is
satisfied.

Keywords: temporal RDF graphs, temporal aggregated con-
junctive queries, utility policy, privacy policy

1 Introduction
Personal data are increasingly disseminated over Internet
through mobile devices and smart environments, and are ex-
ploited for developing more and more sophisticated services
and applications. All these advances come with serious risks
for privacy breaches that may reveal private information
wanted by users to remain undisclosed. It is therefore of ut-
most importance to help data producers to keep the control
on their data for their privacy protection while preserving
the utility of disclosed data for service providers.
In this paper, we approach the problem of utility-aware

privacy preservation in the setting of applications where
service providers (e.g., power suppliers) perform data ana-
lytics on data concerning their customers (e.g., smart home
occupants) for optimization or recommendation purposes.
In such settings, (sensor) data are gathered, abstracted and
transferred through internet protocols from data producers
environment (e.g., smart home, smart personal devices) to a
centralized data consumer in charge of aggregating data for
conducting varied analytics tasks.
Sensitive data leakage can occur at different stages and

places due to security vulnerabilities of (1) the network, (2)

the centralized server used by the data consumer for collect-
ing data outsourced by the different data producers, and (3)
the local servers of each data producer.
Following the vision of [1], we propose, first, to rely on

data encryption to secure data exchange through the net-
work and, second, to avoid the privacy risks of data central-
ization by keeping the data produced by each data owner
decentralized in secure personal data servers.

The approach that we promote to face the privacy versus
utility dilemma in this setting can be summarized as follows:

1. Data producers keep the control on the data they ac-
cept to transmit to the data consumer according to
their own privacy policy.

2. The data consumer makes explicit his/her utility policy
to explain for which task or service s/he requests data
from data producers.

3. In case of incompatibility of the utility policy with the
privacy policy of a data producer, the data producer ne-
gotiates with the data consumer to find an acceptable
privacy-utility trade-off.

In the remaining of this paper, we focus on the problem of
checking compatibility between privacy and utility policies,
that is at the core of our approach.
Our contribution is twofold. First, we extend the frame-

work proposed in [5] to formalize privacy and utility policies
as temporal aggregate queries. Second, we formally define
and study the compatibility problem in this query-based
framework. In particular, we exhibit several conditions for
compatibility or incompatibility that can be automatically
verified by comparing the query expressions defining pri-
vacy and utility policies.

The paper is organized as follows. In Section 2, we provide
the formal background on which our approach relies. In Sec-
tion 3, we describe the query-based formal framework that
we propose to define privacy and utility policies and their
compatibility. In Section 4, we summarize our contribution
for checking compatibility between privacy and utility poli-
cies. Section 5 presents related work, and Section 6 concludes
our paper and highlights the future work that we plan to
conduct.

, Hira Asghar, Christophe Bobineau, and Marie-Christine Rousset

2 Formal background
This section provides the notations and definitions of tempo-
ral aggregate conjunctive queries and their evaluation over
temporal RDF graphs, on which our approach relies. We
illustrate these notions through examples.

2.1 Preliminaries
Let 𝐼 , 𝐿, 𝐵, and Var be pairwise disjoint sets representing IRIs,
literals, blank nodes, and variables. In the set 𝐿 of literals we
distinguish 𝑇𝑆 as a subset denoting timestamps. In the set
of variables 𝑉𝑎𝑟 we distinguish one specific time variable
denoted ?𝑡𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝐸𝑛𝑑 .
We will call constants the elements of 𝐼 ∪ 𝐿.

Definition 1 (Temporal RDF graphs). A temporal RDF triple
is a pair (𝑠 𝑝 𝑜 , 𝑡) where 𝑠 𝑝 𝑜 ∈ (𝐼 ∪ 𝐵) × 𝐼 × (𝐼 ∪ 𝐿 ∪ 𝐵) and
𝑡 ∈ 𝑇𝑆 .
A temporal RDF graph is a set of temporal RDF triples.

By convention and for homogeneity purpose we consider
RDF graphs where all the triples are temporal by using 𝑎𝑛𝑦
as a special timestamp when the corresponding triples holds
at any time. We will call static the properties involved in
triples with 𝑎𝑛𝑦 as timestamps.
Example 1 illustrates a temporal RDF graph describing

the data of a given house owner using a simple ontology
with properties familySize, address, city, street (that
are static) and consumption.

Example 1. The family size, address and street are expressed
as triples with special timestamp 𝑎𝑛𝑦 whereas energy con-
sumption triples are timestamped.

Temporal RDF graph of data producer 𝐷𝑃1

(𝑑𝑝1 𝑓 𝑎𝑚𝑖𝑙𝑦𝑆𝑖𝑧𝑒 4, 𝑎𝑛𝑦)
(𝑑𝑝1 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 _ : 𝑏1, 𝑎𝑛𝑦)
(_ : 𝑏1 𝑠𝑡𝑟𝑒𝑒𝑡 “𝐴𝑙𝑠𝑎𝑐𝑒𝐿𝑜𝑟𝑟𝑎𝑖𝑛𝑒”, 𝑎𝑛𝑦)
(_ : 𝑏1 𝑐𝑖𝑡𝑦 “𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒”, 𝑎𝑛𝑦)
(𝑑𝑝1 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 40, 2021 − 04 − 04𝑇 15 : 30 : 00)
(𝑑𝑝1 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 20, 2021 − 04 − 04𝑇 16 : 00 : 00)
(𝑑𝑝1 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 30, 2021 − 04 − 04𝑇 16 : 30 : 00)
(𝑑𝑝1 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 10, 2021 − 04 − 04𝑇 17 : 00 : 00)

Definition 2 (Temporal graph pattern). A Temporal graph
pattern is a finite set of temporal triple patterns, where a
temporal triple pattern is a pair (𝑠 𝑝 𝑜, ?𝑡𝑠) such that 𝑠 𝑝 𝑜 ∈
(𝐼 ∪ 𝐵 ∪𝑉𝑎𝑟) × (𝐼 ∪𝑉𝑎𝑟) × (𝐼 ∪ 𝐿 ∪ 𝐵 ∪𝑉𝑎𝑟). Variables ?𝑡𝑠
are called timestamp variables.
For a temporal graph pattern 𝐺𝑃 , we will denote 𝑉𝑎𝑟 (𝐺𝑃)
the set of all variables occurring in 𝐺𝑃 , including
?𝑡𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝐸𝑛𝑑 .

Definition 3 (Graph homomorphisms). Let 𝐻 and 𝐻 ′ be
temporal RDF graphs or temporal graph patterns. An homo-
morphism from 𝐻 ′ to 𝐻 is an application ℎ : (𝐼 ∪ 𝐿 ∪ 𝐵 ∪
𝑉𝑎𝑟) → (𝐼 ∪ 𝐿 ∪ 𝐵 ∪ 𝑉𝑎𝑟) such that h(c) = c for 𝑐 ∈ 𝐿 ∪ 𝐼

and ℎ(𝐻 ′) ⊆ 𝐻 where:

ℎ((𝑠 𝑝 𝑜, 𝑡)) = (ℎ(𝑠) ℎ(𝑝) ℎ(𝑜), ℎ(𝑡))

Notation: For a tuple of variables 𝑥 , ` (𝑥) is the tuple
obtained by replacing each variable 𝑥 by its value ` (𝑥).

Definition 4 (Unifiable graph patterns). Let 𝐺𝑃1 and 𝐺𝑃2
two temporal graph patterns. 𝐺𝑃1 and 𝐺𝑃2 are unifiable if
there exists a function 𝑠 replacing variables from 𝐺𝑃1 and
𝐺𝑃2 by constants or by variables of𝐺𝑃1, such that 𝑠 (𝐺𝑃1) =
𝑠 (𝐺𝑃2).

Definition 5 (Overlapping graph patterns). Let 𝐺𝑃1 and
𝐺𝑃2 two temporal graph patterns. 𝐺𝑃1 and 𝐺𝑃2 are overlap-
ping if they contain subgraphs that are unifiable.

Example 2. The two following listings show two overlapping
temporal graph patterns, where the unifiable subgraphs are
indicated in bold.

Temporal graph pattern 𝐺𝑃1

(?dp address ?a, ?ts)
(?a city ?city, ?ts)
(?𝑎 𝑠𝑡𝑟𝑒𝑒𝑡 ?𝑠𝑡𝑟𝑒𝑒𝑡, ?𝑡𝑠)

Temporal graph pattern 𝐺𝑃2

(?𝑑𝑝 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ?𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, ?𝑡𝑠)
(?dp address ?a, ?ts)
(?a city ”Grenoble”, ?ts)

Definition 6 (Disjoint graph patterns). Let 𝐺𝑃1 and 𝐺𝑃2
two temporal graph patterns. 𝐺𝑃1 and 𝐺𝑃2 are disjoint if
they are not overlapping.

Definition 7 (Isomorphic graph patterns). Let𝐺𝑃1 and𝐺𝑃2
two temporal graph patterns.𝐺𝑃1 and𝐺𝑃2 are isomorphic if
there is a homomorphism h from𝐺𝑃1 to𝐺𝑃2 that is bijective
and its inverse is also a homomorphism.

2.2 Temporal aggregated conjunctive queries
We first formally define the general form of temporal ag-
gregate conjunctive queries (TACQs) with a SPARQL-like
syntax extended with time windows for capturing aggregate
on time.

To simplify the exposition, wewill only consider aggregate
queries which have a single aggregation term. In most cases,
queries with several aggregate terms are equivalent to the
unions of queries with same body and a single aggregate
term [4].

Definition 8 (Temporal aggregated conjunctive query). A
𝑇𝐴𝐶𝑄 is defined as

SELECT 𝑥 , 𝑎𝑔𝑔(𝑦)
WHERE {𝐺𝑃 . 𝐹𝐼𝐿𝑇𝐸𝑅}
GROUP BY 𝑥
TIMEWINDOW (𝑆𝑖𝑧𝑒 , 𝑆𝑡𝑒𝑝)

where

Compatibility Checking Between Privacy and Utility Policies: AQuery-Based Approach ,

• 𝐺𝑃 is a temporal graph pattern,
• 𝐹𝐼𝐿𝑇𝐸𝑅 is a boolean combination of atomic compar-
isons of the form 𝑡 > 𝑡 ′ or 𝑡 ≥ 𝑡 ′ where 𝑡 and 𝑡 ′ are
variables of 𝑉𝑎𝑟 (𝐺𝑃) or literals (numbers, strings or
dates),

• 𝑥 is a tuple of variables called the output (or grouping)
variables,

• when the aggregate term 𝑎𝑔𝑔(𝑦) is present, 𝑦 (called
the aggregate variable) is not in 𝑥 and 𝑎𝑔𝑔 is an ag-
gregate function that produces a single value when
applied to a set of values assigned to 𝑦.

