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INCOMPRESSIBLE LIMIT FOR THE FREE SURFACE NAVIER-STOKES
SYSTEM.

NADER MASMOUDI, FREDERIC ROUSSET, CHANGZHEN SUN

ABSTRACT. We establish uniform regularity estimates with respect to the Mach number for the
three-dimensional free surface compressible Navier-Stokes system in the case of slightly well-prepared
initial data in the sense that the acoustic components like the divergence of the velocity field are of
size /€, € being the Mach number. These estimates allow us to justify the convergence towards the
free surface incompressible Navier-Stokes system in the low Mach number limit. One of the main
difficulties is the control of the regularity of the surface in presence of boundary layers with fast
oscillations.

1. INTRODUCTION

We consider the motion of a slightly compressible viscous fluid with a free surface. It takes the
following form:
Op® + div(p*w®) =0,
1 1 g€ 3 g, € g 3 1> vp(pa) €
(1.1) O (p*w®) + div(p*w® @ w®) — divLw +T:O, (t,z) € Ry x Qf,
,0€|t=0 = ,0(6)» wE’t:O = w87

where p® > 0,w® € R3 are the density and the velocity of the fluid, P(p), a smooth function of p°,
stands for the pressure. The viscous tensor Lw® takes the form:

1
Lw® = 2p8u® + Mdive©ld,  Suw® = 5(Vur + Viwe).

Here, p, A are the viscosity parameters that are assumed to be constant and to satisfy the conditions:
@ > 0,21+ 3\ > 0. The parameter ¢ is the scaled Mach number which is assumed small, that is
e € (0,1]. We focus on a fluid domain given by:

O ={z=(y.2)| y e R? —1 <z < h*(t,y)},

where the upper surface is free and the bottom is fixed. Here h®(t,y), the surface of the fluid domain,
is unknown and needs to be solved together with (p°, w®). Since the fluid particles do not cross the
surface, h® solves

(1.2) Och® —w®(t,y, h5(t,y)) - N° =0, h°(0,y) = hi(y) yeR?

where N® = (—91h%, —02h%,1)! denotes the outward normal vector to the surface ¥f = {z =
(y,2),z = h(t,y)}. We supplement the system ((1.1]) and (1.2)) with the following physical conditions.
At the upper boundary, the continuity of the stress tensor reads:

1
(1.3) Lu*N® = = (P(p°) — P(p))N® on %
€
where p > 0 is a reference constant density. At the bottom, we prescribe a slip boundary condition:

(1.4) w3 =0, pohw;=aw; (j=1,2), on {z=-1}
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where a is a constant that quantifies the effects of the friction at the boundary (this can be easily
generalized to a smooth function a, see [47]). The case of the Dirichlet boundary condition at the
bottom raises other difficulties even without the presence of a free surface and is left for future work.
Note that we could also consider the case of a strip with infinite depth, see Section [I5]

The system (1.1)) can be obtained from a suitable scaling of the original physical variables.
Indeed, we get (|1.1)), (1.2)) by performing the following scaling:

ﬁ(t,.l‘) = pa(‘gt?x)? ’Lz)(t,.%') = 6w5(6t7 JJ), h = h6(5t7m)a B = €H, A= EA,

where p, U, h satisfy:

Op + div(pw) = 0, )
(1.5) O (pw) + div(pw ® w) — divLd + VP(p) =0,
8th =+ ’(Z)(t, Y, h(ta y)) N = 07

where L = 2[5 + Adivid.
The aim of this paper is to study the low Mach number limit problem, that is to study the
. . . YV P(pE
behavior of (strong) solutions to (|1.1)) when € tends to 0. Formally, due to the singular term ggp ),
the pressure (and hence the density p°) is expected to tend to a constant state in some suitable
space, one thus expect that the limit of the solutions to (1.1f), if it exists in a sufficiently strong
sense, will be the solution to the following incompressible free surface Navier-Stokes system:

p(0sw® 4+ w® - V) — 2udiv Sw® + Vr® =0,
(1.6) divw® =0, (t,z) e Ry x QY,
wl|i—o = wl, h°l=o = hY,

supplemented with the boundary conditions:
Oh® —wl(t,y, hO(t,y)) -N° =0, (t,y) € Ry x R,
Sw'N? = 7N on {2z =hr"tv)},
w) =0, 8310? = a,w? (j=1,2) on {z=-1},
where N = (—9,h°, —0,1h°,1)*.

The rigorous justification of the low Mach number limit has been studied extensively in different
contexts depending on the generality of the system (isentropic or non-isentropic), the type of the
system (Navier-Stokes or Euler), the type of solutions (strong solutions or weak solutions), the
properties of the domain (without boundaries, with fixed or free boundaries), as well as the type
of the initial data considered (well-prepared or ill-prepared). The mathematical justification of
the low Mach number limit was initiated by Ebin [21], Klainerman-Majda [37, B8] for local strong
solutions of compressible fluids (Euler or Navier-Stokes), in the whole space with well-prepared data
(divu§ = O(e), VP§ = O(?)) and later, by Ukai [60] for ill-prepared data (divu§ = O(1), VP =
O(g)). These works are then extended by several authors in different settings. One can refer for
instance to [3, 11}, 49, 50] for the study of the non-isentropic (Euler or Navier-Stokes) equations
under ill-prepared initial data whenever the domain is the whole space or the torus, and also [55, [36]
for bounded domains with well-prepared initial data. There are also many other related works, one
can see for example [2| [§, 15, 17, 19, 23], 30} 32} [33] 42, [43]. For more exhaustive information, one
can refer for example to the well-written survey papers by Alazard [4], Danchin [16], Feireisl] [24],
Gallagher [26], Jiang-Masmoudi [35], Schochet [56].

The analysis of the low Mach number limit problem for the isentropic compressible Navier-Stokes
(CNS) system in domains with fixed boundaries, which is more related to the interest of the current
paper, has been done in two different directions. Roughly speaking, for (CNS) in fixed bounded
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domains, one can either justify the limit process directly from global weak solutions, or prove that
local strong solutions exist on a time interval independent of the Mach number and use compactness
arguments to pass to the limit. For the first case, Lions and Masmoudi [42] investigated the
convergence of weak solutions to (CNS) in bounded domains with various boundary conditions. Later
on, for the same problem in bounded domains with Dirichlet boundary conditions, the authors in
[18, [34] noticed that under some geometric assumption on the domain, the acoustic waves are damped
in a boundary layer so that local in time strong convergence (L7 ,) holds. One can also refer to [23]
for the justification of the convergence towards a solution of the incompressible Navier-Stokes system
in unbounded domains by using the local energy decay for the acoustic system. All these results hold
true for ill-prepared initial data. Concerning the local strong solutions, uniform high order energy
estimates are established in [36] with Dirichlet boundary conditions and in [52] with Navier-slip
boundary conditions by assuming the initial data to be well-prepared. Recently, we established in
[47] uniform high regularity estimates in bounded domains with Navier-slip boundary conditions
and ill-prepared initial data. To match the boundary layer effects due to the fast oscillations and
the ill-prepared initial data assumption, we proved uniform estimates in an anisotropic functional
framework with only one normal derivative close to the boundary.

There are only a few works dealing with the low Mach number limit problem for systems in the
presence of free boundaries. They deal with inviscid systems. In [41], Lindblad-Luo prove uniform
a-priori estimates for the free boundary compressible Euler equations in the case of a bounded
reference domain. More recently, this result is extended by Luo [44] for unbounded reference domains
and by Disconzi-Luo [20] for a bounded reference domain but with surface tension. All these results
are based on the assumption that the initial datum is sufficiently well-prepared in the sense that the
time derivatives up to at least order two are bounded initially, an assumption which is stronger than
the usual well-prepared data assumption which requires one time derivative to be bounded initially.
Regarding viscous fluids, the author in [51] considered the 1d compressible Navier-Stokes system with
free boundaries and established uniform estimates with respect to the Mach number and the Froude
number for both well-prepared and ill-prepared initial data. Nevertheless, within our knowledge,
there is no related work for multidimensional viscous systems. Indeed, in the multidimensional
case, there are several difficulties that do not appear in the 1d case, as will be explained later,
a boundary layer appears in the multidimensional case which will preclude the uniform control
of higher order (> 2) normal derivatives of the solution. The aim of the current work is thus to
investigate the low Mach number limit problem for 3d viscous fluids solving -. For the
simplicity of presentation (compared to the case of general bounded domains) we choose a channel
with finite depth as the reference domain. Nevertheless, one can extend easily our analysis to the
cases where the reference domain is the half space or a bounded domain, we shall explain more
about this aspect in Section

The core of the analysis in this paper is to establish some uniform high regularity estimates in
order to get the existence of a local strong solution on a time interval independent of . Due to the
presence of the diffusion term as well as the singular linear term, a boundary layer correction to
the highly oscillating acoustic waves appears and creates unbounded high order normal derivatives
of the velocity. Therefore, we need to work in a functional framework based on conormal Sobolev
spaces that minimizes the use of normal derivatives near the boundary in the spirit of [22] [46], 48].
Note that in the current situation, we have to handle simultaneously fast oscillations in time and a
boundary layer effect so that the difficulties and the analysis will be very different from the ones
in [48], where compressible slightly viscous fluids are considered. Indeed, the energy estimates for
conormal derivatives cannot be directly obtained since tangential vector fields do not commute with
the singular part of the system. Moreover, to include only slightly well-prepared data (we will explain
later what it means), it will be impossible for us to get uniform estimates for time derivatives. In
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[47], we could establish uniform estimates for the isentropic compressible Navier-Stokes system with
Navier boundary condition in smooth fixed domains and ill-prepared initial data. For free surface
fluids, there are extra difficulties essentially related to the control of the regularity of the free surface.
Indeed, because of the occurrence of the singular terms, the compressible part of the system behaves
at time scale 7 = t/e like a small viscosity approximation of the acoustic system, we thus cannot
obtain uniform extra regularity for the surface from the diffusion term. This is the main reason
for which some kind of well-prepared assumption will be needed. We could nevertheless impose
an assumption that we call slightly well-prepared which is weaker than the usual well-prepared
assumption that requires one time derivative to be of order O(1) and thus much weaker than the
assumption made for the free surface Euler system, for example in [41], where two derivatives of the
solution are assumed to be O(1) initially. We only require the first time derivative of the solution to

be of order 5_%, this is thus intermediate between ill-prepared O(e~!) and well-prepared O(1), see
also Remark The main heuristics is that despite the extra difficulties arising from the boundary
layer effects (note that the presence of a boundary layer is a feature of the viscous problem and is
absent in the inviscid case), the presence of the diffusion term can help us to gain some regularity
of the surface (not necessarily uniform). It thus allows us to include more general data compared
to the corresponding works on inviscid systems [41], [44], 20]. We shall explain more precisely below
after the reformulation of the system and the statement of the main results.

1.1. Reformulation of the system in a fixed domain. Let us set
Qe_ P(p)—P(ﬁ)

- Y
€
the system (|1.1)) can be rewritten into the following symmetric form:

divw®
91(20%) (Or0® 4+ w® - V°) + a— 0,

£
(1.7) 020 ) (O +u - V) —diveuf + VL =0, (1a) e Ry x 9,

weli=o = wp, 0% |t=0 = 0§
where the scalar functions g1, go are defined by:
(1.8) g2(s) = p° = P71 (P(p) +5), gi(s) = (Inga)'(s); s>—P=—P(p).

Moreover, the boundary condition ([1.3)) is transformed into
(>

(1.9) LeN° = £N° on 5.
€

In the following, we shall work on the system (|1.7)), (1.2]) with boundary conditions (1.4)), (1.9).

We then choose an appropriate change of coordinates to reduce the free-surface domain to a
fixed one. One natural possibility is to use Lagrangian coordinates, nevertheless, since we shall
consider the problem in the conormal Sobolev setting, the Lagrangian transformation would be also
only bounded in the conormal setting, this would raise additional difficulties. Therefore, instead of
using Lagrangian coordinates, we shall use the following smoothing diffeomorphism [40], where the
map will enjoy the usual Sobolev regularity. Let us set S = R? x [~1,0], and consider the map

o7 : S — Qf

(110) (y, 2) = ®°(t,y, 2) = (y, " (t, 9, 2))’
where
(1.11) O (ty,2z) =2+ n°(t,y, 2)(1 + 2).
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Here 7 is given by a smoothing extension
(1.12) (Fr)(t,&.2) = e D= (F1e) 8, )

where F stands for the Fourier transform with respect to the horizontal variable y € R?, § is a
small parameter such that det(D®§) > 0, which ensures that ®f is a diffeomorphism. Note that

det(D®G) = 0,¢°(0, ) = 1 + h°(0,2) + (n° — h®)(0,2) + 0,n°(0,2)(1 + 2z) > 2¢o > 0
as long as
(1.13) 14+ h%(0,2) > 3¢ >0,Vz €S,

(1.14) 1" = h5)(O0) || oo sy + (10217 ()] oo (s) < <o,

where ¢y > 0 is a fixed constant. Let us notice that (1.14)) holds if ||h%(0)]| zrs(r2) < 400, for some
s > 2 and Jg is chosen sufficiently small. Moreover, we have that

IV (D) L2s) S [p° ()]

which means that we gain one half derivative.

1
H2 (R2)’

Let us now set
ua(t7 y7 Z) = wa(t7 y7 (I)E(t7 y? Z))? 0—8 = Qa(t? y? @5(t7 y7 z))
where u® and o° are defined in S. Then we set, (9;96 u® = (0jw’) o ®F, 8}pe 0° = (0j¢°) o ®°, where
j=0,1,2,3 with 9y = 0, 03 = 0, which yields
61'308 1
0.¢° 0.¢°

The equations (|1.7)), (1.2) and the boundary conditions (1.9)), (1.4)) are reformulated into the following
systems:

(1.15) 87" =0, — 9., i=0,1,2, 0¥ = 9.

e e ive e
91(80'6)(820 O_e +ue X vgp 05) + leg (7 _ 0’
€ £ £ £ Lps €
(1.16) 92(0%)(OF w® +u” - V¥ uf) — div? L? w® + v 60 =0, (t,x)eRy xS
utli=0 = wo(®(x)) :=up, o°fi=0 = &5(P5(x)) := 05,
(117) Oth® — ua(t’:% ha(tay)) N =0,
€ o€
(1.18) LN = TN o {2 =0},
(1.19) uz =0, ,u(?‘zf’suj =au; (j=1,2), on {z=-1}

1.2. Conormal spaces and notations. Before stating our results, we need to introduce some
notations. We define the conormal vector fields:

Zo = 88t, Zl = 8y1, ZQ = 8y2, Zg = gb(z)az

where the weight function is ¢(2) = 2(1 + 2)/(2 — 2)2. We then introduce the space-time conormal
space as follows, for p = 2, 400,

LYH(S) = {f] 2°f € LP([0,]; L*(S)), |a| < m},
with the corresponding norms:

(1.20) A e = > 1Z%Fllwog,c2(5)»

laj<m
5



where a = (ap, ') = (g, a1, ag, a3) € N*. Moreover, we shall also use the L7, type norm defined
by:

(1.21) I lksos = D 12°Fllre(oxs):
|| <k
To distinguish the number of time and space derivatives, we introduce also the norm:
(1.22) fllgrae = D 2% Flliwos,c2cs)
ao<j,la’[<]

and to simplify, we use
(1.23) HI = HIO.
To measure the regularity along the boundary, we use:

[s]
(1.24) \flrgs = Z |(58t)jf|LfH5*j(R2)7

§=0

> 2% flrse(ogxr2)-

|| <k,03=0

Finally, to measure pointwise regularity at a given time ¢ (in particular also with ¢ = 0), we shall use
the semi-norms:

[s]

(1.25) FOlge = D100 F () o3 (e2),
7=0
(1.26) IF @z = Y 12Nz 1Ol = D HZ*H®)le2s),
la|<m ao<j,la’|<l
(1.27) 1F @)lloos == D 1Z* ) ()l s)
laf<k

1.3. Main results. Before stating our main result, we first introduce the definition of the compati-
bility conditions which are necessary to obtain smooth enough solutions for the initial-boundary
value problem of parabolic systems.

Definition 1.1 (Compatibility condition). We say that (o, ug) satisfy the compatibility condition
up to order m if for j =0,1---m —1,

(0 (L unf) [1—0 = (e0y) (0% /€)|,_y:  on {2z =0},
(1.28) 0 1o = (0, (W€ - N) ;o on {z =0},

((00)u5)|,_y = 0, ((eat)jﬁfguj)h:o:%(5&5)%?\,5:0 (j=1,2) on {z=-1}.

Note that the restriction of time derivatives of the solution at the initial time is defined
inductively by using the equations. For instance:

(8¢h%)|1=0 = uf|==0 - (—Vyh§, 1)"
1

. & & £
= (—eug - Vug + ediv¥o L%ug — V¥005),
92(€05)

(e0uu®)|i=0 =

where

uf = (U1 uh 2 (uf - N§ = (0% 1=0)/0:65)" s #5() = ¢°(0,) = 2+ 17(0, ) (1 + 2).
6



We remark that 0p¢°|¢—0, 0,4 are determined by (0:h)%|;=0 and h{ respectively through (1.11) and
[T12).

We now define the space for the initial data:

Y5 (0) < 400, (0§, ug, hi) satisty
e __ e , € LE 3 4 m—21 /12 m » (00, Up, N
(129) Yo = {(007 o, f15) € H(So)" > H™ 2 () compatibility condition up to order m}’
where
(1.30)
1 _1
Y (0) = gl -y + 2106 sy + 672V (0)lm—5.00.5 + (VU= (011,00,

+&2(1(05, w5 lLr3s) + €2 (1105, w) )l sz s) + 1V (0%, ) (O)]| )
0% 4 O gz + IV (0%, u)O) | 2 + 31100, u) O] gz ) + €310 (O gz
In the above, expression, w® = curl?” u¢ stands for the vorticity.
To prove Theorem we introduce the following quantities:
(1.31) Nowr =Enr + At = Eowr + Erighma + A1
Here, &7, 1 is composed of the low order energy norms &, - and the high order energy norms
€ :
high,m,T
Er = €201(0%, w)| o2 + 2| (0%, w) o s + €3[|V 0| 22,
(1.32)

1 1
Ehighym,T =€2 ’h5|L?ogm+% +ez||(0%,u) g mm
1 € 1 2. €
+€2||Vu ||L39H'Crrol—lmL%H»c,g +52||v u ”L%OngOL—2mL%Hm,1

1 1
+ |h€|L?ogmf% +e2[|0i(0%, ") || Lgopm—1 + €2 HatvueHL%lemL?Tng—?mL;Ong—‘*

_1 e . e
+e2|[(V¥ of,div® u6)||L%oH$—sz2TH$—1 + H(Ue,us)HL?ngg—l + ||vu6||L§9H£Z‘4mL2TH£’g‘1

3 3 o0 .
whereas A7, ;- contains the L7, norms:

(1.33)
1 1 e e e &
m, 7 = VUl 00,r + [(€20:(0%,u%), 72 (V¥ 0, div? w)|lim—5,00,r + [|(I1d,£0) (0%, u°) [lm—1,00,7

1 1
+ &2 |V 3,007 + €2 [[(0%, 05) [lm—2,00,7 + [P"[m—2,00.7-

Our main result is the following:
Theorem 1.1 (Uniform estimates). Define 0 < ¢ < 3 such that

sup _ [(g1,92)(s)] € [co,1/co]
s€[—3c1P,3P/c1]
where 0 < ¢1 < % s a fized constant. Given m > 7 an integer, suppose that the initial data belongs
to Y5, is such that
1+ hg(x) >3co >0, sup Y, (0) < +oo,
€€(0,1]

—c1P <eaf(x) < Ple;, VYreS, Vee(0,1],
and 0y (the parameter appearing in (1.12])) is chosen such that (1.14) holds for t =0 so that

0.5 > 2¢cg, Vr eS8, Vee(0,1].
7



Moreover, (taking cy smaller if necessary), we can also assume that
1
[(Ve5, V2ep) ()] < Y VeeS, Vee(0,1].
o

Then there exist Ty > 0, 9 € (0,1], such that for any ¢ € (0,eq], the system (1.16)-(1.19) has a
unique solution which satisfies: Nrf@,To (0f,u®) < 400. In particular, we have the uniform estimate

€ , € -1 s oF e €
021550 (”(U U )“L%OHgg(s)ng%Hgg—l(s) + e 2||(div¥ u®, Vo )HL;C(’)HQZ‘2(S)OL?FOH}7;‘1
1 L e
H IVl oom + 72 1(Vo®, div? uf)lm—s5,001) < +00.
Moreover, the following properties hold: for any (t,z) € [0,Ty] X S, e € (0, q],

(1.34) 0% (t,x) > co, |(Ve®, V2)(t,x)| < 1/co, —2c1P < eo(t,z) < 2P/cy.

Remark 1.2. In view of the definition of Y7, we have assumed that the first time derivative of
the solution is of size of order 87%, which is better than the usual well-prepared data case (where
O0(0%,u®)|¢=0 is assumed to be order 1). This assumption is crucial in our analysis to control the
reqularity on the surface. We shall give more details in Subsection[I.5, Note that our assumption is
thus much weaker than the one in [41) 44l 20] for the inviscid system where two time derivatives are
assumed to be bounded initially.

Remark 1.3. It is also possible to prove the uniform estimates by imposing an alternative assumption
on the size of the acoustic waves, we can assume them to be of order € in a low regularity H}, space
and of order 1 in a higher regularity H]} norm.

Remark 1.4. In view of the definition (1.32)), one has three kinds of bounds for the solution. The
first two lines of (1.32)) only imply that the highest order norm with pointwise estimates in time

L HT of (0°,u®) can be unbounded and has a size O(a_%). Nevertheless, in the two last lines of
(1.32), we are able to get that the L? type norm with maximal number of derivatives, L;H™ of
(0%, uf) and the LY H™ =1 norm (so with one less derivative) are uniformly bounded. Moreover, the

first term in the fourth line of (1.32)) shows that the compressible part of the remains of size O(aé)
in LEHM2 N L2Hm 1,

Theorem 1.5 (Convergence). Assuming that (u§, h§) tends to (ud, hY) in H*(S) x L?(R?) and the
assumptions made in Theorem[1.1 hold. Let (6%, u?, h®) be the solution to (L.16)-(L.19). Then (P(p)+
g0, uf, h¥) converge in C7([0,Ty] x S) x C([0,Tp), L2 (S)) x C([0,To], H .(R?)) to (P(p),u’, hY)

loc loc

where 0 < v < % and 0 < s < m — 1/2. Moreover, u® has the additional reqularity:
(1.35) u’ € C([0,To), H*™2), vu € L*([0, Tp], H*™ 1) N L*([0, Tp) x S)
and one can find 7 € L*([0, Tp], HO™ 1) such that (u®, 7%, h°) solves uniquely the following incom-
pressible free-surface Navier-Stokes system:
ﬁ(afouo +u?- V‘Pouo) — div?" 87" u0 + v#'70 = 0,
(1.36) div?"u® =0, (t,z) € [0,Tp] x S,
u0]t20 = u8, hO’t:O = h8

with boundary conditions:

(1.37) orh® +ul(t,y,0) - NY = 0,

(1.38) 52N = 7N on {z =0},

(1.39) ug =0, %{PO@ZU? =auj (j=1,2) on{z=-1}.
z



Here ¢ is defined in (1.11)) (replacing h¥ by hY), NO = (=01h°, —0:h°, 1)1,

Remark 1.6. Due to the absence of estimate for the second order normal derivatives of the velocity
u® (and thus for the strong trace of the normal derivative), the solution to (1.36)-(1.39)), must be

interpreted in the following sense: div?’u® = 0 holds in L?([0,Ty] x S) and for any vector field
Y = (1,12, 93)" € [C° (%)]3 with ¥3|,=—1 = 0, the following identity holds: for any 0 < t < Ty,

p/su0.¢(t,-)dvf+2u/t/sw B vid ¢dv0ds+p/ / ) - dVods
(1.40) :p/ -9(0,-)dV) +p/ / - 0f wdvods+/ / 70dive"y dV0ds

//ZO Ny wdyds+a//1 1+ u - 4pe) dyds

where AV = W(t’ ) dydz.

Remark 1.7. Note that we do not end up in the classical space of existence and uniqueness for the
free boundary incompressible Navier-Stokes system, nevertheless, the uniqueness of the solution in
our functional spaces can be obtained by taking benefits of the control of the Lipschitz norm of the
solution. One can refer to subsection[I4.1] for the proof.

1.4. Main difficulties, general strategies. Due to the simultaneous presence of the singular term
in the equation as well as the viscous term and boundaries, we are confronted with both difficulties
resulting from boundary layer effects and fast time oscillations. These two phenomena are well
understood when they occur separately, but some new difficulties occur when they occur at the same
time. Indeed, on the one hand, regarding the vanishing viscosity limit problem (see for instance
[46] [48]), one can estimate the high order tangential derivatives by direct energy estimates, and
then use the vorticity to control the normal derivatives. Nevertheless, for the system with low Mach
number, the tangential derivatives (0,) are not easy to control uniformly, since they do not commute
with V¥, div?" and thus create singular commutators. Without the a priori knowledge of the
tangential derivatives, the estimate of the vorticity cannot be performed. On the other hand, for the
compressible free boundary Euler system with a low Mach number, uniform estimates are established
for example in |20, 4], 44]. Besides the difficulties arising from the Taylor sign condition and the
regularity of the surface, the idea behind getting uniform estimates is to control first weighted time
derivatives (£0;)* and then to recover space derivatives by using the equations and by direct energy
estimates for the vorticity. Here, in the case of viscous fluids, the vorticity is not easy to estimate
due to the lack of information on its trace on the boundaries. We shall explain more precisely in the
following. For the sake of notational convenience, we will drop the e—dependence of the solution.

Indeed, the vorticity w = curl? u solves a transport-diffusion equation with Dirichlet boundary
condition (see (4.5)), (4.8))) under the form

(1.41) wlas = Oyu + div¥u|ss.

Let us consider the simplest case, the heat equation with zero source and initial data but with
nonhomogeneous Dirichlet condition in a half space :

(1.42) PO f —pAf =0, flico=0, flo—o=f" (t,z)€[0,T] x R?,

By using the heat kernel, we obtain

1
||f”L%HZ’(§_1 S/ T4 |fb71’L§Hm—1.
9



By applying this estimate to w, we see that the boundary contribution when estimating ||w|| b om—1
t41co

is more or less |(Oyu, divu)| L2im1s which requires the foreknowledge of the tangential derivatives
and which indicates the loss of half derivative. One could also use the (tangential) smoothing effects
of the heat equation to overcome this loss of derivative. Nevertheless, in this way, it seems impossible
to extract the extra € or T" which are essential to close the estimate. More precisely, by using
maximal regularity, one gets that

HWHL?HZz—I < C|(0yu, div¥u)| 3 + other terms

L2A™™ 3
< C(IVull gz gm—1 + IVdiv¥ul| 1 yym—2) + other terms

which does not gain anything. Note that the constant C' is independent of T" and e.

To overcome these problems, we split the velocity u into a compressible part V¥W¥ and an
incompressible part v (see definition , ) On the one hand, the compressible part is governed
by the elliptic equation A¥YW¥ = div¥u with mixed boundary conditions (with homogeneous Dirichlet
boundary condition on the upper boundary and homogeneous Neumann boundary condition on
the bottom). Hence the estimate for its gradient V2¥ can be deduced from the estimate of div¥u.
We then use induction arguments and the equations to establish high-order estimates of div¥u. On
the other hand, the incompressible part v, solves, up to the control of non-local commutators, a
transport-diffusion equation and hence one can use direct energy estimates to get some suitable
estimates (say ||827L_1U||LtooL2 and va”L%H;ﬁ‘l)’ which together with the estimates on div¥u, lead to
the uniform control of H351_1U||L;>0L2(8) and ||VUHL%H£—1. The final task is to estimate ||V’UHL?OH$—4
which stems from a careful study on w x n. We remark that this strategy has been employed by the
authors in [47] where uniform in low Mach number estimates are established in the case of smooth
fixed bounded domain with Navier boundary condition and ill-prepared initial data. However, as will
be explained in next subsection, there are various extra difficulties for the free boundary problem
arising from the control of the regularity of the surface.

1.5. Remarks on the slightly well-prepared data assumption. In the free surface setting, a
very sensitive part of the analysis is the control of the regularity of the surface. This is the reason
why we have to allow the initial data to be slightly well-prepared. Indeed, since the incompressible

part v¢ satisfies the boundary condition (see (1.51)), (1.52))
(2uS%v — wId)N|,=¢ = 2p(divPuld — V¥V#U)N|,—o,

in order to perform energy estimates for v at order m — 1, it requires information on || V3W|| ;2 rm-3,
tt1co

which, by elliptic estimates, can be controlled by |[Vdiv¥u|| L2HT and |h| Nevertheless,

~ 1.
L2A™3
due to the fast oscillations, we cannot expect |h|L§FI’" +3 (or alternatively [|Vul| 2 m ) to be uniformly
bounded. A similar problem occurs when one recovers the LZH™~1 norm of V2¥ from the one

of divPu by elliptic estimates. To overcome this problem, we assume the data to be slightly well-
prepared so that ||div?ul| g1 can be proved to be of order e?, (0 < ¥ < 1 to be chosen). This

can make an extra eV appear in front of ]h\Lng 1y in the process of the elliptic estimates (one can
t

refer to Step 3 of the following subsection for more details). In turn, to control uniformly the term
sﬁ]h\pgm +3» which reduces to the estimate of ||Vl r2Hp, we must assume that the compressible
t

part (divfu, Vo) has the size of O(¢'~?) in L?H™~!. Indeed, when performing the highest-order
10



energy estimates, we need to be careful with the singular term

t
(1.43) 5219_1/ / Z% 2%, div¥lu+Z% - [Z%,V¥]o dVds, |a| =m.
(29, 5o -0:]u (29, 5o50:]0

By direct computations, these terms can be bounded by (up to other good terms and upon the
0
foreknowledge of |e h‘LfH’"*% )

1
9—1| ¢
N ey (120 g 1900+ Tl 19 oo ) A Bl o)

which can be uniformly bounded if

1Z0l| 3 m-1 = OE7), [IVollocor = OE).

