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Abstract. Deep generative models have been recently experimented in
automated document layout generation, which led to significant quali-
tative results, assessed through user studies and displayed visuals. How-
ever, no reproducible quantitative evaluation has been settled in these
works, which prevents scientific comparison of upcoming models with
previous models. In this context, we propose a fully reproducible evalua-
tion method and an original and efficient baseline model. Our evaluation
protocol is meticulously defined in this work, and backed with an open
source code available on this link : https://github.com/romain-rsr/
quant_eval_for_document_layout_generation/tree/master

Keywords: Document Layout Generation · Quantitative Evaluation ·
Generative Adversarial Network.

1 Introduction

1.1 Document Layout Generation

For decades, developments in information and communication technologies lever-
aged interest in automated document layout generation. This application usually
consists in automatically laying out elements on a canvas of given dimensions.
It can take as inputs a random vector and additional optional features such as
elements categories, reading order of the elements, element contents (texts or
images) and geometric constraints such as aspect ratios or areas of the elements.
While the outputs can take many forms, it is usually a list of bounding boxes,
one for each element, with for each of these boxes its category, its dimensions
and positions on the canvas. While former automated attempts in this field faced
lack of both functionality and flexibility, recent solutions based on deep gener-
ative models reached interesting possibilities and provided encouraging visual
and user study results. However, quantitative evaluations of these later solu-
tions show important deficiencies, which prevents any scientific comparison with
upcoming works.

https://github.com/romain-rsr/quant_eval_for_document_layout_generation/tree/master
https://github.com/romain-rsr/quant_eval_for_document_layout_generation/tree/master
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1.2 A Tricky Quantitative Evaluation

Quantitative evaluation of generative models has always been a delicate mat-
ter, and is even more complicated in the specialized field of document layout
generation. Real world layout guidelines are mainly implicit, even to layout de-
signers themselves, and while metrics from image generation field are still being
adapted, standard metrics from document layout community do not apply. As
an example, the IoU score which is commonly used in layout analysis has limited
utility in layout generation, where different positions for a same element can be
of similar quality.

While in related works interesting quantitative evaluation methods have
emerged and are progressively converging to a common standard, none of these
works, after a meticulous study, have provided a reproducible and reliable def-
inition of a quantitative evaluation method. In this context, the comparison
between a new model and previous works relies mainly on subjective interpreta-
tions of visual results, which are of high interest but not sufficient to match hard
sciences principles. Therefore, this paper aims to propose, on main document
layout datasets, a first reproducible quantitative evaluation of any document
layout generation model, as well as an original baseline model.

2 Related Works

2.1 From Explicit Methods to Deep Learning Methods

Former works in automated document layout generation focused on turning lay-
out guidelines into explicit and static quantitative rules. Earliest works were
based on templates [1,2] or on interactive tools combining basic layout rules [3]
and showed poor possibilities. Later works were based on geometrical objective
functions to be optimized [4,5,6] faced qualitative biases and a strong lack of
flexibility. To tackle these various shortcomings, recent researches focused on
learning methods where guidelines are turned in a dynamic and data-driven way
into implicit quantitative rules projected in a multidimensional feature space.
More specifically, most recent researches have been based on deep learning gen-
erative models, which can learn very complex rules from simple objective func-
tions, and are already successful in other generative tasks such as image or video
generation.

In [7], a Generative Adversarial Network (GAN) generates layouts from only
a random vector as input. It can generate layouts of documents, layouts of pixels
subset (extracted from MNIST handwritten digits images), clipart scenes and
geometric tangrams. In [8], authors extend [7] previous work to propose two main
applications : layout generation and layout adjustment. Layout generation is split
into three sub-applications. Image layout generation takes geometric constraints
as input and generates several layouts propositions containing only the product
image. Attribute-guided layout generation takes these first layout propositions
as input and add additional elements, according to these elements attributes, to
produce different propositions of complete layouts. Finally, grouping and ranking
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application allows to select the best layout among different layout propositions,
through overlap, alignment and discriminator scores.

The model presented in [9] is based on graph neural network and Variational
Auto-Encoders (VAE) and generates a layout iteratively, element after element.
It takes as inputs a set of elements, the order of elements to be iteratively laid
out, and optional user-specified constraints. They experimented their models
on generating application page layouts, magazine page layouts and private web
advertising layouts.