• 𝑆𝑖𝑧𝑒 and 𝑆𝑡𝑒𝑝 are time durations (i.e. differences be-
tween timestamps),

The general syntax can be simplified as follows for cap-
turing particular cases:

• When either 𝑥 is empty or there is no aggregate term,
we can omit the GROUP BY clause.

• When 𝑆𝑖𝑧𝑒 = ∞ (and thus 𝑆𝑡𝑒𝑝 = 0), the TIMEWIN-
DOW clause can be omitted.

• The 𝐹𝐼𝐿𝑇𝐸𝑅 clause can be omitted when the corre-
sponding boolean expression is TRUE (called empty
𝐹𝐼𝐿𝑇𝐸𝑅). Note however, that when TIMEWINDOW is
specified, FILTER always contains the implicit follow-
ing constraints for each timestamp variable ?𝑡𝑠 : ?𝑡𝑠 ≤
?𝑡𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝐸𝑛𝑑 ∧ ?𝑡𝑠 > ?𝑡𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝐸𝑛𝑑 − 𝑆𝑖𝑧𝑒 .

• For static properties, the timestamp variables can be
omitted as they can only be assigned to the special
timestamp 𝑎𝑛𝑦, and the corresponding temporal triple
patterns can be simplified into standard triple patterns.

In Example 3, we illustrate several of these cases.

Example 3.
𝑇𝐴𝐶𝑄1 is an example of a standard conjunctive query which
is a particular case of a TACQ in which there is no (temporal)
aggregation. It asks the street and city of each data producer.

𝑇𝐴𝐶𝑄1: a particular case of a simple conjunctive query
SELECT ?dp ?street ?city
WHERE {?dp address ?a . ?a street ?street .

?a city ?city}

𝑇𝐴𝐶𝑄2 is a temporal aggregate conjunctive query where
the aggregate is on the temporal variable ?𝑡𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝐸𝑛𝑑

for a sliding time window of 6 hours and asks the sum of
consumption of all data producers computed every hour over
the previous 6 hours.

𝑇𝐴𝐶𝑄2: a simple temporal aggregate conjunctive query
SELECT ?timeWindowEnd SUM(? consumption)
WHERE {(?dp consumption ?consumption , ?timestamp)}
GROUP BY ?timeWindowEnd
TIMEWINDOW (6h, 1h)

𝑇𝐴𝐶𝑄3 is a general TACQ that asks the average consump-
tion, computed every hour over the previous 3 hours, and
grouped by consumer, street and the time window end, of

data producers living in Grenoble whose size family is greater
than 2.

𝑇𝐴𝐶𝑄3: a general temporal aggregate conjunctive query
SELECT ?dp ?street ?timeWindowEnd

AVG(? consumption)
WHERE {

(?dp consumption ?consumption , ?ts) .
?dp familySize ?fSize . ?dp address ?a .
?a street ?street . ?a city "Grenoble" .
FILTER (?fSize > 2)}

GROUP BY ?dp ?street ?timeWindowEnd
TIMEWINDOW (1h, 1h)

Given a TACQ :
SELECT 𝑥 , 𝑎𝑔𝑔(𝑦)
WHERE {𝐺𝑃 . 𝐹𝐼𝐿𝑇𝐸𝑅}
GROUP BY 𝑥
TIMEWINDOW (𝑆𝑖𝑧𝑒 , 𝑆𝑡𝑒𝑝)

its evaluation over a given temporal data graph 𝐺 is defined
in terms of filtered homomorphism and groups (respectively
defined in Definition 9 and Definition 10) for obtaining its
answer set (Definition 11).

Definition 9 (Filtered homomorphisms). Let 𝑀 the set of
homomorphisms from𝐺𝑃 to𝐺 . The filtered set of homomor-
phisms is the subset of 𝑀 of homomorphisms ` such that
`(FILTER) = TRUE.

When FILTER is empty then the filtered set of homomor-
phisms is equal to𝑀 .
Definition 10 states that there are as many groups as ho-

momorphisms allowing to match the tuple 𝑥 with tuples of
values 𝑣 multiplied by the number of time intervals defined
by values of 𝑘 as:]𝑛𝑜𝑤 − 𝑘 × 𝑆𝑡𝑒𝑝 − 𝑆𝑖𝑧𝑒 , 𝑛𝑜𝑤 − 𝑘 × 𝑆𝑡𝑒𝑝]
where 𝑛𝑜𝑤 denotes the timestamp at which the query is
executed.

Definition 10 (Groups). Let 𝐹𝑀 be the set of filtered homo-
morphisms from 𝐺𝑃 to 𝐺 . Groups are defined for each tuple
𝑣 and each time interval 𝑘 as follows:
𝐺𝑟𝑜𝑢𝑝𝑘 (𝑣) = {` (𝑦) | ` ∈ 𝐹𝑀, ` (𝑥) = 𝑣 , and for each times-
tamp variable ?𝑡𝑠 ` (?𝑡𝑠) = 𝑎𝑛𝑦 or ` (?𝑡𝑠) ∈]𝑛𝑜𝑤 − 𝑘 ×
𝑆𝑡𝑒𝑝 − 𝑆𝑖𝑧𝑒, 𝑛𝑜𝑤 − 𝑘 × 𝑆𝑡𝑒𝑝]) and ` (?𝑡𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝐸𝑛𝑑) =
𝑛𝑜𝑤 − 𝑘 × 𝑆𝑡𝑒𝑝}.

It is important to note that if there is no aggregate term,
there is only one time interval (i.e.,] − ∞, 𝑛𝑜𝑤]) and there
are as many groups as distinct tuples 𝑣 .
For each group 𝐺𝑟𝑜𝑢𝑝𝑘 (𝑣), an answer is: either the tuple

𝑣 if there is no aggregate term, or the tuple (𝑣, 𝑟) obtained by
concatenating the tuple 𝑣 with the result 𝑟 of the aggregation
function applied to the values in the group. This is formalized
in Definition 11.

Definition 11 (Answer set). The answer set of 𝑇𝐴𝐶𝑄 eval-
uated over 𝐺 is defined as follows:

, Hira Asghar, Christophe Bobineau, and Marie-Christine Rousset

• if there is no aggregate term:
𝐴𝑛𝑠 (𝑇𝐴𝐶𝑄,𝐺) = {𝑣 | 𝐺𝑟𝑜𝑢𝑝𝑘 (𝑣) is a group of 𝑇𝐴𝐶𝑄
for 𝐺}.

• else:
𝐴𝑛𝑠 (𝑇𝐴𝐶𝑄,𝐺) = {(𝑣, 𝑎𝑔𝑔(𝐺𝑟𝑜𝑢𝑝𝑘 (𝑣))) | 𝐺𝑟𝑜𝑢𝑝𝑘 (𝑣) is
a group of 𝑇𝐴𝐶𝑄 for 𝐺}.

Definition 12 makes explicit the homomorphism support
of an answer.

Definition 12 (Homomorphism support of an answer). Let
𝑎 an answer obtained from a given group 𝐺𝑟𝑜𝑢𝑝𝑘 (𝑣). Its
homomorphism support, denoted𝐻𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑎), is the subset
of filtered homomorphisms ` such that ` (𝑥) = 𝑣 .

Example 4 shows the answers sets of queries in Example 3
over the temporal RDF graph 𝐷𝑃1 of Example 1.

Example 4.
The answer set of 𝑇𝐴𝐶𝑄1 is:

Answer set of 𝑇𝐴𝐶𝑄1 over 𝐷𝑃1

𝐴𝑛𝑠 (𝑇𝐴𝐶𝑄1, 𝐷𝑃1) =
{(𝑑𝑝1, "Alsace Lorraine", "Grenoble ")}

The homomorphism support of its single answer is re-
stricted to the single homomorphism ℎ shown below.

Homomorphism support of 𝐴𝑛𝑠 (𝑇𝐴𝐶𝑄1, 𝐷𝑃1)
𝐻𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = {ℎ}
ℎ : {?𝑑𝑝/𝑑𝑝1, ?𝑎/_ : 𝑏1, ?𝑠𝑡𝑟𝑒𝑒𝑡/”𝐴𝑙𝑠𝑎𝑐𝑒𝐿𝑜𝑟𝑟𝑎𝑖𝑛𝑒”, ?𝑐𝑖𝑡𝑦/”𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒”}}

When 𝑇𝐴𝐶𝑄3 is evaluated at 17:30 the same day as the
temporal triples in 𝐷𝑃1 (i.e., 𝑛𝑜𝑤 = 2021-04-04T17:30:00), its
answer set is:

Answer set of 𝑇𝐴𝐶𝑄3 over 𝐷𝑃1

𝐴𝑛𝑠 (𝑇𝐴𝐶𝑄3, 𝐷𝑃1) =
{(𝑑𝑝1, "Alsace Lorraine", 2021 -04 -04 T17 :30:00 ,

10)
(𝑑𝑝1, "Alsace Lorraine", 2021 -04 -04 T16 :30:00 ,

25)
(𝑑𝑝1, "Alsace Lorraine", 2021 -04 -04 T15 :30:00 ,

40)}

The homomorphism support of the second answer is made
of two homomorphisms ℎ1 and ℎ2 which differ in the assign-
ment of the aggregate variable ?consumption.

Homomorphism support of an answer of 𝑇𝐴𝐶𝑄3

𝐻𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = {ℎ1, ℎ2 }
ℎ1 :
{ ?dp/𝑑𝑝1, ?street /" Alsace Lorraine", ?size/4, ?

consumption /20, ?ts/2021 -04 -04 T16 :00:00 , ?
timeWindowEnd /2021 -04 -04 T16 :30:00}

ℎ2 :
{ ?dp/𝑑𝑝1, ?street /" Alsace Lorraine", ?size/4, ?

consumption /30, ?ts/2021 -04 -04 T16 :30:00 , ?
timeWindowEnd /2021 -04 -04 T16 :30:00}

Based on Definition 3, the evaluation over (partially instan-
tiated) graph patterns of plain conjunctive queries is possible
and the resulting set of answers is defined in Definition 13.

