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Abstract

A possibilistic framework for instance-based prediction
is presented which formalizes the generalization be-
yond experience by means of fuzzy rules. In compari-
son with related instance-based approaches such as the
well-known Nearest Neighbor classifier, this method
distinguishes itself by the following: First, by suggest-
ing (guaranteed) degrees of possibility for competing
outcomes rather than making precise predictions, it
takes the uncertain character of similarity-based infer-
ence into account. Second, the possibilistic framework
can easily be extended so as to cope with incompletely
specified cases. Thirdly, the close connection between
possibility theory and fuzzy sets suggests the exten-
sion of the basic model by means of fuzzy set-based
(linguistic) modeling techniques. This paper especially
highlights two of these aspects, namely the modeling
of uncertainty and the handling of incomplete infor-
mation.

Introduction
The term instance-based reasoning refers to a class
of methods which make use of special techniques of
(case-based) knowledge representation, (lazy) learning,
and (similarity-based) inference. Well-known exam-
ples include the simple Nearest Neighbor classifier
(Dasarathy 1991), instance-based learning algorithms
(Aha et al. 1991), and case-based reasoning (Aamodt
and Plaza 1994). Inference in these methods is gener-
ally realized by extrapolating the information provided
by observed cases, based on some kind of closeness or
representativeness assumption. Typically, the concept
of similarity (or distance) plays a crucial role in the in-
ference process. In case-based reasoning (CBR), for ex-
ample, problem solving proceeds from the assumption
that “similar problems have similar solutions.” This
type of closeness assumption will subsequently be re-
ferred to as the SBR hypothesis, where SBR stands
for similarity-based reasoning.
In this paper, we formalize the SBR hypothesis and

the related inference principle in the framework of fuzzy
rules and fuzzy set-based approximate reasoning. Our
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Prade.

approach can be seen as a possibilistic version of the
Nearest Neighbor principle and thus provides a ba-
sis for corresponding extensions of instance-based learn-
ing and case-based reasoning. There are several motiva-
tions for combining SBR and fuzzy set-based modeling
and reasoning techniques (Yager 1997), and especially
the use of fuzzy rules in the context of SBR (Dubois et
al. 1998). Particularly, the notion of similarity, which
lies at the heart of SBR, is also strongly related to
the theory of fuzzy sets since membership functions ex-
press proximity w.r.t. prototypical elements in the core
of fuzzy sets. Moreover, possibility theory based on
fuzzy sets provides a tool for modeling and processing
uncertainty. In connection with SBR, this aspect seems
to be of special importance if one realizes the heuristic
character of this type of reasoning method (Hüllermeier
1999).
The basic framework we proceed from is stated in

Section 2. In Section 3, we present a possibilistic model
of similarity-based inference, referred to as PEC (Possi-
bilistic Extrapolation of Cases). This model makes use
of possibility rules, a special type of fuzzy rules, in or-
der to formalize the SBR hypothesis.1 In Section 4, our
method is compared to the classical Nearest Neigh-
bor principle and related approaches. In Section 5, we
briefly outline some extensions of the basic model. Fi-
nally, Section 6 presents calibration techniques which
allow one to adapt a model to the application at hand.

The Basic Framework

A case is a tuple 〈s, r〉 ∈ C = S × R consisting of a
situation s ∈ S and an associated result or outcome
r ∈ R.2 A case can be an arbitrarily complex object,
not necessarily represented by a set of numeric attribute
values. We do not assume that a situation determines
a unique outcome, which would be too restrictive for
certain applications. That is, cases 〈s, r〉 and 〈s, r′〉
might be encountered such that r �= r′. Let ϕ ⊂ S ×R

1See (Dubois et al. 1998; Plaza et al. 1998) for a more
logic-oriented formalization.

2We prefer these expressions for reasons of generality to
the terms “problem” and “solution” which are commonly
used in CBR.



denote the class of potential observations. Thus, a case
is always an element of the relation ϕ.
Data is assumed to be given in the form of a memory

M = {〈s1, r1〉, 〈s2, r2〉, . . . , 〈sn, rn〉} (1)

of precedent cases. The similarity of situations resp. re-
sults is specified by means of similarity relations σS :
S × S → L, σR : R × R → L, where L is an ordinal
scale whose top (bottom) element 1 (0) corresponds to
complete (dis)similarity.
Our focus is on the performance task of prediction,

namely the prediction of the result or outcome r0 ∈ R
associated with a new situation s0 ∈ S. To this end, we
shall characterize the possibility of the candidates r ∈ R
by means of a possibility distribution πR on R. Note
that, seen from a machine learning point of view, the
relation ϕ can be considered as a concept and, hence,
instance-based prediction can be cast in the framework
of concept learning. In fact, our point of departure is
a lower possibilistic approximation of ϕ, that is, a pos-
sibility distribution πC , where πC(s, r) is considered as
a lower bound to the possibility that 〈s, r〉 ∈ ϕ. For
example, πC(s, r) = 1 means that 〈s, r〉 does definitely
belong to ϕ, whereas πC(s, r) = 0 indicates that the
membership of 〈s, r〉 cannot be guaranteed at all. More
generally, a possibility degree πC(s, r) reflects the ex-
tent of available evidence in favor of 〈s, r〉 ∈ ϕ. Here,
evidence means the observation of similar cases which
belong to ϕ.

