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Fall detection for robotic endoscope holders in Minimally Invasive
Surgery

Jesus Mago'2, Francois Louveau?, Marie-Aude Vitrani'

Abstract— Classic Minimally Invasive Surgery (MIS) is an
ergonomic burden for assistants and surgeons. The former need
to adopt uncomfortable positions for hours while holding a
camera to track the latter’s gestures inside the patient. This
incurs assistant’s muscle fatigue which can lead to tremor or
drift of the video feedback. A backdrivable robotic holder can
be attached to this device in order to compensate its weight. This
allows the user to place the camera at a desired position which
the robot will steadily keep once he/she releases it. However,
endoscopic cameras present difficult-to-model accessories whose
gravity parameters can change during the same surgery. If these
changes are not foreseen by the gravity model of the robot
this results in a fall of the endoscope each time it is released.
Therefore, it is desired to firstly detect if there is a fall in order
to be able to correct it. In this article a fall detection method
for a comanipulated robotic endoscope holder is proposed. It
evaluates smoothness of the robot end effector trajectory to
identify whether the user manipulates the instrument or it
has been released and poorly compensated. An experiment
was carried out with 10 subjects where 240 releases of the
endoscope were performed while it was poorly compensated.
The algorithm succeeded to detect the falls with sensitivity up
to 99.17%.

I. INTRODUCTION

Laparoscopy is a minimally invasive surgery that allows
surgeons to operate abdominal and pelvic organs through
small incision making use of long rigid instruments. The
gestures inside the patient can be monitored thanks to a
video feedback obtained from a tubular rigid camera called
endoscope or laparoscope [1]. In classic laparoscopy this
camera is held by an assistant at a position previously
indicated by the surgeon. Several problems are intrinsic with
this approach: the positions that assistants have to adopt
in order to hold the camera are both uncomfortable and
cumbersome for the constrained work-space of the surgery.
What is more, holding the camera for hours incurs muscle
fatigue which leads to tremor or drift in the video output. To
ease this aspect, a robotic arm can be attached to the camera
to steadily hold it at any desired position.

A. Laparoscopic surgery and robotic holders

In literature several robotic solutions have been proposed
to address this problem. An extensive review on robotic
endoscope holder can be found in [2]. However, these
solutions present a common drawback which is the utilization
of high-gain control laws to maintain a desired position. This
represents a safety risk as the robotic arm can apply harmful
forces over tissues in case of unexpected movements of the
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Fig. 1: Different configurations of fiber optic cable.

patient. In addition, these are solutions based on robotic
arms with low or none backdrivability which constraints their
usage to only teleoperation approaches (voice commands,
joysticks, pedals, buttons etc.).

B. Problem statement

We presented in [3] a fully backdrivable robotic endoscope
holder that features two modes: free and locked mode. In free
mode the user can place the camera by hand at any desired
position in a comanipulation fashion [4]. After the camera is
released, the robot steadily keeps the release position thanks
to a model-based gravity compensation. Once the device is
kept immobile for more than a pre-set time Ar (Usually set
around 3 s to 10s), the control law switches to a locked mode
to maintain this last position by means of a compliant PID.

The problem with this approach arises when the gravity
model does not correspond accurately to reality. In this case
the user can not release the endoscope before it is locked
as, otherwise, it will fall from the release position. This
situation imposes an inconvenient trade-off: setting Az too
long, represents a disruption for the normal handling of the
endoscope, i.e., the user has to spend an idle time whenever
she/he wants to release the camera. On the other hand, if this
time is set too short, there is the risk of false positives each
time the user reduces his/her handling velocity, locking the
robot when it is not desired.

Approaches that involve pedals or buttons that switch
between locked mode and free mode can be solutions as well.
However these kinds of approaches would require, firstly
an additional hardware that could be either cumbersome or
incompatible with the usual operating room’s equipment.
Secondly, these would require an additional cognitive re-
quirement from the user to synchronise the activation of



the button or pedal with his/her actual manipulation. On the
other hand, a global viscous field can be set to counteract
the fall of the endoscope. Nevertheless, such a force would
attempt against the transparency of the robot while being
comanipulated.