By optimizing, ¥ = 1—¢, we shall thus prove the uniform estimates by assuming that (Vo, div¥u)|—o =
O(E%). By using the same ideas, it would be also possible to establish uniform estimates by assuming
that the compressible part is of size at O(e”) (3 <9 < 1) in a low regularity space (say H')) and
O(e'~?) in a higher regularity space (say HZ~1).

One may wonder whether the introduction of the Alinhac good unknown which is used frequently
in free boundary problems can help us to avoid to lose derivatives on the surface and to get uniform
estimates without any size assumption on the data. However, this quantity does not seem useful
here. Indeed, the use of the Alinhac good unknown would require the validity of the Taylor sign
condition (9§c|.—o > 0), which seems out of reach for ill-prepared data since o solves a transport
equation with a source term of size of O(s71).

1.6. Sketch of the proof. Let us explain the main steps for the proof of Theorem The uniform
energy estimates will be established in the following steps:

Step 1: ¢e—dependent high-order energy estimates and e—independent high-order
time derivative estimates.

In this step, we aim to obtain two kinds of energy estimates. The first one is the estimate of
ez (o, w)|| Lo and Hséat(a, )| pgopm-1. Since the spatial conormal vector fields Z1, Z, Z3 do not
commute with V¥ and div¥, it seems hard to get the uniform estimate of ||(o,u)|| 2o m by direct
energy estimates. Nevertheless, it is easy to get an e—dependent estimate involving the control
of |V(e, u)||L?H£_1. This can be done by applying Z%(|a| < m) to the system and then by
performing standard energy estimates making use of the symmetric structure. We remark that at
this stage we do not lose regularity on the surface. Indeed, besides the term listed in (setting
9= %), the possible most problematic commutator term is

t
5/ /Z”N-@ZE@uZO‘u dVds, dVs = ! dydz
0 Js 9

2P

which can be bounded by: £2 |h lull 2 g |||5%Bzﬁﬂouwoo7t. Note that the estimate of £ |h

L2A™F3 L2+ 3

. : : 1 1 o

is available owing to the control of €2 ||Vul| 2 ym and [le29;Lul|oo,¢ by the terms appearing in Ap, ¢,
co

using the equation of the velocity.

The estimate of ||5%8t(0, )|l popm-1 can also be derived by straightforward energy estimates.

The main observation is that: although the weighted time derivatives e3 (€0;)*0; do not commute
11



with V%, their commutator can be uniformly controlled even for the singular term. Indeed, direct
computation shows that for k <m — 1,

[(£0y)k0y, div¥)u

1
= b3 [,
3

1
€2

azso] Ot

whose L?L?(S) norm is uniformly controlled as long as k > 1 thanks to the boundedness of
1 o "

le2 a?h|L§H’”—% (see (6.2))). We remark that in view of the definition ([1.12]), the boundedness of N

can be derived from that of h. The case k = 0 needs to be treated differently and is explained in the

next step.

1 1
The second kind of estimate is for the terms e2|[(V¥0, div¥u)|| o ym-1, €2 ||VPdivPul| 2 ym-1,
t co ttico
which follows again from direct energy estimates, we thus do not detail more here.

Step 2. Uniform lower order energy estimates. In this step, we aim to show the bound-
1
edness of [[e20;(0, u)| Lo 2. We remark that a naive energy estimate fails due to bad commutators
with the singular term. Actually, the L? L?(S) norm of the term £3 [0, div¥]u = 5_%81;(N/(9z<p) -0,u
is out of control. The trick to avoid this problem is to multiply 9 (1.16); by 9,0 and multiply
9¢(1.16), by £/ u. In this way, the singular term can be dealt with as:

t
/ / hV¥o0fu+ 0f divPudyo dVsds
(1.44) 08

t t
= / Ofu - Noyo dyds +/ / Ofu[d, V¥]o dVsds,
0 Jz=0 0Js

where dV; = 0, dydz. The first boundary term combined with another boundary term which comes
from the integration by parts of the viscous term, result in a good term that can be controlled.
Namely

¢ ¢
5/ Ot[ — LPu + gId]N -0fu dyds = —5/ / (—L%u+ gld)atN - 0f u dyds.
0 Jz=0 0 J/2=0

Note that the trace of £ on the upper boundary can be expressed as the spatial tangential derivatives
of the velocity (see (4.1))) which can be easily treated by the trace inequality. The second term in

(1.44) is also manageable since g2 1[0, V¥]o || 12 2(s) can be roughly bounded by Ha_%V“"JHL%Lz(S).

It should be mentioned that the above strategy does not apply for the control of £ 1(0y, Z3)0(0, u)|| oo 2
due to the bad commutator terms. We thus use the strategy of the splitting mentioned before to
deal with them in the following steps.

Step 3. Recovering high order spatial derivatives of (Vo, VV¥¥) by induction. De-
note by V¥W the compressible part of the velocity which is defined by the unique solution to the
elliptic equation with mixed boundary conditions:

—div¥VPU = —div¥u,
(1.45) U, 0 =0,
OnVl=—1 =0.
In this step, we aim to control the L2H7~! norm of V¥ (o, V#¥), which can be reduced to the
control of e~ 2 |(VPo,divfu)|| r2pm-t- We will use the equation and induction arguments to recover
the latter. Indeed, let us rewrite the system (1.16) as follows:
—divfu = g1edio + eqiu - Vo,
(1.46)
—pecurl?w — V¥ (o — (2p + Nediviu) = goedru + egou - Vu.
12



where

(11, ) = (g, g, )
u = (U1, uz,uz) =: (U1, U2, —(—)-
z aztp
In view of ([1.46)), one wants to show that for j +1 <m — 1,
1. 1 1 _1
(A7) e H vl S 200l + O5) S e H V20 it + O(1),
1
L e72(|V¥0| 2pie S N2V apira + Xmg + O(e?)
< &2 |[diveul| 2yt + X + O(L),
where

1 1
Xt = €2 HV‘pdiv‘PuHL%H$4 +e2||[VPul L2 g
which has been controlled in the first step. These two inequalities in hand, we can conclude by
induction arguments. Note that the inequality results from the equality 1 and the
product estimate . To obtain , we take div? of the equation ((1.46)), and use the boundary
condition to get the following elliptic equation:

A?(e0) = div? [ped, VPV + e(2Le0, + gou - V)u] =: div? G

£

(1.49) 59|z:0 = —25u(81u1 + 62’LL2) + e(w X N)3|Z:0

Onf|.=—1 = G -n + pecurl? w x nl—_1.

where 0 = o /e — (2 + \)div¥Pu. Inequality ((1.48) is thus the consequence of the elliptic estimates in
the conormal setting (see Section 5). We remark that the trace of w x N involves only tangential
derivatives of the velocity on the boundary (see (4.2))).

Now that div¥u has been bounded, we can control the compressible part of the velocity VW
by again elliptic estimates. Nevertheless, there will be a loss of one derivative on the surface if no
smallness condition is made on the compressible part. Indeed, as VXU solves equation , we
have by the elliptic estimates that

. 1
1+ ||d1V<pUHL?HO,m—1)A(g, Am,t)

~ 2rrm—+5
L2H™ 2

(1.50) IV2@ ]l L2p0m—1 < (IRl

where A denotes a polynomial. This estimate involves more regularity of the surface than that we can

afford since we have only the control of |h|L2Hm_ 1 Nevertheless, checking the proof of the elliptic
t

estimates for V2U, we find that the main problematic term is indeed V¥ Z*VN (|a| = m—1,ag = 0),
whose L?L%(S) norm can be bounded by

1 .
V05 gy S Ao bl 192l Bl -
The right hand side can be controlled if [|div¥ul[z2p; = 0(5%). Hopefully, once assuming

ez (040, 0yu)(0) to be bounded uniformly in H} (S), we can show that ||(V¥a, divPu) Leomy, = 0(5% ).
This is one reason that we need the initial data to be slightly well-prepared.

Step 4. Uniform energy estimate of the incompressible part of the velocity. Set
v =u — V?W the incompressible part of the velocity. By the computations in Section 5, we find that
v solves the following system:
pOfv — pAPv + VP = —(f + VPq + p[Pt, 07 |u),
div¥fv = 0,
(2uS%v — wId)N|,—¢ = 2u(divPuld — (V¥)2¥)N|,—0,
v3|,——1 = 0, pd¥v; = aujl.——1, j = 1,2,

13
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where Q¢, Py are time-dependent projectors defined in ([5.2) (5.3 and
(1.52) f = (gou-VPu+ ”E;psafu), Ve = —Quf — pA%v), Vér = Pt[vv(g — (2p+ Ndiveu)].

Note that V¥m does not vanish identically since Q;V¥ # V¥ and that V¥#r is actually not singular
though it seems to involve o/e. Indeed by the definition of Q; and the boundary conditions (4.1
(4.2), 7 solves the elliptic equation:

AT =0,
7T|z:0 = —2,u(81u1 + 82u2) — 2,UJ(H(81U -N, du - N, O)t)g,
8f7r|zz,1 =0.
The key point is that the trace of 7 on the upper boundary can be uniformly bounded.
: . . 1
In view of (1.51f), we expect to perform energy estimates to get a priori control of ||1}||L?<,H?g_17 l|le2 0w HL?OH&L_Q

and HVLP'UHLgngOL—l, Haéa,ngHLgng;fz. Of course, due to the interaction with the compressible part
through the boundary, their control rely also on the information for the compressible part V¥W and
we cannot get higher order estimates.
Step 5. Control of the normal derivative of the velocity. We have obtained the
1
estimates of HV@uHLgH&LA in Step 3 and Step 4. It remains to control e~ 2||(V¥a, div‘pu)HL?nggfz

and ||(Vw, 5é8tv“>”Lg°H§2*‘*7 which is useful to control the Lg%, norm of the solution. The former

quantity can be obtained again by induction arguments while the latter quantity can be deduced
from that of w x n. Indeed, we have roughly the estimate:

1 1 1 1
|(Vu, 656tVU)HL?OH$74 < I(Id, 2 0) (w % n)HL?ngéﬂ + || (v, eiatv)HL?nggfza + |(h, 6§8th)\L§oﬁm,2.
Let us explain the estimate of ||(Id, 6%815)(0.1 X n)HL?ngﬂ. Direct computations show that:

(1.53) w x n|ps = —2I(01u - n, dou - n, 0)"

where IT = Id 343 — n ® n. We define the modified vorticity wn = w x n + 2I1(01v - n, d2v - n, 0), so
that:

wnlos = —2I(01V¥¥ - 0, 0,V¥V - 1, 0)".

The advantage of working on wy, rather than w xn is that the former one only involves the compressible
part of velocity on the boundary, whose estimates have been established in Step 3. To estimate wy,
we shall thus instead use a lifting of the boundary conditions by using the Green’s function of the
solution to the heat equation with non-homogenous boundary conditions and control the remainder
by energy estimates. More precisely, let w” solves the heat equation with boundary condition

wh!|.—p = wn|.—0, we use (1.42) to get roughly that:
1 h 1 1 1
H(Id,e?@t)wnHL%}ngﬂ <Ta (‘(Id,62at)vqj‘L%>oﬁm—3 + ‘(Id,€28t)h‘L?oﬁm,3)
< Ti(||(1d, a%at)dikuuw%fs +(1d, g%at)mwogm_g).

The remainder wy, — w? can then be controlled by direct energy estimates.

Step 6. Li; estimates. This final step is dedicated to the estimates of the L7 type norms
defined in A, 7. Most of them can be controlled thanks to the Sobolev embedding and the quantities

appearing in &, 7. The estimate of the remaining terms 2 IVollm=5 001 and || Vu|1 00+ are obtained
from the maximum principle of the damped transport equation satisfied by Vo and the estimate for
the heat equation satisfied by w.

14



Structure of the paper: We state the uniform a-priori estimates in Section 2, which are
shown in the following sections. Some preliminaries (useful lemmas, identities, projections, and
elliptic estimates) are first shown in Sections 3-5. The control of the energy norm &, 1 is achieved
in Sections 6-Section 11. The Ly type estimates are established in Section 12. Theorem and
Theorem are then proved in Section 13 and Section 14 respectively. In Section 15, we explain
how our results can be extended to the case when the reference domain is changed into a channel
with infinite depth. Finally, one technical product estimate is presented in the appendix.

Further notations
e We denote A(+,-) a polynomial that may differ from line to line but independent of ¢ € (0, 1].

e The traces on the upper boundary {z—=0} and lower boundary {z=-1} for a function f € H'(S)
are denoted by f®! and f%2 respectively.

e We use the notation < for < C(1/¢p) for some number C(1/cp) that depends only on 1/c¢o.
e We use the notation L?L? = L2([0,t] x S).
e We denote || flle = I1f L z2rms, + IV Fll 2

2. UNIFORM A-PRIORI ESTIMATES

Our main a priori estimate is the following:
Theorem 2.1. Let ¢y € (0, 1] such that:

(2.1) sup  [(g1,92)(s)] € [co,1/co]
s€[—3c1P,3P/c1]

where 0 < ¢1 < i is a fized constant. Suppose that for some 0 <T <1, for all (t,x) € [0,T] x S,€ €
[0, 1], it holds that:

(2.2) 0,¢°(t,x) > co, |(Ve®, V25 (t,2)| < 1/co, —3c1P < eo®(t,x) < 3P/cy.

Then there exist two continuous functions Py, Po : Ry x Ry — R4, and ¥ > 0 which are independent
of €, such that the following estimate holds:

1 1

23) Niur € P Y(0)) + (T4 )" Po( - ¥5.(0) + M)
0 0

where N, p is defined in (1.31)).

This theorem is a direct consequence of the following two propositions.

Proposition 2.2. Under the assumption of Theorem[2.1] there exist two e—independent continuous
functions Ps, Py : Ry x Ry — Ry, such that:

1 1
(2.4) Emr < Pg(g, Y5 (0) 4+ (T + 5)’91134(;, Y5 (0)+ N 7).

0 0
Proof. This proposition is obtained by energy estimates, we split it into several sections (Section
6-11). By Lemma for the estimate of the surface, Lemmas , for e—dependent
estimates to the highest order, Lemmas 11.1] [T1.3] [I1.10] for the uniform estimates, we can

find two polynomials As, Ag whose coefficients are independent of ¢, such that:

1
(2.5) (Erigham)? < N5 (= IB°P 4 + Ve (0)2) Y (002 + (T + 2) 3 Ag(—, N5, 7).
B Co L,i.—?H 2 s
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By Lemma [8.1] there exist polynomials A7, Ag whose coefficients are independent of &, such that:
~ 1 1 1
(glow,T)Z 5 A7(%7 ’hag,oo,T) (YriL(O)Q + (5f€Ligh,m,T)2) + (T + 8) 2Ag (%7 %,T)'

By the Sobolev embedding H%(RQ) — L®(R?),

Wiy S 2y

we thus find two polynomials Ag and Ay such that:

1 1 1
(2.6) (E50)? < Mol |h5\i%oﬁm_% +YE(0)2)YE(0)2 + (T + &) huo( N r):
By (6.3), there exists a polynomial Aj1, such that:
1 1
’ha\i?ogm,% < Y502+ T2A11(0*07N§1,T)-

Plugging this inequality into ({2.5)), one finds two other polynomials Ajz, Aj3, and a constant Jo > 0,

such that: . )
(Shighm ) S az(— Vi (02) + (T + )" Mg, Vi (0) + N5 7).
0 0

We thus finish the proof by inserting the above inequality into (2.6)). O
Proposition 2.3. Assume that (2.2)) holds, we have the a-priori estimate for the L$°L>(S) norms,

1 1 ~ ~ 1 1
(2.7) A, < A(aﬂ Y (0)) + A(?o’ 15 13,00.) € + (€ )t + (T + 64)A14(%,N5L,T)-
where A14 is a polynomial with e—independent coefficients.
Proof. Its proof is presented in Section 12. O

3. PRELIMINARIES I: USEFUL LEMMAS.

In this section, we list some elementary lemmas which will be often used throughout this paper.

3.1. Product and commutator estimates. We begin with the following product and commutator
estimates in R2.

Lemma 3.1. Let f,g: R2 — R belong to the spaces appearing in below. For any s > 1,

(3.1) IA*(f D)l r2m2) S 1f s m2y|9] oo (m2y + 191 s (m2) | f 100 (R2)
(3.2) A%, Flglr2me) S 1 las-1(m2)|9] Lo m2) + [flwoo m2) 9] rs—1(R2)
For any -1 <s <1,

(3.3) |[Asa9]f\L2(R2) S |f’HS*1(]R2)‘g‘H2+(R2)a

(3.4) |fg|HS(R2) S |f|Hs(R2) min{]g]H1+(R2), \g\wl»oo(W)}-

where (A*f)(y) = fg_lw((l + \§|2)%f(§)), a™ denotes a real number that is larger but arbitrary close
to a.

The product estimate (3.1]) and the commutator estimate (3.2]) can be found in [13] for example,
(3.3) is indeed a restatement of (A.6) in [9]. The proof of (3.4)) is presented in the appendix.
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Corollary 3.2. Let k > 2 be an integer, one has the following estimates:
(3.5) ((F O grry SOl 54 19O gy T 19O k)00 [F O] gosgs

(3.6) 2% @ 3 SO0+ 19O gimg 19O xg1)04 [ F O] gosy s lal = F
where H* is defined in ([T.25), and commutator (2%, flg = Z*(fg) — fZ%g.

Proof. For any |a| < k, we write

(3.7 Z”(fg)(t)=( RS )Z'Bf(t)Z“‘Bg(t)

BI<I5-1  Ja—pI<[25H]
Inequality (3.5)) can then be derived from product estimate (3.4]). The proof of (3.6)) follows in the
same way. O

The following (crude) product estimates in L{H7 will be useful for instance in the elliptic
estimates.

Lemma 3.3. Let Z% = (¢8,)7 2% with Z = (Z1, Z9, Z3),|o/| <1 =k — j, k > 2. One has the crude
estimates: for any integer n € [0,k — 1]

(3.8) I(f@) Dl < 1F @) O3z N f llk—n—1,00.t5
112, Ag@®llz2(s) < ( > Hf(t)HHjau>ngn,oo,t
@9 JeaEn,
+ (lg@® -1 + lg@llp-1) 1 le—n—1,00-

We also have the following composition estimates:

Corollary 3.4. Suppose that ¢ € C(Q:) N LH™ with
Al S ¢(t7$) S A27 V(t,ﬂf) € Qt'
Let F(-) : [A1, A2] — R be a smooth function satisfying

sup  |FY|(s) < B.
s€[A1,A2],j<m

Then we have the composition estimate:

(3.10) IE @) = FO)pm < AB, 19llpz),00) 191 22 2

Corollary 3.5. Let g1(g0), g2(e0) defined in (1.8)) and assume Property (2.1)) and Assumption ([2.2))
hold. Then one has the following estimates: for j =1,2

(3.11) lg;i(eo) = g;(O)lLppm < 81\(* lollim o) o Lo -
1
(3.12) 1Z9jll Lpagm-1 < eA(— llollim) 00.0) (0 Z0) | ppgm-1,
Co
1
(3.13) 129ill Lp g1 < sA(%, lollim o) ol Lp g

Pmof Inequality (3 is a direct consequence of the composition estimate (3.10). To get (3.12]),
(3-13)), one can apply 1.’ for n = [mT_l] — 1 and use again (3.10)). O
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The next lemma states the generalized product estimate and commutator estimate [2§].

Lemma 3.6. For |a| < m,ap =0 we have the product estimate and commutator estimates:

(3.14) 124(F ez S 1l ezmomllglo.cor + 19l L2200 fllo,cots
(3.15) I1Z%, flgllzre < 11 pz20m l9lloc0 + gl 230m—1 [ F 1 ,00,e-

We finally state the following Sobolev embedding and trace inequalities whose proofs can be
found in Proposition 2.2 of [46].

Lemma 3.7. For each t € [0,T], we have:
1 1
316) 1Ol S INON s IO g0 51+ 52> 205150 20,

|f(t7 '10)|H5(R2) + ‘f(t7 K _1)|HS(R2)

1
SIOFON 1o g [T ON L g) + 1 Oll g, 52
tan t an

an

) = 1IN F()]l2(s)-

(3.17)

| =

where we have used the notation || f(t)| gs

tan

3.2. Regularity of the extension and some further commutator estimates. We first show
that the diffeomorphism ® has the same regularity as v in S, which stems from the fact that the
extension function ¢ gains half a space derivative with respect to h. Before stating the main estimates,

let us recall that ¢ and 7 are defined in ([L.11]), (1.12)).

Lemma 3.8. For any integers j, k > 0, we have the following estimates:

(3.18) (0 Vet S ORI sy g

(3.19) IVellzzrns) S 1ol gevsed oy
Moreover, we have the Ly, estimates for n:

(3.20) 110y nl () lwroo(s) S |[(£0eY BB lwoo m2) S [Blitjoot-

Proof. These estimates can be deduced from Young’s inequality and the following estimates:
/iemﬁ@%zs%aal;url@éﬁﬁﬁmwésL

One can refer to Proposition 3.1 of [46] for the detail of the case j = 0. The case for j > 0 follows

from the observation that time derivatives commute with the actions ¢(h) and n(h). O

Lemma 3.9. Suppose that: 0,0(t,z) > co for (t,x) € [0,T] x S. Then for any k € N,

f 1
(3.21) H@HLfHﬁo S A(%, |h|[§]+1,oo,t + me[g},oo,t) (HfHLfHEO + ’h‘Liangr%)a p = 2,+o00.

Proof. Let us write:

0.0 14+n+0:m(1+z) 1+n+0.n(1+2)
Therefore, one obtains (3.21]) by applying the product estimate (3.8) for n = [%] and composition

estimate (3.10) for Fi(z) = 7 (0 <z <1). O
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Remark 3.10. Similar to (3.21)), under the same assumption as in Lemma the following
estimate also holds true,

f 1
(3.22) H@HLfHo,k < A(Q’ IRlo0 + I Mo.cot) (1| Lgmos + 1l p puy)s P = 2, Fo0.

The next lemma contains useful commutator estimates.

Lemma 3.11. Under the assumption (2.2)), the following commutator estimates hold, for j =
1,2,3,|a| <k

o 1
I12°.071F 1222 S Aol

1
- A(a, lk—n,co IV fll 2t (0<n < k—1).

g]—f—l,oo,t) |h|L?ﬁk—n+% |||Vf|||n,<>07t

(3.23)

If ag = 0, we have that:

N 1 1
(3.24) I1Z2%, 071 fll 212 < A(%, P00 t) IV £l 2 g1 + A(%, IV fllo,c0,t) 7]

~ 1.
L2H"" 32

Moreover, for k > 3,
(3.25)

1 t
112504, 051 fllr2re S A(%’ 108 f, 010 f)llo,00,¢ + |(By k) k2,00t + (/O €071 (s)[}i—2,00d5)

(e X0 1Z50RA 3 + 1200 s + 1200 S 1e0)-
I<k—1

N[ =

)

Proof. By the definition for V¥,

(3.26) (2°,071f = [2%,N;/0:¢]0- f + (N; /0:0)[ 2%, 0:] .

Moreover, there exist smooth functions Cy g, Cg ~,o Which depend on derivatives of ¢ such that:
(3.27) 2°,0.) = > CypaZ’0.= > Cyrad.27.

18<|e] -1 IvI<|Bl-1

Therefore, we get (3.23)) by (3.9), (3.21)). and get (3.24]) by (3.15)), (3.22]).
Next, for (3.25)), we use the following direct expansion

(3.28) 1250y, glw = < Yo+ Y >(ck,,zg—latg Zhw) + Crp ZE 2 0rg Z3w.
0<I<1  0<k—I<k—3
to obtain:
11Z50e. glwll 212 S 1 Z0Begl 2gen—1 Il oot + 1 Zowl| 12901 10eglli—5,00.¢
(3.29) oy
+ [ Zowl| 5o 125" Orgll 2o
. . N, .
Applying (3.29) with g = 5%, w = 0. f, and using (3.18), we get (3.25)). O
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3.3. Energy identities and Korn inequality. We now present some identities which will be often
used in the energy estimates:

Lemma 3.12. It holds that:
£ € 1 1 £ £
(3.30) / 010 +uV Yo (t) o (t) Vi = 2 / o)AV~ / (0F g1 +div (g1))|o2(t) AV,
S S S

E c 1
(3.31) [ 9208 + -V yute) - ut) avi = 501 [ galuP(®) avi
S S

/(—div”sﬁwsu + V¥ 0 /e) - u(t) AV,

(3.32) s

= / 2ulS? u(t)|? + N div? u(t)* dV, —/
S

odiv? u(t) dV; +a / lur|? dy.
S

z=—1

where ur = (uy,ug,0) denotes the tangential components of u, dV; = 8, dydz is the measure in S
coming from the change of variable (1.10)).

Proof. By direct computations, one can obtain the following identities:

/ 8‘” t)dV, = / f(t) 8” t)dV, + / f®)g(t)N;dy, j7=1,2,3
JLor rgt avi = o / Fo(t) Vs - / F0OF g0+ [ f(gdhdy,
z=0
Wh1ch along with the equation ((1.17] - lead to - - Note that in the derivation of
(3-31), we have used the fact that Gf g2 + div¥" (gau) = 01in [0,1] x S. O

The next lemma shows that one can control the gradient of the velocity by S%u.

I;Lemma 3.13 (Korn’s inequality). Suppose that (2.2) is true, then there exists Ag(%),Al(%) such
that:

(3.33) /yvu\ Vs < Ao /yvv uP (1) Ve < A (- )/(\S“"Eu|2—|—]ul2)d1}t.
S
As a consequence, we have also:
t t
(3.34) //|Vu\2dvsds§/\1(1)/ /(]S“”gu\2+\u|2)dvsds.
0JS € Jo Js

These two inequalities can be shown similarly as in the proof of Proposition 2.9 in [46].

4. PRELIMINARIES II: REFORMULATIONS OF THE BOUNDARY CONDITIONS

For notational convenience, from now on, we will skip the e-dependence of the solution.

Proposition 4.1. The following boundary condition on {z = 0} hold:
o

(4.1) = (2 + N)divPu — 2u(d1u1 + daug) + p(w x N)s,
(4.2) w x n=—2I1(01u - n, du - n,0),
(4.3) (0¢u) = —T1(01u - n, Dou - m, 0)F,

20



(4.4) Ofu-n= ]N|20fu-n— (n101u - n+ ngdou - M)
’ = ]N|(div"°u — 81U1 — 82U2) — (n181u “n+ ’nzagu . ’I’L)
where w = V¥ X u, Il = Id3 — n® n, here Ids denotes the identity matriz of order 3.

Proof. The first identity can be deduced from the boundary condition (1.18). Indeed, by taking the
third component of ([1.18]), one gets that on the upper boundary {z = 0},

g = Aiv¥u + 2u0%u - N + p[(VPu — (V¥u)') - N],
= (2u + N)divPu — 2u(01ug + O2uz) + p(w x N)s.
Note that we have used the identity
(4.5) 0%u - N = divPu — 01u; — Oguz

which holds indeed in the whole domain S. For the second identity (4.2]), we have that on the upper
boundary:

pw x N = pull(w x N) = 2uII( — (V¥u)'N 4+ S¥uN)
(4.6) =1II( — 2u(V¥u)'N + (0 /e — Mdiv¥u)N)
= —2ull(O1u - N, dpu - N, 0)".
Note that (V#u)! - N = (G1u- N, dou - N, 0)! + (02w - N)N. The inequality can be derived in a

similar way:

(4.7) pI(0Fu) = pll(28%un — (V¥u)' - n) = —pull((V¥u)' - n).

The inequality follows from direct computations and identity .

Remark 4.2. By the identity: |N|0fu = Ofu — n1d1u — nadou, we have also:

(4.8) IN|T10¢Yu = I1(O1u - n, Oou - m, 0)" — TI(n101u + npdou).

Remark 4.3. In view of (L.5), (4.8), we have that 8%u ~ div¥u + dyu on {z = 0}, so that:

L.
(49) (Vo)™ o e S A(a lldiv?ullo.co.t + llulloct + hl1.00.)

(1(diveu)™ o g+ [ o g + [l 2 e ).

Recall that we denote for any f, f>' = f|.-o.

5. PRELIMINARIES III: PROJECTION OPERATORS.

5.1. Definition of the projection. We define the projection operator Q;:
Qp: L3S, dVy)? — L%(S, dV,)3
f—=Qf =V¥
where p satisfies the elliptic equation with mixed boundary condition:
—A¥p=—div’f inS
(5.2) 0lz=0 =0

070],=—1=[-e3
21
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where e3 = (0,0,1)!. We define also the projection

(5.3) Py =1d — Q.