Possibilistic Extrapolation of Cases

Possibility Rules
Fuzzy rules provide a local, rough and soft specification
of the relation between variables X and Y ranging on
domains DX and DY , respectively (Dubois and Prade
1996). They are generally expressed in the form “if
X is A then Y is B,” where A and B are fuzzy sets
associated with symbolic labels and modeled by means
of membership functions on DX resp. DY .3
A possibility rule involving fuzzy sets A and B, subse-

quently symbolized by A� B, is a special type of fuzzy
rule which corresponds to the statement that “the more
X is A, the more possible B is a range for Y .” More
precisely, it can be interpreted as a collection of rules
“if X = x, it is possible at least to the degree A(x) that
B is a range for Y .” The intended meaning of this kind
of possibility-qualifying rule is modeled by the follow-
ing constraint which guarantees a certain lower bound
to the possibility, π(x, y), that (x, y) is an admissible
instantiation of (X,Y ):

π(x, y) ≥ min{A(x), B(y)}. (2)

As suggested by the rule-based modeling of the relation
between X and Y , these variables often play the role of

3We use the same notation for a label, the name of an
associated fuzzy set, and the membership function of this
set.

an input and an output, respectively, and one is inter-
ested in possible values of Y while X is assumed to be
given. By letting π(y |x) = π(x, y), the constraint (2)
can also be considered as a lower bound to a conditional
possibility distribution. That is, given the value X = x,
the possibility that Y = y is lower-bounded by π(x, y)
according to (2). Observe that nothing is said about
Y in the case where A(x) = 0 since we then obtain
the trivial constraint π(y |x) ≥ 0. Besides, it should
be noticed that the lower bound-interpretation is also
consistent with conditional distributions π(· |x) which
are not normalized, i.e. for which supy π(y |x) < 1.

Formalizing the SBR Hypothesis
A basic idea of the approach discussed in this paper is
to use a possibility rule as defined above in order to
formalize the SBR hypothesis. In fact, interpreting X
and Y as degrees of similarity between two situations
and two results, respectively, and A and B as fuzzy
sets of “large similarity degrees” (with strictly increas-
ing membership functions) amounts to expressing the
following version of the SBR hypothesis: “The more
similar two situations are, the more possible it is that
the corresponding outcomes are similar” (Dubois et al.
1998). Note that this formalization takes the heuristic
nature of the SBR hypothesis into account. In fact,
it does not impose a deterministic constraint, but only
concludes on the possibility of the outcomes to be sim-
ilar.
In the sense of the above principle, an observed case

〈s1, r1〉 ∈ M is taken as a piece of evidence which quali-
fies similar (hypothetical) cases 〈s, r〉 as being possible.
According to (2) it induces lower bounds4

π(s, r) ≥ min
{
σS(s, s1), σR(r, r1)

}
(3)

to the possibility that 〈s, r〉 ∈ ϕ. This can be inter-
preted as a similarity-based extrapolation of case-based
information: The observation 〈s1, r1〉 is extrapolated in
accordance with the SBR hypothesis. The more similar
〈s, r〉 and 〈s1, r1〉 are in the sense of the (joint) similar-
ity measure

σC :
(〈s, r〉, 〈s′, r′〉) �→ min

{
σS(s, s′), σR(r, r′)

}
,

the more plausible the (hypothetical) case 〈s, r〉 be-
comes and, hence, the larger is the (lower) possibility
bound (3). In other words, a high degree of possibility is
assigned to a hypothetical case as soon as the existence
of a very similar case is guaranteed (by observation).
Applying (3) to all cases in the memoryM we obtain

the possibility distribution πC defined by

πC(s, r) = max
1≤i≤n

min
{
σS(s, si), σR(r, ri)

}
(4)

for all c = 〈s, r〉 ∈ S×R. This distribution can be inter-
preted as a possibilistic approximation of the concept

4Without loss of generality, we assume the membership
functions of the fuzzy sets of “large similarity degrees” to
be given by the identical function id : x �→ x.



ϕ. It is of provisional nature and actually represents
lower bounds to possibility degrees (the equality in (4)
is justified by a principle of maximal informativeness).
In fact, the degree of possibility assigned to a case cmay
increase when gathering further evidence by observing
new sample cases, as reflected by the application of the
maximum operator in (4).

Similarity-Based Inference
The distribution (4) can be taken as a point of depar-
ture for various inference tasks. For example, given a
new situation s0, a prediction of the associated outcome
r0 is obtained in the form of the conditional possibility
distribution

πR : r �→ πR(r | s0) = πC(s0, r). (5)

For illustrational purposes let a case c = 〈s, r〉 cor-
respond to a car in the (real-world) Automobile
Database,5 where s is the horsepower and r the price
of the car. In this small example, which only involves
two attributes, the SBR hypothesis simply suggests
that “cars with similar horsepower have similar prices.”
Let σS = f100 with

fM : (x, x′) �→ [max{1− |x− x′|/M, 0}]L, (6)

where L = {0, 1/10, . . . , 1} and [x]L = max{λ ∈ L |λ ≤
x}. Moreover, let the similarity between two outcomes
(= prices) be given by σR = f10000. Figure 1 shows
the prediction (5) for s0 = 100. This prediction corre-
sponds to the “more or less” possible range of prices for
the class of cars whose horsepower is 100. As can be
seen, the evidence represented by the 205 cases (cars) in
the database strongly supports prices between $10, 000
and $17, 000. At the same time, however, it does not
completely rule out prices which are slightly lower or
higher.

Figure 1: Prediction (5) of the price of a car with horse-
power s0 = 100 (upper curve) and prediction (7) for
60 ≤ s0 ≤ 140 (lower curve).