Definition 13 (Conjunctive query evaluated over graph pat-
terns).
Let 𝑄 : SELECT 𝑥 WHERE GP be a plain conjunctive query,
and let 𝑃𝐼𝐺 a graph pattern. The answer set of 𝑄 over 𝑃𝐼𝐺
is:
𝐴𝑛𝑠 (𝑄, 𝑃𝐼𝐺) = {𝑎 |𝑎 is a tuple of constants and ℎ is an

homomorphism from 𝐺𝑃 to 𝑃𝐼𝐺 such that ℎ(𝑥) = 𝑎 }

3 Query-based specification of policies
We define utility and privacy policies in the form of TACQs
that are built upon a common schema or ontology.

Definition 14 (Utility policy). A utility policy is defined by
a set of TACQ queries, called utility queries. A utility policy
(issued by a service provider) is satisfied by a data producer if
s/he accepts to provide the set of answers of all of the utility
queries for any RDF graph storing her/his data.

Definition 15 (Privacy policy). A privacy policy is defined
by a set of TACQ queries, called privacy queries. A privacy
policy, specific to each data producer, is satisfied when all
the answers of all the privacy queries remain undisclosed
for any temporal RDF graph storing her/his data.

Checking whether her/his privacy policy is incompatible
with the utility policy of a service provider is an important
property to be checked in the name of each data producer
for guiding her/his decision of satisfying the utility policy.

Independently of any graph data, we have to prevent that
answers to an utility query allow to infer answers to one
of the privacy queries. Definition 17 formalizes incompati-
bility as inferring answers of a privacy query from sets of
answers of utility queries on the same data graph 𝐺 without
necessarily knowing it.

It relies on Definition 16 that defines the logical signature
of an answer (set) of a query as the logical formula charac-
terizing all the (unknown) temporal data graphs leading to
this answer (set) for this query.

Given a TACQ Q:
SELECT 𝑥 , 𝑎𝑔𝑔(𝑦)
WHERE {𝐺𝑃 . 𝐹𝐼𝐿𝑇𝐸𝑅}
GROUP BY 𝑥
TIMEWINDOW (𝑆𝑖𝑧𝑒 , 𝑆𝑡𝑒𝑝)

we interpret𝐺𝑃 as the logical conjunction of its triple pattern
seen as atomic formulas.

Definition 16 (Logical signature of answers). For an answer
(𝑎, 𝑟) to the query 𝑄 , let `𝑎 the mapping assigning each
grouping variable 𝑥 in 𝑥 to the corresponding constant 𝑎 in
𝑎. The logical signature of (𝑎, 𝑟) and 𝑄 , denoted 𝜎 ((𝑎, 𝑟), 𝑄),
is the formula:

Compatibility Checking Between Privacy and Utility Policies: AQuery-Based Approach ,

(∃𝑦∃𝑧 `𝑎 (𝐺𝑃) ∧ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅))
∧𝑎𝑔𝑔({𝑦 |∃𝑧, `𝑎 (𝐺𝑃) ∧ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅)}) = 𝑟

where 𝑧 is the (possibly empty) subset of variables in𝑉𝑎𝑟 (𝐺𝑃)
non including the aggregate variable 𝑦.
When there is no aggregate variable, the logical signature is
reduced to the formula: (∃𝑦∃𝑧 `𝑎 (𝐺𝑃) ∧ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅)) .
The logical signature of an answer set 𝐴𝑛𝑠𝑤𝑒𝑟𝑆𝑒𝑡 of a

given query 𝑄 is the conjunction of the logical signatures of
each answer:

𝜎 (𝐴𝑛𝑠𝑤𝑒𝑟𝑆𝑒𝑡,𝑄) =
∧

𝑎𝑛𝑠∈𝐴𝑛𝑠𝑤𝑒𝑟𝑆𝑒𝑡

𝜎 (𝑎𝑛𝑠,𝑄)

Example 5 shows logical signatures of answers of a simple
conjunctive query and of a temporal aggregate query.

Example 5. The logical signature of the answer (dp1, "Alsace
Lorraine", "Grenoble") of 𝑇𝐴𝐶𝑄1 is provided in the fol-
lowing listing.

Logical signature of the answer (dp1, "Alsace Lorraine",
"Grenoble") of 𝑇𝐴𝐶𝑄1

𝜎 ((dp1, "Alsace Lorraine","Grenoble ") , 𝑇𝐴𝐶𝑄1) :
∃ ?𝑎, dp1 address ?𝑎 ∧ ?𝑎 street "Alsace Lorraine"

∧ ?𝑎 city "Grenoble ".

The logical signature𝜎 ((dp1, "Alsace Lorraine",2021-
04-04T17:30:00, 20), 𝑇𝐴𝐶𝑄3) is provided in the follow-
ing listing.

Logical signature of the answer (dp1, "Alsace Lorraine",
2021-04-04T17:30:00, 20) of 𝑇𝐴𝐶𝑄3

𝜎 ((dp1, "Alsace Lorraine", 2021 -04 -04 T17 :30:00 ,
20), 𝑇𝐴𝐶𝑄3) :

∃ ?𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∃ ?𝑡𝑠 ∃?𝑓 𝑆𝑖𝑧𝑒 ∃?𝑎,
(dp1 consumption ?𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛,?𝑡𝑠)
∧ dp1 familySize ?𝑓 𝑆𝑖𝑧𝑒 ∧ dp1 address ?𝑎
∧ ?𝑎 street "Alsace Lorraine" ∧ ?𝑎 city "Grenoble"
∧ ?𝑓 𝑆𝑖𝑧𝑒 > 2 ∧ ?𝑡𝑠 ≤ 2021 -04 -04 T17 :30:00
∧ ?𝑡𝑠 > 2021 -04 -04 T14 :30:00
∧ AVG {?𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 | ∃ ?𝑡𝑠 ∃?𝑓 𝑆𝑖𝑧𝑒 ∃?𝑎, (dp1

consumption ?𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, ?𝑡𝑠) ∧ dp1 familySize
?𝑓 𝑆𝑖𝑧𝑒 ∧ dp1 address ?𝑎 ∧ ?𝑎 street "Alsace
Lorraine" ∧ ?𝑎 city "Grenoble" ∧ ?𝑓 𝑆𝑖𝑧𝑒 > 2 ∧
?𝑡𝑠 ≤ 2021 -04 -04 T17 :30:00 ∧ ?𝑡𝑠 > 2021 -04 -04 T16
:30:00 } = 20

Definition 17 (Incompatibility between privacy and utility).
A privacy policy is incompatible with a utility policy if the
logical signature of an answer to a privacy query is entailed
by the union of logical signatures of answers sets of utility
queries.

Continuing Example 5, we have:
𝜎 ((𝑑𝑝1, ”𝐴𝑙𝑠𝑎𝑐𝑒 𝐿𝑜𝑟𝑟𝑎𝑖𝑛𝑒”, 2021 − 04 − 04𝑇17 : 30 : 00, 20),
𝑇𝐴𝐶𝑄3)

|= 𝜎 ((𝑑𝑝1, ”𝐴𝑙𝑠𝑎𝑐𝑒 𝐿𝑜𝑟𝑟𝑎𝑖𝑛𝑒”, ”𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒”),𝑇𝐴𝐶𝑄1)
Therefore a privacy policy made of the single privacy query
𝑇𝐴𝐶𝑄1 is incompatible with any utility policy containing
𝑇𝐴𝐶𝑄3 as utility query.

Definition 20 defines a weaker notion of incompatibil-
ity that prevents from the risk to get an answer to a pri-
vacy query among the answers inferred by variants of utility
queries. A variant of a query only differs from the original
query with the FILTER condition while preserving satisfia-
bility.

Definition 18 (Satisfiable Boolean expression). A Boolean
expression 𝐸𝑥𝑝 is satisfiable if there exists at least an assign-
ment of variables in 𝐸𝑥𝑝 that makes it TRUE.

Definition 19. Aquery𝑄 ′ is a variant of𝑄 if the two queries
differ only on their FILTER part and FILTER𝑄 ∧ FILTER𝑄′ is
satisfiable.

Example 6. 𝑄 ′
𝑢 is a variant of 𝑄𝑢 where 𝑄 ′

𝑢 is:
SELECT ?x WHERE {?x p ?y . FILTER (?y > 2)}

and 𝑄𝑢 is:
SELECT ?x WHERE {?x p ?y . FILTER (?y < 4)}

Definition 20 (Weak incompatibility between privacy and
utility). A privacy query 𝑄𝑝 is weakly incompatible with a
set of utility queries if𝑄𝑝 is incompatible with some variants
of the utility queries.

Continuing Example 6, let us consider the privacy query
𝑄𝑝 :

SELECT ?x WHERE {?x p ?y. FILTER (?y > 2)}

𝑄𝑝 is weakly incompatible with a utility policy made of
the single utility query 𝑄𝑢 :
SELECT ?x WHERE {?x p ?y. FILTER (?y < 4)}

Note that 𝑄𝑝 is compatible (i.e., not incompatible) with
𝑄𝑢 since the logical signature of each answer 𝑎 of 𝑄𝑝 is: ∃
?y (a p ?y) ∧ (?y > 2)
which is not logically entailed by the logical signature of an
answer 𝑎 of 𝑄𝑢 which is the formula: ∃ ?y (a p ?y) ∧ (?y < 4).

However it is incompatible with the variant𝑄 ′
𝑢 of𝑄𝑢 given

in Example 6.

4 Compatibility checking
In this section, we exhibit a set of sufficient and necessary
conditions for compatibility or incompatibility.

In Section 4.1, we start by focusing on the case where util-
ity and privacy queries are plain conjunctive queries without
aggregate terms and without FILTER conditions. Then, in
Section 4.2, we handle the case where utility and privacy
queries are conjunctive queries with FILTER conditions. Fi-
nally, Sections 4.3 and 4.4 are dedicated to the more general
case of queries with aggregate terms possibly with time win-
dows.

Without loss of generality, by renaming variables within
each query, we consider that queries have no variable in
common.