Therefore, an accurate gravity model of the endoscope
is indispensable. However, developing mathematical models
of these devices is a challenging task: they usually feature
difficult-to-model elements as, for instance, the fiber optic
cable attached to them. This is a deformable element that
weights around 250 g. Depending on the surgery and the
space available, this cable can be placed in several locations,
hanging completely or partially from the camera. Take for
instance the situation shown in Fig.1. In the left picture,
center of mass of the cable is at the left of the camera
axis and its weight is shared between camera and a surface,
whereas for the right image the weight is supported mainly
by the camera and the cable’s center of mass is at the right.
Each of these configurations represent a different gravity
model. On this account, it is of interest to have a solution
that could adapt to this kind of uncertainties in real time in
order to avoid any fall after the release of the camera.

C. Adaptive compensation methods

In literature several algorithms to address uncertainties
in gravity models have been proposed. They can be di-
vided in two categories: mechanical and software-based
solutions. Mechanical solutions consist in using springs or
counterweights to guarantee a constant potential energy of
the system. An adaptive behavior can be featured adding
actuators to these mechanisms. They can be used to change
the lever arm of counterweights or to change the precharge
load of springs. A review on these solutions can be found in
[5]. The main drawback of these approaches is the need of
cumbersome and heavy elements in order to compensate for
changes in the payload.

On the other hand, software-based solutions are of interest
as they are lightweight. Methods as [6], [7], [8] include
approaches based on fuzzy control and sliding modes al-
gorithms for dealing with high variability of payload while
guarantying stability. The main limitation with these methods
is the need of computing a set-point or trajectory in order
to compensate for anomalies in the gravity model. These
solutions are not adequate for the free mode previously
explained as it is not possible to define a set-point or
trajectory when the idea is to allow the user to freely displace
the end-effector of the robot.

There are other approaches that do not require the constant
computing of trajectories or set-point. In [9] an Extreme
Machine Learning (EML) is used to develop an adaptive
controller for a lightweight robot. It requires a first phase
where data from random configurations of the robot with a
known payload is collected to estimate an inverse equilibrium
model. In [10] a method is developed to automatically
estimate apparent mass of a 3D haptic device. In a off-line
phase they estimate a 3D mapping of apparent masses for the
workspace of the robot for each new unknown payload. The

main drawback with these kind of solutions is the necessity
of training sessions for each new payload. These solutions
are not suitable for compensating for an endoscope since it
is not convenient to go through a training set of positions
each time the gravity configuration of the system change,
e.g when moving the optic fiber cable.

In this article, an online method to detect a fall due to a
wrong gravity compensation is proposed. It is implemented
in a cable driven robot used as endoscope holder. It consists
in an algorithm that calculate smoothness of the robot end-
effector trajectory to detect whether there is a fall after the
user releases the camera. In last section possible approaches
are commented that can be implemented once a wrong
gravity compensation is detected to avoid the fall or update
the gravity model.

The rest of the paper is organized as follows: Section
IT presents the device and the methodology adopted to
record data of manipulation and falls of the endoscope. First,
the general set-up is presented, then the Achilles robot is
described and finally the experimental protocol to acquire
data is detailed. Afterwards, The fall detection algorithm
is presented in Section III. First, the chosen criterion is
presented, followed by information on the algorithm im-
plemented in practice, including the method of setting its
parameters. Results of the proposed method are presented
and discussed in Section IV. In Section IV-D two approaches
for compensate the falls are introduced as perspectives.
Finally, conclusions are presented in Section V.

II. MATERIALS AND METHODS

The following experiment aims to acquire data during
realistic endoscope manipulation and release. The aim is
to verify that the proposed criterion, proposed in Section
I, is capable of distinguishing between movements of the
endoscope when the user manipulates it or when it presents
a free fall.

A. Overall Setup

The overall setup used, described hereafter, is the*“Surgical
Cockpit platfor” [11] that allows to reproduce a realistic
situation of robot-assisted minimally invasive surgery. It
consists in an operating room mockup, see Fig.2.

The operating room was composed by the following
elements:

o Laparotrainer: a practical surgical model whereby sur-
geon can practice laparoscopic techniques.

o Targests: 6 different targets were placed inside the
laparotrainer as shown in Fig.2 bottom right corner.