A straightforward computation of the distribution (5)
has time-complexity O(|M| · |R|). Without going into

5Available at http://www.ics.uci.edu/˜mlearn.

detail, let us mention that a much more efficient com-
putation is generally possible. First, note that the pos-
sibility degree πR(r) is already determined by the case
〈s′, r′〉 ∈ M which is maximally similar to 〈s0, r〉. Since
only this case has to be found, searching the complete
memory can be evaded by means of efficient similarity-
based indexing methods and corresponding data struc-
tures. Second, one does not need to derive the complete
distribution πR if only those outcomes r with large pos-
sibility πR(r) are of interest. Therefore, the memory
M can be reduced to those cases 〈s′, r′〉 for which s′ is
similar enough to s0. Moreover, πR(r) needs to be com-
puted only for those results r ∈ R for which there is at
least one case 〈s′, r′〉 in the reduced memory such that
r is similar to r′. In other words, one can concentrate
on the neighborhoods of the results which have already
been observed (in situations similar to s0). This way,
complexity might be reduced to almost O(|M|).
Dealing with Incomplete Information
Suppose that we are interested in, say, the price of a
car whose horsepower is between 60 and 140. This
amounts to predicting the outcome of a situation s0
with incompletely specified attributes. The following
generalization of (5) is in accordance with the seman-
tics underlying our approach:

πR(r) = πR(r | S0) = inf
s∈S0

πC(s, r), (7)

where S0 denotes the set of situations s ∈ S which are
compatible with the characterization of s0 (i.e. the in-
terval [60, 140] in our example). Indeed, each potential
situation s ∈ S0 gives rise to a lower bound πC(s, r) ac-
cording to (4). Without additional knowledge, however,
we can guarantee but the smallest of these bounds to
be valid. This is in agreement with the idea of guaran-
teed possibility (of an event X ⊂ X ), which is formally
derived from a possibility distribution π on X accord-
ing to ∆(X) = infx∈X π(x) (Dubois and Prade 1996).
Figure 1 shows (7) for our example.
The prediction (7) can be generalized further by mod-

eling imprecise knowledge about s0 in the form of a pos-
sibility distribution π0 on S, where π0(s) corresponds
to the degree of possibility that s0 = s. A horsepower
of 100, for instance, might appear somewhat more plau-
sible than a horsepower of 80, even though the latter
is not completely excluded. A graded modeling of S0

is useful, e.g., if some attributes are specified linguisti-
cally.
Observe that (7) can be interpreted as the possibility

of the tuple 〈s, r〉 which is guaranteed by each possi-
ble situation s ∈ S0. Therefore – taking the possibility
distribution π0 which represents the imprecisely known
situation s0 into account – (7) can be generalized as fol-
lows:

πR(r) = inf
s∈S

max{πC(s, r), 1 − π0(s)}. (8)

One obviously recovers (7) from (8) by associating the
set S0 in (7) with a related {0, 1}-valued possibility dis-
tribution, i.e. π0(s) = 1 if s ∈ S0 and 0 otherwise.



(8) estimates the inclusion of the fuzzy set of situa-
tions compatible with S0 in the fuzzy set of situations
which are possibly associated with the result r; it repre-
sents the certainty that a situation, fuzzily restricted by
S0, is possibly associated with r. In the extreme case
where S0 is completely unspecified (π0 ≡ 1), (8) yields
πR(r) = infs∈S πC(s, r), that is, a fully uninformative
result usually equal to 0. This is clearly in agreement
with the idea that πR is a lower bound.
A further generalization becomes necessary when al-

lowing for incompletely specified sample cases. Let the
ith case in the memory be characterized by the (crisp)
set Ci = Si ×Ri ⊂ C. Then, (4) becomes

πC(s, r) = max
1≤i≤n

inf
ci∈Ci

σC(〈s, r〉, ci),

which is in accordance with (4) and (7). Moreover, we
obtain

πC(s, r) = max
1≤i≤n

inf
ci∈Ci

max{σC(〈s, r〉, ci), 1− πi(ci)}

if the ith case is characterized by means of a possibility
distribution πi rather than by a crisp set Ci. Observe
that this expression of πC(s, r) can be inserted into (8)
in order to handle incomplete specifications of both, the
sample cases and the new situation.

Comparison with Related Methods

The Nearest Neighbor Principle
As already mentioned above, the possibilistic extrapo-
lation of cases (PEC) is closely related to k-Nearest
Neighbor (kNN) and instance-based learning (IBL)
algorithms, which exploit the concept of similarity (dis-
tance) in order to predict the class (= outcome) associ-
ated with a new instance (= situation). The extrapola-
tion principle as realized by kNN (and IBL) algorithms
is best exemplified by the majority vote decision rule
which derives an estimation ĉ0 of the class c0 ∈ C of a
new sample point x0, from the set X of the k nearest
neighbors of x0, according to

ĉ0 = argmax
c∈C

card ({x ∈ X | class(x) = c}) . (9)

The principle of case extrapolation underlying PEC
avoids two questionable properties of the basic kNN
approach. This is mainly due to the fact that a pre-
diction in the form of a possibility distribution is more
expressive than a “point-estimation” such as (9), while
being less ambitious since is only reflects lower bounds.
First, (9) does not reflect the absolute distance of the

nearest neighbors (cf. Figure 2). In fact, the class of
an instance can be extrapolated to instances which are
hardly similar.6 In order to avoid this effect, it has
been proposed to apply a reject option (realized in the
form of a distance threshold) according to which a clas-
sification is refused if the nearest neighbor is not near

6This generally happens if only few observations have
been made.
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Figure 2: A simple kNN classification does not reflect
the ambiguity (left) and the actual support (absolute
distance of the neighbors, right) of a decision.