Let us notice that Py, Q; depends actually on ¢(¢,-), but we used a lighten notation.

Remark 5.1. Let us notice that the definition of the projection Q; is not the same as the standard

Leary projection where only the Neumann boundary condition is involved. Nevertheless, the definition
(5.2) is classical in free boundary problems, one can refer for example to [7].

Remark 5.2. We remark that these two projectors are time-dependent since ¢ depends on t. One
also notes that in general, P,VY? # 0,Q;V¥ # VY. These facts will lead to some extra commutators
when we act the projection to the equations ((1.16),.

Let us set v = Pyu, VAU = Quu. Applying the P, projection on the velocity equation (1.16)),,
one gets:
pOfv +PVP (/e — 2(p + N)divPu) = —Py(f — uA¥v) — p[Py, 9f |u

where

f= 92 _peﬁfu—l—ggu-vsau.
€

By definition P; V¥ can be expressed as a gradient, we thus denote
Vér =P, V?(o/e — 2(u+ N)div¥Pu).
To shorten the notation, we denote further
V?q = —Qu(f — uA¥v).
Therefore, the above equations read:
(5.4) pOfv — pAPv + V91 = —(f + VPq + p[Pt, 0 |u).

We are now in position to compute the boundary values of v. On the bottom, in light of (1.19) and
the fact 97V = ug3, we get that

a
(55) U3|z:71 =0, a,(éDfUﬂ'|z:71 = a;pu7|z:71 - Vfaf‘l’b:fl = ;u7|z:71-

where V¥ = (97,05,0)", fr = (f1, f2,0)". Note that V¥ = (9, 02,0)" on the boundary {z = —1}
since O;¢|,——1 = 0.

On the upper boundary, one first notices that by definition, 7|,—o = o/ — 2(u + A)div¥u.
Therefore, with the aid of the condition ((1.18]), we find that:

(5.6) (2uS%v — 7Id3)N|.—o = 2u(divPulds — (V¥)?¥)N|.—o.

5.2. Elliptic estimates. In this section, we establish some useful elliptic estimates in the conormal
setting. We first consider the problem:

—A?p = —divPF
(5.7) 0l-=0 =0
3?0!,2:71 = F -est+g

where eg = (0,0, 1), F , g are given source terms. To perform elliptic estimates, it would be convenient
to write it in a more explicit way. By a straightforward calculation, one finds that:

1 1 1
div(P- V¥ = —P*V¥ A¥ =
0,0 v(P), 0, ’ tORT)
22
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where

(o) 0 0 1
(5.8) p=| 0 dp 0|, BE=_ PP
—Oip —Oyp 1 ¥

Denote F' = PF, the equation is then equivalent to the following elliptic problem:
—div(EVp) = —divF

(5.9) 0l:=0=10
(EVo-e3)l.e1=Fy* +g

where Fé’ 2 = Fb2. e3. In this paragragh, we study the elliptic equations for a given time t.

Lemma 5.3 (Elliptic estimates). Suppose that |[V|lect < 1/co, 020 > co, we have the following
estimates: for any k > 0,

(5.10) Vel st + IV20() Iy, S A( Plks2,000) (IAVE @) |, + [(F5% + 9)(0)] vy ),
and for j+1=k, 1 > 1,5 >0,

IVe®)llair S A( H!VQW[ 100+ Pl o0 PO sy

(5.11) :
+ A(%, 13 o) (IOl + 190 ey )
1V 0(t) |35 <A( IV o8y o0+ Pl ) AO)] s
(5.12)
. b.2
+A( ol 153 ) (I F @)1+ (5, )0 gy
1 .
IV 0(0) 30 S A Il isssy oo o) (IVE@llygin + (F52,9)(0)] 1y
(5.13) 10
F AUVl o+ Pl o) (I ello sl (8 g + 1A cy)-
1
20V ollpia S A( s ks oed) (€200 (1)l + <2100 (1) - y)
(5.14)
1 1
+ A IV 0l oo+ 190l .00 + [lt) (90(0)| gy, + 19003,
1 .
120,V 0() 300 S A= |-l jsssy ) (€2 O:divE(e) | ggpims + |22 0(F22, 9)(1)] o_1)
(5 15) co [ 2 }7 ’ H" 2

1 _1 1
+ A(57 le™2Vellk) oo + (s Oth, )\[%],oo,t)ﬂ(é?ath’ h) ()] gery +e2lIVo®)lm,)-

Remark 5.4. We shall use (5.14) when k < m — 3 since as will be seen later, |h|m—2.004 can be
uniformly controlled. The inequality (5.15)) will be used when m —3 <k <m — 1.

Proof. We first notice that by using assumptions: ||V[|eos < 1/co, 0.9 > co, E is uniformly elliptic,
that is, one can find ¢(1/cp) such that for any vectors X € R3, EX - X > (|X|2. The inequality
(5.10) can be proved easily by the variational arguments and the use of Poincaré inequality:

le@®)llz2(s) < ClIVo(t)l L2s)
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Note that the generic constant C' is independent of ¢ and . More precisely, by testing (5.9) by o(t),
we easily get that:

§[Vo®)llr2s) < /SEV@(t)-V@(t) dz = —/Sg(t)divF(t) dx+/ (Fy + g)(t)o(t) dy

z=—1

1) .
< SIVe®)li2s) + ColldivE(0)l|2gs) + (F5®,9) (0], 3)-

The estimates of the higher-order norms ||Vo(t)||gr+1 can be obtained again from variational
arguments and commutator estimates. We skip them since they are essentially included in the proof

of other inequalities (for instance ((5.11]) and (5.13)).

We now begin to prove (5.11). Let a = (j,a), Z% = (e8y)! Z{1 Z$? Z$3. If a3 # 0, taking Z©
derivatives on the equation shall destroy the divergence form. The trick to avoid this problem is to
use another vector field Z3 = Z3 + 0,¢1d, such that: Z30, = 9.Z3. By induction, we have for any
az > 1, Z5%0, = 0,Z5°, which yields

790, =: (e0,Y 22 252 230, = 0,7°.

It is useful to notice further that for any f,

(5.16) 124 = Z2*) f Dl 2(s) S 1 Ol
Taking Z® derivative on the equation , we find that:
—div(E(Z%Vp)) = div([Z2*, E]Vo — Z*F) + div(Z* — Z*)[(EV ), — F;]),
(5.17) Z%0|z=0 = 0,
Z(EV0) - e3]s=1 = Tay-0) 2°(F5” + g).
Note that we denote by X, = (X1, X3,0)? the horizontal components of a three dimensional vector

X. Testing equation (5.17) by Z%p, we obtain:
(5.18)

8|2V |72 S/EZO‘VQZO‘VQd:B
S
:/EZO‘VQ~ [ZQ,V]de—/[Za,E]VQ'VZanI‘
S S

- /S(ZO‘ - Z*)((EVo0); — F;) - VZ%dx + /5 Z°F -NVZ%dx — / Liay—0yZ2%92% 0 dy.
z=—1

Combined with Young’s inequality, property and the trace inequality , this yields
(5:19) 12°Vo)Z2s) S I1F O350 + 19—y + (Ve EVO) (D301 + [12° EIVo(t)[[12s)-
It follows from the product and commutator estimates , that:
IV o)l g0 < A/ co) (I1E @)l +19(0)] iy + 11V 0(B) 3501

IV o) llgi-sr-1 |l g1y + 1B sV 0l 1)1 ).

By Lemma and the expression of F in (5.8), we get

1 1
(5.21) IE ]l 00,6 < A(%, Alnto08)s 1Bl A(%, 1l k151,00, 1RO s g -

(5.20)
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Inserting ((5.21)) into ([5.20]), we arrive at:
1

1
9230 < A IVellg e+ [Plisgs) o) O] ey
(5.22) )

A Al ) (IF @0 + 190 oy + 1V 2Ollpr10010):

The inequality (5.11]) then follows by induction on j and .
To get (5.12)), it suffices to observe that the last three terms in ([5.18) can indeed be replaced by:

/ Z&diVFByZo‘gdx —/ ZYF3+9)Z%dy, if az=0,Z2%= 6yZ5‘.
S z=—1

- /(Za — ZY(EVo) - VZ“de/ ZOdivF(Zs + 0,0)(Z%) dz, if a3 #0,2% = Z32°.
S S

To prove (.13), we first estimate ||0,Vo(t)| 4 and then use the equation itself to recover
1020(t)]245.:- The estimate of |9,V o(t)||3. is almost identical to that of (5.12). For this one, we only

need to distinguish the highest derivatives hitting on E (or finally on h). Hence, when estimating

the term [Z%0,, E]V o, we write
[Z°0y, ElV o = (Z°0yE)V o+ other terms

and control the first term as
3.

o 1
1(Z%0y E)Vo(t)llL2(s) S |||VQ|||O,oo,tA(%a 1] 142,00 ) 1P e g

We now sketch the proof of (5.14)) and (5.15)). For (5.14)), we first have the following inequality
analogues to ([5.19)).

1. 1 1
le2 220V 0(t) [72(s) S €20 () 30 + |e209(1) %,
+ €28,V o, EV o) (1) 2501 + le20:2%, E)V o(t) 225

where the last two terms can be bounded in a rather rough way:

1
1£2 0, (EV 0)(t)[|300 S Hs%atv@(wumHA(%, k.c0t)

00t + 1001000 (BR(D)] oy + [V 0(0) o),

+ séA(Clo, Vo
e3(|[0: 2%, EIV o(t) | 12(s) < €21 Z°(0EV 0) (1) 12(s) + €2 2%, E)OV o(t) | 2(s)
S 130T ol 1A (o bl )
+ A 190k 0+ 11000 (D) sy + 190,
The inequality then follows from induction on j,[. For , similar to , we have:

1 1 . 1
€2 205 o(1) [22(5) < lle3BudivE (1) |20 + €2 (F %, 00) (1) 2,

+11e20:(V o, BV Q) ()20 + 12 0:2%, BV o(t) | 22(s)-
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The last two terms are bounded as

1 1
2 0:(V o, BV 0) (t) 351 + ||[€§3tZO‘ EVo(t)||72s)

1
S e2(|0: Vo)l yii-1npi- “A( |h| oo,t)

1 1 1
+ A(a’ e QV@II[g},m + I(ath, h)\[%],oo,t)(l(ﬁthv RO ey +e2IVe®)llmg,)-

We obtain (5.15]) again by induction on j and [.

Remark 5.5. Similar to (5.11)), (5.15) the following estimate also hold, for j +1 =k > 3,

IVo(®)ll <A( o[ le— noot)("F(t)"H§0+’g(t”gk—%)

(5.23)
+ mv@mmm( Bl 1 e ) (8 sy (2= 0,1),
e%nfw@( gt + 2118,V 0(t) 3011
S A( Ahlkoe) (1220 @)l + 122 0divE () pgsaTs1y + 122 (F5 %, 9) (0] -y )
(5.24)

+ A( 1Bl 00,0 162 0,V ollo 00,1 (1)

s
+ a?A(%, \H&?*?V@Hh%]m,t + (7, 0l i) o) (10:2(0)] sy + [V 011, )

Corollary 5.6. Let V¥U = Quu be the compressible part of the velocity, we have the following two
estimates:

1
(5.25) VoW o + IVP W 2y S (T +2)2A(—
co co 0

7Nm,T)7

1 1
Loon——)||52§td1V UHLQHm s + (T+€)2A(CO’Nm’T)’

1

(5.26) ||e%atv<ﬂqf|\LgHm-1 SA( 1|
co 0

e |0 VEU|| e gz + ez 10V VED|| s

(5.27)

1 1
i D200l e s + 3Ol ) + (T4 (S M),

1
Co
Proof. We begin with the proof of (5.25). Let us detail the estimate of [|[VV¥#W|| 5 m-1, the other
t11co
term can be obtained by similar arguments It suffices to show that:

”VVSD\IJHLQHm 1 < A( |h’[m]+200t)”d1V<PUHL2Hm 1
(5.28)

+A(57Nm,T)<\hr +letn

L2H™™ L2H’"+% )-

which leads to (5.25)). By definition, ¥ solves the elliptic equation:
div(EVVY) = div(Pu),
(5.29) U)o =0,

On.—_1 = 0.
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We apply (5.13)) for F' = Pu, divF = 0,¢div¥u, F§’2 =g =0 to get:
1 .
||V2W||L§Hg;—1 S A(aa |h|[%]+2,oo,t) ]\8Zg0d1V¢U||L%H$—1

1 _1
+ A gz e + 1672V o100 ) (Bl ey + o7

LQHT"” L21§ﬂ"+%)'

By the product estimate (3.8]), we find

N

HVVLP\IIHLQHmfl S HVQ\IJHLQHW’71 + Hv(iaqu)ullngzfl

(5:30) € A bligyszoea) 19V ul s + A Bl 2 + 167 (V0 div? )l )1 )

(|h|L2Hm—* + 62 |h|L2Hm+%)

Moreover, the Sobolev embedding (3.16]) combined with the inequality ([5.10|) gives for k& > 0,
J
eV 2100 S 2 (||ve|, 3 HIVY

LDOH[71+1)

(5.31)

171

SA ( ‘h|%+2<>ot)||5 ZdIV“"UII

Plugging this inequality into ([5.30)), we arrive at ( -
Moreover, by applying (5.15)), (5.24]), (5.31]) to the solution of (|5.29)), we get (5.26)) and ([5.27]).

Corollary 5.7. Consider the elliptic system with nontrivial Dirichlet upper boundary condition:
—div(EVyp) = —divF,

(5.32) 0l:=0 = b,
(EVQ) . 63‘;;:_1 = F§’2 +g.

X Hes

The following estimates hold:

1 :
(5.33) IVolloo.t < A(C—O, |113,00,6) (IdiVE || oo s, + [0, . 5 + 19

3),
Ly H? LyoH?

1 1 1 _1
VOl S A e zvmu[g],l,m,ﬁ\h@]m,ﬁs o o GO

(5.34)
+e” 2A( Ihl[m] o) I @) llggaa + 0@ vy + 190 iy),
1
Vo)l g, S A(*a ’h’kfj,OO,t)(HF(t)HHED 10O ey 19O piet)
Co t
(5.35)
A IV et + g1 ) IBO] gusy F2 25 =0 or 1,
1 1 1 1 1
e2||0:Vot)l mr, < A(%, |Alit1,00,) (12 0eF (8| rrz, + 122 06b(E)] 1y + 21009 ()] i y)
(5.36)

1 1
+82A(c0’ ) (1Oh(®)] vy + IV g,

Proof. We introduce the lifting:

oty 2) = Fol (e ©7b(t,€)(1 + 2),
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and reformulate the problem as:
—div(EVer) = —div(F — EV ")
L _
0 ’z=0 =0
00" =1 = (F — EVo!) -e3 +g.

We apply Lemma with F' — EV!. Note that we use again the product estimate (3.8 to bound
EV . Moreover, Young’s inequality and the definition of o give:

H H
IVem llgwa S 6@ ey IV ligr000 S 1Pl 000 S 0] i

6. REGULARITY OF THE SURFACE

In this section, we prove some regularity properties for the surface h. Here and in the sequel, we

will denote m > 7 an integer. We also recall that Ny, 7, Em 1, Ap 1 are defined in ((1.31)).
Lemma 6.1. The following reqularity estimates hold: 0 <t < T,

1
(6.1) 0] e grniy + €210 e gy S Emi + &,
1 1 1
(62)  2OFh] g + IO g+ DD 20 OFR L,y A( N).
k<m-—1
2 2 2 1,1
(63) |h”L?on +5’ ‘ m+1 SYm(O)—FTQA(%’Nm,T)

where A denotes a polynomial that may change according to the contexts.

Proof. Proof of (6.1): We have by using the equation ((1.17)), the product estimate (3.5 the trace
inequality (3.17)) and the definition of &,, 1 that:

0Ny = <l Ny
S (Ul gty Dbl i) I 0 V)
< (14 Enr) (12 (0, Vil g gt + €2 B pniy) S Emr + Enr
Note that we have 7] +1 < m —2,[2] 4+ 2 <m — 1 for m > 5. The quantity \ath|Loo Gm—3 Can

be dealt with in the same way, we thus omit the proof.

Proof of (6.2)): Let us detail the estimates of the first two terms, the last one can be controlled by
similar calculations. Again, we use the equation (1.17)) for h, the product estimate (3.5)), the trace
inequality (3.17]) to obtain that

s%|ath|L2Hm,, < |(e28yu - N,u-29,N pogm-3
S 20l gty g g+ (U LB )2 000l g
IO e+ O g g S Ao N,
For the second term, we use Equation and the trace inequality to get:
€20Fh] - S 12000 (0 N) | e g2+ (12204 (- N e .
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With the aid of identity (4.4)) and the product estimate (3.8]), we then find that:
le297h]

1 1., 1 1
< A(a,Amﬂf) (Hs?@,gdlkuHLtongg—s + ||(u,528tu)||L?oH$—2 + |(h,e20:h)|

L A™=3

LgOHm—%)
1
Sz A(%w/\/‘m,T)‘

Proof of (6.3). We explain the estimate of |h| 1, the control of e |h

Lo ™3 1} being similar.

L@H™
1
Acting Z*Aj (Jof <m —1,a3 =0) on (1.17), one obtains:
1 1 1 1
(O + uy0y)(Z*AGh) — ZNGusg = f =: [AZ,uy]Z%Oyh — A ([Z%, uy|Oyh).
1
Multiplying this equation by Z*Ajh and integrating in space and time, we get that:

1
1Z2A h(1)[72 S 1Z4R(0)
(64) Y H?2

)

1
+ T2 A(fJull1,00,6) (|U3\i

By the trace inequality (3.17)),

2
(6.5) s gy S 10, VUl T s

2 2
% + |f|L§L§ + |h|Lt°°Hm*

Nj—=

2 pym—
tH

To estimate the first term in f, we apply the commutator estimate (3.3|) to get that:

1
(6.6) ’[Ayzauy]zaayh‘Lng S ’Zaayh‘ﬁ}r% |uy| oo pr2:s

1
N ’h\ngm%H(ua V)|l m2(s) < T2E} 1.

For the second term in f, we have by the commutator estimate (3.6 and the trace inequality (3.17))
that:

6.7) 2% wldyhl 4 STl gigre IRl gmey + 10 S Em-

Ly flB1+3 ‘U|L§HW*%

Inserting 1' into (6.4]), we achieve ([6.3)). O

7. HIGH ORDER ENERGY ESTIMATES

In this section, we prove two kinds of energy estimates, namely the e—dependent high order
conormal energy estimates involving at least one spatial derivative, and the higher order estimates
when only the time derivatives are involved. These quantities we are going to bound appears in
the definition of energy norms &igp m,7 in and are necessary to prove the uniform estimates
shown in Sections 10-12.

7.1. Energy estimate I: Highest order energy estimates.

Lemma 7.1. Suppose that (2.2) holds for some T > 0 then for any 0 < t < T, then we have the
following energy estimates:

1 1
(7.1) ell(o, w)llZge sz + el Vel Za g S €ll(0,w) (0)[rg + (T +€)ZA(—, Nin1).

Co ’
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Proof. Let us start with (7.1)) for m = 0 which is standard. Performing direct energy estimates for

(1.16)) we get by identities (3.30))-(3.32]) that:

1 t
2/(gl|a|2—|—gg|u|2)(t)dvt—|—/ /Qu\swu|2+x|diku|2dvsds
(72) S 0 JS

1 1 t
=5 [@loP + gluP)0) Vo + 5 [ @+ div gl avids—a [ [ jurdyds
S S 0 Jz=-1

where u; = (u1,ug,0)". Thanks to (2.1)) and assumption (2.2)), we have:
. 1
107 g1 + div?(g1u)llo,c0.t < A(%, lI(os )ll1,00,6 + IV (05 ) 0,00, + [Pl1,00,¢)
S A( ) Am,t) .

In view of the Korn inequality (3.34)), the trace inequality (3.17]), one gets by using Young’s inequality
that:

1
€o

1
(o, U)HQL§°L2 + ”VUH%gm S H(UO;UO)H%2(5) + A(CiojAm’t)H(U’ U)H%gm
(7.3) , 1 ,
S (00, uo)lz2(s) + TA(%:Am,t)H(U, )|z L2
We now detail the high order estimates in (|7.1)). Let o be a multi-index with 1 < |a| < m, applying
Z® on the equation (1.16)), and denoting (0%, u®) = Z%(o,u), one obtains the system:
(7.4) 91(0f +u-V¥®)o* + vaua =CS — %[Zo‘, div¥]u,

' 92(0F +u- Vo) u® — dive 2o LPu + Y20 = €% — L[Z9, V¥)o + (2%, div¥]L%u.
where the commutators are given by:

Cy = [Zav %}53150’ + 2%, gruy|Vyo + (2%, g1U.0.]o,

(7.5) :
Cy = [Za, ;]Eatu +[Z%, gauy|Vyu + [ 29, 92U 0. ]u,
with
u-N — 0O
7.6 Uu,=———""%
(7.6) 5o

Note that we have from that

(7.7) Of +u-V? =0 +u,Vy+ U.0..

The energy equality then reads:

(7.8) ;/S(g1|0a|2 + golu®?)(t) AV + /Ot /S 2u| Z%S%ul? + \| Z*divPul* dVsds
= FS + FM 4 4 F2.

where

1

1/t . o
Fy = 2/3(91!0“!2+g2|u°‘\2) 4V, Ff‘=2/0 /S(afg1+dlv“’(g1u))]a 1 dV,ds,

t
F3' = —/ / [Z% N](LPu — (o/e)Id) - u® dyds [{a,—0y,
0 Jz=0

¢ t
F¢ = / / ZLPu - [Z%,V?P]u dVsds, Fi = —/ /[Za,div“”]ﬁ“”u -u® dVgds,
0 JS 0 Js
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t 1 t
kgt = / /cgaa +Cy - u” dVids,  Fg = —/ / o2, dive|u + u® - [Z%,V¥]o dVyds,
0 JS €Jo Js

t
Ff = —a/ / | Z%u,|* dyds.
0 Jz=-1

The first two terms can be controlled directly by:

1
(7.9) e(|F5 |+ |FY) S €l 2%(o,u)(0)[Z2(s) + TA(%aAm,t)EHZaUHZL?L?(S)'
For the boundary term F§', which vanishes identically if a3 = 0, we split it as:

t
Fy = —/ / (LPu — (0/e)Id) Z*N - u® + [Z%, (LPu — (0 /e)1d), N]u® dyds =: F5| + F35.
0 Jz=0

By duality and (3.4)), 5} can be bounded as:

[F51] S 1(£%u - (U/E)Id)b’lngoW;,ooI(U"‘)b’llL L[ZON]

2772 21772
tHy LtHy

By the identities (4.1)), (4.3), (4.4) and the definition (1.33)), we have:

1 .
|(£Pu = (0/e)1d)" |m) 1 00t S A(—, hlim) 00 + IdivPullim) 1 cor + lullfmc0)
(7.10) 010
,S A(ia Am,t) .
co

Hence, by the trace inequality and Young’s inequality, we get that:

1
2 2 2
eIF5i] < Gl Ty + (2RI, + I3 12) A A

For Fgh, we use successively the Cauchy-Schwarz inequality, the estimate (7.10) and the trace

inequality (3.17) to get:

5] S 1) 214 2°, £7u — (/)1 N] 1

S ‘(Ua)b’lngLg (|(£<pu’ 0/5)‘[%]—1,oo,t’h‘[,fﬁm + |(£wu70—/5)|L%ﬂ'm*1|N’[mT“]+l,oo,t)
1 . .
< 8|IVullzs g + ch(C—O,Am,t) (lllZom 4+ 1V divPul| o g1 [ divPull o -1 + B3 )
To summarize, we can control e F5* as:

1 1 .
(7.11) €S| < 20Vl gy + Cot (i) (TM oy 23l 2 Vaivoul 2 ).
Let us detail the estimate of F5'. We use the estimate (3.23) for n = 2 and Young’s inequality to get
that:

1

1
51 < 212 9ull gy (19l gy + 1 3 ) A o il + 1Vl

(712) 9 1 2 2
< 58HVUHL%H§§ + A(%, »Am,t) (e’:‘HVUHL%Hﬁfl + TE‘h‘Looﬁer%).
i
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Similarly, for Fy, by Holder’s inequality, the commutator estimate (3.23) and the definition ((1.33]),
we find

e | < ellull 2227, divF] LPul| 2 2

1 1 1 1
(7.13) g 52 HUQHL%LQA(%, |h|m_27oo7t + 52 ”’vﬁ(pu’”27oo7t) (‘h‘L%I:[m+% + ”E2 vﬁ(puHLgngg;fl)
1
< (T+e)%A(C—,Am,t)€fm.
0

Next, we control Fj5 as:

1.1 1
elF5'| < T2|le2 (0%, u®)| pge r2lle2 (G5, Co)ll L2 2

gy

It thus remains to estimate (C&,CS) defined in ([7.5)). Taking benefits of the commutator estimate

gy

(3.9) and the estimate (3.13)) for g, g2, we obtain:

1

€0

1
s Amt) ([ (0, W) | ¢ + 2[R

gy

1 e (0%
ek (€2 €221 S A( et

Therefore, we obtain:

(7.14) eFS) S T2A(—, A )E2,.

1
Co
Let us split Fg' as: F§' = Fg') + F§'y with

1 t 1 t
Fy :—/ /Ua[ZaadiV@]ustds, Fg :—/ /ua-[Zo‘,V‘P]UdVSds.
’ €Jo Js ’ eJo Js

For Fg', thanks to the commutator estimate (3.23)),

1 1 .
leFsal < lle 2UOéHLfL?@Q H[Zaadlvso]uHL%LQ

1

1 _1 1 1
(7.15) < (le20u0 | zms + |2V 0| 21 (3 A + 31Vl )A (- Aune)

L2A™3
1 1 2
S(T+e)z A(a, Ami)gm,t-

Similarly, by using the fact that (recall m > 7),

_1 1
e 2|Voll2,cor S A(%,Amt),

)

we finally find:

”3ng2| S HUHLQHm(HVUHL?HQ;A + | A

t tco

1
Lfl:lm+% WVU|||2,oo,t)A(%» ’h’m—Q,OO,t)

(7.16)

S(T+6)7A (=, Anyg) 2.

1
co
Gathering (7.15)) and (7.16]), we find that:

1
(7.17) eS| S (T + )2, Ani) €1

0
Finally, for the boundary term F¢, we apply the trace inequality (3.17) and Young’s inequality to
get that:

(7.18) elF7| S 0elV 2% |72 p + CsTell Z%ur [T e 2(s)-
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Collecting (7.9), (7.11), (7.12), (7.13), (7.14), (7.17), (7.18)) and summing up for |a| < m, we find
by Korn’s inequality ([3.34)) and by choosing § small enough,

1 1
ell (o, u) |7 o0 g + €HVU||igHg; S ell(o,w)(0)[|Fm + (T + E)QA(%aAm,t)ggn,t'

O

Theorem 7.2 (Estimates for High-order time derivatives). Under the same assumption as in Lemma
[7-1, we have the following estimates: for any 0 <t < T,

1
(719) el ) ergnos + OVl s S 00 0) O + (T +2) A N

Proof. Due to the singular terms in the system ((1.16)), we need to deal with the zero order and the
higher order estimates for z—:%(%(a, u) differently. We will prove in (8.2)) the zero order estimate:

1 1
lloe(o, w)ll7se 12 + €llOVullzs o < ellOe(o,u) (0)]72 + (T + 8)2/\(%,/\%7’)-

Let us stress that this estimate does not depend on the higher order estimate to be shown here and
vice versa.