In [12], authors merge GAN and VAE architectures to propose a model that
encodes element attributes at different steps : when encoding a real layout into a
latent vector, when generating a layout from a latent vector and when classifying
a layout to be real or generated. These attributes can thus be learned in associa-
tion with real training layouts during the training step and added as inputs, aside
with a random vector, when using the model. They contain particularly rich and
diversified information, such as image contents, text and label values than can
be both continuous (such as aspect ratios) or discrete. Author architecture also
allows the users to add optional soft constraints as inputs, such as reserved area
for specific types of elements. Experiments are focused on generating magazine
page layouts.

While not exactly focusing on document layout generation, [13] proposes a
model based on VAE to generate real scene layouts. Generation steps are divided
into several sub-steps : a first VAE generates a list of elements, then another VAE
generates bounding boxes from it. The model is applied on a dataset adapted
from MNIST, where handwritten digits are laid out on a black screen, and is
also applied on COCO dataset, containing real life scenes with for each scene a
labeled bounding box for every important object and person in the scene. Other
moderately related but yet interesting works, [14] and [15], consider a potential
sub-task of layout generation and generate bounding boxes from graphs in which
strong relational and geometrical constraints are already indicated, e.g. which
element must be at the right of which element, or which element has to be bigger
than which element.

2.2 Deficiencies in Existing Quantitative Evaluation Methods

Previous works usually display visual results and often provide user studies of
their experiments, but while this information can draw attention on the pre-
sented models, it can’t allow any objective comparison with upcoming methods.
In parallel, quantitative evaluation methods are also presented in the course of
these works, but are not defined in a valid and reproducible way.

While some authors [12] do not provide any quantitative evaluation at all,
others laid incomplete groundwork to define a valid quantitative metric. In [7],
absolute alignment and overlap scores are provided for generated document lay-
outs but the dataset on which these scores have been obtained, referred only as
”the document layout dataset”, has not been made available. The exact same
problem is found in [8] where alignment and overlap scores are given for a private
advertising layout dataset, not available to the scientific community.
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In [9], authors propose an alignment evaluation on two public datasets but
while our understanding of their alignment evaluation method has been con-
firmed by the authors, our results differ from theirs by orders of magnitude when
we apply this method on the ground truth layouts of both evaluated datasets.
Aside from the alignment evaluation method, [9] proposes an evaluation based on
the Fréchet Inception Distance (FID). As described in their works, this method
relies on the feature distribution of the penultimate layer of the discriminator :
the distribution obtained on real layouts is compared with the distribution ob-
tained on generated layouts and produces a score ranging from zero to positive
infinity, with lower values indicating better performances. Given a fixed discrimi-
nator architecture with fixed feature parameters and fixed hyperparameters, this
evaluation method allows for a quantitative comparison between two different
generative models. But in [9], these parameters are missing.

3 Experimental Protocol

3.1 Datasets

(a) (b) (c)

Fig. 1. Layouts from the first synthetic dataset. (a) layouts have been produced through
general rules only, while (b) and (c) layouts have been produced by two different specific
rules.

Synthetic Dataset As explained in introduction, real world layout guidelines
are mainly implicit which makes it difficult to quantitatively evaluate the quality
of a layout. In this context, [10] proposes two synthetic datasets. The first dataset
contains 100,000 synthetic document layouts, in which elements have fictitious
semantic categories and are laid out following a combination of arbitrary and
fictitious layout rules, that are both hard to learn and easy to quantitatively
evaluate. A second dataset contains 100,000 other synthetic document layouts,
in which elements have this time similar categories as in the web advertising
industry : Product Image, Text, Call-To-Action (CTA) and Logo. In this second
dataset, elements are laid out according to basic rules and distributions of the
web advertising industry (e.g. logos are always on the top or on the bottom of the
layout, in a majority of layouts images are bigger than CTAs and logos, ...). These
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layout rules are thus both realistic and easy to quantitatively evaluate. Any
learning document generation model can thus be trained on these two synthetic
datasets and then be evaluated in an exact and quantitative way, through reusing
the explicit rules that were used in the first place to produce each of these
datasets.