enough (Tomek 1976). In PEC, extrapolation of case-
based information is bounded in the sense that results
of situations are extrapolated only to similar situations.
More precisely, the support of an outcome is graded ac-
cording to the respective similarity.7 Thus, the most
plausible outcome, r, of a new situation s0 might still
be supported by a rather small possibility degree πR(r)
if the nearest neighbors of s0 are actually quite dissimi-
lar. Note that the extent of extrapolation is also graded
in the weighted version of the kNN algorithm (Dudani
1976). There, however, the weight depends on the rela-
tive rather than the absolute distance of the respective
instance.
Second, IBL does principally realize a point-

estimation when predicting a single class label. An
estimation of this kind cannot represent the ambigu-
ity caused by the existence of many different class labels
among the nearest neighbors (which entails a large clas-
sification error, see again Figure 2). Again, the basic
algorithm can be extended by a reject option in order
to account for this problem (Hellman 1970). By pro-
viding a prediction in the form of a possibility distri-
bution, i.e. a more general concept which can support
different outcomes to different degrees, ambiguity can
be reflected in a rather natural way in PEC. In fact,
a prediction is ambiguous if there are several plausible
outcomes having quite similar degrees of possibility.
The claim that IBL ignores the uncertainty related to

a prediction deserves some further comments. In fact,
this claim is actually not true if the kNN classifier is
considered in the context of kernel-based density esti-
mation (see the next section): Consider a set of data
comprising n = n1+ . . .+nm points (= real-valued vec-
tors) x, where ni denotes the number of observations
x such that class(x) = ci. Let x0 be a new observa-
tion. We choose the smallest hypersphere around x0

which contains a set X0 of k = k1 + . . . + km points,
where ki = |{x ∈ X0 | class(x) = ci}|. The condi-
tional probability densities of x0 can now be estimated
by ϕ(x0 |C = ci) = ki/(ni · v), where v denotes the
volume of the hypersphere around x0. Moreover, the
unconditional density of x0 and the prior probability of
the class ci can be estimated by ϕ(x0) = k/(n · v) and

7As a nice side effect, the choice of k (size of neighbor-
hood) thus becomes unnecessary.



p(C = ci) = ni/n, respectively. We thus obtain

pi = p(C = ci |x0) (10)

=
ϕ(x0 |C = ci) · p̂(C = ci)

ϕ(x0)
=

ki

k
.

According to (10), the class estimated according to the
(majority voting) kNN rule is just the one of maximal
(posterior) probability. This result provides a formal
justification of the rule. Besides, it is an obvious idea
to not only consider the estimated class but the prob-
ability vector (p1, . . . , pm) obtained from (10) directly,
which conveys an idea of the reliability of the predic-
tion.
Still, it is not clear how reliable the estimated prob-

abilities pi = ki/k themselves are. It is possible to
construct corresponding confidence intervals, but these
are only asymptotically valid. In fact, the number k
is generally small and, hence, (10) not very confident.8
Improving the quality of predictions by simply increas-
ing k does obviously not work, since it also entails an
enlarging of the hypersphere around x0.9 One should
also bear in mind that the density estimation based
on the kNN principle suffers from further difficulties.
For instance, deriving ϕ(x) for all x ∈ X leads to a
non-normalized density function since each x requires a
different hypersphere. Besides, it is not clear whether
the above derivation can simply be generalized to the
case where X is a non-metrical space.
The different extent to which extrapolation takes

place in (the probabilistic version of) IBL and PEC
is closely related to basic properties of the uncertainty
frameworks underlying these approaches. IBL “en-
forces” a (probabilistic) prediction even if only few ex-
amples have been observed. Besides, the predicted
probabilites (10) actually reflect the relative rather than
the absolute similarity between a new situation and
its neighbors. The prediction (10) remains unchanged,
e.g. when doubling the distance between x0 and all of
its neighbors, which might then be rather faint. As op-
posed to this, PEC does not support outcomes before
evidence in the form of similar cases is indeed avail-
able. In fact, a probabilistic approach is obliged to
provide a probability distribution, and IBL takes the
one that appears most faithful. As opposed to this,
a possibilistic approach such as PEC can express ig-
norance: πR(· | s) ≡ 0 simply means that no evidence
about the outcome in the situation s is as yet available.
In this connection, let us again emphasize the prelimi-
nary character of a possibilistic prediction which merely
provides lower bounds.

8Note that the estimated probability according to (10) is
1 for the class of the nearest neighbor (and 0 for all other
classes) in the special case k = 1, i.e. for the 1NN rule.

9Good estimations are obtained if both, the number of
observations is large and the surrounding hypersphere is
small.

Extensions of the NN Principle
A generalization of the k-Nearest Neighbor rule
which is closely related to PEC and which is also mo-
tivated by the aforementioned problems has been pro-
posed in (Denoeux 1995). In this method, each neigh-
bor xi specifies its “belief” about the class c0 ∈ C of
a new pattern x0 by means of a belief function (Shafer
1976) Beli resp. an associated mass distribution mi such
that

mi({ci}) = αi, mi(C) = 1− αi. (11)

The degree of support of the hypothesis c0 = ci, ex-
pressed by the weight 0 < αi < 1, is a decreasing func-
tion of the distance between x0 and xi. The evidence
in the form of belief functions associated with the k
neighbors is then aggregated by using Dempster’s rule
of combination. Note that the belief structure (11) is
consonant, which means that it can also be expressed
in terms of a possibility distribution.
The main differences between (Denoeux 1995) and