, Hira Asghar, Christophe Bobineau, and Marie-Christine Rousset

For a TACQ in its general form, we will often rely on its
conjunctive part defined in Definition 21.

Definition 21 (Conjunctive part of a query). Let𝑄 a TACQ
of the form:

SELECT 𝑥 𝑎𝑔𝑔(𝑦)
WHERE {𝐺𝑃 . 𝐹𝐼𝐿𝑇𝐸𝑅}
GROUP BY 𝑥
TIMEWINDOW (𝑆𝑖𝑧𝑒 , 𝑆𝑡𝑒𝑝)

The conjunctive part of 𝑄 , noted 𝐶𝑜𝑛𝑗 (𝑄) is the plain con-
junctive query defined as follows:
𝐶𝑜𝑛𝑗 (𝑄) : SELECT 𝑥 WHERE {𝐺𝑃 }

4.1 Case of plain conjunctive queries
Theorem 4.1 is a characterization of incompatibility of a
privacy query 𝑄𝑝 and a set of 𝑛 utility queries 𝑄𝑢1 , ..., 𝑄𝑢𝑛

when all the queries are plain conjunctive queries.
We will use the following notations for the different query

expressions:
Privacy query 𝑄𝑝 :
SELECT 𝑥𝑝 WHERE {𝐺𝑃𝑝 }
Utility query 𝑄𝑢𝑖 :
SELECT 𝑥𝑢𝑖 WHERE {𝐺𝑃𝑢𝑖 }

Theorem 4.1 relies on the evaluation of the privacy query
over the union of partially instantiated graph patterns ob-
tained by freezing the output variables in the graph patterns
of the utility queries.

Definition 22 (Frozen graph patterns). Let 𝐺𝑃 a temporal
graph pattern and 𝑋 a subset of variables occurring in it.
A freezing of 𝑋 in 𝐺𝑃 , denoted Frozen(GP,X), is the graph
pattern obtained from 𝐺𝑃 by replacing each occurrence of
𝑥 ∈ 𝑋 by a constant.

Theorem 4.1 (Incompatibility of conjunctive queries). The
privacy query𝑄𝑝 is incompatible with the set of utility queries
if and only if𝐴𝑛𝑠 (𝑄𝑝 , 𝐹𝑟𝑜𝑧𝑒𝑛) ≠ ∅ where 𝐹𝑟𝑜𝑧𝑒𝑛 is a freezing
in

⋃
𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖 of the output variables of the utility queries.

Proof. In the case of conjunctive queries and according to
Definition 16, the logical signature of an answer 𝑎 to a query
𝑄 is a formula of the form: ∃𝑧 `𝑎 (𝐺𝑃) where 𝐺𝑃 is the con-
junction of triples patterns in the graph pattern of 𝑄 inter-
preted as logical atoms and ` is an assignment of the tuple 𝑥
of the output variables of 𝑄 to the tuple of constants 𝑎, and
𝑧 are the other variables occurring in 𝑄 .

If 𝑄𝑝 is incompatible with the utility queries, it means
by definition that there exists tuples of constants 𝑎, 𝑎1, ..., 𝑎𝑛
such that∃𝑧1 ... ∃𝑧𝑛 `𝑎1 (𝐺𝑃𝑢1)∧...∧`𝑎𝑛 (𝐺𝑃𝑢𝑛) |=∃𝑧 `𝑎 (𝐺𝑃𝑝).
Since the sets of variables in each query are pairwise

disjoint, the entailment is only possible if there exists an
homomorphism ℎ from the variables in 𝑧 to the variables
or constants in the left hand side so that all the atoms in

ℎ(`𝑎 (𝐺𝑃𝑝)) appear in the union of the atoms in `𝑎1 (𝐺𝑃𝑢1) ∧
... ∧ `𝑎𝑛 (𝐺𝑃𝑢𝑛).
Let 𝐹𝑟𝑜𝑧𝑒𝑛 be the freezing of

⋃
𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖 obtained by

replacing each output variable 𝑥𝑢𝑖 by `𝑎𝑖 (𝑥𝑢𝑖). The homomor-
phism ℎ∪`𝑎 from the graph pattern𝐺𝑃𝑝 to 𝐹𝑟𝑜𝑧𝑒𝑛 allows to
show that 𝑎 is an answer of𝑄𝑝 when evaluated over 𝐹𝑟𝑜𝑧𝑒𝑛.

For the converse way of the proof, Let us consider 𝐹𝑟𝑜𝑧𝑒𝑛
a freezing of the output variables of

⋃
𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖 such that

there exists an answer 𝑐 of 𝑄𝑝 when evaluated over 𝐹𝑟𝑜𝑧𝑒𝑛.
There exists an homomorphism ℎ from 𝐺𝑃𝑝 to 𝐹𝑟𝑜𝑧𝑒𝑛 such
that ℎ(𝑥) = 𝑐 . The homomorphism ℎ allows to show the en-
tailment between the formulas ∃𝑧𝑢 𝐹𝑟𝑜𝑧𝑒𝑛 and ∃𝑧 ℎ𝑐 (𝐺𝑃𝑝)
where𝐺𝑃𝑝 and 𝐹𝑟𝑜𝑧𝑒𝑛 are interpreted as the conjunction of
their respective triple patterns seen as logical atoms, and ℎ𝑐
is the restriction of ℎ to the output variables of 𝑄𝑝 .
In fact, the formula ∃𝑧 ℎ𝑐 (𝐺𝑃𝑝) is the logical signature

of the answer 𝑐 of 𝑄𝑝 , while the formula ∃𝑧𝑢 𝐹𝑟𝑜𝑧𝑒𝑛 is the
conjunction of logical signatures of the answers 𝑓 𝑟𝑒𝑒𝑧𝑒 (𝑥𝑢𝑖)
of each 𝑄𝑢𝑖 where 𝑓 𝑟𝑒𝑒𝑧𝑒 is the freezing function applied to
the output variables of the different 𝑄𝑢𝑖 to obtain 𝐹𝑟𝑜𝑧𝑒𝑛.

Therefore, the privacy query 𝑄𝑝 is incompatible with the
utility queries. □

Example 7. Let us consider the following privacy and utility
queries:
𝑄𝑝 : SELECT ?x WHERE ?x p ?y . ?y q ?z
𝑄𝑢1 : SELECT ?x1 ?y1 WHERE ?x1 p ?y1? . ?y1 r ?z1
𝑄𝑢2 : SELECT ?x2 WHERE ?x2 q ?y2
The following 𝐹𝑟𝑜𝑧𝑒𝑛 and 𝐹𝑟𝑜𝑧𝑒𝑛′ are different freezing of

the output variables in the union of the utility graph patterns:
𝐹𝑟𝑜𝑧𝑒𝑛 = {c1 p c2 . c2 r ?z1 . c3 q ?y2 }
𝐹𝑟𝑜𝑧𝑒𝑛′ = {c1 p c2 . c2 r ?z1 . c2 q ?y2 }
𝐴𝑛𝑠 (𝑄𝑝 , 𝐹𝑟𝑜𝑧𝑒𝑛) is empty but 𝐴𝑛𝑠 (𝑄𝑝 , 𝐹𝑟𝑜𝑧𝑒𝑛

′) = {𝑐1}.
This is enough to prove that 𝑄𝑝 is incompatible with the

utility policy composed by the two utility queries 𝑄𝑢1 and
𝑄𝑢2 .

Let us replace the utility query 𝑄𝑢1 by the utility query
with same graph pattern but with one output variable less:
𝑄 ′
𝑢1 : SELECT ?x1 WHERE ?x1 p ?y1 . ?y1 r ?z1

No freezing of the output variable ?x1 of 𝑄 ′
𝑢1 combined

with a freezing the output variable of 𝑄𝑢2 can lead to an an-
swer of 𝑄𝑝 when evaluated over the resulting graph pattern
which is of the form: {c1 p ?y1. ?y1 r ?z1. c2 q ?y2 }

Therefore 𝑄𝑝 is compatible with 𝑄 ′
𝑢1 and 𝑄𝑢2 .

Complexity: In the worst case, checking compatibility
of plain conjunctive queries using Theorem 4.1 requires to
evaluate the privacy query over the frozen graph patterns
resulting from all the possible freezing of the output vari-
ables of the utility queries. The evaluation of the privacy
query over a frozen graph pattern is polynomial in the size
of the utility queries but the number of possible freezing
is 2𝑂𝑉𝑢 where 𝑂𝑉𝑢 is the number of output variables of the
utility queries. As a matter of fact, a freezing can be obtained
from the initial freezing, which assigns each output variable

Compatibility Checking Between Privacy and Utility Policies: AQuery-Based Approach ,

to a distinct fresh constant, by equating a subset of these
constants. In practice, the choice of constants to equate is
strongly constrained by the joins between variables of the
privacy query that are required to make possible the exis-
tence of an answer to 𝑄𝑝 .
We end this section by two theorems that provide suffi-

cient conditions of compatibility. Theorem 4.2 states a suffi-
cient condition for compatibility of plain conjunctive queries,
while Theorem 4.3 states a sufficient condition of compatibil-
ity for general TACQs based on checking their conjunctive
parts.

Theorem 4.2 (Sufficient condition of compatibility for con-
junctive queries). When privacy and utility queries are plain
conjunctive queries, a privacy query is compatible with utility
queries if its graph pattern is disjoint with every graph pattern
of the utility queries.

Proof. If the graph pattern 𝐺𝑃𝑝 of 𝑄𝑝 is disjoint with every
graph pattern𝐺𝑃𝑢𝑖 of the utility queries, based on Definition
6, there exists a triple pattern in 𝐺𝑃𝑝 that cannot be pro-
jected by any homomorphism to the union of 𝐺𝑃𝑢𝑖 . Based
on Definitions 17 and 16, this means that no answer of 𝑄𝑝

can be inferred from answers to 𝑄𝑢𝑖 . □

Theorem 4.3 (Sufficient condition of compatibility for gen-
eral TACQs). If the conjunctive part of a privacy query 𝑄𝑝

is compatible with the conjunctive parts of the utility queries
then 𝑄𝑝 is compatible with the utility queries.