In the first dataset, while general rules alone have been used to create the
majority of the layouts, additional specific rules have been used when creating
certain layouts, as seen in Fig. 1. The use of these additional rules and their
precedence on general rules is triggered by specific sequences of categories within
the list of elements in each layout to be generated. Furthermore, some of the
specific rules are deliberately in contradiction with the general layout rules to
challenge the ability of a layout generation model to discern patterns within a
complex and implicit combination of layout rules, similarly to what is expected
from the model in a real case document generation application. The datasets
are available at the following link : https://github.com/romain-rsr/synth_
datasets_for_web_advertising_layout/tree/master

RICO This public dataset [11] contains 65,538 ground truth layouts extracted
from various application pages. Numerous works have experimented on this
dataset for its quality and for the high quantity of layouts it contains. Elements
within the layouts can be nested and can present very different sizes and aspect
ratios. RICO dataset can be found at this link : http://interactionmining.
org/rico

Magazine Magazine dataset [12] contains 3,919 magazine page layouts, that
can be more similar to advertising layouts than RICO application page layouts.
This is of great interest since there is no public dataset available for advertising
layouts but high industrial application in this field for sophisticated automated
layout. The dataset is available at this link : https://xtqiao.com/projects/
content_aware_layout/

3.2 Baseline Model

Architecture Our model is a GAN with both generator and discriminator
based on a fully connected residual block architectures. Instead of the usual
residual block containing two layers, residual blocks within our model are tan-
gled and contain one layer each. As seen in Fig. 2, both generator and discrimi-
nator contain 5 layers assembled in tangled residual blocks, each containing 100
neurons except the last layer. In the generator, the number of neurons in the last
layer is equal to the product of the number of elements to be laid out and the
number of feature for each element. In discriminator, the last layer contain only
one neuron to output the cagory of the input layout : real or fake. In both gen-
erator and discriminator, each layer is activated by a ReLU activation function
except the last layer activated by a sigmoid function.

https://github.com/romain-rsr/synth_datasets_for_web_advertising_layout/tree/master
https://github.com/romain-rsr/synth_datasets_for_web_advertising_layout/tree/master
http://interactionmining.org/rico
http://interactionmining.org/rico
https://xtqiao.com/projects/content_aware_layout/
https://xtqiao.com/projects/content_aware_layout/
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Fig. 2. Our generator and discriminator architectures.

Training Our experimental protocol can be applied on layouts of any number
of elements. Yet, layouts have first to be grouped according to the number of
elements they contain so the experiments are run on each group separately,
with the number of elements per layout being given as an input parameter of
our model and evaluation process. For greater simplicity in the analysis of our
experiments, the presented results focus on layouts with three elements.

Model’s performance is monitored through the binary cross-entropy loss func-
tion during training, and the model is trained through Adam optimizer, which
extends rmsprop optimizer on one hand, by adapting its learning rate to each
parameter, and extends adagrad optimizer on an other hand, by adapting its
learning rate to first and second moment (respectively mean and uncentered
variance) of recent gradient magnitudes. In each experiment, we select a subset
of the complete dataset and split it in train, validation and test sets, respectively
of 60%, 20% and 20% of the subset.
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3.3 Quantitative Evaluation Metrics

Our quantitative evaluation is based on four metrics : the Fréchet Inception
Distance (FID), the Comparative Alignment Score, the Comparative Overlap
Score and the Comparative Diversity Score. Some of them are inspired and
revised version of incomplete yet interesting quantitative evaluations described
in related works. Both pseudo-code and ready-to-use code of these evaluations
are publicly available in our git, aside with real and generated evaluated samples.

Fréchet Inception Distance This metric, initially defined in [16], is applied
as specified in [17] to the output feature distribution within the discriminator
penultimate layer. The mean and the covariance matrix of these features are
first computed when applying the discriminator on generated layouts, then the
same operation is carried out with real layouts. Finally, mean µX and covariance
matrix

∑
X , obtained on generated layouts, are compared with mean µY and

covariance matrix
∑

Y , obtained on real layouts, following equation :

d2(F,G) = |µX − µY |+tr(
∑

X +
∑

Y − 2(
∑

X

∑
Y )1/2) (1)

The resulting score is an absolute value which must be as low as possible. As
specified earlier, this evaluation is of interest only if fixed architecture, feature
parameters and hyperparameters are settled for the discriminator used in the
evaluation, so that when comparing two models, the shift in the FID score comes
only from the shift in the similarity between real and generated layouts. Also,
using a discriminator of a specific existing work in layout generation would give
an unfair advantage to this work when comparing new models with it, so a
standard and non specialised discriminator architecture has to be used instead.
Therefore, we used the pre-classification layers of the open source inception v3
discriminator, whom fixed parameters are indicated in our git.