We now focus on the higher order estimates. Substituting Z¢ by E%Z(’fat (1<k<m-—1)in

(7.8), we find that:

t
6/(gl|Zgat0|2+gg|Z§8tu\2)(t) th—}—e/ /2,u|Zé“3tS“’u2+>\|Z§8tdiv‘pu|2dvsds
(7200 2 Js o Js

=Fy +FF 4. -+ FF.

where F¥ — FF are defined in the same way as F§' — F¥ (defined in (7.8))) by changing Z into

E%Z(’)“@t. Our following task is to control Ff — F¥ one by one. The first two terms can be controlled
by:
ko k| < 2 1 2
(7.21) [Fy + FT| S ellOs(o, u) 7290 + TA(%,Am,tkHatUHLtoon-
Now, for the term

t
FY = —¢ / / [ZE0,, N](LPu — gld)Z(’fc’)tu dVds,
0 Jz=0

1, Cauchy-Schwarz inequality and the estimate ([7.10]) to control it

we first use the duality <>H% g

as:

1

k Lok Lok Lok Lok o
[y S ’5QZoatU|L§H%|5QZoath|L%H%A(%aAm,t) + |52Z08tu|L§L5]52[Z08t,N, (Lfu — gId)”Lng

By (6.1)), the trace inequality (3.17) and Young’s inequality, the first term in the right hand side of
the above inequality is bounded by:

Olle2 ZEV 202 0 + (T +2) 2 A(

0
Moreover, we use the expansion (3.28]), the estimates (4.9)), (6.1]), the trace inequality (3.17) succes-

sively to control the second one as:

1 1 1
0\5525(%“&3@ (e2 |3th’L§ﬁk |(L%u, U/g)b’1|[%],oo,t +e2[(L%, 0/5)b’1 |L§ﬁk |0¢h] [g],oo,t)

1
;7 Am,t)gg%t'

1
< 0le2 ZEVE Ol + (T + s)%A(%,Am,t)5i7t.
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Note that by (4.1)), (4.3]), (4.4), one has that:
1
|€% (ﬁ@u’ O-)b’I |L?f{mf1 S (|€% (ayua diVQDU)bal |L?f{m71 + 5% |h|L?I~{m)A(;7 Am,t)
0
1 1 1 . 1 1,1 1
5 g4 (HVUHL?HZZ_I +e2 ||VUHL?H23 +e2 HlequL%Hg;_l)A(%7 Amﬂf) + T2 ’€2h|LtoonA(a, Am,t)
1
S+ A An) e
0
We thus find that:
1
(7.22) |FF| S 20l|e2 Z§ V20l 3a pa + (T + e)%A(C—,Am,t)é’ﬁ%t.
0

Next, with the aid of the commutator estimate (3.25) and the estimate (6.2)), we can control the
commutator [Z50;, V¥]u as:

112500 V7 ulz02 S0P g + 10005l smmarizons )

A(; 10-ull1 0ot + |(s €2 00h) lm 2,000 + (/Ot €202h(5)|m—2,00d5)?)
< A(Clo,/vm,T).
Therefore, we bound the term
Fy=¢ / t /S ZEoLou - (250, Veu dVyds
by using Young’s inequality and the (;ssumption kE<m-—1,
(7.23) (BS| < 8| 250,V ul 2, . + aA(Clo,NmT).
We proceed to estimate
Ff = —¢ /0 t /S 280y, dive]LPu - ZEpu dV,ds.
By the expansion , the estimate , and the assumption £ < m — 1, we obtain:

e (250, dive)Cullz 2 < (|c0Ph)

1
peet + 10 L7l )

1 1
Ao 10-L7ul )10+ 100 2y + M) )
1
SA(—, Non1).
Co
We thus control Ff by the Cauchy-Schwarz inequality:

|FF| < T3||e2 0pul| gopge |2 [ 250, dive] L2ul | 22
(7.24) ) 1
5 TQA(f,./\/;mT).
Co
The next term F; f is defined by
t
FF=¢ / / Chzkdo 4+ CF - ZEou dv,ds.
0 JS

To continue, we need the following proposition to control the commutators 3 (C;€ , C{j) :
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Proposition 7.3. For commutators

ck = [k, %} edyo + (250, g1uy| Vo + [Z80y, 01U.0.)o,
(7.25) k ko 91 k k

Co = [Z50, ;}sﬁtu + [Zy 0, g1uy|Vyu + [Z5 0%, g1U-0;]u.
we have the estimate: for k < m —1

1

e (€5 Chllpre S A(L Nmr)-

We will postpone the proof of this proposition and continue to estimate the remaining terms
Fé“ — F7k . By using Proposition Fé“ can be estimated as:

1

D)
€o

Nm,T) .

gru

k 1,1 Lok Ak 1
(7.26) F5| < T2 le2 (o, u)l| poepm—1lle (Cq, Co)ll 22 S T2A(
For the term
t
FF=— / / Z80y0 - [ 250y, divP|u + ZE0wu - (250, V) dVsds,
0 JS
we can apply commutator estimate (3.25)) to obtain:

57%(” [Zgat: diV@]U”Lfm + H[Z(])Catv VSO]UHL%LQ)
1

1
3+ le20:V (o, u)HLme—QﬂLt"OHl) S A(%’Nm,T)-

S A=, Niny) (|e207h],

1
Co ’ %H "
This estimate, combined with the Cauchy-Schwarz inequality, yields:

1

(7.27) FE| S T2A( = Non,r).
0

Finally, we control the last term

t
FF = —as/ / | ZE Dy, |? dyds
0 Jz=-1

by the trace inequality (3.17) and Young’s inequality:
t
1
(7.28) FF < e / / | 250,V Pu?dVds + (T + e)A(—, Ami) 2,
0Js Co '
Collecting ([7.21))-(7.28)), summing up for & < m — 1 and choosing § small enough, we find (7.19)). O

We now give the proof of Proposition [7.3]

Proof of Proposition[7.5 We use the following two expansions

1o m—1—1 1 11 —
(720) AT Mlo= Y (CuZigZy TR0 )+ Y (CuZy @09 Zy )

0<I<[2]-1 [2]<i<m—1

1 1 1
2200, flg = Y (ChZogZy ' le20,f) + C2, Zoe2 0192y 2 f
0<I<1
+ > (AL 09z ).
3<i<m-—1
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In light of the second expansion, we control the last term in C™ ! as follows:

1 -
e2 (25 0, 1U:10:ull 22 S (91U2) ]| 129m—1

1 _ 1
+ (|22 00z ul| Lpoan 126" (91U2) | e 12 + €2 0102l 23gm—1 191U llin—3,00.¢
1
SA(=, Now1).
€0
The remaining terms appearing in C~!,C™~! can be estimated by using the first expansion:

lez(Ccmt,emt — (25" 100, 1 U-]0,u) || 212
2
E ||528t gj /€, gy, g;U )HL?Hm_l (ll(e, w) |||[%],00,t + H|VU|”[%]_LOO¢)
j=1

+ledi(g;/e; gy, 9;U=)ljmr ootllE204(Z0, V) (0, 0) | 2302

1
7Nm,T)'

SA(g

0

7.2. Energy estimates II: High-order energy estimate for the compressible part of the
system. In this step, we estimate the compressible part (V¥o, div¥u) :

Lemma 7.4. Under the same assumption as in Lemma[7.1] the following estimates hold:

e([(V¥ao, div‘pu)Hi?OHcmo_l + ||V“0div5"uHi?Hg_1)

(7.30) ) , o
S A(av |h]2,00,¢) Yy (0) + (T + 5)2A(%,/\/'m,T).

Proof. Let 8 be a multi-index satisfying |8] < m — 1. Applying Z°V¥ (resp. Z°) to the equation for
o (resp. u), we find that:

(731 910 +u- V) ZPV9o + L Z0VPdiviu = R
. 92(0f +u-V?) ZPu+ peurl” ZPw — (2p + NV ZPdiviu + 1 2PV eo = RL
where
(7.32) Ry = Rg,l + R 2t Ra 5 Ro= Rg,l +-- 'R5,37
with
RB = ZP(V?q10f 0 + V¥ (giu) - V¥0), 7?,5 L= 12°, ga/elediu+ (2P, gruy |V yu,
RUQ =25, g1/elediV¥0 + (27, g1u, |V, V¥0, Ru? = 2%, 1U.0.]u,
Rﬁg = (2P, 1U.0.]V %0, R573 = —pu[ZP, carl?|w + (2p + N)[Z°, V¥]div¥Fu

and U, is defined in (7.6)). Taking the scalar product of (7.31)) by (Z°V¥0, —V¥?ZPdiv¥u)! and by
integrating in space and time, one gets the following energy identity:

1
3 / (911 Z2°V%20|? + go| Z°diveul?) (t) AV + (21 + A)||V@Zﬂdiv<ﬂu||iw
S

(7.33) =g+ I+
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with:

1
Jp = 2/3 (911 29V %0[% + gao| Z8diveul?) (0) AV,

1 t
JP = 2/0 /S(afg1 + div¥(g1u))| Z2°V¥o|* dVsds,
t
JP = / / (V9o - 0f ZPu + V¥ (gou) ® V¥ Z%u) ZP divPu dVsds,
0 JS
t
JE = / / 92(0f +u - V?)([Z°, div¥]u) ZP divPu dVsds,
0 JS
t
J) = / / 92(01 + uy0y) ZPu - NZPdivPu dydslg, oy,
0 Jz=0
1 t
J == / / ZPV?0( 2P, V) diveudV.ds,
€Jo Js
t
JGB = u/ /Curl‘P ZPw - V2 ZPdivPu dV,ds,
0 JS
t
JE = / / RY - ZPV%0 + Ry - V2 ZPdiviu dVids.
0 JS

The first three terms can be controlled directly:

(7.34) eJy < el (V¥a, diveu)(0)]|2m1,

(7.35) e(Jf +73) S elll(o, )lEm e + B2, . y).

i
In order to bound Jg, we need to control (9f + u - V¥)[Z#, div#]u. By the identity (7.7), we can
write

U.

Of +u-V?¥ =0 +u101 + u20s + iZg.
Since U, |gs = u'l\é;ft‘p a5 = 0, we have by the fundamental theorem of calculus and that:
(7.36) IU=/éllo,00t S WU, 0:Uz)llo,00,t S A(clo, I, Va)llo,so,t + |hl200,t) S A(cloﬂm,t)-
Therefore, we see that:
@37 NOF +u VA2 lul s € TA G A0 <22 il 3
Let us first consider:
ey 2P, div?u = €0y ( N 12°,8,]u) + [Z°, 04 ( N )]0su + [2°, N |edi0.u.

0. 0. Oz

In view of Lemma [3.9] the identity (3.27) and the commutator estimate (3.9), the first two terms in
the right hand side of the above identity can be bounded by:

1
(17l g+ 1120} DA IV s+ Dl )
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For the third one, we control it as:

N N 1, N 1
112", @]Eataz“HLgm S H@HL?Hgg*H‘VUMLOO,t + w€2(azg0)’”m_27007t €200z ul| 1 prm—2
1
S A(;OaAm,t)gm,t'

Gathering the previous two estimates, we find that:

012", div?lullzzre S Al Ame)Ema
In a similar way, we have:

2127, div¥]ul 10 A(;),Am,t)em,t.

Plugging the above two estimates into ([7.37)), we can then control J?’? as:

eJ§ < e2|ldivPu/e? | oy [e(F +u- V) (27, divPlull 2
(7.38) L1 ,
S 52A(;, Amyt)gm,t‘
0

We now switch to estimate Jf. On the one hand, if Z°? = Z(’)“, k < m — 1, we have by the trace

inequality (3.17)) that:

1
e2[(9 + uyay)Zgu\Lng

1 1
S (lezd(u, V)| p2gm—1 + €2Vl 2 g )A([fo,00,6) S Alllello,00,6)Em -

Therefore, by the trace inequality , we get that in this case:
eJ) S 2| Z§divPul g 5 |e% (0 + uydy) Z5ul 212 INJo.00,
(7:39) S 22 ([ diveu/e? |3 a5 1 + 122 VaiveulF a1 + €5 DA (lullooo,s + [l1,oc.)
< 3 A(lullosos + [hl100)E2 4

On the other hand, if Z? contains at least one spatial tangential derivatives Oy, Oy,, We control 5J35
as follows. By the equation (1.16]), and the identity (4.1)), we can express (div¥u) on the boundary
{z =0} as:

divPu = £g1(0; + uy0y) (ediv¥u + 2pe(01uy + auz) — pe(w x N)3) on {z = 0}.

This, together with the product estimate (3.14]), the identity (4.2]) and the trace inequality (3.17))
yields that:

|(ZP diveu)bt

L2H™%
< i,y < el (vt a,utt, (w x N)g)|

. ~ 1
L2A™ L2A™ 2

1,1 1 1 .
Sez(e2(|n] + HquLng’;*l)A(%aAm,t) t+e2 HlequL%H?gq

1
+e%||VuuLgHggA<%, 1Bl2.001))

. 1
L2A™T3
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which, combined with the Young’s inequality, allows us to control 6J45 as:

1 1 —1 .
£T71 S Ao 1hl2oc) o2 (00, £2)Z7u] Ly y |72 2007wl g
(7.40) 1

Iart 2
7)+T2A(CO"Amat)€m,t

. l 1
< 6l Veiveul|2, 1 + Colle? Vullp A

In view of (7.39)) and (7.40)), we find that:

1., 1 1 1,1
(7.41) |eJ?| < <S\|;szde%’u||§%m,1 + C(s||52Vu||i?HcmoA(%, 4) +(T+ s)zA(a, Ami)Ex s
Next, thanks to (3.23)), J5ﬁ can be bounded by:
(7.42)
1 1 . 1 .
el $et||Vo/e2 2 pgm—1 (IVdivPull 2 ym—2 + Ihnggmf%)A(a [2fim—2,00,¢ + 102divPull1,00,¢)

1

1 1 ) 1
S e A e L D
t

Ams) S A Ana) €2
0

Note that by the equation ([1.16)),, we have 0.div¥u = 0,(g1€0; + euy 0y, + €U, 0;)o, we thus get that

1

10.di < A(1/co, (0. Vo) (0. V)01 + Blser) S A (A

For the next term J6B , we assume (3 = 0, since otherwise it vanishes identically. It follows from
integration by parts that:

t t
Jg = u/o /_O(Z'Bw x n)IIV¥ ZPdiv¥u dyds + u/o /_ X 7P (wg, —wi,0)! - (9,,0)ZPdivPu dyds

where w = V¥ x u = (w1, ws,ws)’. In light of the boundary condition (1.19)), we have by integration
by parts along the boundary and the trace inequality (3.17)) that:

b . b L
5Jg,2 Selu ’2’ngm\zﬂ(d“’(pu) ’2‘L$L2 Se2(flull} 2Hm||5 VUHLsz + ||U||L§Hgg)

(7.43) iveul 3 3 VAivPul s+ dveull o)
S 55531,1&
For ng, since IIVY¥ = T1(9y, 82, 0)%, we also integrate by parts along the boundary to get:

1 | 2P (divPu)™!

=

cay S At Amt)Q(zﬁ( ! x n), Z°n)|

LQH L2H?Z

+(Z2°w, (0,28 1, " )|L2L2|Z (diveu)®! |L2L2>
Thanks to the boundary condition (4.2)), we have that

|2 > m)| < [u!| IA( Nhl200,) + (Ju®!

L2A™ 3

L2Hm77 +| |L2ﬁ]m+%) ,

L2H2 ~

A(%, Amt).
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Moreover, by (4.5)) (4.8]), we have:
206" 22 S (1(AVP0)" 2 g + | (™ h)ILsz)A(%,Amt),

1
Ha z° ) 1, wh ‘L2L2 ~ (|w 1|L2Hm 1+ ’h’LQHm)A(%"Amat)

< (|(div‘Pu) ’

b1 N
(u ’h)|L?Hm)A(%"Am¢)‘
Hence, by the trace inequality and Young’s inequality, we end up with:

. 1
anl < 5€Hv¢dlv<pUHiQHm—l + 6HVUH%2H,,LA(—, |h2,00,¢)

t+ico t* co C
(7.44) 1
—I—A(C—O,Amt)(EHVdiv‘puH 120 2 +¢|h|? L2+ +e||lullgmy)-

Summing up (|7.43)) and ([7.44]), and using (9.4)), we obtain:

1 1 1
DVl ) + (T4 VA And)

1
B 2 ; 2

(7.45) eJg < 26e ”vcpleL'D'LLHL%HZZ—l +C’5A(co,
Finally, for J7’8 , by Young’s inequality,

(746) eI} < 3el|VPZ0divPullfs o + CoelREN 2 + 22 (IV90/2 |2, s + €lIRENT 2 2)-
Hence, it suffices to control 2 (RS, Ru)HLng. Let us first see the estimate of £R5. In view of the
definition (7.32)), we have by the product estimate (3.8]) and Corollary that

1 1,01 1 _1
(747) &2 HRgJHLgL? S 52A(%7-’4m,t) (lullgm s + (200, 2VU>HLgHgg*1 + [h|

~

Lfﬁm*%)'

Similarly, by the commutator estimate (3.9)) and Corollary we have that:

1 1,1 1
(7.48) IR s l102 S A ) (Il + €750 + 1] ).

For RJ3, we split it as:

(1.49) Ry 5 = [27,1U./812:V %0 + (91U2/9)[2°, $]0.V90 + q1U.[2°, 0:]V %0 =: (1) + (2) + (3)-
Thanks to the commutator estimate (3.9), we have:
1 1 1
e2[[(Wllzzre S 2 IVF0ll L2 ll91Uz/ Ol mir) oo o + 210102/ Ol L2y IV F 0 Nl 21,00,
Note that as U, vanishes on the boundary, we have by Hardy’s inequality,
1 1 1
5§||91Uz/¢||L§Hgg—1 S 5§||8z(91Uz)”L§Hgg—1 t+e2 ||91Uz||L§Hgg—1
1 . 1
S.; A(%a Am,t) (H (0', u, VO', le’U) HL%Hgfl + |‘€2 h‘|L2Hm+1 + |8 ath|L2gm7% )
Moreover, as for ([7.36)), the fundamental theorem of calculus leads to:

e2|lg1U. [Pty oo S €2 2V, 0.U. Mimtt) oo i (LA 12910 sy o )
],00,t

1 = 1 .
S A O + V) s

1 1
tle2hfimis) o + |2 0thlmis) oo, + 10, W)l [p),00, + (R i)
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In view of Equation ((1.17)) and the definition ((1.33)), we conclude:

1 1
(7.50) 2 91U: /Ol g o S A Nomr).
We thus obtain that:
1
(7.51) 2|Vl 22 S €2 A(— Nour)-
0

It remains to estimate (2), (3) in (7.49). By induction, one has up to some smooth function which
depends only on ¢ and its derivatives,

280 = Y 279,
¥<B:I<18]-1
The above identity, combined with (3.27)), (7.50]) yields:

1 1 1 1
e2[[(2) + B)llzre S e2IVPa/e2|| o pm—1 A

0
€o

Am,t) .

To summarize, we have obtained:

1
(7.52) 2R allzre S A= And)e? .
0
Collecting ([7.47)-(7.52), we thus arrive at:
1
(7.53) 2[Rz 12 S €2 A Ninr)-
0

To finish the estimates of the right hand side of (7.46)), it remains to control RY which is defined in
(7.32). We first find, in a similar way as for the control of Rg, that:

1 1 1
(7.54) e2||(Ry + Ry )l p2re S A Am)Emt

From the identities:

N N
(2P, curl?|w = [Z2°, d.] x w, [Z°,V¥]divPu = [Z°, 0,]div¥u,
92 D¢
R573 can be treated thanks to (3.23) as:

(7.55)

1 1
€2 ||R5,3HL§L2 S A(

1 1
(a0t + 22 102 (@, divP )1 o.0) (7 10 (w, dive )| 22 + Bl
CO Lt Hco

Lfflm—%)
1 1 2 1
S A And) (Il gy + Sl + 1] ).
Combining (]7_54D and (]m[), one finds that:

1
(7.56) HRENrzre S (T +)2A( =, Ame) .
0
Plugging ((7.53) and (7.56|) into (7.46)), we finally get that:
1
(7.57) el 77| < 62| V2 20 diveul|2s s + (T + 5)%A(c—, Amt)E2 .
0

Collecting (7.34)-(7.42)), (7.45), (7.57), and summing up for £ < m — 1, we find that by choosing ¢
small enough,

el|(V¥a, div“ou)Hi?ng_l + || V¥divPul|

2
L2Hn~!
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1 1
< (V20 diveu) (0) 31 + A bl 3 V2l gy + (T €)M Nonr)

€o
This inequality, combined with (7.1)) leads to ([7.30]).

8. CONTROL OF THE LOW-ORDER ENERGY NORMS

This section is devoted to the control of the lower order term &, 7. and

1 1 3
(8.1) Eiow,r = €2 |0¢(o, U)||L;>°L2 +e2||(o, U)||L;>°H3 te2 HV4UHL§L2~

Except the first norm, the other norms appearing in &,,, v are indeed not crucial to get an estimate
uniformly in €. Nevertheless, their presence allows us to take benefit of the known local existence
results [57, 58, [64] (see Theorem in Section 13).

Lemma 8.1. Under the assumption (2.2)), the following estimate holds:

1 1 1
(8.2) i < A(gy 1113 00.7) (Y (0) + Elgigh,m,T) + (T + 5)2A(%’Nm7T)-

Proof. This lemma, is the consequence of the following three lemmas. O

The first term in &4y, 7 is estimated in the next lemma. Before stating the result, it is convenient
to introduce the notation:

1
(83) AQ,oo,t = A(i’ |||(07 ’LL)
o

where A denotes a polynomial that may differ from line to line. Note that by the equation for A

(1.17)), we have:
(8.4) |0eh]2,00,t S A2,00,t-

Lemma 8.2. Assuming that (2.2]) holds true, then for every 0 < t < T, we have the following
estimate,

(85) 0o, )3 o + IV 20 S 2010, u)(O)[Fasy + (T +2)2 Age 7€ .

1 : 1
2000 + € 2[(VP0, divPu) 1,00t + 2 [ V2 ullo.co + [hls,00.).

Proof. Denote Zy = £8;. Applying 9 (resp. d;) on ([1.16)); (resp.(1.16),), one gets that:

1
@10 +u-V)(0o) + gﬁfdiv‘pu =T,

(8.6) :
G2(0 +u- V) (0] u) + gatv% — divP(0LPu) = T,
where
(8.7) To=TE+T2+ T3, Tu=Tr+T2+T2+ T2
with the following definitions:
©
Td = () 0y +2u- VYo, T2 = g1ldu- Vo, TP = —gt*;@(u. Vo),

7;1 = (8192)(815 +u- V)U, 7;2 = 9231& : VU,

T3 = [0, div?|L%u, T = —g2(0 +u- V)(?i’;@zu).
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where u = (u1,u2,U,) and U, is defined in ([7.6)). Taking the scalar product of and 5(@0, afu)t,
integrating in space and time, we get by using Lemma that

t
£ / 011000 2(1) + golOFul(£) AV, — & / / div? (9,L2w)0F u(s) dVsds
(8.8) 2 Js 0 Js

=h+hL+--14

where

t
Iy = ;/gl|8ta\2(0) + go|0Fu?(0)dVy, I = / / 0o df div¥u + 0, V¥0 - 9f udVsds,
S 0 JS

t t
1
L== / / Q0o dyds, Ir == / / (0 g + ——div(g1ud.))|Bro () dVids,
2 Jo J:=0 2 )0 Js 0.

t
1425/ /8t07}+8fu-%dvsds.
0 JS

We focus on the control of I; — I in the following. Let us with I;, which is the most involved one
and explains why we need to perform energy estimate in this non-standard way. Let us integrate by
parts in space to get:

¢ t
I :/ / Ofu - [0, V¥]o dVsds —i—/ / Oodfu-Ndyds =: I11 + By.
0 Js 0 Jz=0

Since [0y, V¥]o = [0}, %]({LJ, it follows from the Cauchy-Schwarz inequality that:

N
[Tl S 107l z22]|0:0|] 12 2100 (5 (p)lHo,oo,t
4

(8.9)
1 1 1
S T2 Ag,00,082[(Opu, Vu)|| Lo L2 H€_§VUHL§L2-

Note that Ag o ¢ is defined in (8.3)). The boundary term B; combined with the boundary term
arising from the integration by parts of the viscous term (in the right hand-side of (8.8))), lead to
some cancellations, we thus first rewrite the viscous term:

t t
— 5/ / div? (0, L%Pu) - Of u(s) dVsds = 5/ / O Lu - VPO udVsds
0 JS 0 JS

t t
+ aa/ / O |* dyds — 5/ / OLYuN - 9 udyds .
0 z=—1 0 z2=0

=: Bo

In view of the boundary condition ([1.18)), the identities (4.9)), (4.1) as well as the trace inequality
(3.17), we have:

(8.10)

¢
B1 + By = —8/ / Ofu- (Lu — gIdg)(’?tN dyds
0 Jz=0 €
o
S 5‘ (L‘/SO,U/ — gId3)atN‘L§L§|8fu’LfL§
1,001 1 . 1
Sez(le20ullfapm + le2ullzs e + IVullfa g, + HleVUH%ng)A(a, |0thlo,cot + [Rl1,00,t)

1
= 2
S €2 A2,oo,t5m’t‘
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We can also estimate the first two terms in the right hand side of (8.10). By using Young’s inequality
and the fact [V¥,07] =0,

t
s/ /ﬁtﬁwu-vwﬁfudlﬂsds
0 JS

¢ O
:6/ /@E“"u- (&gV‘pu— 3 0. V?u)dVyds
0 JS

(8.11) 2

t
> / / 2010057 ul? + NOdivul? dVeds — Ag oo l|EFOL7ul| 212 30V u]
0 JS

>e / t / |0rSPul? + %|atdiv¢u|2dvsds—CM,ATAQ,Oo,t|\s%v<Pu||i§OH1
Moreover, by the0 tr&fce inequality, we have
(8.12) - /0 ! / 1 [Orur|* dyds < 6e]| 0,V 2ull; 2 + TCse | (Dputr, Vuir) [ e 2 A2 00,
——
Therefore, we get by collecting — that:

t
(8.13) I + 5/ / div¥? (0 L%u) - O u(s) dVyds
0 JS

t
A
< —€ / / 1|0 SPu|? + §\atdiv@u12dvsds + 55\\atv¢u|y§w + (T +€)7 Ao sE2 .
0 JS

We are now left to control Iy — I4. The estimates of I, I3 are direct, we write

’I2| S; E‘ath‘oo,t|8t0'|z:0’%§L§,

1
(8.14) 3] S AUV (0, w)llo + (o, Wl oo + [Al200)lE2 00|72 2
We remark that in view of the boundary condition (4.1)), one has
8150’3:0 = 6,5(0\2:0) = Eat((2u + N divPu — 2u(01u1 + Oaug) + p(w X N)g‘zzo).
Therefore, by the trace inequality (3.17)), we have:
|| S elOthloc O]z 2 < e(IIVAvPull 2y, + 1w V)l g2z, + [hl 2 72) A2 oo
S €A27oo7t572n7t.

As for the term Iy, it can be bounded directly by

1 1 1 1 1
(8.16) 1L ST2 (2 Toll 2212000l Lo 2 + €2 Tall 2121162 Brul | poo 2)-

It thus remains to control the commutators 7T, 7, defined in (8.7). By the explicit expression of
To, Tu, we can obtain that:

1 1
(8.17) e2||(To, Tl 212 S A2,00t(lle20(0, w)l 212 + IV (0, w)l p201) S A2,00,tEm,t-
t t t " co
For instance, since we have:

5%7'01 = 5%82"(91/5)(5815 +eu-V)o, 5%7;1 = séﬁt(gg/e)(sﬁt +eu-V)u

(8.15)

by:
1 1
le2 (75 + T)Il S Avoor(lle20e(o, ) 22 + IV (0, ) 1212) S Azoo,tEme.
Collecting (8.16)-(8.17), we obtain that
(8.18) 1] < T2 Ao o tE2
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Now, in view of the estimates: (8.14)-(8.15)), (8.13)) (8.18]), we get by choosing § small enough, that

1 t A
26/91]8t0|2(t)+gz|3fu|2(t)dvt+5/ /u|8t59"u|2—|—2]8tdiv“’u|2dvsds
S 0 JS

(8.19)
1 1
< Ze / 01104 2(0) + g2l 07 ul>(0) AVl + Ol V2 0yl 25 12 + (T + ) E A oo 12,

From an explicit commutator, We can write that:
! 2 A . 2
|0y SPul” + 5]8td1v5"u] dVsds
0 Js

t
A
> / / 1| S?Ou|* + §ydiv¢atuy2 AVyds — Ay oo T2 IVulf o pe-
0 JS
Hence, by using Korn’s inequality (3.34)) and by choosing § small enough, we finally obtain (8.5). O

The following two lemmas are devoted to the estimates of the other norms appearing in &£y 1,
for the proof of Lemma [8.1]

Lemma 8.3. Suppose that (2.2)) are holds, then we have for any 0 <t < T,
(820) eVl ote V3012 1o 42l V2012 2 V30 2y S V2O +(T+E)Aosl

Proof. By applying £2V¥ to the equation (1.16); and expressing the term eV¥#divPu by using the
velocity equations (1.16)),, we find that V¥o solves
1

21 2 : 4
(8.21) g1 (0 +u- V)V U+2u+/\

VP0 = Q;

where

Q= —52g£V‘pJ(66t +eu-V)o — e2g1V¥fu - VPo — 2;% curl? w — Y

92(0¢ + eu - V)u.