PEC are as follows:
(1) The combination of individual pieces of evidence

is realized in different ways, namely by means of a max-
aggregation in PEC and by means of Dempster’s rule
in (Denoeux 1995). Note that the latter assumes the
pieces of evidence to be distinct (Shafer 1976), which
might not always be true in the context of classification.
(2) As in IBL, the method in (Denoeux 1995) does

not consider a similarity structure over the set of out-
comes (classes). In fact, an instance only supports the
class to which it belongs. As opposed to this, a case
also supports similar outcomes in PEC.
(3) By focusing on classification as a performance

task, the method in (Denoeux 1995) has been developed
with a specific application in mind and can be seen as
a purely data-driven approach. As will be seen below,
PEC supports the combination of data and domain-
specific (expert) knowledge in the more general context
of case-based reasoning. This becomes possible through
the close connection between possibility theory and the
theory of fuzzy sets. In particular, this connection al-
lows one to adapt a possibilistic SBR model by means
of fuzzy set-based (linguistic) modeling techniques.
A further method which is closely related to PEC

is the fuzzy kNN algorithm proposed in (Keller et al.
1985). In this paper, a new instance x0 is not assigned
to one class in an unequivocal way. Rather, a “fuzzy”
classification is realized by specifying a degree of mem-
bership for each class. The degree to which x0 is as-
signed to the ith class is given by

ui(x0) =

∑k
j=1 uij

(
1/|x0 − xj |2/(m−1)

)
∑k

j=1 1/|x0 − xj |2/(m−1)
, (12)

where uij is the membership degree of the instance xj in
the ith class.10 The constant m determines the weight-
ing of the distance between x0 and its neighbors. Note

10The possibility of assigning fuzzy memberships to la-



that (12) assumes a metrical structure and is not in ac-
cordance with an ordinal setting. Besides, the member-
ship degrees in (12) sum up to 1 and, hence, represent
relative rather than absolute evidence.

Kernel-Based Density Estimation

PEC can also be compared to kernel smoothing tech-
niques from non-parametric statistics. Consider a set
{x1, . . . , xn} ⊂ R

m of realizations of a random variable
X . A kernel-based estimation (KDE) of an underlying
density function is then defined as

ϕ : x �→ 1
n

n∑
i=1

κh (x− xi) =
1
n

n∑
i=1

κ

(
x− xi

h

)
, (13)

where κ denotes the kernel function. Typical examples
of κ include the Parzen window and the normal kernel,
the latter being defined as the density of the (multivari-
ate) standard normal distribution. The so-called kernel
width or smoothing parameter, h, has an important ef-
fect on the accuracy of the approximation (13). It plays
a role somewhat similar to the bin-width of histograms.
The local generalization of observations as realized by

(13), i.e. the allocation of probability mass by means
of kernel functions, reflects the same line of thought
as the SBR hypothesis. Namely, it is (implicitly) as-
sumed that similar (= closely located) points have a
similar probability of occurrence. Indeed, the striking
similarity between (13) and (5) is revealed by writing
the latter as

π : c �→ max
1≤i≤n

σC(c, ci), (14)

where ci = 〈si, ri〉 is the ith case in the memory. In
fact, (14) can be seen as the possibilistic counterpart
to (13): Instead of taking the average over a number of
probability densities, the “possibilistic kernels” σC(·, ci)
associated with the data are combined by means of the
maximum operator. Thus, the sum and the product11
in (13) are replaced by the maximum and the mini-
mum in (14). Consequently, the generalization beyond
observed data is completely grounded on the concept of
similarity and does not fall back on the concept of fre-
quency. Of course, the two types of extrapolation are
not directly comparable, and their adequacy strongly
depends on the application at hand. Here, let us only
mention that a purely similarity-based extrapolation is
an interesting alternative if frequency is not a reliable
information source, e.g., if data is sparse or the assump-
tion of independence is violated. See (Hüllermeier 2000)
for a more thorough discussion along these lines.

beled instances is seen as an important feature of the algo-
rithm. It allows, e.g., to increase (decrease) the influence of
a labeled instance which is (not) considerded prototypical
of a class.

11The kernel function κ can be thought of as the product
of a set of one-dimensional density functions.

Controlling the Extrapolation
The possibilistic extrapolation of case-based informa-
tion in the sense of (3) relies on the heuristic assumption
underlying SBR. It should, therefore, take into account
whether the related reasoning principle is actually valid.
That is, the less the current application seems to meet
the SBR hypothesis, the more cautious one should be
when considering an observed case as evidence for the
existence of similar cases. To this end, several exten-
sions of the basic model can be realized which allow
one to modulate the extent of similarity-based extrap-
olation.
Particularly, the basic model can be rendered more

flexible by making use of so-called (linguistic) modi-
fiers (Zadeh 1972) in (4), i.e. non-decreasing functions
m1,m2 : L → L. This leads to possibility rules
m1 ◦A m2� B with associated distributions πC , where
πC(s, r) = max

1≤i≤n
m2

(
min

{
m1(σS(s, si)), σR(r, ri)

})
.

Both modifiers control the extent to which a sample
case is extrapolated, i.e. the extent to which other (hy-
pothetical) cases are supported by an observation. The
larger (in the sense of the partial order of functions
on L) m1 and m2 are, the stronger (in the sense of as-
serted possibility degrees) a case 〈si, ri〉 is extrapolated.
The modifier functionsm1 andm2 provide a convenient
way of incorporating domain-specific (expert) knowl-
edge (expressed in a linguistic way), thereby combin-
ing data-driven and knowledge-based reasoning. Apart
from expert knowledge, learning (calibration) methods
can be used in order to adapt the inference principle to
the application at hand.