Absolute Alignment Score In related works, alignment score is often men-
tioned, as an absolute measure applied on generated layouts only, and measures
the closest possible alignment of elements on each layout, according to one of
the possible vertical alignment axes (element lefts, centers or rights). Here is the
[9] definition of this absolute alignment score :

alignmentgen =
1

N

∑
k

∑
i

min
j,i 6=j
{min(l(eki , e

k
j ),m(eki , e

k
j ), r(eki , e

k
j )}) (2)

Where N is the total number of generated layouts, eki and ekj are the ith and
jth elements of the kth generated layout and where l,m and r are respectively
the distances between lefts, centers and rights of two considered elements.
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Comparative Metric Absolute score can be interpreted very differently ac-
cording to the type of evaluated documents. On RICO application pages, for
example, lower alignment score could be preferred by designers while on adver-
tising layouts, greater misalignment can be a quality factor so absolute alignment
score has no general objective value. Therefore, our evaluation goes further and
compares the absolute alignment score obtained on generated layouts with the
absolute alignment score obtained on real layouts. While simply computing the
ratio between two absolute scores would have been a straightforward comparison,
it is not adapted if the score used as the divider is equal to zero. To overcome this
problem and obtain similar score scales as in the FID evaluation, the following
comparative metric has been defined to compare absolute scores scoregen and
scorereal, obtained respectively on generated and real layouts :

comp(scoregen, scorereal) = |log
scoregen + 1e−10

scorereal + 1e−10
| (3)

Comparative Alignment Score We apply the comparative metric on the
couple of absolute alignment scores obtained on real and generated layouts to
get the comparative alignment score, which is finally a robust and objective
indication of how similar generated layouts are to the real layouts, independently
of the subjective interpretation of what is a good absolute alignment value within
each dataset :

alignmentcomp = comp(alignmentgen, alignmentreal) (4)

Absolute Overlap Score In parallel to the alignment measure, absolute over-
lap score is used in several related works and measures the ratio of overlapping
areas over the total canvas area :

overlapgen =
1

N

∑
k

∑
i

∑
j,j<i

intersection(areaki , area
k
j )

areakc
(5)

Where N is the number of generated layouts, where areakc is the total canvas
area of the kth generated layout (in most datasets this value is constant) and
where areaki and areakj are the respective areas of ith and jth elements of the
kth generated layout

Comparative Overlap Score Absolute overlap score encounters the same
interpretation concerns as the absolute alignment score : RICO layouts, for ex-
ample, present nested elements, which are fully overlapping, while in other types
of document layouts, overlaps are unacceptable. Therefore, as for the alignment
evaluation, our final overlap score is obtained by applying the comparative met-
ric to the absolute overlap scores obtained on generated and real layouts, and
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hence benefits of the same objectiveness and generalisation as our alignment
comparative score :

overlapcomp = comp(overlapgen, overlapreal) (6)

Comparative Diversity Score Our evaluation method additionally incorpo-
rates the comparative diversity score, which compares standard deviations of real
and generated layouts features. As an example, a standard deviation is computed
for the left position of the first element, over all generated layouts, and one stan-
dard deviation is computed for each pair of element rank - element feature. The
minimum value of these standard deviations is then computed for the generated
layouts. The same operation is applied on real layouts, then real and generated
obtained minimums are compared through the comparative metric.

diversitycomp = comp(min
i,j
{σij

gen)},min
i,j
{σij

real}) (7)

Where σij
gen (respectively σij

real) is the standard deviation of the jth feature
of the ith element over all generated layouts (respectively over all real layouts).

Applying a same comparative metric on different datasets Note that
comparative alignment score is neither penalizing or rewarding alignment, it is
only penalizing differences between the absolute alignment score obtained on
generated layouts, and the one obtained on real layouts. The same reasoning ap-
plies for comparative overlap score and for comparative diversity score. Therefore
these comparative scores can be easily compared from different datasets, even
with high variation of any given property between and within those datasets
(such as the number of layout elements).

Independence between training metrics and comparative metrics Com-
parative metrics are used only during evaluation and are not used at all during
training, so that evaluation scores remain independent of the training process.
The only metric used during training is the binary cross-entropy loss function,
which is agnostic to our evaluation metrics.