Next, by taking div¥ of the equation (8.21)), we find that A% solves:

e2g1(0 + u - V)A¥0 +

(8.22) S+ )\ASOO' =div¥Q; — 629/1V“00 -edV¥o — EQV‘P(QIE) VVPo

= H
Standard energy estimates for (8.22)) yield:

AP0 2 gy, + e A0 2 s

S el A%0(0) 3, + Th1ce e A%0l} e s, + T2 e 2A%0 2 p1 (le™2H | 5oy, + 87 Ao oo sEmyt)

< TA1 0ty + T2 (|2 0div?ull pgo y, + €2 Moo sEmt) €2 A0l| 2
It thus follows from Young’s inequality that

AP0 2 s, + € A2y S V2(0) + TAr o2
Moreover, we can get also that:
5”32A¢U”%§°L2 + 5_1H82Aw0||%§L2
S e 0:A%0(0)[32 + TAs oo s (V30|32 + €201 VdivulF o 2 + 2E2,)

SY2(0) + TAz 00t -
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Next, we see that:
V2012 s S el Vo2 gz +ellD201 e 2
By the expressions of A¥q,
’NP 2 1 N 2
(8.23) A¥o = @820+Aya+81(N18;00) +82(N28fa) +N18§810+N28§820+ 58Z082|@‘ ,

Therefore,
IV 12 e s, S EA(L /o, Blse) I Vol + el AP0 20 s

S Yn(0) + (T + &) Az o0t s
Note that |h|3 s ¢ is included in the definition of Ag o ¢ . We have further that:
V30122 S ll0:A%0 22 + Mo V202 g S Y2(0) + (T + ) A2y
In a similar way, the following estimate holds also:
V02, 0+ e V202 S Y2(0) + Thoo 2
The proof of is now finished. O
Remark 8.4. In a similar way, one can also show that:
(8.24) IV%0 203, < Y 0) + (T +©)2Emsr
Lemma 8.5. Assume that holds, then we have for any 0 <t <T':

5_1HV20||%§°L2 +5”V3U||ig°L2 +’33||V4UH%3L2

(8.25) 1

rg A( ’hlg,oo,t) (EHVQO—H%tOOHclo + gf%igh,m,t) + (T + 6)A27007t€7%1,t'

co’
Proof. By taking div¥ on 2, we see that o solves the following elliptic problem:
—A¥(0/e) = div¥G,
(8.26) /e = (2u+ N)divPu — 2u(01u; + Oauz) — p(w x N)g  on  {z =0},
oje=—-G es+pcurlfw-e3 on {z=-1},
where
(8.27) G = pofu + gou - Vou + ”T_pgafu — (20 + \)VPdiveu.
Note that on the upper boundary we have boundary identity for w x N and on the bottom, we
have
(8.28) peurl? w x eg = p(0fwa — 0§ wi) = a(Brug + Gaug).
Applying the elliptic estimate , we find that:

_1 1 1., .. _1
e IVR0llpgers S A Ilso) (21 (diVG, G) e g2 + |20

1 1. 1 1, 1

S A(%, \h\&oo,t)(g? Hdlku”L;’OHQ + H“atU”L;;OHClO + ”528tdIV¢UHLt°°L2) +e2M2.004Em 1
1 1 = 1

< A(%, |h|3,oo,t)(€2 HV2UHL§°’H610 + gm,t) + 200 0 tEmt,

where G is defined in (8.27)). Note that by (1.16)); and the definition of &, 4,

1 1 1
e2||divPul oo g2 S €2 || V20| oo g, + €7 A2 o0 tEm -
16



Next, we get by the equation of velocity (1.16)) that:
APy = go(edy +u - V)u— (n+ A\)V¥divPu + Vo

Moreover, a direct computation shows that:

N 1 N
(8.29) A%u |’8 ;2 8§u+Ayu+8l (N10%u) +02(N207u) +N10201u+N20f Osu+ §azuaz | w }2.

By using the previous two identities successively, we find the following two estimates
1 3 1 1 2
ez||v U||L;;°L2 Sez HazASDUHLtOOL2 +ez||V U||L§°H30A2,oo,t

1 1
Se z||Voll e + 5§HV2UHL§°H}O +h], 43+ ||€28tu||L°°H1 + EZAQootgmt

LEH?
and
3 3 3
e2|Viull a2 S e2(IV2A%u| 212 + 2 (I[VPull 2, + ‘h|L2g%)A27oo,t
1

2| V20ll 2z + 2 [ V2ull 2 + 2 [ V3(0,0)| 2y, Ao et + EA2 00,y

\ =

Se
S ez [0l 290 + e3||v? ollpzm, + (T% + £)A2,00,1Em t
< Y (0) + (T + )2 Ao tEme.

Note that in the second estimate, (8.24]) has been used in the derivation of the last inequality. [

As stated in the beginning, we can now finish the proof of Lemma since gathering (8.5)),

(8.20) and (8.25]) we finally obtain (8.2)).

In the following several sections (Sections 9-11), we aim to show the estimate of high order

norms Epigh,m, 7 defined in (1.32)).

9. UNIFORM CONTROL OF HIGH ORDER ENERGY NORMS-I

In this section, we focus on the uniform LZH7~! estimates for V¥ (o, u). We first bound the
higher order norms for (V¥o,div¥fu) by using elliptic estimates for o and the equations to recover
spatial derivatives from time derivatives iteratively. Then, we perform direct energy estimates for
the incompressible part v (v = Pyu solves (5.4)) to get the uniform control for ||[V¥uv|| L2t (and

also HU||L?OH$4 as a by-product).

9.1. Uniform estimates for the compressible part. In this subsection, we focus on the uniform

estimates of the compressible part of the solution. More precisely, we shall establish the estimate of

|(V#o,div¥u) HL%HZ’;‘I'

Lemma 9.1. Suppose that (2.2)) is true, we can find some polynomial A, such that, for any 0 <t < T,
e H|(V¥0, div¥iu) ||322H£_1 +et HVdiv‘PuHi%Hgg_z

(9.1)

1
SAGIHE sy Y20) + (T + FA( N,
L H o
More precisely, we have for any j,1 with j +1<m — 1,

1
e 2(V¥0, divPu)| g (T +€)2A( M)

~

9.2)
1 . 1 1 1
+ (82 ”lev‘puHL%Hggq + €2 ||V<PU”L?HZ]; +e2||0y (o, ’U/)HLme—l)A(a, |h
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Proof. By using the equation (1.16)); for o, we have:

g1 — 91(0)
£

(9.3) Vdiv¥u = ¢1(0)£0, Vo + eV (( edio) + giu- Vo),

combined with the product estimate (3.8)), this yields:

1 . _1 1 1
(9.4) 5_5“Vd1v‘puHL?Hgg_z <eg2 HVUHL%Hg—l + 52A(%,Am,t)8m7t.

By (7.1)), (7.19), (7.30)), , we can derive (9.1]) from (9.2)). In what follows, we shall establish

9.2) by induction on the number of conormal spatial derivatives. Firstly, let us rewrite the equation
1.16)), as:

(9.5) div¥u = ¢1(0)e0i0 + 6(91—691(0)

edyo + g1u- Vo),
By the product estimate , we obtain:

5_%||diV¢UHL§Hm*1 S ”fféatUHLfﬂmfl "‘EéA(clOvAm,t)gm»t'
Moreover, as o solves by the elliptic problem , we can apply the elliptic estimate with
b=o"!, g=(cpcurl? we3)? F = ePG (the vector G is defined in (8:27), the matrix P is defined in (5.3))
and the identity to get:

_1 1 1 1
: 2||v¢a||LgHm-1,sA(—,|hr[g]+1,oo,t>(||ezG||LgHm-1+re F ey 0,02 )

_1 1
+A( mILEI R 2VU,€2G)!H[%171,00¢)W

By the definition (8.27) of G and the product estimate ,
”|52G”’[m] 1,00,t <A( Am,t)a

2™

1 1 . 1,001
H52GHL3’HW*1 Sez (HatUHLfymfl + HleV@UHLgHgg*l) + EQA(gaAm,t)gm,t-
Moreover, thanks to the identity (4.1] . and the trace inequality (3.17]), we have that:

le™ 2gh +€2\3 u?|

LQH”“*

1
D)2 (IVull 2z + 1Vdiveu| 2 ) + (T + a)éA(%,Nm,T).

L2Hm77

L°°Hm 7 t+tco

Gathering the previous four inequalities, we get (9.2)) for 7 < m — 1,1 = 0. For a given integer [
(1 <1< m—1), assuming now that (9.2) holds for (j,/ — 1) with j +1 < m — 1 we then prove that
it is also true for (j,1) with 5 +1 < m — 1. By equation (9.5)) and the product estimate (3.8)), we get:

1. 1 1., 1
€72 Hdlv“”uHL%Hj,z < HEQgtO'HL?’Hj,l + (T + 5)2A(%,Nm7T)

1
S ™2 V40l g + (T +€)2A(— Nor) S RILS of (02).
0
For the estimate of V%o, we first remark that in the elliptic equation (8.26]), G (defined in (8.27)))
can be simplified slightly by changing 9/ u into 8 V¥, since div¥v = 0,9 v3|.—=—1 = 0. Denote thus

92

G = pofVeY + gou - VPu + eﬁwu — (2p + A\)V@divPu.

We can use again the elliptic estimate (5.34) to get that:
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1 1.1
e 2||[V¥o| L2gn S (T+€)2A(%>Nm,T)

~

1 1 .
+ A(—O, |herHm,§> (€2 Gl g + 22 (IVull 211z + ||de¢u||LgHg-1>)

1

<A ! *7Nm,T)-
o

1

Since ¥ solves the elliptic problem ([5.29), we can apply the elliptic estimate (5.15)) and the
estimate (5.31) to get that:

1 1 _l . 1,1
||€28tvw\IfHL%Hj,z S A(a, |h’[%]+1,oo,t)5 2 ||d1V¢UHL%Hj+1,171 + (T + 5)21\(%,/\/’7”771).

Combining the two previous inequalities and using the induction assumption to estimate ||div¥ul[p29441.-1,
one finds:
1
e 2||[V¥?0|| 2950 S RS of (9.2).
U

9.2. Energy estimates: Incompressible part. In this subsection, we focus on the analysis of
the incompressible part of the velocity v = P;u whose estimates can be obtained from direct energy
estimates. By (5.4)-(5.6)), v solves the following system:

pofv — pAPv + Vo1 = —(f + V¥ + p[Ps, 0f Ju),
(9.6) (2uS?v — wId)N|,— = 2u(divPuld — (V¥)2W)N]|,—o,

V3|:=—1 =0, pdfvjl,——1 = aujl.——1, j=12.

where
(9.7) Vér =P V?(o/e — 2(n + N)divPu) =: P, V¥0,
(9.8) /= 92 5_ p(gﬁfu +eu - V¥Pu) + pu - V¥u, Vg = —Qi(f — pA%v).

Before stating the main result for v, it is useful to establish some auxiliary estimates for V¥x, f, V¥q.

Proposition 9.2. Under the assumption ([2.2)), the following L?L*(S) type estimates hold: for any
m >,

. 1 1 1
(9.9) ”]CHLfHQg*1 + Hle(pfHLgﬂg’g*2 +e2 ”atfHLngg*2 t+e2 ”f”Ltong’g*2 S A(%,Nm,T),
1 1 1
(9.10) HVQHLfHQ;*l t+e2 HV@CI”L?HQ;*Q te2 Hatv@qnl,g[-[g’g*2 S A(%aNm,T%
(9.11) IVallicoe S A(* |hl5.00,t) Em,Ts
1 1, .1

(912 97z S A Il 200) IV 0 + TS, Nowr),

@ 1 1
(9.13) 82 |V TFHLOOHm 2 < A( s e QOOt)HEZVUHLOOHm 1 +€2A(70 ./\/-mg’),

1 1 1 1,1
(9.14) ez H@tVWHL%Hg—z) < A(%, |Alm—2,00.t) l€2 0k (0, VU)HLng';—Q + (T + E)ZA(C—O,Nm,T),
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1 1
915) e 0F ol g1 + (B Ol e -2 + €2 0uF, OF ul g2 < A Nonr).

Proof. Proof of . In view of definition of f in , we give details for the estimate of u - V¥u
and div¥(u - V¥u), the other terms can be controlled in a similar way. First, for the L H™~2 norm,
we have thanks to the product estimate (3.8 that:

1 1 1 1
e2|u- VSOUHLtOOHg’g*Q S A(%, H\UHI[%],oo,t +e2 H\VUW[%]—LOO,O 1w, 52V¢UHL;>°H$*2

5 A( 7Am,T)gm,T-

1
Co
For the first three norms in the left-hand side of , we first have by the product estimate (3.14)),

[ VZul p2q00m—1 + [|div? (u - V)| p2300,m-2

1 . .
< A(%, I (w, VEu)[lo,00,¢ + [V divPull1,00,) (|| (u, VPu) || L2gg0m—1 + [[VPdivou|| f2900,m—2).

It remains to control ||e0;div¥?(u - ku)HLgHgg*?* and 2 10 (u - V¥u) ||L§Hgg*2- We can estimate them

in a rather rough way:
||eddiv? (u - V“Du)HL?HZ;—s < [(e0¢ VU - VPu, 0y (u - V‘pdiv‘pu))HLgHg;_g

S [VFu

0,00t IV ¥ull L2 g2 + [1€0: VP ull0,00,6 [ V0l L2 gy

1 1
+ 302 ul -l VPl

+IVEdivFullm) 2.0

ull g2 pm-2 + lulljmas) o JVEdVPu] 2 -2

1
5 A(%a Am,t)gm,Tv

1 1 1
e2||0n(u - Vou)| o g2 S [|(u- €20,V 20, €3 By - V2u)|| 2 2

o=

t
1 1
< Bl lle3 092l 3 -2 + 1130V 2u| o s /0 () 2,5, 00l5)

o=

1 b
+ H52atUHLgHgg*2mv(pm”opo,t + ||VSDUHL§H$2(/ H‘SZatu(S)Hm—?noodS)
0

1
5 A(;O7Nm7T)~

Proof of (9.10) Let us now show the estimate (9.10) for ¢. By the definition of Q; in (5.2)) and the
fact that divPA¥v = 0, ¢ solves the elliptic problem:

div(EVq) = —div(Pf),

Q|z:0 - 07

35(117,:—1 = _f : 63’,2:—1 +g

where P and E are defined in (5.8) and g = (A%v3)»2 = A®v3|,—_1. Applying the elliptic estimate
[£39), (B-10) for F = f, we find:

1
< _ v © b,2
IVall g2 g1 < A(co’ |hlm—2,00,t + [|div7 fll Lo rz + |(A%v3) |L?°Ht%n)

(9.16)
b,2
(HfHLgHg’;*l + ‘h|L§ﬁm*% + ‘(vag) ‘
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€2qu||Loon 2 < A(— |hlm—2,00,¢ + |divZ f | oo 1. "" (A%u3)"?| Leor?
(9.17) o

3 3 b,2 1
(52||f||Ltonggf2 +€2](A"°v) ’ |L§°Hm_% +52|h|

3 )

Lrﬁm—%)?

1
€2 ||8thHL2Hm72

1 1 b, 1
100 g2 + 1A 2y + (B 2OB) Ly + Vel 22)

L"C’H2

tan

1
(9.18) SA(;O,I( 20 h) a0 + e 2V fl| oy, + |(1d, £28) (A%u3)"?

It follows from direct computations that:
A3 = APuz — 02divPu = (9F)2uz + (05)?uz — (87 07u1 + 05 0% uz).
This, combined with the identities
O i1 =01, 051 =0s
as well as the boundary condition , yields:
(9.19) (AP03)02 = —%(éhul + Oyuz)b?

In light of (9.9), (0.16)-(9.18), (9.19), we find (9.10) by the trace inequality (3.17).

Proof of (9.12))-(9.14)). Let us switch to the estimate of . By definition, 7 satisfies the following
elliptic problem:

div(EVT) =0,
W’z:O = 9b717
Ofm|,——1 = 0.

where §%! = 0|,—g. Therefore, to prove (9.11]), we apply m ) to get that:

V7l co S Hv27THL°°H2 + V7l oo

tan tan
< _ 7
By using the boundary conditions (4.1]) (4.2), we have that on the upper boundary,
(920) 0= —2,u(81u1 + 82U2) — 2,UJ(H(81U - NN, Oou - N, O)t)g,
hence, by the product estimate (3.4)) and the trace inequality (3.17)), we get:
1
0%t S IVl + o)A Bl )

This ends the proof of (9.11])).
Now, we can apply (5.35)) and (9.11)) to get that for p = 2, 400,
1
(9.21) IVl o g2 S A(gv |h|m—2,oo,t)\‘9b’l|L§Hm_g + |h’LpHm_§A( ,Non,T),
In view of (9.20)), one has by the product estimate (3.4)) and the trace 1nequahty (3.17) that
1
(9.22) g s S AGE bliztsce) IVl s + A An )l
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which, combined with (9.21)), yields (9.12))-(9.13]). Finally, for the estimate of (9.14)), we use the
elliptic estimate (5.36]) to obtain that:

1,1
52H8tV 7THL2Hm 3 S A( s |- 200t)(]528t0b1|L2Hm" + |82(A“0v)b2|L2Hm,§) +52A(%,/\/‘m7T),
we thus obtain (9.14) by observing that:

1 1 1 1,1
|628t9b,1’L?ﬁm7% < A(%, |lim—2,00.6) € 2 110e (w, VU | 2 gym-2 + (T + 5)2A(%,N’m,T).

Proof of (9.15)). Finally, we estimate the commutator between the projection and the time derivative.
Set VW, = Q;0f u, then

[Pe, 0f] = —=[Q¢, 0f] = V¥ (¥1 — ¥).
By definition, ¥; — W solves the elliptic problem:
Och
AP(T —8P0) =0, (U) —0FW)|.—g = a%pazw, OP(Wy — O W)|.—_1 = 0.

It follows from ([5.23) and the product estimate (3.14]) that:
va(qjl - 8§0‘I/)||L2Hm*1

Och Gl

Oth
SA< |h|m 200t+ 880 !

h, =—08,0
Lgogé) ‘( 9 )
1

< A(a» |hlm—2,00,t + |0th|3,00,t + [|divFul| oo g2, )

(|0:h|

(9.23) Ly

Lsz7§”|v\I]”|300t+ 1(VY, VQQ)“L2HW 1Oth|m— 3oot)

Combined with ((5.25)), (5.27]), (5.31)), this yields the control of the first quantity in (9.15). The
second quantity can be controlled in a similar way, we omit the proof. ]

Lemma 9.3. Suppose that m > 7 and (2.2)) holds, then we have the following high order energy
estimate for v: for every 0 <t < T,

L+ Y2(0))Y2(0) + (T + ) 3A (2, N ).

1
24 2 Coll2, . < A(—. |h|?
(9.24) HUHL?OHCO Y vHLgHw 1 < (CO,\h\ @

L H™
Remark 9.4. By using the elliptic estimates (5.11)) and (5.31)), we have:
1 -

[VEX(0) || gm-1 < A(%,Y[%](O))(Hu(O)Hng + [h(0)] 5n-1)
ahere Yig)(0) = [(@ivew(O)l g1 o+ Tiajergon (2RO iie) S Yinl0)
Since v =u — V¥V, we thus get:

1
16 T2 0)O) g1 S A Ym0 Vi 0)

Remark 9.5. By the control of normal derivative of the compressible part (5.25)), (9.1) and of the
incompressible part (9.24)), one deduces that:

1 1
(9.25) |V¥ uHLQHm 1 < ( ]h\inmii)YQ(()) (T+€)2A(007Nm’T)'
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Proof. Let a = (v, @), |a] = k < m—1. We can assume that Z% contains at least one spatial vector
field (ie. |o/| # 0), since [|v]|ppopm-1 and [[V¥#0[ 29ym-1 can be derived directly from the norms that

have been bounded. Indeed, one has by elliptic estimates (5.23) and (5.13)) that

=

1 1
Nhlm—2.00t) + (T +€)2A(—, Ny 7).

[0ll Lgopm—1 S [ (u, VEW)|[poogym—1 S ||U”L;>°Hm—1f\(% 0

1 1 1
IVollzzam—r S 10w VED) [ gm—s S A Ihlm—2.00) [Vl gpgm1 + (T + 6)2A(%7Nm,T)-
Applying Z¢ to 1, we obtain:
poOf Z% — 2udiv¥ 24 S¥v + V¥ Z%r
— _Z0(f + Vg + plP, OfJu) — (2, V¥ + 2u(2°, dive)S*u — pl2%, O .

Performing standard energy estimates, we obtain the energy identity:

1 / 2 ! 2 ! 2
—p | |Z%]|*(t)dV, +2u/ / Z45%v stds+a/ / Z %, |*dyds
(926) 2 S ’ | ( ) ' 0 JS ’ ’ 0 Jz=-—1 | ‘
=: Ko+ K1+ Ksg,
where
1_ a 12 1— ¢ a, .12
Ko==p [ |Z%|?(0) dVy, Ki=-p Orh|Z%v|* dyds,
20 Js 2" Jo Ja=o0

t t
Ko = 2,u/ / Z%S%v - [Z%,V¥ludVsds, Ks= / / Z42uS%v — wld)N - Z% dyds,
0Js 0 Jz=0
t t
Ky = / / Z%r[div¥, Z%v dVsds, Ks = —/ / Z% - [Z2%,V¥]r dV,ds,
0 JS 0 JS
t t
K¢ = —,5/ / Z% - [Z%,0f Jv dVsds, K7 = 2,u/ /[Zo‘,div“"]S“pv - Z% dVgds,
0 JS 0 JS
t
Ks = —/ / Z% - (Z(f + V¥q + p[Ps, 07 Ju)) dVsds.
0 JS

By the trace inequality,

t
(9.27) a/ / 2%, Pdyds > =0 Vo2 — ColIV0]2 00 + 0l 22,
0 2=—1 co t+tLco t~"co

we will choose § sufficiently small in the end. Our following task is to estimate Ky — Kg one by one.
By Remark [9.4] we get that:

1
(9.28) Ko S A(—,Y2(0))Y,2(0).
€o
Thanks to the trace inequality and Young’s inequality, K1 can be treated as:
K1 S 10thlo.sct(IV 2% 12121 2% 212 + 1 20172 2)

(9.29) 1
< 01Vl T, + oIVl s + A 0kl oo ) [0l
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For the term Kg, to deal with the commutator term [Z¢, V¥]v, we apply (3.24]) if ap = 0 and ([3.23])
if g > 1 and find that:

o 1
112, VP]ulle S A(%, V0l 00, + (7, €0¢h) [m—2,00,6) (|1 + leh]

Lfﬁm*% Lfﬁlm*%)

1
(9.30) A 0 202,00, V0] -2
1,1 1
S TQA(%aNm,T) + A(%a |(ha5ath)‘m—2700,t)va”LgHgg—Q'

Note that by the estimate ([5.31]), we have:

IVUllicor S NV (1, VEW)[l10o,0
1 ) 1
S A(%7 IVullico,t + [hla 00t + HleS&UHL§°H30) < A(%me,T)-
Therefore, by Young’s inequality, one can control Ko by:
1 1 1
(9.31) Iy < 5\|W|@§H§o + A(%, (R, €0:h)|m—2,00,t) |yvu||§%H§O,1 + TzA(%,/\/'mT).

For the boundary term K3, we use the boundary condition 2 to split it into two terms:

t
Ks = / / Z*(2p(divPuld — VPVPW)N) - Z% — [Z%,N|(2pS¥v — nld) - Z% dyds
0 Jz2=0
=: K31 + Ks32.
Since k3 vanishes if a3z # 0, we may assume that Z¢ = 9,7 @ Tt then follows by duality that:

Ka1 S ‘ZQU’L,%H% |2 (2p(div¥fuld — V“DVW\I/)NHL?H%
Thanks to product estimate (3.5)), we obtain for £ <m — 1,
|z (2p(divPuld — (ch)Q)N) ’L,%H% < [(divPu, (VSD)Q\I/)\L%H;C,% ’h’Lgof{[k:TlHﬁ
+h| |(div¥u, (V¥)*0)|

Lo it

1

~ 1
L2HR 2

S (192l gy + 1052l )ALy + [V 0]
1,1 1

1,1
S (T+5)§A(%7Nm,T)-

We remark that by the estimate (5.3I), one has that for | < [551] + 1% < [2]* < m — 3 (since
E<m-—1,m>7),

’(VW)Z‘IIIU;OHI S ”V(VS@)Q‘I’”LgOFIl + H(VW)Z‘I’HL;wHZ
. . 1
< ((VdivPu, divou)| oo g + Ihngogus/z)A(a: V@ (m) 1 00,6 + [Rlim)42,00.0)
1
5 A(*,ij).
o
Therefore, by the trace inequality and Young’s inequality, we get:

1 1
(9.32) Ks1 < 5|yvu||§§H§o + 05\|wH%H§O,1 + (T+5)2A(%,Nm,T).
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For K32, in order not to involve too many derivatives on the surface, we write it further as:

t
K2 = —/ / (2uS*v — wld)Z*N - Z% + [Z°, (S¥v — 7ld), N|Z%v dyds
0 J2=0

=: K321 + K320.
By the definition (9.7) for = we have that on the upper boundary,
(9.33) T=0= —2,&(61’&1 + 82’&2) — 2,u(H(81u -N,0u - N, O)t)g.

Moreover, thanks to the boundary condition , we can indeed express 97 v on the upper boundary.
On the one hand, we have the identity:
(9.34) 0%v - N = divPv — 01v1 — Oavg = —(01v1 + O2v2).
On the other hand, by the identity , one deduces:
IN|I10Yv = |N|II0fu — IN|[IIV¥ 07 ¥
(9.35) =T1(d1u - n,deu - 1, 0)" — (0101w + nadu) — |N|II(1, B2, 0) 07T,

One thus has that:

(590, w1 !

2,oo,t) ,S A(%va,T) .

Therefore, by duality and the trace inequality (3.17]), we obtain

1
Loot S A(%’ (v, VEU)|l2,00,¢ + |1

K321 < |2u5%v — W1d|oo,t|ZaN‘L2H7%|ZQU‘L2H%
t t
(9.36) < 5Vl CslIVol2 2 T|h|? A L N,
< 0190l + ColI Vo2 pas + (ol3gpggms + T A Nonr).

Next, we can control K392, in the following way:
K22 $12%0] 12 2 (1] 12 g [(S%0, ) |100,6 + (S0, 7)] 2 s [Blm—2,00,8) -
By virtue of the boundary conditions -, we obtain that:
(520,72 s S A(lBlm—z006 + 10, VPO f0) (10, V20 2 e+ Bl 2 0.

Combined with the trace inequality (3.17]), Young’s inequality and the elliptic estimate ([5.25)), we
find:

2 2 2 1 1
Kz < OIV0lEy gy, + ColIVOIZ s+ (0 pgms + (T + B A (o N ).
This estimate, together with (9.36)), (9.32)), gives (with possibly another Cy)
1 1
(9.37) K3 < 36HVUH%?H§0 + 05||vu||§$H§O,1 + (Hv||%%H§o + (T + g)z)A(a,Nm,T).
For the term K4, since Z% contains at least one spatial derivative, we can estimate it as:

1 1
Ka SNVl 2 g <||VUHL3H§;1A(007 [lm—2,00,) + |1 A(a IVollieot + |h|m—2,oo,t)>-

~ 1
L2HRT 3

We then apply (9.12)) and the elliptic estimate (5.25)) to estimate V¥ as:
1 1 1
||V(‘D7T||L?Héc;1 5 A(%a |h|m*2,00,t) HVUHL%H& + TQA(%aNm,T)

1 1 1
S A(gv |fm—2,00,2) IVl gz + (T + 5)2A(57Nm,T)-
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Therefore, by Young’s inequality, we get:

1,1
Ky < 5HVU||LQH,C +A( R 200t)||Vv||L2H§0,1 + (T+5)2A(CO,Nm,T).

Similarly, for Ks, by applying (3.21)), (9.12), (9.11)), we obtain:

s S lollzzng, (A o2 IVl 5, + A 17t + -z Bl )

Nm,T)).

1 1
< loll 2 (A(CO, lo-s00) IVl + (7 VA

Combined with the Young’s inequality, this yields:
1
(9.38) Ks < 8 Vollfage + 05/\( An g co ) 01172, + (T + 6)A(;0,Nm,T)-
For the term Kg, we use similar arguments as in (9.30) to deal with the commutator term:

0, 1 1
H (27, ﬂBZ]UHLQLZ < (IVoll o i + (T + 5)5)1&(

—, No1).
0. VN1 i)

Therefore, we control g by the Cauchy-Schwarz inequality to get:

at908

IC(; < ”ZQUHL%[QH [Zav @ Z]UHL%LQ

(9.39)

1 1
STy g+ (s + (T + DA Ar)

We are now ready to estimate 7. In order not to lose normal derivative, we split it into three terms:
K7 =Kz + Kr2 + Krs.

with

/C71—2,UJ//Z0‘

Ko = 2p / / <8ZZC“( S%N)f(azzas%)
0 JSs Oz

t
K73 = 2#/ /Za <S¢U8Z(
0 JS

To deal with K71, we can use the identity (3.27)) to integrate by parts in space. By doing so, we are
led to control the following type of terms (up to some smooth functions that depends only on ¢ and
its derivatives)

//Z7 S5PuN) 0, (Z*v0.p) dzds, // Z7(
0z S D¢

The first type of term can be controlled easily by:

) Z% dV,ds,

N
0,

) - Z% dVsds,

01:0)) - Z% dV,ds.

S“%N)Zo‘v(?z(p dyds, |y|<k-1.

6||vv||L2Hk +C§A( |h|m 2<>ot)||vv||L2Hk 1 +TA( . Nm,T)a
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while the second type of terms can be bounded by:

1
‘”’Lfflk (|S¢U|Lff~1k—1 + T%)A(%w/\[m,T)

1

S 1olz e (100 V0 e+ T2)A (o Nonr)

1 1
< 6||VUH%§H§O + (||UH%%H§0 + (T + 5)2)A(aaNm,T).
Hence, we get that:
Kq1 < 26| V|2 Lemy, T CaA( s Bl 2oot)vaHigH§0—1
1

+ (022 + (T + e)é)A(c—o,Nm,T).