Proof. If𝐶𝑜𝑛𝑗 (𝑄𝑝) is compatiblewith𝐶𝑜𝑛𝑗 (𝑄𝑢1), ...,𝐶𝑜𝑛𝑗 (𝑄𝑢𝑛),
this means that no answer 𝑎 to 𝐶𝑜𝑛𝑗 (𝑄𝑝) can be inferred
from answers to 𝐶𝑜𝑛𝑗 (𝑄𝑢𝑖). Any answer (𝑎, 𝑟) to 𝑄𝑝 is such
that𝑎 is an answer to𝐶𝑜𝑛𝑗 (𝑄𝑝) and 𝑟 is the result of an aggre-
gate function. If there is no way to infer the logical signature
of 𝑎 from the logical signatures of answers to 𝐶𝑜𝑛𝑗 (𝑄𝑢𝑖), a
fortiori there will be no way to infer a more constrained logi-
cal signature of the form: (∃𝑦 ∃𝑧, `𝑎 (𝐺𝑃𝑝) ∧ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝))
∧𝑎𝑔𝑔{𝑦 |∃𝑧, `𝑎 (𝐺𝑃) ∧ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝)} = 𝑟 from logical signa-
tures of answers to 𝑄𝑢𝑖 . □

4.2 Case of conjunctive queries with FILTER
conditions

We will use the following notations:
Privacy query 𝑄𝑝 :
SELECT 𝑥𝑝 WHERE {𝐺𝑃𝑝 . 𝐹𝐼𝐿𝑇𝐸𝑅𝑝 }
Utility query 𝑄𝑢𝑖 :
SELECT 𝑥𝑢𝑖 WHERE {𝐺𝑃𝑢𝑖 . 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖 }

Theorem 4.4 is based on extending the proof of Theorem
4.1 by the verification of the entailment of the FILTER con-
ditions of 𝑄𝑝 by the FILTER conditions of utility queries.
When their conjunction is just satisfiable, we obtain a char-
acterization of weak compatibility in Theorem 4.5.

Note that, by definition, weak incompatibility and compat-
ibility does not differ for the cases of queries without FILTER
conditions.

Theorem 4.4 (Incompatibility of conjunctive queries with
FILTER). The privacy query𝑄𝑝 is incompatible with the set of
utility queries if and only if there exists a 𝑓 𝑟𝑒𝑒𝑧𝑒 of the output
variables in

⋃
𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖 , and an answer 𝑐 of the conjunc-

tive part of𝑄𝑝 over 𝐹𝑟𝑜𝑧𝑒𝑛 = 𝑓 𝑟𝑒𝑒𝑧𝑒 (⋃𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖) with an
homomorphism support ℎ such that:

𝑓 𝑟𝑒𝑒𝑧𝑒 (
∧

𝑖∈[1..𝑛]
𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖) |= ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝)

Proof. In the case of conjunctive queries with FILTER, the
logical signature of an answer 𝑎 to a query 𝑄 is a formula
of the form: (∃𝑧, `𝑎 (𝐺𝑃) ∧ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅)) where 𝐺𝑃 is the
conjunction of triples patterns in the graph pattern of 𝑄
interpreted as logical atoms and ` is an assignment of the
tuple 𝑥 of the output variables of 𝑄 to the tuple of constants
𝑎, and 𝑧 are the other variables occurring in 𝑄 .

If 𝑄𝑝 is incompatible with the utility queries, it means
by definition that there exists tuples of constants 𝑎, 𝑎1, ..., 𝑎𝑛
such that∃𝑧1 ... ∃𝑧𝑛 `𝑎1 (𝐺𝑃𝑢1)∧`𝑎1 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢1)∧...∧ `𝑎𝑛 (𝐺𝑃𝑢𝑛)

∧`𝑎𝑛 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑛)
|= ∃𝑧 `𝑎 (𝐺𝑃𝑝) ∧ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝).
Since the sets of variables in each query are pairwise

disjoint, the entailment is only possible if there exists an
homomorphism ℎ from the variables in 𝑧 to the variables
or constants in the left hand side so that all the atoms in
ℎ(`𝑎 (𝐺𝑃𝑝)) appear in the union of the atoms in `𝑎1 (𝐺𝑃𝑢1) ∧
...∧`𝑎𝑛 (𝐺𝑃𝑢𝑛), andℎ(`𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝)) is entailed by `𝑎1 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢1)
∧... ∧ `𝑎𝑛 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑛).
Let 𝐹𝑟𝑜𝑧𝑒𝑛 be the result on

⋃
𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖 of the freezing

𝑓 𝑟𝑒𝑒𝑧𝑒 that replaces each output variable 𝑥𝑢𝑖 by `𝑎𝑖 (𝑥𝑢𝑖). The
homomorphism ℎ∪`𝑎 from the graph pattern𝐺𝑃𝑝 to 𝐹𝑟𝑜𝑧𝑒𝑛
allows to show that 𝑎 is an answer of the conjunctive part of
𝑄𝑝 when evaluated over 𝐹𝑟𝑜𝑧𝑒𝑛, and: 𝑓 𝑟𝑒𝑒𝑧𝑒 (

∧
𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖)

|= ℎ ∪ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝)
For the converse way of the proof, Let us consider 𝐹𝑟𝑜𝑧𝑒𝑛

the result on
⋃

𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖 of a freezing 𝑓 𝑟𝑒𝑒𝑧𝑒 of the output
variables such that there exists an answer 𝑐 of𝑄𝑝 when evalu-
ated over 𝐹𝑟𝑜𝑧𝑒𝑛 with a support homomorphism ℎ such that
ℎ(𝑥) = 𝑐 and 𝑓 𝑟𝑒𝑒𝑧𝑒 (∧𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖) |= ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝).

The homomorphism ℎ allows to show the entailment be-
tween the formulas𝜙1:∃𝑧𝑢 𝐹𝑟𝑜𝑧𝑒𝑛 ∧𝑓 𝑟𝑒𝑒𝑧𝑒 (

∧
𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖)

and 𝜙2: ∃𝑧 ℎ𝑐 (𝐺𝑃𝑝) ∧ ℎ𝑐 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝) where 𝐺𝑃𝑝 and 𝐹𝑟𝑜𝑧𝑒𝑛
are interpreted as the conjunction of their respective triple
patterns seen as logical atoms, and ℎ𝑐 is the restriction of ℎ
to the output variables of 𝑄𝑝 . .

In fact,𝜙1 and𝜙2 are respectively the conjunction of logical
signatures of the answers 𝑓 𝑟𝑒𝑒𝑧𝑒 (𝑥𝑢𝑖) of each 𝑄𝑢𝑖 , and the
logical signature of the answer 𝑐 of 𝑄𝑝 .

Therefore, the privacy query 𝑄𝑝 is incompatible with the
utility queries. □

, Hira Asghar, Christophe Bobineau, and Marie-Christine Rousset

Example 8. Let us consider the following privacy and utility
queries, which are obtained by adding FILTER conditions to
the queries in Example 7.
𝑄𝐹𝑝 : SELECT ?x WHERE ?x p ?y . ?y q ?z .

FILTER (?y < 6 ∧ ?z > 3)
𝑄𝐹𝑢1 : SELECT ?x1 ?y1 WHERE ?x1 p ?y1? . ?y1 r ?z1.

FILTER (?y1 < 5)
𝑄𝐹𝑢2 : SELECT ?x2 WHERE ?x2 q ?y2. FILTER (?y2 > 10)

In Example 7, we have seen that the conjunctive part of
𝑄𝐹𝑝 (the query 𝑄𝑝 in Example 7) has the answer c1 when
evaluated over 𝐹𝑟𝑜𝑧𝑒𝑛′: {c1 p c2 . c2 r ?z1 . c2 q ?y2 }, obtained
by applying the freezing function of the output variables of
the utility queries: 𝑓 𝑟𝑒𝑒𝑧𝑒(?x1) = c1 , 𝑓 𝑟𝑒𝑒𝑧𝑒(?y1) = c2 and
𝑓 𝑟𝑒𝑒𝑧𝑒(?x2) = c2.
We get:
𝑓 𝑟𝑒𝑒𝑧𝑒 ((?y1 < 5) ∧ (?y2 > 10)) = (c2 < 5) ∧ (?y2 > 10)
The homomorphism support h of the answer c1 of 𝑄𝐹𝑝

over 𝐹𝑟𝑜𝑧𝑒𝑛′ is: h(?x) = c1 , h(?y) = c2 , h(?z) = ?y2.
and ℎ(?y < 6 ∧ ?z > 3) = (c2 < 6 ∧ ?y2 > 3)
Checking that (c2 < 6 ∧ ?y2 > 3) is entailed by (c2 < 5) ∧

(?y2 > 10) is enough to prove that 𝑄𝐹𝑝 is incompatible with
the utility policy composed by the two utility queries 𝑄𝐹𝑢1

and 𝑄𝐹𝑢2 .
Let us replace the utility query 𝑄𝐹𝑢2 by 𝑄𝐹 ′𝑢2 :

𝑄𝐹 ′𝑢2 : SELECT ?x2 WHERE ?x2 q ?y2. FILTER (?y2 > 1)
We have to check whether (c2 < 6 ∧ ?y2 > 3) is entailed

by (c2 < 5) ∧ (?y2 > 1).
This is not the case and so 𝑄𝐹𝑝 is compatible with the

utility queries 𝑄𝐹𝑢1 and 𝑄𝐹 ′𝑢2 .
However, 𝑄𝐹𝑝 is weakly incompatible with the utility

queries 𝑄𝐹𝑢1 and 𝑄𝐹 ′𝑢2 .

Theorem 4.5 (Weak incompatibility of conjunctive queries
with FILTER). The privacy query 𝑄𝑝 is weakly incompati-
ble with the set of utility queries if and only if there exists
a freezing 𝑓 𝑟𝑒𝑒𝑧𝑒 of the output variables in

⋃
𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖 ,

and an answer 𝑐 of the conjunctive part of 𝑄𝑝 over 𝐹𝑟𝑜𝑧𝑒𝑛 =

𝑓 𝑟𝑒𝑒𝑧𝑒 (⋃𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖) with an homomorphism supportℎ such
that:
𝑓 𝑟𝑒𝑒𝑧𝑒 (∧𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖) ∧ ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝) is satisfiable.