3.4 Baseline Evaluation Results

As specified earlier in the related work section, there is no reproducible quan-
titative baseline for document layout generation, which make impossible for us
to compare our model to previous work. As an example, [9] unconstrained doc-
ument layout generator achieves an FID score of 143.51 on RICO dataset while
our model achieves an FID score of 66.96 on the same dataset. While these results
could show that our model allow a significant performance gain, this actually
cannot be asserted since the discriminator architecture and parameters used for
the FID computation in [9] is not available.
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Table 1. Quantitative evaluation results

Quantitative Metric Synthetic dataset I RICO dataset Magazine dataset

Fréchet inception distance 33.86 66.96 90.15

comparative alignment score 0.25 0.29 0.32

comparative overlap score 12.32 17.69 3.59e−4

comparative diversity score 19.83 0.65 1.37

(a) (b)

Fig. 3. Generated (a) and real (b) layouts from different datasets. First row layouts
are from the first synthetic dataset, second row layouts are from RICO dataset and
third row layouts are from Magazine dataset.

Therefore, we propose our own quantitative baseline results, indicated in Ta-
ble 1. These results are also available in our git along with the evaluation func-
tions and the real and generated layouts that have been used to obtain them.
While scores are globally of the same order of magnitude from one dataset to
another, some score discrepancies remain noteworthy. FID is particularly lower
on synthetic dataset, where size and location ranges are smaller and where there
is no nested element. On this dataset, diversity score is also much higher, which
is due to first element top position being constant on each real layout. There-
fore, even a short deviation in generated layouts corresponding feature is highly
penalized. Finally, due to a high number of nested elements, real layouts overlap
score is not as tight in Magazine as in the other datasets. Therefore, the absolute
difference in overlap score between generated and real layouts is less sensitive
and penalized in this dataset, which explains such a low comparative overlap
score for Magazine Dataset.

In order to put into perspective these quantitative results, generated layout
representations have been randomly selected and are displayed along with real
layout representations in Fig. 3. We can see on results obtained on synthetic
dataset that only one layout, among all displayed generated layouts, contains an
overlapping error. On results obtained on RICO dataset, we see strong similarity
between generated and real layout patterns, e.g. a very large bounding box
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covering the majority of the canvas with much smaller, horizontally aligned
bounding boxes above it. We see in both generated and real RICO layouts that
elements are generally extremely close to each other without overlapping, which
shows that our model matches industrial precision standards.

3.5 Additional results : application of the quantitative evaluation
metrics on specific examples

Table 2. Intensive training vs. poor training

Intensive training on Synth II Alignment Overlap Diversity

Absolute score on real layouts 0.112 0 0

Absolute score on generated layouts 0.116 0 0.003

Comparative score 0.031 0 17.166

Poor training on Synth II Alignment Overlap Diversity

Absolute score on real layouts 0.112 0 0

Absolute score on generated layouts 0.088 1.15e-05 0.022

Comparative score 0.238 11.653 19.230

Intensive training on Rico Alignment Overlap Diversity

Absolute score on real layouts 0.120 0.274 0.234

Absolute score on generated layouts 0.095 0.317 0.174

Comparative score 0.236 0.146 0.293

Poor training on Rico Alignment Overlap Diversity

Absolute score on real layouts 0.120 0.274 0.234

Absolute score on generated layouts 0.019 0.157 0.014

Comparative score 1.830 0.558 2.843

In order to assert the resilience and the versatility of our quantitative eval-
uation metrics, an additional set of experiments focused on more particular ex-
amples. More specifically, these experiments aim to verify that the accuracy and
the consistency of our metrics remain proportional to the level of training of
the evaluated model and remain independent of datasets properties such as the
number of element per layout or the degree of alignment, overlap and diversity
within each dataset.

Evaluation scores after intensive training and after poor training We
evaluated the consistency of our metrics with respect to the level of training
by comparing the obtained results after 100 and 10.000 training epochs. This
protocol was first ran on the second synthetic dataset, then ran again on Rico
dataset. Results of Table 2 show that on both datasets and on each property
(alignment, overlap and diversity), better training leads to better comparative
scores. As expected, the consistency of these comparative scores is contrasting
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Table 3. Results on datasets with high differences in terms of alignment, overlap and
diversity

Highly aligned real layouts (from Rico) metric Score

Absolute score on real layouts alignment 0.0

Absolute score on generated layouts alignment 0.00023

Comparative score alignment 14.657

Poorly aligned real layouts (from Rico) metric Score

Absolute score on real layouts alignment 0.365

Absolute score on generated layouts alignment 0.340

Comparative score alignment 0.070

Highly overlapping real layouts (from Rico) metric Score

Absolute score on real layouts overlap 0.414

Absolute score on generated layouts overlap 0.696

Comparative score overlap 0.518

Poorly overlapping real layouts (from Rico) metric Score

Absolute score on real layouts overlap 0

Absolute score on generated layouts overlap 0.001

Comparative score overlap 16.228

Highly diversified real layouts (from Synth II) metric Score

Absolute score on real layouts diversity 0.005

Absolute score on generated layouts diversity 4.39e-04

Comparative score diversity 2.396

Poorly diversified real layouts (from Synth II) metric Score

Absolute score on real layouts diversity 0.002

Absolute score on generated layouts diversity 2e-04

Comparative score diversity 2.516
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(a) (b)