(9.40)

For K79, we use again integration by parts to split it into three terms: Kro = K71 + K122 + Kra3,
with

Koo = 2#/ / S v - 0,(Z%0,) dzds,

Kr22 = 2#/ /ZO‘S“’U.@Z( N )Zavdxds,
0 JSs 0.

t
N
IC723 - 2,u/ / [Za, 07] Sw’U . Zavach dde
0 Jos 2P

In view of the expressions of these three terms, one can show by the commutator estimate (3.9 that

Krz < 8|V 0ll7s . + C(;A( L2006, ) IV T2
(9.41) .
+ (HUHQLgH& + (T + €)§)A(£,Nm,T).

Note that the boundary term K723 can be controlled in a similar way as Ks2. We thus skip the
details.

For K73, to avoid losing regularity on the surface, we use the assumption that |¢/| > 1 to
integrate by parts in space. By doing so, we find that it can be bounded as:

1

(942) ]C73 S(SHV'UH QHk +C§A( ‘h|m 2oot)vaH 2Hk 1+(T+€)%A(CO Nm’T).

We remark that there is no boundary contribution in the process of integration by parts since the

spatial vector fields are tangent to the boundary. Collecting (19.40)-(9.42)), we finally find that:

K7<45HVUHL2H1< +C5A(* ’h‘m 2001‘,)HVU”L2Hk 1

(9.43) '
+ (HUHL?H‘IZ*l + (T + E)i)A(%aNm,T)'

It remains to treat the last term Kg. By (19.10)), m, we have:
Ks S 1ol zax, (1, V2D N L2 e, + [1Pe, OF Jull 2y, )

t "co t~"co

S ||UHL§HCT§—1A(%,Nm,T)-
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Gathering (9.27)-(9.31)), (9.37)-(9.39)), (9.43]), (9.44)), we find by using Korn’s inequality (3.34)) and
by choosing § small enough that for any 0 < || =k <m — 1,

101 s, + 19201213, S V2O A 0B ) IV 2012
1 1
+ (lvll gz g + (T'+ €)2)A(5,Nm,T)-
Therefore, by induction (on k), we get (up to changing possibly the polynomial)

1
01 gt + 197012 s S (V200) + V0l A B y)
(9.45) R )
(ol g + (T + e>2>A<%,Nm,T>.

By (5.27), we can extract an extra T? from |v]| ;2 ym-1. More precisely, we obtain:
ttdco

1 1,1
”UHLng’;*l S Il(u, V‘p\I/)HL?ng S T2 |(u, v@q])HLgoH;’;*l S TQA(*;-N‘m,T)-

o
Moreover, thanks to the elliptic estimate ((5.10]) and the definition v = Pyu = u — V¥V, we also have:
1
HVU”L2L2 < HVUHL2L2A( SILERS t)
Inserting the above two estimates and ([7.19)) into (9.45)), we finally arrive at (9.24)). O

In the following lemma, we prove some estimates for 5%&0, which is useful to the estimate for
1
2 0wu later.

Lemma 9.6. Under the assumption (2.2)), the following estimate for v holds:
1 2 1 2
HezatUHLoon*2 + H52 8tV’UHL?H$72

(9.46) . o o
<A(* A7 - l+Ym(0))Ym(0)+(T+€)2A(a,f\fm,:r)-

LeeH™™

Proof. The proof of this Lemma is very similar to the previous one, we thus only sketch its proof.
We have by the elliptic estimate ([5.15]) that:

1 1
HaﬁathL?onfz + |]E28thHL%Hm72
1 1
S H&‘?@t( u, VW) poopym-2 + [[€200V (u, VW) || 29m—2

1 1 1 .
S A Mhnzon) (13O0l open + 130,70l s + 2 O1iveul )

- <T+s>§A(%,Am,t)(rathr g +|(h,e20h)|

LA™ L?ﬁm*%)'

For any multi-index 8 with |3] = k < m — 2, direct energy estimates for v yield:

1 t ¢
e / \ZBO () AV + 2ue / / 1280,5% ]2 dV,ds + as / / 128 0,0- 2 dyds
S 0 S 0 z=—1

::’604-161-1—"'/68,

(9.47)

where Ky — Kg are terms analogues to Koy — Kg defined in (9.26)) in which Z¢ is replaced by e2 78 0.
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At first, thanks to the trace inequality , Korn’s inequality and Young’s inequality,
we have:
t
©48) az [ [ 12000 Payds > 021 200870 — ol T 0+ <1000y )

The remaining task is thus to estimate K; — Kg. We assume that Z? contains at least one spatial
conormal derivative Z;(i = 1,2, 3).

IC1 Similar to the proof of ( -, we have by the trace inequality (| - Young’s inequality and
Korn’s inequality - ) that:

- 1 t
K= 25/ d¢h| ZP8,v|* dyds
(9.49) 0 J2=0

< 5€”Z58tSWUH%t2LQ + CéA( s Am t) (TEHZﬁ&fU”L""L2 + EHatVUH[}Hk 1)

K5 : By Young’s inequality, s can be controlled similarly:

t
Ko = 2/,Ls/ / 7ZP9,5%v - [Z58,, Vv dV,ds < 5g||zﬂat5%||§w + Cse||[ZP8,, VIl 2
0 JS

Since

N] [Zﬁ7az]8tazfﬂ j = 172737

s Ny
L).0.f) + [2°, L) 0r0. X

0, 0,
we can use the fact that |3] = k < m — 2 to get that:

(250,071 f = 2° (at(

e2|[12°00, 081 f | 2re S A( s [Plim— 2oot)€2H<9tVfHL2Hk !

~

(9.50)
1 1 1 1
FAC <Id,e2at>azf|no,oo,t 1 O s 0.0) (2 10 Fl 2, + (B30 oy

We thus obtain that:

1
Ky < 55]\Zﬁ8t59"v\\L2L2 + C(;A( A goot)|]€28thHL2Hk 1+ (T +e)A(—, Nim1).

co ’

K5 : Regarding the estimate of

t
Ks=¢ / / ZP0,(2uS%v — 7Id)N - ZP,v dyds,
0 =0

as we did for K3, we write:

ZP0,(2uS%v — wId)N = 2uZ° 9, ((divFuld — (V¥)*)N) + [2°0,, N|(2uS?v — 7ld)

= 2uZP8,(divPuld — (V#)20)N + e2[2°0,, N](2u(divPuld — (V¥)2W) + 2uS%v — 71d).
By using the trace inequality and Lemma , we get in a similar way as for that:

£3|2°0,(divFuld — (V#)?U)N]|

1
L{H, *
S |hl2,00alle2 Bu(diveu, (VO)20) | 2 e + (1220 (diveu, (VE)2) | 2 s

1 1 . 1. 1.1
S A(a, ‘h’|m—2,oo,t) (||528tVd1V<PUHL§Hgg—3 + HsQatle@uHLgHé";_Q) —+ 52A(77Nm,T)'

€0
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Moreover, by the boundary conditions ((9.33))-(9.35)), we have
6%|[Z56t, NI (2u(divPuld — (V9)20) + 2480 — WId)‘

1 1
S |€§6t(5"pv, T, dchpU, (V¢)2\P)b’1|ngk,1A(£, ‘h|k7oo,t)

LL2

4 A(Clo, (1d, €28, Z)(S%v, 7, divPu, (V)20)" o e + [00hl1.00.):
(e2[(S%v, 7, diveu, (V)2 )| 2 e + (B £2000)| 2 i)
< (13000 2 o + 12204 (diven, Vdivﬂ"u)HL?Hécol)A(clo, hlises) + (T + &)} A(clo,/\/m,T).
Therefore, by duality, the Cauchy-Schwarz inequality and Young’s inequality , we obtain that:

. 1

Ks < 5||5%Zﬁatw|i?% + (T + )M Ninr)-

(9.51) 0
1 1 . 1 .

+ CsA(aa |h’37172,oo,t) (e (v, leSDU)HigHQ;J + ||€23tleV¢UHi§H$—3)-

K4 : Ky @ has the following expression:
¢
Ki=¢ / / ZPoym[div®, ZP 8, ]v dV,ds
0o JS

By Hélder inequality, the estimate ((9.14]) for 6%V8t7r, the Korn inequality (3.34) and the commutator
estimate (9.50)) we get:

> 1 1.0, 1
K < 390 1 |3 [div?, 22000l 3 2 < SN2 0V0]2,

1
A Nr).

€0

N[

1 1 1.
+ CéA(%a |h|3n—2,oo,t)(||528tvwv||i§H§O—1 + ||528tdlku||i§Hggf2) +(T+e)
@ By the Cauchy-Schwarz inequality and estimates (9.12)), (9.14)), we obtain:
Ks < o2 2°0 | 131212212700, V¥l 1z 2

1 1 1 1
(9.52) S ||5%8tv||L2Hk (A(%a ’h‘m—Q,OO,t)HééatVﬂ-HL%Hfo—l + (T + E)éA(*,Nm T))

t*ico Co ’

1
< 6H5%8tva%§H§o + (T +e)2A(—=, Nin1).

co
1667168 : By 7 7 7 we have:
1

ex0u(f + VPq + Ou[Pr, 0F 1) | 2 a2 A( Nr).

)

In addition, since || = k < m — 2, the following estimate holds:

1
(ha 6th)|m73,oo,t + wvv, 6E(‘az‘,va”h),oo,t)

. 9
e3(|[2P0, %az]vllmz S A(

|
Co’
(12050, V)l 2 -3 | (€2 rV0, V)| oo g (D, €2 020) | 2 )

1
5 A(;OaNm,T)-
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Therefore, we control l€6 + l@g as:

(9.53)
0
Ko+ Ks < lle2 2°0wl 2,2 <gz 1[ZPdy, at“’a Jollpape +e2 || Z°0,(f + V¥9q + [Py, OF HL2L2)
<STIA(E M),
Co

& For this term, one needs to integrate by parts to avoid losing normal derivatives. By following
the same lines as the control of K7 in Lemma we find that:

1 1
050 Kr <8130T0 30y, + Al b0 ) [E0V901 s + (T 4+ 2 RA (o Non).
Plugging (9.49)-(9.54) into (| -7 we get by choosing d small enough and by using Korn inequality
(13.34) that for any 0 < k <m — 2,

(T4 )P A (S, Nor)

1 1 1
||€23th%ng0 + €20Vl 72 < lle2 0 (0)]7 o

Hxs) T
1 1 . 1 .
+ A( s hl7— oot)(H”atV%"ifHé“;l + Hmatvcpdwgp“”ifw* T |’528tdw¢“Hi?HZ$‘2)’

where we have used the convention that || - ||z =0, if I < 0. This estimate, combined with (6.3),

(8.5), (9.1) and the induction on k yields (9.46]). O

10. e—DEPENDENT HIGH ORDER ENERGY ESTIMATE-II

In this subsection, we aim to control £2 |Ve|| oo yym—1, which is useful for the control of L> type
t co
norms.

Lemma 10.1. Under the assumption (2.2)), we have for any 0 <t < T,

N

1
A, N 7).

(10.1) e||Vul|? <A(— \h\z i , ,
0

Lo HD L~ 1t Y2 (0)) Y (0) + (T +¢)

m

Proof. We will prove the following estimates:
(10.2)
1

1 1
|le2 VUHLoon L SY2(0) + (T + 5)4A(5,Nm,T)

1 1 . 1
A B0 (I Vil + 1392l s+ 12000 V) s 2)

By (7.1)), (7.19), (7.30)), (9.46)), we can then find a polynomial A, such that ((10.1]) holds.

The inequality (10.2)) can be obtained by direct energy estimates. Applying Z¢, |a] < m — 1 to
(1.16),, taking the scalar product with —e2Z%(div?L%u) and integrating in space and time, we get
by integration by parts that:

1
H/ | Z2S%ul?(t) dV; + 25)\/ | ZdivPul?(t) AV +6||Zo‘div“0£‘pu||i§L2
(10.3) S S

3o [ 120 PO dy = Ko+ Ky 400+ K,
z=1
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where

1
Ky zs,u/ | Z%S%u)?(0) dVo+2s)\/ | Z2divPul?(0) dVy + ;5/ | Z%u.2(0) dy,
S S z=1

t
Ky = —6/ / (0[V?, Z%u+ [V?,0,Z%) - Z*LudVsds,
0 JS
t t
1
Ky = 5/ / WZ - [ Z%,divP|LPudVsds, Kz = e/ / Zo‘(gZTs&gu) - Z4divP LPu dVids,
0 JS 0 JS

t t
Ky = 5/ / ZY(V¥0)Z%(divP LPu) dVeds, K5 = —5/ / ZYLPuN - 0y Z%u dyds.
0 JS 0 JoS

At first, by the trace inequality (3.17)):

a
(10.4) 5e 120 dy =~ Tult) s = Coelul e
2=

Next, for the term K7, we use (3.23) to find that:
1
K1 S IVPull g2 g <5A(CO, |0thlo,00.6) I Vuull 12 prn-1 + H€3t[v“072a}uHL§L2)-

By using the identity (3.26]), we find that:

o lra 1., N N . 1r,a N1
e [2%V u=e3[Z ,szat(az(p)}azu—i—s@t(aZ(p[Z ,0:]u) +e2(Z ,@]52&@%

The L?L? norm of the first two terms in the right hand side can be controlled by:

1,1 1 1
ng(%, |(h,€20th) lm—2,00¢ + I VullL00) (VU] 2 g2 + !(h,f:?@th)\@ﬁw%)
1
SerA(— Nowr)-
<o
Moreover, the third term can be bounded as:
1 N, 1.1 1, N
ot 27, 3ot el S THE ATl (o)

1,0, 11 1
+ A 1BVl + Ihn-200) (3T ul 3 gy + 1Al )

1,1
S (T+€)5A(a,/\fm,T).

The previous two estimates then lead to:

1
ledr 2, V¥lullpz 2 < (T +2)2A(— Ninr),
0

from which we find that:

(10.5) K < (T+e)%A(Clo,Nm,T).

Thanks to the commutator estimate (3.23)), we control the term 3 [Z%, div?]L%u in the term K as
follows:
1 . 1 1
e2||[2%, div¥]L%ul| 2> S A(CT)’ lez0. L2100, + |h|m72,oo,t)|h|LgHm—%
1 1 1, .1
+ A(a7 |h’m—2,oo,t) ”52 v£<pu||L?H£—2 5 T2 A(;OaNm,T) .
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Therefore, by Cauchy-Schwarz inequality, K2 can be bounded by:
(10.6) Ko S N80l g 1164 12°, div?)LPul sz S THA( Nonr)
Moreover, by the product estimate , we obtain:
(10.7) Ky + K < 3/ 2°dive £oul[ 2 + C’gsA(clo,Amt)H(a, W) s
For the term K5, we use the boundary condition to split it as :
Ks = —¢ /Ot/ . Z%0/e)0eZ% - N + [Z% N|LPu - 0, Z%udyds =: K51 + K.
2=

Thanks to the trace inequality (3.17]) and the boundary conditions (4.5)), (4.8), K52 can be bounded

as:
1 1
K5 < ez atzau\L%H,% le2 [Za,N]E‘pu]L?H%

1 1 1
it A A + A M)

1 1 1
S (le20u(u, V)| 2ggm—1 + €20,V ull 12 g2 ) (2| o

1
ST+ A And) €
0
For K351, we take benefits of the boundary condition (4.1) and the trace inequality (3.17)) to find

that, if Z¢ = (e0y)7,j <m — 1,

1,01 1 . R
K5 < 54/\(%,./4%75) (I[(e20¢(u, Vu), divFuy, e2 leku)Hi?erfl + HVuHi?Hg,l + ’h‘iggmf%)

1
A(av Am,t)grzrz’tv

=

<e

if Z* = Z3Z%, this term vanishes on the boundary and if Z% = 9,29,

2,00,t

Ks1 < |5%Za(a/e)|L?Hy%|5%8tZdu|L%Hy%]h
< A(clo, Plon—,500) (I3 VAPl 4 3Vl 2+ 1300000, V) 2 )
FTEA (A ] .
The previous three inequalities yield:
Ks S (T + 5)‘1*1\(010, Am,t)ggn,t + A(Clo, | P | m—2,00,t)"
(le2Vaivoul?, s + 167Vl 3 gy + €701, VOIS -2 29r)-

Inserting this inequality and ((10.4])-(10.7]) into ([10.3]), using Korn’s inequality (3.33)) and choosing §
small enough, we obtain ((10.2)). O

11. UNIFORM CONTROL OF HIGH ORDER ENERGY NORMS-II

11.1. L°L? type norm for the compressible part. In this section, we aim to get the a-priori
estimates for ||(V¥o, divPu)|| Loo T2 This is mainly done by induction arguments.
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Lemma 11.1. Suppose that (2.2) is true, we have for any 0 <t <T,m > 17,

e H|(V¥a, diviu) HigOHg’;‘Q

(11.1) < A( 1 |h|? +Y;2(0))Y,2(0) + ( +T)iA( L )
~ N e m m ¢ co’ mT):
Proof. We shall prove for for j + 1 < m — 2 that:
£ [(V¥0, diveu) | pgepen
1 1 1 1 .
(11.2) ST+ 5)4A(;07Nm,T) + A(a, |Alm—2,00,t) ||€23td1V“DUHL§°HCIJh|L?OH:;_%
1 1 1
A ] g 3) (13000, 0) gm0 + 13 (0, 0 ey
and also:
1
(11.3) |2 8,(divPu, V20) | ooy S Ile284(0, )| poeggz + (T + 5)%A(;,Nm¢).
0

These two inequalities, together with (7.19)), (7.30) and (10.1)) lead to (9.1)). Indeed, thanks to the
estimate (7.19]), we derive that:

1

€o

Inserting this inequality into (11.2), and using the estimate ((7.19)), (7.30), (10.1)), we find (11.1).

We present the proof of (11.2). First of all, for any non-negative integers j,l such that
j+1<m—2, it follows from the equation (9.5 that:

1
122 8,(divPu, V90) | oo s, S A(—, hlm—2,00.) Yin(0) + (T + s)%A(g,Nm,T).

(91 —1(0)

1 1 1
e 2 ||div¥ul| poogn S €200 || Looqysn + €2 €0 + g1 V)| ooggi

(11.4)
1 _1 1 1
5 ”€§atO'||L?onf2,0 + HE QVSOO'”L?OHjJrI,lfl}I{lZl} "—EQA( ,Amﬂf)gm,t.

co
Let us control |[V¥o||peogysi. As before, we denote
0 =o0/e—2(p+ Ndiv¥Pu.
By the equation of velocity,
V%0 = —0fu — f + pA¥v,
where

f= gz;psafu+u-ku,vzﬂptu.

We thus get that:
1 1 . 1
e 2| VP0| ppoqn S €2 [[VPAivIu|| oo ym—2 + 2| (Py, Qt) V0| poogyi
(11.5) S 20V poogn + 22 [ VEdivEU| oo -2

+ &3 ||(Ver, [Qi, 8 u, V¥q) | oo prm—2 =t (LB, + (LD, + (LLA)s.
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where we have used the defintion ((9.7)) ,. By the elliptic estimate (5.24)),
1
Haiatv‘P\I/HL?onz
1
(116) S (T—i—E)EA( NmT) +A( |h’m QOot)ngatdIV‘puHLooHl ’h‘

1 1 1. .
+ A(%, ’h|m72,oo,t) (||€28tu||Ltoon—2,0 + H€2 &fle(‘OUHL?on,l—lH{lZl}) .

3
o
L¥He 2

Next, by the elliptic estimate ((5.13), we find:

10) 1,1 .
H tsoa \%s \IjHLoon 2 EéA(gaNm,T)(Hdlku”l@o}[ﬁ72 + ‘h| 1+ |8th’L°°Hm 2)

L A%
1
SJ E%A(f,./\/’mj).

<o

Together with (11.6)), this yields:
1
Hgiafvv‘I’HLgow‘l
1

(11.7) S (T+5)2A( Non,7) +A( NPl 2oot)H€23td1V‘PUHL°°H1 ’h‘LOOHm_%

+A( o |Plm— 2oot)(||523tu||L°°Hm 20 + H528tle¢U||L°°wl 1>1y).

Let us control the terms ([11.5),, -3 appearing in (|11.5):
1
— 3 P : .
(11.5), = e2||Vdiv uHLtooHngQ. Thanks to the equation (9.3)), we have:

ez HVdiVSOUHLOOHm72

(11.8) <E2HV¢UHL°°HT” 1+52H( tsoa v¢(92€ 58t‘7)7v(p(92ﬂ'VU))H@OH;’;*Q

1
< 2 ||V¢O'HL?OH£71 + z-:?A(%,Nm,T).

o (@A), = e2[(V¥q, V¥, (@i, 0fJu)l| o 2. By ©-10), (0-13), (9.15), we have that:
1 1
(1L9) <3 (V¥0, 99m, [0 0F10) e g S A lon-aoen) 163 Vtl o+ + €54 (0 Nonr)

Inserting ((11.7] into , we achieve that:

1
||V<PO'HLtoon,l S 5§A( 0 Nm T) +A( ‘h|m 200t)||528tdlvipu||L°°H1 |h| m—3

2
Ly He

oV

(11.10) .

. 1 1
-+ (‘|d1V<p'LLHL?0H]'+1,l—1 + H€28tu||Ltoon72,o + H€2 V(O’, u)|’L?H£71)A(%7 ‘h‘m—Q,OO,t)‘

Together with (11.4)) and induction arguments, this yields (11.2)).
Remark 11.2. By the estimates (5.27) (5.26) and (9.1)), (11.1)), we find
1 1 2

||€28tV‘p\IfHLOOHm—2 + |lez0(V¥) \I/||L?OH$_3OL?H$_2

SA( A

L*H m_7

L Y2(0))V2(0) + (e + T)iA(;,Nm,T).
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which further, together with (9.46)), yields that:

1 1
HeiatuHLtongg& + HgiatVUHLgHgg*Z

(-4 <AL np LY2(0)Y2(0) + (¢ + T) A (= Nr)
— 1 . .
~ co ? Ltoo Han% m m € o ’ m,T

11.2. Uniform control of the gradient of the velocity-II. In this subsection, we aim to control
the L H =4 norm of (Vu, séatVu) More precisely, the following lemma will be proved.

Lemma 11.3. Under the assumption (2.2), for any 0 <t < T, we have the following estimate:

1
Hvunitongg*‘l + ||€28tvu||itongg*4
(11.12) )
A=, Nm7)-

€o

=

1
<L 2 2 2
SA( Ry + VRO VRO + (T 4)

2

Proof. By the identities and
IN|II(0fu) = II(Ofu — n101u — nadau)
=wXxn+ H((V“pu)t ‘n—n;ou — n262u)
=wxn+(01u-n,du-n,0) —I(n101u + nadou),

we have that:

1 .
”vw“HLtongg*‘l S A(%v |h’m—2,oo,t)”uHL;X>Hgg*3 + [[(w x nyleLpu)HLtongg*%
1 1 1 1 .
H52atVSDUHLt°°Hgg*4 S A(%u ’h‘m—Zoo,t)HwatuHLtongg*i” + [[e20(w x m, le(pu)HLtongg*‘l

1 1
+ (T + e)EA(a,Nm,T).

Therefore, (11.12]) can be derived from the estimate (11.11)), Lemma for divPu, Lemma for v,

Lemma [6.1] for h as well as the next lemma for w x n. O
Lemma 11.4. Suppose that Assumption (2.2) is true, then the following estimate holds:

1
oo X 2 pya + €300 X W2 s S YEO) + (T + ©)FA (- Nonr)
co 0

2
LeHD™
(11.13) 1

1 1
+ A(CT)’ ‘h|m—2,oo7t) [[(v, €20, 52v“)”ig°H§’;‘2‘

Proof. As explained in the introduction, although w x n satisfies a transport-diffusion equation
without singular terms, one cannot control it by direct energy estimates due to the lack of information
of the trace of w X n on the boundary. Since

(w x n)|,—¢ = 2I1(01u - n, dous - n, 0)*| ..

A natural attempt in order to do energy estimates is to introduce the modified vorticity: @ =
w x n— [(d1u - n,dyu - n,0)!. Nevertheless, if taking this way, we are confronted with the original
difficulty due to the presence of a singular term in the equation of w x n. However, since the singular
term appears only in the equation of the compressible part of the velocity, it is still useful to introduce
the following quantity:

(11.14) wn = w x n —20II(G1v - n,dv - n,0)".
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where v is the incompressible part of the velocity. As will be seen later, the main advantage to work
on wy rather than w x n is that up to remainders, one can reduce the estimate of wy to that of the
compressible part of the velocity and one can extract some extra power of 7" in the estimates, which
is essential to establish the local existence on a uniform time interval.

Since away from the boundary, the conormal space is equivalent to the standard Sobolev space,
it suffices to estimate wy near the boundary. In the following, we shall focus on its control near the
surface, the case near the bottom is similar (and is even simpler, one can refer to [47] for details).
To overcome the difficulty resulting from the nontrivial boundary condition, the general strategy to
get a uniform estimate for wy, is to split its system into two systems, one carries on the nonlinear
terms and the initial data but with trivial Dirichlet boundary condition, while the other one is just
a free heat equation with zero initial data and nontrivial Dirichlet boundary condition. The first
system can be treated by direct energy estimates because of the homogeneous Dirichlet boundary
condition. The analysis of the second system relies on the explicit formulae for the heat equation in
the half-space.

To use the explicit formulae of the heat equation in the half-space, it is convenient to use a
coordinate system in which the Laplacian has a good form. We thus use the following normal
geodesic coordinates:

Oy S, =R? x [~k,0] —
(y,2) — < %(t,y) > +2nb’1(y)

where n®! = % = (=01h, —0ah,1)/y/1 + |Vh|? denotes the outward normal vector. Straightfor-

ward computations show that:

) 1 0 n¥ m? donb 0
Do, = 0 1 ng’l +z 81113 82113 0

Ooh Oxh ng’l 31HI§ 3211?, 0

(11.15)

Therefore, as long as |hlg e < +00, and & small enough, we have that: det(D®;) > 0 on [0, 7] x S,
hence ®; is a diffeomorphism between Sﬁ and ®4(S,). The Riemann metric induced by the pullback
of the Euclidean metric in Q; through ®; ! has the block structure:

9(y,2) = ( f](%z) (1) >

where § is a matrix that depends on the gradient of ®;. Therefore, the Laplacian in this metric takes
the form:

1
(11.16) Agf = 02f + 50:(n|g))0:f + A,
where
1 ~ij=1 ~ -
Ngf=—1 Y 0,:(373120,:f) 13| = det .
9|2 1<4,j<2

We take a cut off function x = XO(%), where xo(s) : R_ — R is a smooth function supported on

[—2,0] and equal to 1 on the interval [—3,0], C(x) is chosen such that ®;(R? x [—~C},0]) C Dy(S,),
the following task is to estimate ywy. Let us begin with the derivation of the equations satisfied by
Xwn. First of all, by taking the curl of (1.16)),, we find that w = curl? u solves:

(11.17) (pOf — pA¥)w = G¥
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with

v A
G¥ = —u-VPw +w- Vou — wdiviu — % x (0 + eu - V)u) + 2 592((5(% teu- Vw).

Hence xw x n is governed by:
(PO — pA?)(xw x n) = GY,
with
(11.18) G = XG¥ x n — pA?(xn)w — 2uVPw x V#(xn) + pw x 9f (xn).
By , v satisfies the equation:
pOfv — pA¥v = —(f + V¥q + p[Ps, 07 |Ju) — V¥ =: H,
which gives:
(POf — pA?)(Ojv - N) = L;
with
0,
L; =[0;H + aj(ﬁ)@v — p[0j, A?Jv] - N + pdjv - Of N — 2uV¥?9;v - VSN — pA?N - 9;v.
z
Denote ¢ = 2(01v-N, v - N,0)!, L = (L1, Lo, 0)!. Therefore, by recalling the definition of projection
II = Ids — n ® n, it holds that:
(pOf — pA%)(xIIs) = G

X
where
(1119) G5 = 201L + b T — 2 02, 1k -+ pox[IL A% + 07 s+ v, AT,
We thus finally find that:
(11.20) (pOf — pA?)(xwn) = G5 + GY-

For the sake of notational simplicity, we denote { = ywn, G§< = G5, + GY. Consider

(;:(t,l‘) = C(t (I);l © (i)t(x))a
then ¢ : [0,7] x S, — R solves the system:

(pOr — 1Ag)C = G5 + (D) 19, - V¢,

Cli=o = ¢(5 " © o),

(om0 = —2I1(61 VPV - 1, VPV - 1, 0)!] ,—o.
where A, is defined in (|11.16). Since E vanishes in the vicinity of {z = —k}, we can extend it by
zero to the whole lower half space R2 . Denote

HfHLfHEO(Ri) = Z HZafHLfLQ(]Ri)'
|lal<k

By Proposition [11.5] we have:
1 -
HCHLgng;—‘*(s) S ||C||L§0Hg—4(Ri) S A(%, |h’mf2,oo,t)HCHLtOOHg—‘l(R?i),

1 1
||528t<||LtocHgg—4(5) S ngatCHLgOHgg—‘*(Ri)

1, - 1~ 1,1
SA(—, ’h‘m—2700,t)(||52atCHL;ngg—“(R?L) +e2 ||<||Lgngg—3(R§)) + 52A(*7Nm T)’

1
o Co ’
1% 1 1
€2 ||<||Lgngg—3(R§)) S A(ga ’h‘m—Z,oo,t)HSQC”Lgngg—3(3)
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1 1
< ( s |- goot)||€2Vu||Loon 3(8)+(T—|-€)2A(CO,Nm,T).