Proof. If 𝑄𝑝 is weakly incompatible with the set of utility
queries, 𝑄𝑝 is incompatible with a set of variants 𝑄 ′

𝑢𝑖
of the

utility queries 𝑄𝑢𝑖 . By applying Theorem 4.4, there exists
a freezing 𝑓 𝑟𝑒𝑒𝑧𝑒 of the output variables in

⋃
𝑖∈[1..𝑛] 𝐺𝑃

′
𝑢𝑖
,

and an answer 𝑐 of the conjunctive part of𝑄𝑝 over 𝐹𝑟𝑜𝑧𝑒𝑛 =

𝑓 𝑟𝑒𝑒𝑧𝑒 (⋃𝑖∈[1..𝑛] 𝐺𝑃
′
𝑢𝑖
) with an homomorphism support ℎ

such that:
𝑓 𝑟𝑒𝑒𝑧𝑒 (∧𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅

′
𝑢𝑖
) |= ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝)

This means that every variable assignment satisfying
𝑓 𝑟𝑒𝑒𝑧𝑒 (∧𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅

′
𝑢𝑖
)

satisfies ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝) too.
By definition of the variants, there exists a variable assign-

ment satisfying both

𝑓 𝑟𝑒𝑒𝑧𝑒 (∧𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅
′
𝑢𝑖
) and 𝑓 𝑟𝑒𝑒𝑧𝑒 (∧𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖).

This assignment satisfies ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝) too.
Thus 𝑓 𝑟𝑒𝑒𝑧𝑒 (∧𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖) ∧ ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝) is satisfi-

able.
For the converse way, let us suppose that there exists a

freezing 𝑓 𝑟𝑒𝑒𝑧𝑒 of the output variables in
⋃

𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖 , and
an answer 𝑐 of the conjunctive part of 𝑄𝑝 over 𝐹𝑟𝑜𝑧𝑒𝑛 =

𝑓 𝑟𝑒𝑒𝑧𝑒 (⋃𝑖∈[1..𝑛] 𝐺𝑃𝑢𝑖) with an homomorphism support ℎ
such that:
𝑓 𝑟𝑒𝑒𝑧𝑒 (∧𝑖∈[1..𝑛] 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖) ∧ ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝) is satisfiable.
The goal is to build variants𝑄 ′

𝑢𝑖
of utility queries by adding

to the FILTER constraints 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖 some constraints mak-
ing ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝) true.

For doing so, first we remark that each freezing satisfying
the conditions of the theorem can be constrained by equating
freezing constants for getting a connected freezing satisfying
also the conditions of the theorem. A freezing is connected
if each single 𝐺𝑃𝑢𝑖 has a fresh constant in common with the
freezing of atleast another 𝐺𝑃𝑢 𝑗

).
Then:
- for each atomic comparison 𝑡 comp 𝑡 ′ in ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝)

such that 𝑡 and 𝑡 ′ are either numbers or terms in the freezing
of a single𝐺𝑃𝑢𝑖 , we add to 𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖 the atomic constraint
obtained by defreezing the constants possibly involved in 𝑡
𝑐𝑜𝑚𝑝 𝑡 ′.

- for each atomic comparison 𝑡 𝑐𝑜𝑚𝑝 𝑡 ′ in ℎ(𝐹𝐼𝐿𝑇𝐸𝑅𝑝)
such that 𝑡 and 𝑡 ′ are not in the freezing of single𝐺𝑃𝑢𝑖 , we can
build a chain of comparisons 𝑡0 𝑐𝑜𝑚𝑝 𝑡1, ...,𝑡𝑘−1 𝑐𝑜𝑚𝑝 𝑡𝑘 where
𝑡0 = 𝑡 and 𝑡𝑘 = 𝑡 ′ where each pair 𝑡 𝑗 , 𝑡 𝑗+1 are terms appearing
in the freezing of single 𝐺𝑃𝑢 𝑗

. We just have to add to each
𝐹𝐼𝐿𝑇𝐸𝑅𝑢 𝑗

the atomic constraint obtained by defreezing the
constants possibly involved in 𝑡 𝑗 𝑐𝑜𝑚𝑝 𝑡 𝑗+1. □

Theorem 4.6 is the counterpart of Theorem 4.2 for con-
junctive queries with FILTER conditions.

Theorem 4.6 (Sufficient condition of compatibility for con-
junctive queries with FILTER). A privacy query 𝑄𝑝 is com-
patible with utility queries if for each utility query 𝑄𝑢 with a
graph pattern 𝐺𝑃𝑢 overlapping with 𝐺𝑃𝑝 through an unifier
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 :
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝) ∧ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢) is unsatisfiable.

Proof. If𝑄𝑝 is incompatible with the utility queries, it means
by definition that there exists tuples of constants 𝑎, 𝑎𝑖1 , ..., 𝑎𝑖𝑘
such that :
∃𝑧1 ... ∃𝑧𝑘 `𝑎𝑖1 (𝐺𝑃𝑢𝑖1) ∧ `𝑎𝑖1 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖1)...`𝑎𝑖𝑘 (𝐺𝑃𝑢𝑖𝑘)
∧ `𝑎𝑖𝑘 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖𝑘) |= ∃𝑧 `𝑎 (𝐺𝑃𝑝) ∧ `𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝)
where 𝐺𝑃𝑢𝑖 𝑗 are the graph patterns of utility queries over-
lapping with the graph pattern 𝐺𝑃𝑝 of 𝑄𝑝 .
Thus, there exists an homomorphism ℎ from `𝑎 (𝐺𝑃𝑝) to

`𝑎𝑖1 (𝐺𝑃𝑢𝑖1) ∧ ... ∧ `𝑎𝑖𝑘
(𝐺𝑃𝑢𝑖𝑘) such that every model sat-

isfying ℎ(`𝑎𝑖1 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖1)) ∧ ...ℎ(`𝑎𝑖𝑘 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖𝑘)), and in
particular each 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(ℎ(`𝑎𝑖1 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢𝑖 𝑗))), also satisfies

Compatibility Checking Between Privacy and Utility Policies: AQuery-Based Approach ,

`𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝), and in particular𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (`𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝)), which
contradicts the if condition of the theorem. □

Example 9. Let us consider the following privacy and util-
ity queries, which are obtained by modifying the FILTER
conditions to the queries in Example 9.
𝑄𝐹 ′𝑝 : SELECT ?x WHERE ?x p ?y . ?y q ?z .

FILTER (?y < 6 ∧ ?z > 3)
𝑄𝐹 ′𝑢1 : SELECT ?x1 ?y1 WHERE ?x1 p ?y1? . ?y1 r ?z1.

FILTER (?y1 > 8)
𝑄𝐹 ′𝑢2 : SELECT ?x2 WHERE ?x2 q ?y2. FILTER (?y2 < 2)

An overlapping of 𝑄𝐹 ′𝑝 with the graph pattern of 𝑄𝐹 ′𝑢1 is
based on unifying the triple patterns ?x p ?y and ?x1 p ?y1?
with the unifier 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(?x1) = ?x and 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(?y1) = ?y
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(?y < 6 ∧ ?z > 3) ∧ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(?y1 >8)
= ?y < 6 ∧ ?z > 3 ∧ ?y > 8
which is unsatisfiable.
Similarly, the overlap of 𝑄𝐹 ′𝑝 with the graph pattern of

𝑄𝐹 ′𝑢2 based on the triple patterns ?y q ?z and ?x2 q ?y2 leads
to the unsatisfiability of: ?y < 6 ∧ ?z > 3 ∧ ?z < 2.
This makes 𝑄𝑝 compatible with the utility queries 𝑄𝐹 ′𝑢1

and 𝑄𝐹 ′𝑢2 .

4.3 Case of aggregates with same time windows
From now, based on Theorem 4.3, we aim at conditions for
a privacy query with aggregate to be compatible or incom-
patible with utility queries with aggregate in the case where
their conjunctive parts are incompatible.

Since the aggregate values are computed based on groups
that are specific to each query, if the conjunctive part𝐶𝑜𝑛𝑗 (𝑄𝑝)
of a privacy query 𝑄𝑝 is compatible with the conjunctive
part 𝐶𝑜𝑛𝑗 (𝑄𝑢𝑖) of each utility query 𝑄𝑢𝑖 , there is no way to
infer the aggregate value 𝑟 of an answer (𝑎, 𝑟) of 𝑄𝑝 from
the union of answer sets of utility queries with aggregates.
Therefore we focus now on the compatibility between

one privacy query 𝑄𝑝 and one utility query 𝑄𝑢 such that
𝐶𝑜𝑛𝑗 (𝑄𝑝) is incompatible with 𝐶𝑜𝑛𝑗 (𝑄𝑢).

We will use the following notations:
Privacy query 𝑄𝑝 :
SELECT 𝑥𝑝 WHERE {𝐺𝑃𝑝 . 𝐹𝐼𝐿𝑇𝐸𝑅𝑝 }
GROUP BY 𝑥𝑝 TIMEWINDOW (𝑆𝑖𝑧𝑒𝑝 , 𝑆𝑡𝑒𝑝𝑝)

Utility query 𝑄𝑢 :
SELECT 𝑥𝑢 WHERE {𝐺𝑃𝑢 . 𝐹𝐼𝐿𝑇𝐸𝑅𝑢 }
GROUP BY 𝑥𝑢 TIMEWINDOW (𝑆𝑖𝑧𝑒𝑢 , 𝑆𝑡𝑒𝑝𝑢)

By definition, the answer set of a query 𝑄𝑤𝑖𝑛𝑑𝑜𝑤 :
SELECT 𝑥 WHERE {𝐺𝑃 . 𝐹𝐼𝐿𝑇𝐸𝑅}
GROUP BY 𝑥 TIMEWINDOW (𝑆𝑖𝑧𝑒 , 𝑆𝑡𝑒𝑝)

is the union of the answer sets resulting of the evaluation
over each time window of 𝑄𝑤𝑖𝑛𝑑𝑜𝑤 of the query 𝑄 :
SELECT 𝑥 WHERE {𝐺𝑃 . 𝐹𝐼𝐿𝑇𝐸𝑅} GROUP BY 𝑥

Thus, in this section, we focus on studying the compatibility
between 𝑄𝑝 and 𝑄𝑢 evaluated on a common time window,
e.g., the first time windows of𝑄𝑝 and𝑄𝑢 (𝑘𝑢 = 𝑘𝑝 = 0) when
𝑆𝑖𝑧𝑒𝑢 = 𝑆𝑖𝑧𝑒𝑝 .