Figure 3: Prediction induced by two different rules (us-
ing the scale L = {0, 1/100, . . . , 1}). The overall pre-
diction is the pointwise maximum.

Further extensions of the basic framework include the
discounting of untypical cases, the restriction of infer-
ence rules to (fuzzily) bounded regions, and the model-
ing of the SBR hypothesis by combining several rules
(Hüllermeier et al. 2000). Thus, a similarity-guided ex-
trapolation principle might be expressed linguistically
as follows: “Cars have similar prices if either the horse-
power is very similar or both, the engine-size is simi-
lar and the peak-rpm is approximately similar.” This



model corresponds to two rules and can be translated by
making use of appropriate modifier functions and log-
ical connectives. When making a prediction, each rule
contributes a possibility distribution, and the overall
prediction is obtained by taking the (pointwise) maxi-
mum (since a certain outcome can be supported by any
of the two rules, see Fig. 3).
Interestingly enough, our framework is also well-

suited for incorporating background knowledge which
is expressed in the form of fuzzy rules or other types of
constraints. As an example consider the following con-
vexity constraint according to which intermediary prices
of a car are not less possible than more extreme prices:

r′ ≤ r ≤ r′′ ⇒ min{π(s, r′), π(s, r′′)} ≤ π(s, r)
for all s ∈ S and r, r′, r′′ ∈ R. In order to satisfy
this constraint it is necessary to replace the possibility
distribution πC by its convex hull

πch
C : (s, r) �→ min

{
max
r′≤r

πC(s, r′),max
r≤r′′

πC(s, r′′)
}
.

Note that such constraints are generally more difficult
to handle in related methods such as, say, kernel-based
density estimation.

Calibration of SBR models
The methodological framework introduced so far pro-
vides a broad spectrum of modeling techniques, includ-
ing the modification of similarity measures (via corre-
sponding modifiers), the discounting of rules, and the
discounting of individual cases. Needless to say, it
would be unrealistic to expect a human expert using
these (linguistic) modeling techniques to come up with
precise mathematical formalizations of related fuzzy
concepts. Rather, the idea is that the expert specifies
only the coarse structure of a model, i.e. the linguistic
rules. The ultimate SBR model is then determined in
a second step by adapting the expert model to the ob-
served data. This is to some extent comparable, say,
to graphical modeling techniques such as Bayesian net-
works, where the user specifies the structure of the net-
work (i.e. the qualitative part of the model), and the
(conditional) probability distributions (i.e. the quanti-
tative part) is learned from data.
This section is meant to discuss this type of model

calibration in more detail. More precisely, we consider
the problem of determining modifiers m1 and similar-
ity measures σS and σR in a set of rules of the form
m1 ◦ σS � σR. Each of these rules induces a related
possibility distribution
(s, r) �→ max

1≤i≤n
max

{
m1(σS(s, si)), σR(r, ri)

}
, (15)

and the overall prediction πC is given by the union
(pointwise maximum) of these distributions.
The basic idea is to proceed from similarity mea-

sures and modifiers which are specified in the form of
parametrized functions. For instance, the modifier as-
sociated with the linguistic hedge “very” might be spec-
ified by the function x �→ [xα]L with α > 1. Likewise,

the similarity of horsepowers, σhp, might be given by
fM in (6), where M plays the role of a parameter. All
these parameters can be combined into one vector ϑ
which determines the SBR model and, hence, has a
strong influence on the generalization beyond (via ex-
trapolation of) observed cases. In this sense, it plays
a role somewhat similar to the smoothing parameter
in kernel-based estimation of probability density func-
tions.
In order to determine ϑ and, hence, a concrete SBR

model from the memory M of observed cases, a kind
of optimization criterion is needed. A reasonable idea
is to minimize some distance, such as e.g.∑

c∈C
(πC(c |ϑ)− πϕ(c))

2
, (16)

between the estimated distribution πC(· |ϑ) and the
(true) {0, 1}-valued distribution πϕ defined by πϕ(c) =
1⇔ c ∈ ϕ. A similar procedure is used in kernel-based
density estimation, where one way of determining the
smoothing parameter h is to minimize the integrated
squared error

ISE(h) =
∫
(ϕ(x) − ϕh(x))

2 (17)

between the true density ϕ and the estimation ϕh. Of
course, (16) cannot be derived since πϕ(c) is not known
for all c ∈ C. In fact, the same problem occurs in (17),
where the density ϕ is unknown. A possible way out
is to apply a (leave-one-out) cross validation procedure
which considers only the observed values, i.e. which ap-
proximates the integral by a weighted sum, and which
replaces the density ϕ by a further estimation ϕ̂. This
leads to the minimization of

n∑
i=1

(ϕ̂h(xi)− ϕh(xi))
2 , (18)

where ϕ̂h(xi) denotes the estimated (cross validation)
density for the ith observation xi. Again, this value is
obtained by means of a kernel-based estimation (using
h as a smoothing parameter). As opposed to the deriva-
tion of ϕh(xi), however, this estimation leaves the point
xi itself out of account, i.e. it uses only the observations
{x1, . . . , xi−1, xi+1, . . . , xn}.
The idea of such a cross validation can also be ap-

plied to (16). In this case, we do not even have to
estimate the values πϕ(ci) since πϕ(ci) = 1 holds true
for each observation ci ∈ M. However, by restricting
ourselves to the observed cases, the minimization prob-
lem becomes ill-posed. In fact, a trivial solution to the
problem of minimizing∑

c∈M
(πC(c |ϑ)− πϕ(c))

2 (19)

is given by πϕ ≡ 1. This simply means to choose the
parameter ϑ such as to maximize the extrapolation of
cases, a hardly convincing result.