Therefore, (11.13)) follows from the estimate:
1

~ 1 ~ 1
(11.21) G 300) s s(s) S YAO) + (T4 )¥A (- Noni),
which is the consequence of Lemma and Lemma [11.8] ]

Proposition 11.5. Suppose that T; : R® — R3 is a ™3 diffeomorphism with T;(y,0) = y,Vy € R2.
For any function f(t,-) which supported on Sy, and for p = 2,400, it holds that

(11.22) 17 (55 Ts)lk.00.0 S AT 0Tk c0.) f Nk 00,15

(11.23) 1 (s, Ts )l e mx, s y S AT 0T koo )1 L2 11 2

1 1
(11.24) H“as[f(sa7;')”|LfH§O(R3_) S AT, 3zT)|||k,oo,t)||52(ataz)fHLngvo(Ri)
. . 3
+ 2 A10(T, 0T llk—1,000) | 2t 11, 3 ) + 112N 0,004 AN0e0T || Lo 113, )
where we denote Z = (0, 0y,, Z3) the spatial conormal derivatives.

Remark 11.6. Since ;' o ®; = &, (¢, 9, + znl{’l,yg +zng’1, h+zn§’1), and |D®; | < |hl1.0os, we
have that:

(@ 0, 0.2 O‘Pt))lllkootSA( 1 hlks1,00,)-

Proof. The proof of this lemma just follows from the Leibniz rule, we thus omit the proof. O

As explained before, to show (11.21)), we write Q: = C~1 + 52, where 51, C~2 satisfy the following

two systems:

(11.25) { (p0r — n03)¢1 =0, (t,x) € [0,T] x R3,
C:lft:() =0, 51’220 - <~|Z:0 = —2[1(0; V¥W¥ - n, VPV - n,0)!],—o.
(11.26) (0 — pg)Ca = G5, + pO®y(DB1) 'V + 510(In [g)0:C1 — ndglo,

Coli=o = Cli=0, Cals=0 = 0.
Lemma 11.7. Under the assumption (2.2)), it holds that, for any 0 <t < T,
1

~ 1 ~ ~ 1 ~ 1
(11.27) 1o 200 e a0y + 11 30 s -sce) S THA( N ).

- 1
(11.28) 1(1d, 201, 8y, Z3)Ca |l o (0.1 m2 ) S A(%aNm,T)-

Proof. We present the estimates for £28t(1 appearing in the inequality m the estimates for
() is similar and easier. Let v = (7/,73) a multi-index such that |y| < m —4, Z7 = Z?CmZ% where
7y = ZJ°Z]' Z)?. Taking 77 on the equation of (11.25]), we get:

tan — tan

{(pat H02) (230, 01) =0, (t,x) € [0,T) x RY,

tanatcl‘t 0=0, tanatcl‘z =0 — tanatc‘z =0-
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By the explicit formulae of the heat equation on the half-line, we have that:

_ t 1 22
(11.29) s%Zvatgl(t,y,z):2ﬁ5;/ ﬁZgBaz(e 4ﬂ(t—3>) tanatC’Z o(s,y)ds
0 (dmplt— )}

where i = u/p. To continue, we need the following estimate whose proof is elementary and is left for
the reader: for any [ > 0

1

2
(11.30) 1Z50- (™9 ) [ 12(0,00) S (t — )i
Now, taking the LEL?QJ norm of m and applying (11.30)), we find that for any 0 < ¢ < T,
1 ~
e ||Z’Yat<1HL°°L2(R3) <Ti |528tC|2=0|L§ogm74~
By the trace inequality (3.17)) and the estimate , we get that:
1.~ 1 1 1
€204t |2=0l o s S |(vs0\11,gzatvw)|Ltoon_3A(%, |(h, €20;h)|m—3,00)

1

S e20,(V2, VV2D), (VEU, VU)o - @A 10 £20:h) lm—3.001)

1
5 A(iaNm,T) .
Co
Combined the previous two inequalities, one finds:
1, = 1 1
H€2 OtC1||L?OH£74(R3) 5 T4A(a,./\/’m,T).
Similarly, by employing Young’s inequality and the estimate (5.25)), we obtain that:
1 ~ 1 1 ~
||€§8t€1 |’L?H$73(Ri) S TZ ’EEatCL,;:O‘L?Hm_J
1
STAN(=, [(h €0thlm-2004) - IE2 0, (VW, VVPW), 72 (VU VYD) | 12 prina
CO co
1
ST (= Non,1).
co

The above inequality then leads to (11.27). We now show the Lg%, estimate . It results from

(I1.29) that: for any t > 0,2 > 0,5 =1,2,2° =1d, Z! = (azat,ay),
(11.31)
t — _9 22 3 __ 22
|| tan ||L°° ‘ tan€1|Z:0‘LOOLOO/ V 271-71“2’2 ( ~ )26 = ds
24i(t — s)
1 1
< ()] 210G l= 0] oo SAET2NVPUll200 + [Bla,cot + €2 0ihl1,000)

where C'(f1) is a constant that depends only on fi. In the same fashion, we have
~ _9 z ~
1Z3Ci (¢, 2) e < (V2r 7 a2 (2 / P(\/T)ds) ‘<1|Z:0‘L§°L;j°
< C(p ‘Cl’z 0|LooLoo SA(IVAY1 00t + [Rl1,00,t),

where P(z) = |(1—22)|z3¢~%". Note that ¢(z)z~! = (1+2)/(2 — 2)? is uniformly bounded for z > 0.
The proof of ((11.28]) is now finished. O

Lemma 11.8. Suppose that (2.2) holds, for any 0 < t < T, we have the following estimates:

(11.32)

- - 1 ~ 1 1
(11.33) 1G2117 o prn—a s, + 1(V 2,20V G272 s s S Yim(0) + T4A(a,/\/’m,T)7
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1, - 1 - = 1,1
(11.34) HEQ@"/@Hif‘JHZZ*“(Ri) + ||528N§2||§§H$74(R3) SAYZ(0)+ &7 ,)Y,A(0) +T4A(a,/\/m,T).

Proof. Again, we only give the details for the estimate of E%atég, the one of (s is similar and slightly
easier to deal with. Let 8 be a multi-index such that |3| = k < m — 4. Since

~17 o1 ~17 | ~ 1
Ag = 0i(970;-) — 0i(|9172)3" 9|2 0: f,

to avoid losing derivatives on the surface, it is convenient to rewrite the system ((11.26)) as:

(11.35) { (90, — nd? — pnds(§770;)) o = F,

Cali=o = Cli=0, Calz=0 =0,

where

FS$ = G5 — pai®(DP;)~'V¢ + 5#0:(In|g))0:C + pdi(Ingl)g70;¢ + pdi(g9 9;G1).

Note that we have used the summation convention for i,j = 1,2. Applying Z? on the equation

(11.35)), we get that:
e2 (pdy — pd? — pd;(§90;))(2°0:Ca) = ZPe20,FC + p[Z2Pe2 0y, 02)C + pdi| 28220, 5],

from which we get the energy inequality:
~ ~ t ~ ~
Pel| Z° G ()72 gs y + 1ell 0:2° 02l T2 2 sy + 1 / / | 550 Z°00Ca - 0;2° 01y dardis
- - 0 JR3

t ~ ~
/ / . [2P8,,0%|Ca - Z°0,Co dads
0 JRZ

t e ~
/ / Z°F§ - 7P, dads
0 JR3

As long as k is chosen small enough, the matrix ( gll 212 ) is positive definite, so that the last
21§22

two terms in the first line of (11.36)) control C,.;H€%VZ58tC~2||igL2(
t

notation load and without much ambiguity, we shall denote

(11.36) < 7 Z°0iC(0) | 2o ps ) + e

+ e +e€

t ~ ~
| 12" 590,60.2° asas
0 JR2

R?)" In the sequel, to lighten the

| fll e, = Hf“LfHé“o(Ri)a [ f e, = I fll e ax (S) p = 2,+o0.

t co t co t co

We begin now to estimate the last three terms of the right hand side of (11.36)). At first, we have up

to some smooth functions depending on ¢,
28,00 = S w022 S 0.2,
1B1<18]-1 [v1<18]-1

Therefore, thanks to integration by parts and Young’s inequality, we write:
(11.37)

t
el [ [ 120808200 Gadras] < 020,270 s+ Coe 10016012 g -+ 101G )
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Similarly, by Young’s inequality, we have:

t ~ ~ ~
ua\/ /3 (284, §10;Cs - 0;2° 9o dards| gagnvzﬁatcgniw(m)
(11.38) 0 JEZ

1 ~ 1 ~ ~
+ CsA (=, |(h, €2 0eh) 2,00, + 0eh2,00.) (I (G2 €202 2 s + €N Call 72 ).

<
Co ’
We are now in position to control the last term in (11.36)). We split it into several terms:
t e ~
8/ /3 Zﬁath'ZﬁatCdedS:Zj1+j2+j3—|—j4.
0 JR3
with

t — N t _ B _ N
J = a/ / Z89,GS, - ZP9ylp dads,  Jo = ,06/ / ZP0,(D®5) 1055 - V) - 2P0, dueds,
0 JR3 0 JR3

t ~ _ t B N
Fi=pe [ [ 200700) 20k dts, Ji=gpe [ [ 2700.0n]g)0.0) - 270 dnds,
0 JR3 0 JR3

1

t ~ ~
o=y [ [ 220 (0mla)i0,0) - 20,6 dads
0 JRZ

To estimate o, let us split it into two terms Jo = Jo1 + J22 :

t ~ ~ ~ ~
Jo1 = pe / / VAL (div((D@s)_l(?S(I)s)g) 788,y dads,
0 JR3

¢
J22 = 05/ / Zﬂ@t@(((D‘i’s)_lasés)lE) ZP0,Ca dads.
o Jr3

We emphasize that since there is no gain of the regularity of ® from that of & (roughly speaking,
one needs k + 1 derivatives of h to control k£ derivatives of i)), careful attention needs to be paid
to the regularity of the surface in the following computations. To estimate J21, in order not to
lose regularity on the surface, we consider two cases. If Z? contains at least one spatial conormal
derivative, we integrate by parts in space, and then use Young’s inequality to get:

z : 1.z 1
Jo1 < 5€HVZ’86tC2H%§L2(Ri) + (H(C,watC)HigHgﬂ + ’628t2h‘i%]:[m—3)'
~ 1 1
A(ICH 00, + (R €2 85h) 2,008 + [Othlim—3,00,t + 1207 hlm—5,00,1) -
Moreover, we have by Proposition and estimate (|11.27)) that for [ = 3,4

~ 1 ~ ~ 1 ~ ~ 1 ~
H(C27€§3tC2)HLgHg;—l < (¢, e20¢), (C17€§3tC1)HLgHgg—l
1

1 1 1 1

(11.39) S ||(Vu7623NU)HL§H§;—ZA(%7 (R, £20th) ln—141,00,8) + T‘*A(%a/\fm,T)

) TINE Np)  ifl=4,

| SALE Nug) ifL=3,
and by (11.28)) that:

A ~
[[(1d, €20y, Dy, Z3)C|| oo (0,1 xR? )

(11.40) 1

< 11d, 28,8y, Z3)Cllo,0s A (|2 D4
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Therefore, by combining (6.2)), we obtain that in this case,

~ 2 1 ]_
(11.41) Jo1 < 55||v25<2||L§L2(R3) + TQA(%,Nm,T).
If Z8 = (¢0y)*, (k < m — 4), thanks to (6.2)), (11.27), (11.39), (11.40), we can control Ja; as:
1: 1= o
VDS ||5;atC2||LgHg;—4A(%a (¢, £0:C)l0,00, + Goo,t ()
(11.42) (1(202h, 22 ) 2 s + 11(Cor 22 01C) | 2 )
1

STiA(—=, Ninr),
Co

where
1 1 3
goo,t<h) L= (h7 Eiath)‘m—loo,t + ’ath‘m—&oo,t + ’(558152}% 558?}7‘)’771—5,00,#
Note that by (6.1])-(6.2]), and the Sobolev embedding H%(RQ) — L*®(R?),

1
Goot(h) S A(%aNm,T)-

Collecting (11.41]) and (11.42)), we finally get that

=2 1 1

(11.43) Jo1 < 5”VZﬂC2HLgL2<R3> + T4A(%,Nm,T).

For Jos, we write Z°0) = [ZP,0)] + 0,Z°, we integrate by parts for the second term and follow
similar arguments as in the estimate of Jo; to get that:

. 11
Joa < 5y|vzﬁgz|\i§L2(Ri) + T4A(£,/\/m,T).
Combined with (11.43)), this yields:
~ 1 1
(11.44) T2 < 26||VZBCQ||i%L2(R3_) +TiA(—, Np1).

€o

For Js3, we integrate by parts again and use the Cauchy-Schwarz inequality to get:
Ts S 1204(570;C)| 2 1€ Dol 2 g

120 ) G120 112 Ol o

By estimates , , we find that:

(11.45) Ts S TIA(S Nopr).

Co ’

SA(

We begin now to estimate Jy. By writing

9(In |g])0.¢ = —02(In |g]) + 9- (9. (In |g])C),

we can follow the similar computations as in the estimates of J5 to obtain (it is indeed easier in the
sense that 92(In|g|), d.(In |g|) involve only two derivatives of h thanks to Remark [11.6)

. 1 . >
T1 < 0e20,V Z°%| 22 paes ) + A I(h,s%f‘?th)lmfz,oo,t)II(C,E%@C)II%H@%
(11.46)
- 1
< 6”5%8,5VZ5C2||%3L2(R3) + TéA(;aNm,T)
- 0
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We proceed to estimate J5. If Z# = (£0;)*, we control it by inequalities (6.2)), (11.27), (11.39):

1 = 1 1 ~ 1 ~
I5 S ”foatCzHLgHgg*‘lA(cO» (h,€20:h)|m—2,00.t) (||(C>€23tC)||L§Hgg*3 + ‘58t2h’1;gﬁ1m72)

<STEA(L Ny
co

If Z8 contains at least one spatial conormal derivative, we integrate by parts in space and control it
in a similar way as J3 :

1 oy ~ 1 -
J5 S |le20¢(05(In |g|)gwajo)”LgHgg*5||525tC2HL§H;g*3
1 1 x 1.z 1, >
S A(%, |(h,523th)|m72,oo,t)||(Ca623t€)||LgHgg—4||523tC2||LgHg;—3

< THA(S Nor).
o

To summarize, we get that:
1

(11.47) Ts STIA—=, Nor).-
co

We are now left to control the term J;. After checking every term of GY and G5, defined in (11.18)
and m, we find that the problematic terms that may lead to a loss of derlvatlves are the
following:

(u-V¥w) x xN, GY¥ V%w x V?(xn), G

w1 = XI([01, A%Jv - N, [0z, A¥]v - N, 0)".

w
P X2

All the other terms can be controlled directly through the Cauchy-Schwarz inequality, the estimate

(11.39) and Proposition [11.9}

/ /3 5225&5 GC G"J é“’vz —é;vl) -aéZ’BBtfgda;ds
R

S le20Goll 2 prmes 200 (G, — G

xl_Gw

2 G;;) HLgHZg“‘
1,z 1

S ||526tC2HL§H$*4||526t(G§< -G~ G = G )l zam-as)

1

ST, Ninr)-

€o

Note that by Proposition [I1.9]
1
IG5, = G1 = GRa = Gallizmm-2(s) < A Nmr)-

It remains to control the remaining three terms. We shall explain the estimates of the term involving
GY 1. Let us first rewrite:

u- VPw = u10y,w + u2dy,w + (u - N) - d,w = Ry — Ry.

where
Ry = Oy, (1) + By, (usw) + az(ngl:)w), Ry — 8,1 -0 + Oy w0+ az(uaj) »
Since
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there is no term like J,u - d,u appearing in Ry, we thus can show by using similar arguments as in
the proof of Proposition [T1.9] that:

s |
le2 0 Ral| 2 -1 S A(%aNm T);

)

which further yields:

t
~ ~ 1
(11.48) / / e22°0,Ry - €2 7°0,8y dwds S TZA(—, Ni.1).-
0 JR3 €0
Next, by the change of variable, we have:
— —1 u-IN
Ry = (D(®4 0 ¥y )*1)]181 [Ij(u)w], where I(u) = (u1, ue, W)

Therefore, using a similar strategy as the one employed in the estimate of J5, we find that:

t
— - ~ 1
// e%atzﬁRl-sézﬂat@dxdsg5||s%vzﬁat¢2|yigL2(R3)+TiA(;,Nm,T),
0 JR3 - 0

which, together with ((11.48)), leads to:
t — - - 1
e22°0,G% 162 2°0,8y dads < 8|2V 2P 0G| 0 ) + THA(— Nin ).
0 JR3 X ¢ - o
Following similar arguments, one can also show that:

t
—— — - ~ 1
/ / 020G, + Gy - 4 270G dads < 0|V 2P Ol g ) + THA (= Ninr).
0 JR> -

Co ’

To summarize, we have obtained that:

~ 1 1
(11.49) T < 26||VZBCQ||i%L2(R3_) + T4A(%,Nm,T).
Gathering (11.44)-(11.47),(11.49) and using (11.39)), we obtain:
t - 5 - 1 1
(11.50) \/O /Rs ZPFS - Z°(y dwds| < 105Hvzﬁgguiw(m) +T4A(%,Nm,;p).

Inserting (11.37)), (11.38)) and (11.50]) into (11.36[), we get by choosing ¢ small enough that for any

0<k<m-—4,

1, 5 1 ~ 1 ~ 1,1
(1151) (220Gl 7 e + €20Vl 2 S Yin(0) + Hazatvguig%_l + T4A(%,Nm,T).

Note that in the above, we use the convention that || - || 25 = 0if [ < 0. Moreover, we can show by
repeating the procedure to prove (11.51f) that:
(11.52) 1l i, + IV G F2 . S Yim(0) + IV ﬂLT%A(l Non1)

’ 2 L?OHéco 2 L?Hf:co ~-m 2 L%H?z;l CO7 m,T):

The estimate (11.33) then stems from (11.52) and an induction on k£ € [0, m — 4], the estimate
(11.34)) can also be derived from (|11.33)) and induction arguments. ]

In the following, we show an estimate needed to control J; in the above lemma.

Proposition 11.9. Assume that (2.2)) holds, then for any 0 <t < T,

1 w w 1
11, £28)(G5, = G5y = G = Grllzam-1(s) S AL Nonir)-
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Proof. One can show this estimate by bounding each term appearing in Gi -Gy —GY o — G;J.

We will give the details for one term, namely w - V¥u, which is the most difficult one, the other
terms can be controlled easily. Let us write

w - VPu = w10y, u + waly,u + (w - N)Of u.
Furthermore, we have:
w-N=divP(u x N) +u- (V¥ xN)
—(ux N) - 07N — 0y, (u x N)1 — Oy, (u x N)og +u- (V¥ x N).
We thus see that w - V¥u = 0,u - F1(9yu, V¥N, u, N, ﬁ) + F5(0yu, Oyu) where Fi, Fy are some

polynomials with degree 4. Let us control eéﬁt(azuf)yu) for example, the other ones can be bounded
in a similar way (note that we do not lose regularity on the surface the terms involving N). By
counting the derivatives hitting on each term, one finds that:

1 1

|(e20;0,u - Oyu, O,u - €2 atayu)nLchmﬂ
1 1
S lle2 80z ullo,co tllull g2 rm—s + ll€2 00 ull 12 grm—sllullm—a,00,¢
1 1
+ IVulliootlle? Opull 2 gm-s + €2 Otillm—s,00,e Vel oo prm—a
1
< A(a,./\/m;p).
(|

11.3. Estimate of the second order normal derivatives of the velocity. To finish the a-priori
estimates for the energy norms, we are left to estimate V2w in a non-uniform way which is the object
of the following lemma.

Lemma 11.10. Assume that (2.2) holds for some T > 0, then for any 0 < t < T, the following
estimate holds,

=

A( 7NmT)-

oo m— co )

1
(159) (59200 o SA( Sy + VA0 ) V20 + (T +2)

Proof. We will prove the following two inequalities
1 1

5§Hv2u”Longg*2 < (T—|—5)§A( N, 1) —I—A( Al goot)Hs2VuHLoon 1
(11.54) ‘ )
+ 55"@““@0[{3*2 te2 HVSOUHL;”H?;—L
1 2 1 1
ez ||V uHLgﬂm_l S (T—i—e)?A(—,
(11.55) 0
+A( s | Pfm— QOot)HEQV’U:HLQHm +e 2HV“”JHL2Hm 1

where N, r is defined in . These two estimates, together with ., -, ., -,

(11.1)), yield (11.53). To prove (11.54) and (11.55)), it suffices to control 5282u Let us rewrite the
equations ((1.16)), as

Nm,T)

(11.56) e3Py = 5%g2(8t +u-V)u+ £T2IV%0 — 2 V?divPu.
In view of (11.56)), (8.29)), we have by the product estimate (3.8) and the definition of &, that:

1 1 _1
||5283UHL;>OHC"},—2 S H52atuHLgng';—2 + e 2V‘7”Lgng’g—2
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: 1
+ A(%? |h|m72,oo,t) (E%H(U,U, Vo, vu)HLtOOHZZ*1 + A(a7-’4m,t)|5%h|

1

N
o

Lrﬁm—%)

1 _1 1
S lle2Ohull e g2 + €72V | oo -2 + A (=, |hlm—2.00.£) €3 Vet e s

1
+ (T + e)%A(C—,Nm,T).
0
We thus finish the proof of (|11.54)). The inequality ([11.55)) can be shown in a similar way, we thus
omit the proof. O

12. CONTROL OF THE LS, NORM

In this section, we prove Proposition [2.3} the a-priori estimate for Ay, :
_1 . 1
Amr(o,u) = |hlm—2,00 + [[Vtll1,000 + 72 (VF0, divPu) lm—s5,00,0 + €200, 0) | m—5,00,7
1 1
+ [1(1d, £0¢) (0, w)[lm—s,00,7 + l€2 Vellm—3,00,7 + ll€2 (0, ) lm—2,00,7-

Remark 12.1. By the identity and the equation (1.16|), for u, we have that:

(12.1)

1 1
(12.2) 2| 0Zullm—5.00, S A(%,Am,t)-
Remark 12.2. As [%] <m—4ifm>7, we thus have:
1 . 1 1
lle™2 (V¥0, divou)lljm)—1 000 + 16280, W) ) —1,001 + €2 102Ul 2211 00.¢

1 1
+ [1(Zd, €00) (o, w) I 00,0 + N2 Vullimyt1 0o + lle2ull 40,000 S Amr-
The other terms appearing in A,, 7 can be obtained by the Sobolev embedding ({3.16)).

Proof of Proposition[2.3 By the Sobolev embedding H%(IR{2) < L°(R?), we have directly that:

(123) |h|m—2,oo,T 5 |h|L%oﬁm—% 5 gm,T-

Furthermore, thanks to the Sobolev embedding (3.16]), the last four terms in (12.1) can be
controlled by the ones appearing in &,, 7. Indeed,

1 1 1 ~
(12.4) ez]|0y(o; u)llm-s,007 S s (lle20pu(s)| gm-s + €20 Vu(s)|| ym—1) < Em,s
S8
1 1 1 ~
e2 [ Vu(s)llm-s.00r S sup_ (€2 Vu(s)llgm-1 + €2 V2u(s) gm-2) < Em,1,
0<s<T
(12.5) (o, u)llm-a,001 < S (o, @) ()l gt + IV (0, 0)(8)l| grm—a) S Emnr-
_S_

1 1 ~
ledi (o, u)llm—1,00r < S (le20u(o,u)(5) | ym—2 + €2 [|€0:V (o, u)(5)|| ym—3) S Emr-
S8

1 1 ~
(12.6) e2|(o; u)llm-2,001 S S (1o, uw) () [z + 12V (0, u)(8) | grm—1) < Em,r-
_s_

For the third term in ((12.1)), we can use the equation for o to get that:
1o 1 1 2
e2 |divPullm—s.c01 < lle2 060 llm—s5.00,7 + €2 (Il(1; 2040, VO 5,007 + [Alm—4,007)

<Emr+ s%A(Clo,Am,T).
s

(12.7)



Moreover, in view of , and identity IIV¥ = I1(9y, 02, 0),
2 V90 500 S € 200y 5007 (L + [hlin—so0)” + 2 IV0 - Bl 00,7 bl s, 00,7
SEnr+Enr+IVio- nm[Q%]—l,oo,T'
Indeed, we have used the Sobolev embedding to get that:
e 20y lm—5 001 S € 2IVEO] oo s S Emr
Therefore, it remains to control £72 IVéo - n|||[%}_1,oo7T, which is the aim of the following lemma. [J

Lemma 12.3. Suppose that (2.2)) holds, then:

_1 ~ 1,1
(12.8) e 2| V90 - nllim) 1 00r S Y (0) + E5 + €2A(5, A1)
Proof. By (§8.21]), we find that V¥o solves
1
2+ A

(12.9) e291(0 +u- V)V¥0 + Vo = Q

where Q1 = Q11 + Q12 + Qi3, with
Q11 = —€%g\V¥P0(e0s + eu - V)o — 21 VPu - V¥o,
curl?w, Q3 =—

Q122_2u+/\ 24+ A
Denote R = V%0 - n, then by (8.21), R solves:

92(e0¢ + eu - V)u.

e2g1(0 +u- V)R + R=e*g1V?0(0i+un+Q;-n=: Qs+ Q1 -n

2u+ A
For any multi-index with |3] < m — 5, denote R® = ZPR, then R? satisfies:
1

2 B
0 V)R
e“q1(0r +u-V) +2M+)\

RP=2°(Qa+ Qi -n) +Cphy +Chy=: Q°,

where
Cpy=—c%2°, g1 /eledR, Cpy=—c"12° giu-VIR.
Define X;(z) = X (¢, x) the unique flow associated to w :
WX (t,x) =u(t,X(t,z)), X(0,z)==x.
Note that since u - n|,—o = 0, and u € Lip ([0, 7] x Q), we have for each t € [0,T], X;: S — Sis a
diffeomorphism. Denote fX = f(t, X(t,z)), then R?¥ solves the ODE:
1

e2(g10:R7)(t, Xy (x)) + S

RP(t, Xy(2)) = Q°(t, X¢(x))

from which, we deduce that:

ot 1 t et 1 1
Rﬂ(t’Xt(li)) —e lo 5291(S,X5(x))d8R18(0) +/ e I 5291(@,)(5(9:))01572QB(T7 X, (z))dr.
0 e
By assumption (2.2)), co < g1(t, Xi(z)) < % for any (¢,z) € [0,T] x S. Therefore,
1 1
e 2 |RNopor Sz sup ROt Xy())]
(t,z)€[0,T| xS

(12.10) S e 2 |R (0l po(s) + &~

[N

T oti—sye2 1 3
e ™ gdSWQ llo,c0,7
0

1
S Yin(0) +e72Q% oo,
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It thus suffices to control the term e~ 2 Q0,007 First of all, by the property (2.1)), we get that:
_1 3 2 3

(12.11) e2[ICh 1 llo.0o S 2 (1(0, Vo lms5,00,1 + hlm-—s007)” S €2 A0, 1

Next, by using that u -V = u,d, + QZ;J,R we can control the second commutator term as:

(12.12) ez|icp,

Similarly, we can find some polynomlal A, such that

S (0,1, V0,2 V) lns.007 + [Plmssoor)” S e A% 7

€ 2||\Zﬁ(Q2 + Q11 - 10)flo,cor S €2A(* (o, u, Vo, 52VU)W[’”] loo, T T |h’[m]+looT)
(12.13)
< SEA(*,AT,LT).
€0

~

Moreover, in light of (12.3) and ((12.5)), we have

_1 1 1 1.1

e 2[12°(Quz - n)lo,00,r S N(eZ0pu - 1, 2w - V) fin5.00,7 + 2 A An)
(12.14) L 0
S+ 55/\(;, Am,1).

0
Finally, since

curl”w-n =divP(w x n) + w - curl’ n
—(wxn) 0N+ 01 (wxn) +da(wxn)+w-curl’n

involves only tangential derivatives of V¥u, one has again by (12.3]) and (12.5) that:

_1 1 2 _ &
(12.15) e 21 2°(Q12 - )llo.0or S (12 Vullm-ac0r + |hlm-3007)" S Enr

Collecting (12.11))-(12.15)), we find that:

G2 1 i
Iz 1,001 S Em T+52A(007~Am,T)~

Inserting this inequality into (12.10]), we eventually get ((12.8)). O

In the following Lemma, we obtain the Lg%, estimates of Vu, namely ]”528tVu”]0 ooty VU100,

Lemma 12.4. Assume that ) holds, then we have that for any 0 <t < T,
1

(12.16) \\\ezatVu\\\oOot+H\Vumloot A( ( ))—l—A(f ‘h‘goot) mT+<T—|—€)%A(CO Nm,T)-

Proof. In view of the identities and

[I(0%u) = NH(W x N + (V‘Pu) n—noiu— ngﬁgu)

1
\N| (wx N) +IIV?(u-n) — II((V¥n)'v — n101u — nadu),
one gets that:

1 1

1
WVUIlll,ooyt +e2]10:Vullo,cor S €2A(%, Am,)

1 L 1
+ A( NP3,00,) (Tl 2,00,¢ + l€2 Osull1,00, + €™ 2divPul|1,00,6 + flwll1,00,6 + ll€2 00 l0,00,t) -

The 1nequal1ty (12.16) then follows from (12.4), (12.5), (12.7) and the next lemma for the estimates
of w. 0
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Lemma 12.5. Under the same assumption as in Lemma (12.4)),

NI

1
A( 7NmT)-

)

(1217) oo+ Ie20lnocs S A( Ynl0)) + AL blaed)Emir + (T + 2

Proof. Away from the boundary, the conormal spaces are equivalent to the usual Sobolev space, the
L7, estimate for w can be obtained directly from the usual Sobolev embedding. It thus suffices
to establish the corresponding estimates near the boundaries. In what follows, we will detail their
estimates near the upper boundary (which corresponds to the free surface), the one near the bottom
being easier and has essentially been performed in [47]. As in the proof of Lemma we will
employ the normal geodesic coordinates to take the benefit of the explicit formula for the

heat equation on the half line. Taking the same cut off function x = Xo(ﬁ) introduced in Lemma

(which satisfies ®;(Supp x) € ®;(Sk)), we use the equation (T1.17)) to obtain that:
(POr — pA¥)(xw) = XG* — pAPxw — pdx(N - V¥)w =: G**
where

p— g2

G¥ = —u-Vw+w - Vu — wdiviu — % X ((e0y +eu-V)u) + ((edy +eu- Viw).