Theorem 4.7 provides conditions for incompatibility of
utility and privacy queries with aggregates.

Theorem4.7 (Incompatibility conditions for aggregate queries).
A privacy query 𝑄𝑝 is incompatible with the utility query 𝑄𝑢

if there exists a (possibly empty) freezing 𝑓𝑝 of output variables
in 𝐺𝑃𝑝 with constants of 𝐺𝑃𝑢 , or a (possibly empty) freezing
𝑓𝑢 of output variables in 𝐺𝑃𝑢 with constants in 𝐺𝑃𝑝 such that
𝑓𝑝 (𝐺𝑃𝑝) and 𝑓𝑢 (𝐺𝑃𝑢) are isomorphic.
When 𝑄𝑝 and 𝑄𝑢 have no FILTER conditions and the same

aggregate functions, they are incompatible if and only if the
above condition is satisfied.

Proof. Based on Definition 16, an answer (𝑎, 𝑟) of an ag-
gregate query 𝑄𝑝 can be inferred from a set of answers
{(𝑎𝑢, 𝑟𝑢)} only if the group 𝐺𝑟𝑜𝑢𝑝𝑝 (𝑎) = {𝑦𝑝 |∃𝑧, `𝑎 (𝐺𝑃𝑝) ∧
`𝑎 (𝐹𝐼𝐿𝑇𝐸𝑅𝑝)} can be obtained as a group, or the union of
groups, of𝑄𝑢 , i.e., unions of {𝑦𝑢 |∃𝑧𝑢, `𝑎𝑢 (𝐺𝑃𝑢)∧`𝑎𝑢 (𝐹𝐼𝐿𝑇𝐸𝑅𝑢)}.
Based on [4], this situation is true only if (if and only if,

when there is no FILTER conditions) either `𝑎 (𝐺𝑃𝑝) and
(𝐺𝑃𝑢) are isomorphic, or if there exists an answer 𝑎𝑢 of𝐺𝑃𝑢
such that `𝑎 (𝐺𝑃𝑝) and `𝑎𝑢 (𝐺𝑃𝑢) are isomorphic, i.e, 𝐺𝑃𝑝
(or one of its freezing of output variables by constants in
𝐺𝑃𝑢) is isomorphic to𝐺𝑃𝑢 (or to one of its freezing of output
variables by constants in 𝐺𝑃𝑝). □

Example 10. Let us consider the following privacy and utility
queries:
𝑄𝑝 :
SELECT ?city AVG(?s)
WHERE {?dp city ?city . ?dp street ?street . ?dp familySize ?s}
GROUP BY ?city
𝑄𝑢 :
SELECT ?street’, AVG(?s’)
WHERE {?dp’ city "Grenoble" . ?dp’ street ?street’ .

?dp’ familySize ?s’}
GROUP BY ?street’
Freezing the ?city variable of 𝑄𝑝 with the constant "Greno-
ble" in 𝑄𝑢 results in:
𝐹𝑟𝑜𝑧𝑒𝑛 = {?dp city "Grenoble" . ?dp street ?street . ?dp fam-
ilySize ?s}
which is isomorphic with the graph pattern of 𝑄𝑢 .

In this case, the group 𝐺𝑟𝑜𝑢𝑝 (”𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒”) of 𝑄𝑝 can be
obtained as the union of the groups of 𝑄𝑢 on all the values
of ?𝑠𝑡𝑟𝑒𝑒𝑡 ′ resulting from the evaluation of 𝑄𝑢 .
Since, in addition, the aggregate function is the same in

𝑄𝑝 and 𝑄𝑢 , 𝑄𝑝 is thus incompatible with 𝑄𝑢 .
Let us consider now 𝑄 ′

𝑝 :
SELECT ?city AVG(?s)
WHERE {?dp city ?city . ?dp street "Alsace Lorraine" . ?dp
familySize ?s}

, Hira Asghar, Christophe Bobineau, and Marie-Christine Rousset

GROUP BY ?city

𝑄 ′
𝑝 is also incompatible with𝑄𝑢 since freezing the variable

?street’ of 𝑄𝑢 with "Alsace Lorraine" and the variable ?city
of 𝑄𝑝 with "Grenoble" makes the resulting graph patterns
isomorphic, and the group𝐺𝑟𝑜𝑢𝑝 (”𝐺𝑟𝑒𝑛𝑜𝑏𝑙𝑒”) of 𝑄 ′

𝑝 can be
obtained as the group 𝐺𝑟𝑜𝑢𝑝 (”𝐴𝑙𝑠𝑎𝑐𝑒 𝐿𝑜𝑟𝑟𝑎𝑖𝑛𝑒”) of 𝑄𝑢 .

4.4 Case of aggregate with different time windows
In the general case of TACQ with explicit TIMEWINDOW
clause, a privacy query𝑄𝑝 and a utility query𝑄𝑢 are compat-
ible if no time window of 𝑄𝑝 can be built by unions and/or
differences of time windows of one or more 𝑄𝑢 . A sufficient
condition is that for any 𝑄𝑢 no boundary of a time window
of 𝑄𝑢 should correspond to a boundary of a time window of
𝑄𝑝 , except of course the first one (i.e. 𝑘𝑢 = 𝑘𝑝 = 0) where
the ends of time windows is 𝑛𝑜𝑤 .

Theorem 4.8 (Sufficient condition of compatibility). A pri-
vacy query 𝑄𝑝 is compatible with a set of utility queries if
there is no utility query 𝑄𝑢 such that:
∃𝑘𝑢 ∈ N ∃𝑘𝑝 ∈ N, 𝑘𝑢 × 𝑆𝑡𝑒𝑝𝑢 − 𝑆𝑖𝑧𝑒𝑢 = 𝑘𝑝 × 𝑆𝑡𝑒𝑝𝑝 − 𝑆𝑖𝑧𝑒𝑝
∨ ∃𝑘𝑢 ∈ N+ ∃𝑘𝑝 ∈ N+, 𝑘𝑢 × 𝑆𝑡𝑒𝑝𝑢 = 𝑘𝑝 × 𝑆𝑡𝑒𝑝𝑝
∨ ∃𝑘𝑢 ∈ N ∃𝑘𝑝 ∈ N+, 𝑘𝑢 × 𝑆𝑡𝑒𝑝𝑢 − 𝑆𝑖𝑧𝑒𝑢 = 𝑘𝑝 × 𝑆𝑡𝑒𝑝𝑝
∨ ∃𝑘𝑢 ∈ N+ ∃𝑘𝑝 ∈ N, 𝑘𝑢 × 𝑆𝑡𝑒𝑝𝑢 = 𝑘𝑝 × 𝑆𝑡𝑒𝑝𝑝 − 𝑆𝑖𝑧𝑒𝑝

Proof. Consider a privacy query𝑄𝑝 and a set of utility queries
𝑄𝑢1 , ... 𝑄𝑢𝑛 . As the answer of a TACQ 𝑄 with an explicit
TIMEWINDOW clause is the union of the answers of its
subquery 𝑄 ′ without the TIMEWINDOW clause evaluated
over each time window of 𝑄 , aggregates on a group a 𝑄𝑝

can be computed from aggregates of groups of one or more
𝑄𝑢𝑖 if and only if a time window of 𝑄𝑝 can be built from the
time windows of considered 𝑄𝑢𝑖 .
Let consider first only two time windows of one or two

𝑄𝑢𝑖 . More complex combinations can easily be composed
from this simple case.
Building a time window 𝑇𝑝 from two time windows 𝑇𝑢1 and
𝑇𝑢2 can be done only in two ways:

• either 𝑇𝑝 = 𝑇𝑢1 ∪ 𝑇𝑢2

• either 𝑇𝑝 = 𝑇𝑢1 −𝑇𝑢2

In the first case, assuming that 𝑇𝑢1 starts before 𝑇𝑢2 then
𝑇𝑢1 has to start at the same time than 𝑇𝑝 and 𝑇𝑢2 has to end
at the same time than 𝑇𝑝 .
If there is no 𝑄𝑢𝑖 such that ∃𝑘𝑢 ∈ N ∃𝑘𝑝 ∈ N, 𝑘𝑢 × 𝑆𝑡𝑒𝑝𝑢 −
𝑆𝑖𝑧𝑒𝑢 = 𝑘𝑝 ×𝑆𝑡𝑒𝑝𝑝 −𝑆𝑖𝑧𝑒𝑝 ∨ ∃𝑘𝑢 ∈ N+ ∃𝑘𝑝 ∈ N+, 𝑘𝑢 ×𝑆𝑡𝑒𝑝𝑢
= 𝑘𝑝 × 𝑆𝑡𝑒𝑝𝑝 , meaning that no time window of a 𝑄𝑢𝑖 starts
at the same time than a time window of 𝑄𝑝 and that no
time window of a 𝑄𝑢𝑖 ends at the same time than a time
window of𝑄𝑝 , the building of a time window of𝑄𝑝 by union
is impossible.

In the second case, either𝑇𝑢1 and𝑇𝑢2 start as the same time
and 𝑇𝑢1 ends at the same time than 𝑇𝑝 and 𝑇𝑢2 ends when 𝑇𝑝

starts, either 𝑇𝑢1 and 𝑇𝑢2 end at the same time and 𝑇𝑢1 starts
at the same time than 𝑇𝑝 and 𝑇𝑢2 starts when 𝑇𝑝 ends.
If there is no 𝑄𝑢𝑖 such that ∃𝑘𝑢 ∈ N ∃𝑘𝑝 ∈ N+, 𝑘𝑢 × 𝑆𝑡𝑒𝑝𝑢 −
𝑆𝑖𝑧𝑒𝑢 = 𝑘𝑝 × 𝑆𝑡𝑒𝑝𝑝 ∨ ∃𝑘𝑢 ∈ N+ ∃𝑘𝑝 ∈ N, 𝑘𝑢 × 𝑆𝑡𝑒𝑝𝑢 =
𝑘𝑝 × 𝑆𝑡𝑒𝑝𝑝 − 𝑆𝑖𝑧𝑒𝑝 , meaning than no time window of a 𝑄𝑢𝑖

ends when a time window of 𝑄𝑝 starts and that no time
window of a 𝑄𝑢𝑖 starts when a time window of 𝑄𝑝 ends, the
building of a time window of 𝑄𝑝 by difference is impossible.
Therefore no time window of 𝑄𝑝 can be built from time

windows of one or more 𝑄𝑢𝑖 and no aggregate of 𝑄𝑝 can be
computed from aggregates of one or more 𝑄𝑢𝑖 , and thus 𝑄𝑝

is compatible with the utility queries. □

If it is possible to build a time window of a privacy query
from time windows of one or more utility queries, Theorems
4.7 can be applied to check compatibility.