Fig. 4. Poorly diversified (a) and highly diversified real layouts (b) from the second
synthetic dataset

with the divergence of some absolute scores. As an example, on the second syn-
thetic dataset, more training leads to a higher absolute overlap score while on
Rico, more training leads to a lower absolute overlap score. While the inter-
pretation of these two absolute scores relies on the subjective understanding of
their related datasets, a lower comparative score systematically implies a better
performance, on any dataset.

Evaluating datasets with high differences in terms of alignment, over-
lap and diversity . The results in Table 3 have been obtained by experimenting
the same model on specifically selected layouts of a same dataset, showing oppo-
site values on a given property (alignment, overlap or diversity). As seen in the
section focusing on highly and poorly diversified layouts, we see that compara-
tive diversity scores for both data subsets are in the same order of magnitude,
which is consistent with the fact that the same model has been experimented
on both subsets of layouts, leading to similar performances. Additionally, the
sections focusing on highly aligned and poorly overlapping layouts present very
high comparative scores (which implies lower performance). These scores show
the ability of the comparative metric to encompass the critical difference be-
tween a property equal to zero in real layouts (reflecting a hard constraint) and
a very low non-zero value for the same property in generated layouts (which are
then missing the hard constraint), by heavily penalizing the relative comparative
scores.

Evaluating layouts with different numbers of elements Table 4 shows
that the comparative metrics are consistent over layouts of different number
of elements. Except the sections where generated layouts do not comply with
hard constraints, comparative scores remain in the same order of magnitude,
independently of the number of elements. Moreover, in the last section of the
table we show that one comparative score can easily be applied to two set of
layouts, each containing layouts with a distinct number of elements.
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Table 4. Evaluating layouts with different numbers of elements

Layouts with 3 elements (from Synth II) Alignment Overlap Diversity

Absolute score on real layouts 0.023 0 0

Absolute score on generated layouts 0.024 0 0.001

Comparative score 0.031 0 15.715

Layouts with 5 elements (from Synth II) Alignment Overlap Diversity

Absolute score on real layouts 0.043 0 0

Absolute score on generated layouts 0.042 1.56e-05 2.14e-05

Comparative score 0.017 11.960 12.272

Layouts with 7 elements (from Synth II) Alignment Overlap Diversity

Absolute score on real layouts 0.043 0 0

Absolute score on generated layouts 0.048 2.85e-05 2.38e-04

Comparative score 0.115 12.562 14.686

3-elements versus 7-elements layouts Alignment Overlap Diversity

Absolute score on real layouts (3 elements) 0.023 0 0

Absolute score on real layouts (7 elements) 0.041 0 0

Comparative score 0.575 0 0

4 Conclusion

4.1 Contributions

In a context where recent publications on automated document layout gener-
ation show off impressive model architectures and promising user studies, we
aimed at setting a sorely missing quantitative basis for scientific comparison
and cooperation in the field of document layout generation. We thus propose a
first baseline and made our quantitative evaluation method fully reproducible,
backing it with a turn-key git containing both data and evaluation metrics that
led to the presented results. The model we propose is based on an original yet
easy to implement adaptation of the residual block concept and shows satisfying
results, in both quantitative and visual aspects.

4.2 Future Works

Now that a first reproducible quantitative evaluation is settled, it would be
interesting to monitor quantitative performance shifts when adding related work
modules to our baseline model, or when adding functionalities such as attribute-
guided and constrained layout generation.

Another interesting approach would be to add a background image process-
ing module to our layout generation model, since background and foreground
graphical balance are a central problem when generating sophisticated graphical
layouts.

Finally, a critical step to achieve in automated document layout generation
would be to go beyond the bounding box model and consider generating layouts
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(a) (b)

Fig. 5. Generated (a) and real layouts (b) with seven elements, from the second syn-
thetic dataset

in a pixel-wise dimension. This could also have very interesting applications
for image generation, allowing users to add specific constraints or attributes on
reserved areas of an image to be generated.
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