For a function f(t,-) supported on R? x [~C/(k), 0], we use the notation

F(t.2) = [(t, @' o By(x)).
By the change of variable, we find that yw satisfies the system:

(12.18) (PO — pO2)Xw = FX&@ =: GX& + p(D&;) 10y, - Vi
1
+ n[50:(In |g)0 + 9;(In|g)g"99; + 0:(59;)] (x@)

supplemented with the initial and the boundary conditions:

(1219) )?L/d|t:0 = xw|t:0(<1>51 o &>0)7 )?(/\/j’z:() = w|Z:0 =: wb’l.
Let
N o~ 1 N G e o
Blt,2,2) = i (7 ¢ W), ji=p/n,
(4mfit)?

the solution to the system (12.18)-(12.19)) can be expressed as:

xw(t,y,z) = t(@ 'E)(t—s,2,0)w bl(s y)ds + E(t, z, 2 ) xw|i=o(y, 2) d2’
(12.20) / /

/ / -8, 2, z/)m(s,y, ZYd2'ds = (1) + (2) + (3).

Control of the boundary term (1). As in the estimate of (11.31]) and (11.32)), we can bound the
boundary term as:

1 1
(1, &2, 0y, Z3)(1)llo,c0 < C(w)[|(1d, €20y, 8y )™ | 13e,
By the identities (4.4]), (4.3)), one sees that

wh! & F(ub’l, ayub’l, (divs"u)b’l, n®! an’l),
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which, together with the previous inequality, yields that:
1
Il(1d, 8531:7 By, Z3)(1)lo,00,t
1

1 1 1
(12.21) S A( |hls.00t) (le2 Ortully oot + e ™2 divPully oot + llull2.00) +€2A(a,/\/m 7).

1
<A( \h|3m)em,t+e%A(%,Nm,T).

Control of the initial evolution (2). Since 8,9, commute with the operator pd; — pd?, the following
identity holds:

1 0 1
(£20:,9,)(2) Z/_ E(t, 2,2") (€201, 0y) (xw)li=0(y, 2') A2,

from which we derive that:

1(1d, <204, 8,) (2) oo < H/ Bt 2, 2)|de’

4,200, @m0 s,
t z

(12.22) S A( Nhol2,00 + €2 Ot 0’100)(H(5§8tw)|t=0HL°°($) +[1(1d, 8y, Zz)woll Lo (s))

< A(Z v, (0)).
< (CO (0)
1 _lz?
To control Z3(2), we denote E4 (¢, z,2') = ﬂﬁe Tt By writing z = z—2'+2" or z = z+2'—2/,
dmiat)2

one can split Z3(2) into two terms:

0
= /_ P(2)0:(E- — Ey)(t,2,2") (x@)|i=0 2" = (Z3(2))1 + (Z3(2))2
with

0
(Z)1 = 01) [ (= 0B = o+ 0B (02,20 02

(Z5(2))2 = / E(t, 2, 2')0u (2 (%) 10) dz

where we use the notation ¢(z) = (2(1 52 = z¢1(z). By straightforward calculation, we obtain

0
612) [ (= 0B — (s )0 (1,2, 2)47 | < C(@)
where C'(f1) is a constant depending only on fi (in particular, independent of z and t). The first
term (Z3(2)); can thus be bounded as:

_ 1
1(Z3(2))1llo.00.t S [[(xW)lt=0ll Lo (s,) < A(aYm(O))-

Next, by writing
1

——~ Z3(XW)t=0,
ar(z) 2=

and by observing that ¢1(z) has a uniform positive lower bound on [—k, 0], we control the second
term as:

0z (2 (@) li=0) = (X@)le=0 +

. 1
1(Z5(2))2llo,c0.t < 1I(Id, Z3) (Xe0)t=0ll Loe(s,) < A(ngm(O))-
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To summarize, we have obtained that

IZ5(2) ot S A Ynl0).
which, together with , yields that:
(12.23) (14,2501, 0,: Z0)3) oot S Al Yo (0)

Control of the nonlinear term (3). We need to distinguish the terms appearing in FX% that involves
one normal derivative of the vorticity and the others. Therefore, let us denote

—~—

~ o —_ 1 —
(12.24) Fxv = pxu - VPw + pdy®y - V(xw) — po,xN - VPw + §,u82(ln lg))0:xw + R,
where the remainder term R satisfies the estimate

1 1
€2 00Rl 2z, + 1Bl 2z, S A= Amd) (12000, 0, Vel 2y, + 110, V) | 23,

1

co
1

5 A(%aNm,T)'

By using the Sobolev embedding H?(R?) — Ly (R?) we can deal with the term

t r0
/ / E(t—s,2z,2")R(s,y,2")d7'ds
0 J—o0
as follows:

t 0
/ / E(t— s,z,z’)(Id,aéat,ﬁy)R(s,y,z’) dz'ds
0 J—oo

t 0 )
S (/0 /_ |E(t — 8727Z,)|2d2,d8)§H(Id’géat’&y)RHLfLi/Lzo
t

1 1
< (/0 (t = 5)3d8) | (14,6300,0,) Rl 2, S THA( Nowr)

Moreover, as in the control of Z3(2), we have that:

t 0
Zo [ [ B2 2)R0. ) a2 ds S04 Z) Rl 3,
0 J—o0

(12.25) [(/Ot /_(; |E|2dz,d5>; n (/Ot /_(; (I(z = 2)0-E_> +|(= + z’)OZEHz)dz’ds) 2}

1,1
S TZA(f,Nm;f).
€o
We are left to treat the first four terms appearing in ((12.24]), for which we need to integrate by parts
in order not to lose normal derivative. Let us explain the estimate for the term

t 0 o
p/ / E(t—s,2,2)xu-VPwdz'ds
0 J—o0
By straightforward calculation, we find that
Xt - Véw = Xty (D®) 105 (xaw) + Xy, (D®)31.0: (1)
(12.26) = Xt (D®) 59 (x1w) — 2 (Xuy,(DP)3x) X1 + 82 (X1, (DP) 3 x1w)

where x1 is a cut-off function supported on [—C(k), 0] that satisfies x1x = x. The Einstein summation
convention is used for j = 1,2,k = 1,2, 3. As the first two terms in the right hand side of the above
82
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identity does not involve normal derivatives of (xiw), we have by following the same procedure as in
the estimate of R that:

t 0
— ~ . _ ~ __ 1 1
p [ Bl s ) (R (D) 0,() ~ 0.y (DB)a)Ni) d'ds S THA(- Alwr).
0 J—oo

For the one whose integrand involves the last term of (12.26)), we integrate by parts in 2’ to get that:
t 0
p [ [ B s )0 (DB w)d ds
0 J—oo
t ~
S / 10 E(t — s, 2, ')HL2,d3 HXUk(D‘I))SkXWHLgOL?,L;o
0 z z

co N~

1, PN 1 1
S T || xu (D®)sexiw| ooz, S T4A(%7Nm,T)-

In addition to the above two inequalities, we have also analogs of (12.25)), that is to say:

t 0
ﬁ(sé&g, Oy, Z3) / / E(t —s,2,2")xu- VPwdz'ds
0 J—o0

t
(1227) S_,A(Clme,T)/ HE(t_8727‘)762’(E(t_87'27‘)7 (Z_ ')8ZE—7 (z+‘)aZE+)HL2,dS
0 0 z
t

1 1
SA(=, Nowr) / (t—s)"7ds S TiA(—, Ny ).
€o 0 €o
We have thus finished the estimate of the term fot f?oo E(t — s,z, z’)xtf\v/ﬂf’w dz'ds. The other
three terms in ((12.24) can be dealt with in the same way. Consequently, we find that for any
te(0,7T],2<0,

t 0 o 1
(12.28) / / E(t —s,2,2")Fxwdz/ds < TiA(—,/\/'m 7).
0 J—o0

Co ’
Collecting (|12.21)), (12.23]) and (12.28]), we find that:
1 . 1 1 ~ 1,1
m (Id7 558157 62;7 Z3)(XW)H‘0,oo,t S A(%? Ym(O)) + A(%? ’h’?),oo,t)gm,t + (T + 8) 4A(%7Nm,T)7

By the property (11.22)), this leads to (12.17)). O

13. PROOF OF THEOREM [I.1]

This section is devoted to the proof of Theorem which is based on the known local existence
results (non-uniform with respect to ) and the uniform estimates established in the previous sections.
The local existence in the Sobolev-Slobodeskii space H*? (see the definition ) is established
in [57] [64] (see also [59] for the local existence in Holder spaces). All these results deal with the
case where the reference domain is a smooth bounded domain, nevertheless, by following the same
arguments as in these papers, one can easily obtain a similar result when the reference domain is
changed into a strip or half space. The following theorem corresponds to Theorem B of [57] or
Theorem 6.2 in [64] in this framework.

Theorem 13.1. Assume that the compatibility condition (1.28)) holds up to order 2 and
(05 45) € (HY(S))',  hf e H2(R?), 141> 300 >0,
0 is chosen sufficiently small such that

d.05(x) =1+ 9.nf(L+ 2) + 1§ > 2¢c9 > 0,Vz € S,
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where 1§ s the extension of hf defined in (1.12)). Then for any € € (0, 1], we can find T¢ > 0 such
that:
(0%, ) € C([0, %], H¥(S)), I € C((0,T¢], H2(R?)).
Moreover,
(13.1) wt € HY([0,T°] x S) = {u|dfu € L*([0,T%], H*%(S)),j = 0,1,2}

and holds.

We shall combine this theorem with the uniform regularity estimates established in the previous
sections. Set

T: = sup {T|(0°,u%) € C([0,T], H*(S)),u* € W*2([0,T¢] x S) and holds}.

Since the initial datum is assumed to belong to Y, a space with higher regularity, by standard
propagation of regularity arguments (for example based on applying finite difference instead of
derivatives) and the computations presented in Section 6-Section 12, we can find the following
uniform estimates of Theorem 2.1}

1 1
(13.2) N < Ps(— Y5 (0)) + (T +€)"Po(—, Y (0) + N ).

0 0
where 0 < ¥ < 1 and Ps, Ps are two increasing continuous functions that are independent of . By
the fundamental theorem of calculus and Lemma [3.8] one finds for 0 <¢ < T

t
0.p0(t,x) = 0,0(0,x) + / (O + (1 + 2)0:0,m)(s,x) ds
0
> aZQO(O, x) - ClT’ath(t)‘Loo(RQ)7

(13.3)

(13.4) 1V, V@) ()l oo sy < [(V, V20)(0) | oo s) + CoT () 2o (r2)-

where C1,Cy are two constants independent of €. Moreover, £0° can be expanded by using the
characteristic method:

¢
(13.5) cof(t,x) = eof (X (t, 1)) —/O (divus /g1)(X (s, X (¢, z)))ds

where X (¢, z) is the unique flow associated to wu. Let us define
Te = sup{T > 0|(c*,u") € C([0,T], H?),u* € W*2([0,T] x S)},
Tg =sup {0 < T < min{T%, 1} [Ny (0%, u°) < 2P5(1/co, M)
holds for all (¢,z) € [0,T] x S}.
where M is chosen such that M > sup.¢(g,1) Ym (05, ug)-
We now choose successively two constants 0 < eg < 1 and Tp > 0 (uniform in € € (0, eg]) which
are small enough, such that:

1
(To + €0)” Ps(1/co, M + 2P5(1/co, M) < §P5(1/co, M),

01T0P5(1/C(),M)2 S Co, CQTOP5(1/C(),M) S 1/(200), 2P5(1/C(),M)T0/CO S Ep.

In order to prove Theorem @, it suffices to show that Tjj > Ty for every 0 < € < gg. Suppose
otherwise Tj; < T for some 0 < ¢ < g¢, then in view of inequalities (13.2)-(13.4)) and the formula
(13.5), we have by the definition of ey and Ty that:

(13.6) N1 (0%, uf) < ;Pg,(l/co, M) VT <T =min{T,, T¢},
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(13.7)

0,0 (t,x) > cp, |(V<p€,V2<pE)(t,x)| <1/cy, —2eP <eo(t,x)<2P/e V(t,z)ec[0,T] x Q.
We intend to prove that T' = Ty < T . This fact, combined with the definition of 7§ and the estimates
(113.6), (13.7), yields T§§ > Tp, which is a contradiction with the assumption 7;; < Ty. To continue,

we shall need the claim stated and proved below. Indeed, once the following claim holds, we have by
(13.6) that [|(0°,u®)(T0)| g3 () < +oo. Using the local existence result stated in Theorem we

obtain that T > Ty =1T.

Claim. For all € € (0, 1], if N}, 7(0%, u¥) < +oo0, then (0%, uf) € C([0,T], H®), u* € H*2([0,T] x
S).

Proof of clatm. By the definition of Ny, 7, we derive that:
e2uf € L2([0,T), HY), e20uf € L2([0,T], H?), 202ue L2([0,T],L%) e20° € L([0,T], H?),

which yields by interpolation that £2us € C([0,T), H3) n H**([0,T] x S). Moreover, carrying out
direct energy estimates for o in H3(Q2), one gets that:

(13.8) |0:R°(t)] < K°f°(t)
where K¢ = A(1/co, ||(0¢, Vo£, Vus, €%V2u5)]”oo7t) is uniformly bounded and
& 1 g € 3 g 1 13 g -1 g
RE(t) = lle2o" (Dlz,  S7() = lle2u (D)1 + lle2u (D)7 + 1(0%, 62 Vo) (B)lI72 € L' ([0, T1).
Inequality (13.8) and the boundedness of || R°(:)|| < (jo,7]) leads to the fact that R*(-) € C([0,T]),

which further yields that e20° € C ([0,T], H?). This ends the proof of the claim. Note that at this
stage we do not require the norm |[|(o%, u®)||c(jo,r,7#3) to be bounded uniformly in e. O

14. CONVERGENCE

This section aims to show Theorem In the following, we denote Qr, = [0,Tp] x S, I'yy, =
[0, To] x R2.

First of all, for the surface, since 9;h° is uniformly bounded in L ([0, Tp], H™ 3/2(R?)),
h® is uniformly bounded in L([0, Tp], H™ /?(R?)), one has that h® converges (say to h°) in
C([0,Ty), Hy (R?)) for any 0 < s < m — 1/2. Further, from the definition of ¢©* and Lemma
(3-8), we conclude also that ¢° — ¢g in C([0,Tp], Hj.(S)),0 < s < m where ¢ is defined in a
similar way as by replacing h® with hO.

Next, since (E%Gtas,séag) is uniformly bounded in L ([0, Tp], H'(S)) x L>=([0,Tp], H3(S)),
we have that c20° is uniformly bounded in C7(Qr,),0 < v < 1. In view of the definition of
¢ : 0° = (P(p) — P(p))/e, we have that P(p°) — P(p) in C7(Qg,), which, combined with the

uniform boundedness of |V P(p%)||oo,t, yields the convergence of p° to p in C7(Qr).

Let us see the convergence of the velocity. We write u® = V¥ W + v¢, where V¥ U¢ and v°
denote the compressible and incompressible part of the velocity (see definitions , ) On
the one hand, since 5_%divwsu5, séﬁtdiv‘f’sug are both uniformly bounded in L®°([0, Tp], H*(S)), we
get that div¥ u® — 0 in C7([0, Ty, HY(S)),0 < v < 1. By elliptic estimates (5.10), V¥" ¥ — 0 in
C7([0,Tp], H*(S)). On the other hand, due to the uniform boundedness of 9;v¢ in L2([0, Tp], H1(S)),
and of v* in L>([0, Tp], H*(S)), we obtain by Aubin-Lions lemma that up to extraction of subse-
quences, v° converges (say to u®) in C([0,Tp], L2 (S)). Since we will prove that u° is the unique
solution (in conormal spaces with additional regularity property), to the incompressible free-surface
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Navier-Stokes equations this convergence holds indeed for the whole family. We thus proved that u®
converges to u® in C7([0, Tp], H(S)) + C([0, To), LE (S))-
To conclude, we have achieved that
(14.1) 0° =0 p°=p VI =0in C(Qp) v*—u’ in C([0,Tp],LL,),
1

(14.2) ¢ = % in C([0,To), Hio(S)) B —1h° in C([0, Ty, Hi o (R?), 0<s<m-— 3

We now show that there exists mo € L2([0, Tp], H*™~1) such that (u°, 7%, h°) is the (unique)
solution to the incompressible free surface system (1.36). Let us rewrite the equations for the
incompressible part of the velocity (see ) as follows:

(14.3) BOF 0% + 0 - V) — AP W + VP RS = FE
where

V97 =V (15 — ) — [0F P,

_1 1> ' £
FE = 5925 (0 + 0 - V)uE — p(v° - (V9°)2T° + V9 T° . V9" e).

with V¥ 7, V¥ ¢° defined in (9.7). Note that by the definition (5.2), (5.3)) for Q;, P, the commutator
—[0f ,PJu® can be expressed as a gradient:

(14.4) —[0F° Puf = [0F, Qus = V¥ (8 0° — \iﬁ)

where we denote V¥ 0¢ = Qt(({)“f ). By estimates established in , and -, we
readily see that V7 is uniformly bounded in L2([0, Ty, H%™~2). Therefore there exists 70 €
L2(]0, Tp), H®™~1) such that V#° tends (up to subsequences) to Va in LfU(QTO) and 7° converges
to mo in L2([0,Tp], L?,.(S)). Next, by boundary conditions (9.6), — (9.6)); as well as the fact (14.4)),
we have that:

€ € € 8 hs
(14.5) (2089 uf — 7 Id)NE = 2p(div¥? uld — (V¥°)>0°)N* + (alt 9. U5 )N®  on z =0,
(14.6) v =0, ,u@fsvj =au; (j=1,2) on z=—1.

Let us now choose a smooth vector ¢ = (11, 9,13)" € [C’go (QTO)] % with condition P3|,=—1 = 0.
Multiplying the equations ([14.3)) by v and integrating by parts in space and time, we find by using

the boundary conditions (14.5)), (14.6)) that:
(14.7)

t t
p/(vfw)(t,.)dvgwﬂ/ /S%E.vwwclv;dﬁp/ /(vs-V“’EvE)-dengs
S

—p/( ) dVs + //F ¢dVEds+p// L 0F wdv5d3+/ /~€d1v¢ ¥ dVeids
+a// (u§ - 1+ u§ - o) dyds—i—// v° ) dyds

-1
/ / (2udiv¥ us ah )(1p - N) — (V) 20°NE - o dyds

0.

where dV; = zso 5= (t,-)dydz. Since v* — 0 in C([0,Tp], L3,
C([0,To], Cioe(S)), we see that:

(148) 7 /3 (v° - )(t, ) AVE = /S (W)L, ) VY, p /S (v° (0, ) dVE = 7 / (W0 )(0, ) AV

S

(S)), 0.¢° converges to 0,¢"
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Let us now show the convergence of the last two terms in the left hand side of the above identity.
Since

(14.9)

v® — u® in L2([0,Tp], L2,.(S)), Vo© — Vu® in L3(Q7,), v° uniformly bounded in L*([0, Ty], H(S))
(14.10) ©° — % in C([0,Tp], CL(S)), (020%,0:00)(t,x) > ¢ > 0,Y(t, z) € Qr

one gets that: S*°v° — §¥0u0, V¥ p — V¢'1) in L?(Qr,), which leads to the fact:

Qu//sso v%@wdvfdsm// ) - dVeds
—>2M//S%0 V“"wdvods—l—p// ) - dV0ds

It suffices to deal with the convergence of the the last four terms in the right hand side of (14.7]). As
Ve s = (’)(5%) in LZH! and (v?, séﬁtua) uniformly bounded in L?([0, Ty}, H!(S)), one readily see
that F* — 0 in L?(Qq,), which gives that:

t
(14.12) / /Fé‘wdvgds—m.
0 JS

(14.11)

Next, since 9;p° — 9;° in L2 ([0, Tp], L?(S)), we have by combining (14.10] that ﬁfaw — 8f0w in
L?*(Qr,) This, together with (14.9) gives that:

t t
(14.13) ﬁ/ /va-afawdvg‘ds — ﬁ/ /uo-af°¢ dVds.
0 JS 0 JS

As for (14.11)), we have also that:
(14.14) / / 7edive ¢ dVeds — / / 70div?’y dV0ds.

To proceed, we prove that (u®)%7, (v°)%J both convergent to (u®)®J in L2 ([0, Tg] x R?) where j = 1,2.

Indeed, by the trace inequality and the fact (| -, one has for any K C R? compact,
|(0%)%7 — (u®)

where K C R? is a compact set such that K @ K. The same argument applies also for u®. Therefore,
one deduces that:
t t
a/ / (uf - Y1 + u5 - o) dyds —I—/ / (v - N®)(v® - ) dyds
=1

—>a/ / B (ud - 1b1 + ul - o) dyds+// u’ - 1) dyds

Finally, by the trace inequality div¥ u®, V¥ We (V¥¢)20¢ = O(e %) in L2([0,Tp], L?(R?)), which
yields that:

1
< HUE_UO 2 _ HUE

([0,To]x K) ~ L2([0,To],L2 (K x[—1,0]) -0

1
L
— Ul L0y (s)

(14.15)

(14.16) / / 02,ud1v"°u g ) - N¥Y — (V¥ )20NE - o dyds — 0.

Plugging (14.8) and 1 14.11]) into ([14.7)), we ﬁnd that (u®, 70, hY) satlsﬁes . Finally, it
is direct to see that u" has the addltlonal regularlty . In particular, u is Llpschltz continuous,

which is sufficient to verify the uniqueness. For the reader’s convenience, we will sketch the proof in
the following subsection.
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14.1. Uniqueness of limit system. Suppose that there are two solutions (h',u!, Va!) and
(h?,u%, V7?) to the system (1.36)-(1.39) on the time interval [0, Tp] with the same initial data (!, ©?
are defined through (1.11]) and (I1.12)) associated to h',h?). Let h = h' —h% u = u! —u? 7 = 7! — 72
We prove that h = 0,u = 0. By direct calculation, we find that (h,u) solves the following system:

(14.17) O+ ()P Vyh+ ubt - Vyh? 4t = 0

(14.18) O +u' Vu+ V7 —pA? u=F

where

(14.19) -
? ‘ u N Ot

F= _(ﬂl - @2) : qu + (vg02 - VSOl)ﬂz + /’L(A<pl - A% )u27 u' = (uliau; ) Q07’ )7Z =12,

and with boundary conditions:

(14.20)  (S?'u— rxld3)n' = [($¢° — $° )u?n' + (—S%"u? + 7°1ds)(n' —n®) on {z =0},
(14.21) po.uj =auj(j=1,2) ug=0 on{z=—1}.
Define

B(t) = O 3 . + 1100 0,00 s

It suffices to prove that

t t

(14.22) B(t) + /0 19 (1, 8,0) (5)]125)ds < A(R) /O E(s)ds, ¥t € [0,Ty)].
where

R=Y (I, V', 0,V oo + I (x', V) lloco + 1] ge )

i=1
Direct energy estimates on h lead to:
2 2 b,1
’h(t)‘H%(RQ) S A(R)(WLgH%(R?) * ’h’LfH%(RQ)W ‘LfH%(R?))

(14.23) . ’
<5 | IV 006 as) s +AGR) [ Bl)as

Thanks to Lemma and boundary condition (14.21]), we can obtain the energy equality:

1 t t
/|u(t)2th1+2u/ /|S‘P1u|2dV;ds+a/ / |ul? dyds
2 s 0o Js 0 JR?

t t t
— / / 7 div® udVlds +/ / F-udV!ds + 2u/ ($%'u — wld3)n’ - udyds,
0Js 0Js 0
where dV} = 9,¢'(t,-) dz. In light of the definition (14.19)) for F, boundary condition (14.20]) as well
as the identity:

div¥'u = (div‘p2 — diV“"l)uQ,
we can obtain, after lengthy but direct computations, that:
t t
/S|u(t)|2dvl +/O /S Vuf2dVids < A(R)(/O B()ds + 7l 2125 1)
Following similar arguments, one can also show that:

t t
/S|8yu(t)|2dvl+/0 /S|V8yu\2dvlds§A(R)(/0 E)ds + 17l 21050
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By the elliptic estimates performed in Section 5, we can find that:
I7lzz5) S AL 1 gy + 10l )

Combining the previous three inequalities and using Young’s inequality, we have:
¢ t
(D) (8) 2y + /0 19, 0y0) (5) 2205, ds < A(R) /0 B(s)ds.
Together with (14.23)), this yields (|14.22]).

15. REMARKS FOR OTHER REFERENCE DOMAINS.

In this section, we shall explain how to extend the uniform estimates results established in
sections 5-12 to the case when the reference domain is a channel with infinite depth or a bounded
domain. We will only explain the former case since the latter can be dealt with by using the similar
covering as in [48] and by working in local coordinates based on the former case.

Assume now that Qf is given by:
Of = {x = (y.2)ly € R% z < h°(t,y)}.

The first step is still to use the so-called harmonic extension transformation to reduce the problem
to a fixed domain. Consider the map

SR — QF

(15.1) t
(y,2) = ®°(t,y,2) = (y, 9" (t,y,2))

where

(15.2) O (t,y,2) = Az +n(t, )

Here 7 is given by (1.12]) and A is a constant which is chosen sufficiently large such that 0.¢° > 0.
We introduce the conormal vector fields
Zo = €at, Z1 = 8y1, Z2 = ayQ, Z3 = qb(z)@z

where the weight function ¢(z) = z/(1 — z). We can define conormal spaces analogous to those in
Section 1.2 by using these vector fields. Furthermore, we can use the quantity ./\/;f%T defined in (|1.31])
(with the conormal norms being changed accordingly in the current definition). The projections
Q¢,P; that send a vector field in (L?(R2 dV;))3, (dV; = 9. dydz) to its compressible part and
incompressible part are defined as: P; = Id — Q; and
Qi : LAR3 ay,)? — LA(R3 av,)?

f=Qf=V*o
where o satisfies the elliptic equation with trivial Dirichlet boundary condition:

{ —A¥p=—div*" f inR3

(15.3)

(15.4)
Q|z=0 =0

Denote further v& = P, V¥ Uf = Quue.

Following the similar (and even easier since there is no lower boundary) computations done in
Section 5-12, we can prove uniform estimates analogous to those of Theorem [2.1], we thus do not
detail them. We comment that one crucial point that we have used in the computations is that
| VT2 lo.00.t can be controlled by the L H} norm of div? u® (rather than ) which has a size of

£2. This is achieved by Sobolev embedding and elliptic estimate similar to (5.10f). In the current
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situation, due to the lack of suitable Poincaré inequality, only || V2| reomy, (but not |[VWe||poopa )
can be controlled by ||div¥uc| o - Nevertheless, in the current situation, one has the following
Sobolev embedding:

[fllzoo ey SNVl @2
which leads to:

1 :
IV llo,c0e S NVAE N e mry, S A(a |3,00,) | divPul oo

16. APPENDIX

We give a short proof of (3.4). The proof of |fg|msmz) S |flaslglwie, (0 < s < 1) can be
found in Theorem 15.2 of [46]. The case for —1 < s < 0 is derived by duality. We thus focus on the
proof of inequality: |fg|gsm2) S |flms]gl g+, (=1 < s < 1). We shall use Bony’s decomposition:

Fo=Tof +Trg=>_Sj190;f + Y SerafArg.

§>0 k>—1

One can refer to [p.61, [6]] for the definition of nonhomogeneous dyadic block Ay, and nonhomogeneous
low-frequency cut-off operator Sj. For any s € R, one can control T, f as:

Tof =2y S 9leeolflus S 19l e [flms-

As for ng, if s < 0, we control it with the aid of Bernstein inequality:

(27°|1A0;Trgl12) 2 S <2j(8+1)|AJ’(Zsk+2fAkg)|L1> i
k F

S0 Y |Ak9|L2)l]2 Sgp(2k8|5k+2f|m) S lgla|flms,
k<j+5

and if s > 0,
Tyg] < sup (2F1R Sy o flree ) gl anen S [ flrslgl s,

where k£ > 0 is a number that can be arbitrarily close to 0. The proof is now complete.
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