In this connection, it deserves mentioning that a pos-
sibilistic prediction πC can principally not be “falsified”:
The non-support of an actually observed case can be
justified by the fact that no cases have (as yet) been
observed which are similar enough. Thus, a small value
πC(c |ϑ) is not necessarily a defect of the model, i.e. it
does not necessarily indicate a poor choice of the pa-
rameter ϑ. (Recall that predicted possibility degrees
are only lower bounds, and that low degrees are quite
natural if the memory M does not contain many cases
similar to c. Particularly, the lower possibility bound
obtained from the remaining cases is 0 for completely
“isolated” cases which are as yet not supported by any
similar observation.) Moreover, it is hardly possible
to object to the support of a yet unobserved case since
it would require knowledge about the non-existence of
that case (which is of course not available). As can
be seen, the model based on possibility rules only in-
dicates which cases are (provably) possible. It does
not, however, point to those cases which appear im-
possible. In other words, the possibilistic model merely
expresses the support but not the exclusion of cases.
This contrasts with a probabilistic approach, where an
event cannot be supported without (partly) excluding
its complement at the same time.
Interestingly enough, the (partial) exclusion of cases

according to the SBR principle can be realized by
means of a different type of extrapolation principle in-
duced by a different sort of fuzzy rule: A certainty rule
A� B corresponds to the statement that “the more x
is in A, the more certain it is that y is in B” and gives
rise to a constraint of the form

π(x, y) ≤ max{1−A(x), B(y)}.
Based on this interpretation, an SBR rulem1◦σS � σR
entails the distribution

(s, r) �→ min
1≤i≤n

max
{
1−m1(σS(s, si)), σR(r, ri)

}
.

(20)

This distribution, which actually represents upper
bounds, defines the counterpart to (15). The overall
prediction πC , associated with a set of rules, is defined
by the intersection (pointwise minimum) of the distri-
butions (20). As can be seen, a certainty rule reduces
the possibility of hypothetical cases which are some-
how in conflict with observed cases, in the sense that
the situations are similar but the outcomes are rather
different.

Example 1 Consider as an example a case
(100, 15000), i.e. a car with horsepower 100 and price
$15,000, in connection with the similar horsepower–
similar price principle. According to the possibility
rule model (15), this case (partly) supports the case
(110, 16000) which has a similar horsepower and a
similar price. According to the certainty rule model
(20), it (partly) excludes the case (110, 5000) which
has a similar horsepower but a rather different price.
Observe that the possibility rule model will generally say

little about the case (110, 5000), as expressed by a small
lower possibility bound. Likewise, the certainty rule
model has not much to say about the car (110, 16000)
to which it assigns a large upper bound.
In connection with the determination of optimal sim-

ilarity measures and modifiers, the two models can com-
plement each other in a reasonable way.12 Note that
the prediction πC derived from (15) and the prediction
πC obtained from (20) might be conflicting in the sense
that πC(c) < πC(c) for some case c. This can happen if
c is supported by some observation c1 ∈ M (according
to the possibility rule model) and, at the same time, ex-
cluded by some other observation c2 ∈ M (according to
the certainty rule model). A situation of this kind indi-
cates a defect of the underlying SBR model (the lower
possibility bound is larger than the upper bound). Note
that a conflict occurs if a case c is similar to both, c1
and c2 (in the sense of the similarity measure σS), and
if c1 indicates a result which is quite different (in the
sense of σR) from the one suggested by c2. Besides, it
should be noticed that a more or less isolated case c
does not involve any conflict, since πC(c) and πC(c) will
be close to 0 and 1, respectively.
Example 2 Suppose, for instance, that we have ob-
served the cars c1 = (50, 5000), c2 = (100, 15000), and
c3 = (75, 7000) and that we only distinguish between
similar and dissimilar horsepowers resp. prices:

σS(x, y) =
{
1 if |x− y| ≤ ∆
0 if |x− y| > ∆

,

σR(x, y) =
{
1 if |x− y| ≤ 5000
0 if |x− y| > 5000

.

For ∆ = 30, c1 qualifies the case c3 as being (com-
pletely) possible. However, since σS(75, 100) = 1 as
well, c3 is disqualified by c2 at the same time. This
suggests to choose a smaller value for ∆, since other-
wise the similar horsepower–similar price rule becomes
invalid. More generally, a memory of n cases 〈si, ri〉
calls for

∆ ≤ min
1≤i,j≤n, σR(ri,rj)=1

|si − sj |
in order to satisfy this rule. As can be seen, the stronger
the variability in the horsepower–price relation is, the
more restrictive the similarity between horsepowers has
to be defined. In the more general case where similarity
measures are not {0, 1}-valued, a conflict might appear
in a less obvious way, and the degree to which the SBR
hypothesis is satisfied can vary gradually.
The above example reveals the following effect: The

more similar the cases are made (through the defini-
tion of corresponding similarity measures and modi-
fiers), the stronger is the degree of support resp. ex-
clusion induced by a set of observations according to

12The joint use of lower and upper possibility bounds (de-
rived, respectively, from possibility and certainty rules) has
also been advocated in the context of approximate reasoning
(Ughetto et al. 1999; Weisbrod 1998).