Example 11. Let us consider𝑇𝐴𝐶𝑄2 of Example 3 as privacy
query and the following utility queries:
𝑄𝑢1 : SELECT ?timeWindowEnd, SUM(?cons)

WHERE {((?dp consumption ?cons), ?ts)}
GROUP BY ?timeWindowEnd
TIMEWINDOW (7h, 2h)

𝑄𝑢2 : SELECT ?timeWindowEnd, SUM(?cons’)
WHERE {((?dp’ consumption ?cons’), ?ts’)}
GROUP BY ?timeWindowEnd
TIMEWINDOW (1h, 8h)

We have 0 × 𝑆𝑡𝑒𝑝𝑢1 − 𝑆𝑖𝑧𝑒𝑢1 = 1 × 𝑆𝑡𝑒𝑝𝑝 − 𝑆𝑖𝑧𝑒𝑝
meaning that the first interval 𝐼𝑢1 (𝑘𝑢1 = 0) of 𝑄𝑢1 starts at
the same time than the second interval 𝐼𝑝 (𝑘𝑝 = 1) of𝑇𝐴𝐶𝑄2
at now − 7ℎ.
We have also 0 × 𝑆𝑡𝑒𝑝𝑢2 − 𝑆𝑖𝑧𝑒𝑢2 = 1 × 𝑆𝑡𝑒𝑝𝑝

meaning that the first interval 𝐼𝑢2 (𝑘𝑢2 = 0) of𝑄𝑢2 starts at the
end of the second interval 𝐼𝑝 (𝑘𝑝 = 1) of 𝑇𝐴𝐶𝑄2 at now − 1ℎ.
This example does not satisfy the sufficient condition of

Theorem 4.8 for both 𝑄𝑢1 and 𝑄𝑢2 . In fact, as 𝐼𝑝 (𝐾𝑝 = 1)
= 𝐼𝑢1 (𝑘𝑢1 = 0) − 𝐼𝑢2 (𝑘𝑢2 = 0), the sum of consumption of
𝑇𝐴𝐶𝑄2 for its second interval can be computed in the fol-
lowing way:

• 𝑆𝑢𝑚𝑢1 = 𝑆𝑈𝑀 (?𝑐𝑜𝑛𝑠) in 𝐼𝑢1 (𝑘𝑢1 = 0)
• 𝑆𝑢𝑚𝑢2 = 𝑆𝑈𝑀 (?𝑐𝑜𝑛𝑠 ′) in 𝐼𝑢2 (𝑘𝑢2 = 0)
• 𝑆𝑢𝑚𝑝 = 𝑆𝑈𝑀 (?𝑐𝑜𝑛𝑠𝑢𝑝𝑡𝑖𝑜𝑛) in 𝐼𝑝 (𝑘𝑝 = 1) = 𝑆𝑢𝑚𝑢1 −
𝑆𝑢𝑚𝑢2

5 Related work
Privacy preserving data publishing has been a long-standing
research goal for several research communities, as witnessed
by a flurry of work on the topic [8]. A rich variety of privacy
models have been proposed, ranging from 𝑘-anonymity [15]
and 𝑙-diversity [13] to 𝑡-closeness [12] and 𝜖-differential
privacy [7]. Compared to our work, all these approaches
are based on changing the exposed data either by adding
noise in the data or by applying generalization operations
on sensitive data.

Compatibility Checking Between Privacy and Utility Policies: AQuery-Based Approach ,

Data security is also an important topic for which secure
protocols based on encryption has been proposed that enable
to do some computations on encrypted outsourced data. In
contrast with our work, each protocol may be specific to the
target computations to be feasible in practice like in [3].
An alternative approach for protecting against privacy

breaches consists in applying access control methods to RDF
data ([11, 14, 16]). In the Semantic Web setting, when data
are described by description logics ontologies, preliminary
results on role-based access control have been obtained in [2]
for the problem of checking whether a sequence of role
changes and queries can infer that an anonymous individual
is equal to a known individual. However, all these works do
not handle utility queries.

A query-based logical framework for RDF data has been in-
troduced in [9, 10], where sensitive information is expressed
as a privacy policy in the form of SPARQL query whose re-
sults must not disclose sensitive information of individual. It
has been extended to handling utility queries in [5, 6]. These
approaches however are restricted to privacy and utility
policies that are simple conjunctive queries.

6 Conclusion and future work
In this paper we have proposed a query-based declarative
framework for a formal specification and verification of pri-
vacy and utility policies expressed as temporal aggregate
conjunctive queries.

We do think that this framework is well suited for guaran-
teeing data producers to keep the control and protect their
data in many real-world situations where sensitive data are
collected by mobile personal devices or smart environments.

Based on the implementation of this framework, we plan
to design and implement a negotiation mechanism that will
be triggered when a utility policy turns out to be incompat-
ible with a privacy policy. New relaxed utility queries will
be automatically computed to restore compatibility with the
privacy policy of a given data producer. They will be the
formal basis of a dialogue between each data producer and
the service provider in order to find a trade-off acceptable in
terms of utility while guaranteeing privacy preservation for
each data producer.

We also plan to extend our framework to take into account
ontological knowledge in the possible inference of answers
of privacy queries by answers of utility queries. This will
bring stronger constraints on compatibility between privacy
and utility policies.

7 Acknowledgments
This work has been partially supported by MIAI@Grenoble
Alpes (ANR-19-P3IA-0003), PERSYVAL-Lab (ANR-11-LABX-
0025-01) and TAILOR, a project funded by EU Horizon 2020
research and innovation programme under GA No 952215.

References
[1] Tristan Allard, Nicolas Anciaux, Luc Bouganim, Yanli Guo, Lionel Le

Folgoc, Benjamin Nguyen, Philippe Pucheral, Indrajit Ray, Indrakshi
Ray, and Shaoyi Yin. 2010. Secure personal data servers: a vision paper.
Proceedings of the VLDB Endowment 3, 1-2 (2010), 25–35.

[2] Franz Baader, Daniel Borchmann, and Adrian Nuradiansyah. 2017.
Preliminary Results on the Identity Problem in Description Logic On-
tologies. In Description Logics (CEUR Workshop Proceedings, Vol. 1879).
CEUR-WS.org.

[3] Radu Ciucanu and Pascal Lafourcade. 2020. GOOSE: A Secure Frame-
work for Graph Outsourcing and SPARQL Evaluation.. In IFIP WG
11.3 Conference on Data and Applications Security and Privacy (DBSec).
347–366.

[4] Sara Cohen. 2005. Containment of aggregate queries. ACM SIGMOD
Record 34, 1 (2005), 77–85.

[5] Remy Delanaux, Angela Bonifati, Marie-Christine Rousset, and Ro-
muald Thion. 2018. Query-Based Linked Data Anonymization. In
The Semantic Web-ISWC 2018 (Monterey, California, United States).
Springer, Cham, 530–546. https://doi.org/10.1007/978-3-030-00671-
6_31

[6] Remy Delanaux, Angela Bonifati, Marie-Christine Rousset, and Ro-
muald Thion. 2019. RDF graph anonymization robust to data linkage.
In Proceedings of WISE 2019 (20th International Conference on Web
Information Systems Engineering).

[7] Cynthia Dwork. 2006. Differential Privacy. In ICALP (2) (LNCS,
Vol. 4052). Springer, 1–12.

[8] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. 2010.
Privacy-preserving data publishing: A survey of recent developments.
ACM Comput. Surv. 42, 4 (2010), 14:1–14:53.

[9] Bernardo C. Grau and Egor V. Kostylev. 2016. Logical Foundations of
Privacy-Preserving Publishing of Linked Data. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence (Phoenix, Arizona
USA). The AAAI Press, Palo Alto, California, 943–949. https://doi.org/
10.5555/3015812.3015953

[10] Bernardo C. Grau and Egor V. Kostylev. 2019. Logical Foundations of
Linked Data Anonymisation. Journal of Artificial Intelligence Research
64 (2019), 253–314.

[11] Sabrina Kirrane, Alessandra Mileo, and Stefan Decker. 2017. Access
control and the Resource Description Framework: A survey. Semantic
Web 8, 2 (2017), 311–352.

[12] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 2007. t-
Closeness: Privacy Beyond k-Anonymity and l-Diversity. In ICDE. IEEE
Computer Society, 106–115.

[13] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-
ramakrishnan Venkitasubramaniam. 2007. L-diversity: Privacy beyond
k-anonymity. TKDD 1, 1 (2007), 3.

[14] Said Oulmakhzoune, Nora Cuppens-Boulahia, Frédéric Cuppens, and
Stephane Morucci. 2012. Privacy Policy Preferences Enforced by
SPARQL Query Rewriting. In ARES. IEEE Computer Society, 335–342.

[15] Latanya Sweeney. 2002. k-Anonymity: A Model for Protecting Privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 10, 5 (2002), 557–570.

[16] Serena Villata, Nicolas Delaforge, Fabien Gandon, and Amelie Gyrard.
2011. An Access Control Model for Linked Data. In OTM Workshops
(LNCS, Vol. 7046). Springer, 454–463.

https://doi.org/10.1007/978-3-030-00671-6_31
https://doi.org/10.1007/978-3-030-00671-6_31
https://doi.org/10.5555/3015812.3015953
https://doi.org/10.5555/3015812.3015953

	Abstract
	1 Introduction
	2 Formal background
	2.1 Preliminaries
	2.2 Temporal aggregated conjunctive queries

	3 Query-based specification of policies
	4 Compatibility checking
	4.1 Case of plain conjunctive queries
	4.2 Case of conjunctive queries with FILTER conditions
	4.3 Case of aggregates with same time windows
	4.4 Case of aggregate with different time windows

	5 Related work
	6 Conclusion and future work
	7 Acknowledgments
	References