(15) resp. (20) and, hence, the larger the conflict be-
comes. Here, we take advantage of this effect in order
to define meaningful modifier functions and measures
of similarity. In fact, a reasonable optimization crite-
rion is to find a tradeoff between a principle of correct
support (of observed cases) and a consistency principle:
• Observed cases should be supported correctly, i.e. as
much as possible, by the other cases in the mem-
ory (e.g. in connection with a leave-one-out cross-
validation).

• The conflict between the support and exclusion of
these cases should be as small as possible.

Formally, we define the support attached to a case c ∈
M by

suppϑ(c) = πC(c |ϑ), (21)
where πC(· |ϑ) is derived fromM\{c} according to (15)
andm1, σS , σR are determined by the parameter vector
ϑ. Moreover, the conflict associated with the case c can
be defined as

confϑ(c) = max{0, πC(c |ϑ)− πC(c |ϑ)}, (22)
where πC(c |ϑ) is the distribution obtained from the
certainty rule model (20). Note that the subtraction in
(22) is actually not in line with a purely ordinal inter-
pretation of possibility. Based on an adequate definition
of the possibility scale, however, it will generally serve
well enough as a rough specification of the discrepancy
between the two predictions. Still, one might also think
of using a purely qualitative measure of conflict:

confϑ(c) =
{
1 if πC(c |ϑ) < πC(c |ϑ)
0 if πC(c |ϑ) ≥ πC(c |ϑ) .

The derivation of (21) and (22) for all cases in the mem-
ory yields n degrees of support and conflict, respec-
tively. The overall support induced by the parameter
ϑ, supp(ϑ), can then be obtained by aggregating these
values:

supp(ϑ) = A({suppϑ(c) | c ∈ M}) (23)
with A being an aggregation function. A measure
conf(ϑ) of conflict can be defined analogously. Finally,
an optimal parameter ϑ is derived as a function of the
support and the conflict thus defined, e.g. by maximiz-
ing

supp(ϑ)− α · conf(ϑ) (24)
for some α ≥ 0 or by maximizing supp(ϑ) under the
condition that conf(ϑ) ≤ α.
In order to combine the degrees of support (conflict)

associated with individual cases, one might use a simple
average as an aggregation function A in (23). Yet, an
aggregation which is more in accordance with a quali-
tative setting is the Sugeno integral

sup
α≥0

min{α, µ(Fα)}, (25)

where Fα = {c ∈ M| suppϑ(c) ≥ α} for 0 ≤ α ≤ 1.
The measure µ in (25) can be taken as the counting
measure, i.e. µ(A) = |A|/|M| for all A ⊂ M.

Figure 4: Support (solid line) and conflict as a func-
tion of the parameterM which defines the similarity
measure for the attribute horsepower.

Figure 5: Prediction of the price of a car with horse-
power 100, where σhp = f76.

Example 3 Consider as a simple example the choice
of the parameter M which defines σhp = fM in connec-
tion with the similar horsepower–similar price hypoth-
esis (using σR = f3000). Figure 4 shows supp(M) and
conf(M), defined according to (21), (22), and the aggre-
gation (25) as a function of M . The choice of α = 3/4
in (24) suggests M = 76 as an optimal parameter and
leads to the prediction shown in Figure 5.

The calibration method outlined above can be seen
as a generalization of related probabilistic approaches.
In the latter case, the support and the exclusion of a
value always add up to 1. Therefore, a conflict cannot
occur, and only the principle of correct support remains
relevant. Note that this principle reduces to a principle
of maximal support in the possibilistic model, as can
be gathered from (19). In the probabilistic case, the
correct support corresponds to the true probability, as
expressed by (18).



Concluding Remarks

The basic inference principle underlying instance-based
reasoning relies on a similarity-guided extrapolation of
observed cases. We have formalized this principle in
the framework of possibility theory and fuzzy sets: An
already encountered case is taken as evidence for the ex-
istence of similar cases, and this evidence is expressed in
terms of degrees of possibility assigned to hypothetical
cases. This inference principle provides an interesting
alternative to the classical Nearest Neighbor princi-
ple and extensions thereof. Here, we have emphasized
that our method adequately represents the uncertainty
involved in the heuristic SBR principle and also allows
for dealing with incompletely specified observations.

PEC has been implemented in the framework of an
experimental information system maintained at IRIT
(PRETI, for Platform of Research and Experimenta-
tion in the Treatment of Information). This platform
uses a database describing houses, specified in terms
of about 30 attributes (binary, symbolic or numerical),
which can be rented weekly for vacations. The system
offers various facilities apart from PEC (e.g. flexible
querying allowing for the expression of the user’s prefer-
ences, querying by examples, ...) which help the user to
retrieve houses of interest and to understand the situa-
tion of the market. Especially in the latter aspect, PEC
is useful. In fact, apart from making predictions, it
can also support certain types of data analysis. For in-
stance, suppose the user suspects that some attributes,
say, the number of people who can be accommodated or
the distance to the sea, can influence the price. Then,
using PEC, a possibility distribution for the price is
built on the basis of the prices of the houses more or
less similar to the type of house the user is looking for.
It may happen that the range of more or less possible
prices is quite large, perhaps due to the fact that the
chosen attributes do not really influence the price, or
that they do not sufficiently specify the type of house.
In this latter case, other attributes may be added to the
specification, e.g. the presence of a dish-washer. This
might lead to a more focused range of prices. The fea-
ture selection problem, i.e. the automatic determination
of decisive attributes, is an important topic in instance-
based learning. The reconsideration of this problem in
the framework of PEC might provide new insights and,
hence, is an interesting point of further research.
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