« Endoscope: It is used to visualise the objects inside the
laparotrainer. It is used with an optic fiber cable attached
to it.

o Large Endoscopic screen: this screen show the video
capture from the endoscope

« Achilles: the endoscope-holder presented in sec.II-B.
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Fig. 2: Overall set-up. On the left is the general view, on the
top right a focus on the endoscope, on the bottom right the
inside view of the laparotrainer with the objects to visualize

B. Achilles: kinematics and actuation

The robotic manipulator Achilles manufactured by HAP-
TION and initially designed to serve as a high-force hap-
tic interface, is employed as a comanipulated laparoscope-
holder, see Fig.2 top right corner.

Fig.3 shows the kinematics of the device, made of 6 pivot
joints:

« the last three joints, whose axes intersect at a point W,

form a wrist.

« the first three joints are used to position the point W.
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Fig. 3: Achilles kinematics
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The geometry is fully defined thanks to the DH parameters
grouped in Table I

Joints 1, 2, 3 are active (motorized) while joints 4, 5,
6 are passive (free rotations). Joint 7 is a discrete joint that
allows fixed positions in an angular range of motion of 120°.

The end-effector is equipped with a magnetic interface that
allows to attach the endoscope, see Fig. 2 top right corner.

This robot is designed to comanipulate the endoscope.
For this purpose, the robot has a “free mode” control law,
based on a model-based gravity compensation that allows the
operator to move the endoscope without constraints (details

TABLE I: DH parameters of the device

Joint i1 ai— d; 0;
1 0 0 0 |
2 | x2| 0 0 | ¢
300 | u |-k a
4 0 13 I3 q4
s |z | 0 | gs
6 | x/2| 0 0 | g

are given in appendix, see also [3] and [11]). Notice that, for
the experiment presented in this paper, the gravity model of
the robot was set to compensate the weight of the endoscope
alone, i.e. the weight of the optic fiber cable attached to it is
not being compensated. As a result, when the user releases
the endoscope, it falls instead of remaining at the release
position.

A viscosity field was implemented in order to dampen
down the velocity of the end-effector when this is released
[11]. It consists in a Cartesian force mapped at the robot
end-effector defined as shown in (1):

F,=bxv @))]

where b is a parameter that varies in function of the norm
of the end effector velocity:

bmax if HV” < Vmin
b= < bmin if HV” > Vmax ()
B + AN min Gtherwise

Vmax —Vmin

Notice that function b requires four parameters to be tuned,
binaxs bmins Vimin and Vipgy.

This viscous field is intended to be active only when the
release is imminent. Surgeons and assistants usually release
the endoscope once they get a stabilized video, i.e, when
velocity is near zero. Therefore, the values v,,;, and vy,
were set to 0.0l ms~! and 0.012ms™! respectively in order
to set the viscous field at its maximum value just before the
release, damping down the fall. On the other hand, when user
makes movements above vy, the viscous forces disappear,
i.e byin =0, avoiding any perturbation in the user gesture.

C. Data acquisition Protocol

Ten naive subjects were asked to perform the experiment
which is explained in the following:

A reference image is shown to the user. It shows one of
the target with a specific depth and orientation of the camera.
A small screen (see Fig.2) is added to the operating room
mock-up to provide the user with this image. The subject is
asked to reproduce the reference image in the large screen
(Endoscopic screen in Fig. 2). As the robot is set in free
mode, the subject can freely place the endoscope in order
to get the correct depth and orientation of the image. Once
he/she thinks the right configuration is attained, the subject
has to release the endoscope. The subject is asked to inform
the moment just before he/she was about to release the
endoscope. Each subject is asked to reproduce 12 different
images (see Fig.4).



In order to asses how much influence the parameter of
viscosity has on both rate of detection and perturbation on
user handling, the experiment is repeated for two values of
bmax: S0Nsm~! and 100Nsm™.

Fig. 4: Images to be reproduced by the user manipulating
the endoscope

a) Ground truth: in order to have a ground truth the
subject is asked to inform the moment just before he/she
was about to release the camera. At that moment a label
was set to identify the moment before and after the release.
The exact moment where the release happened is then
manually located, in a off-line phase, by inspection of the
end-effector’s Cartesian velocity. It should be noted that
during these tests, it is observed that, depending on the
configuration, when the user lets go of the endoscope, it falls
more or less quickly and stabilizes more or less far from the
initial position.

b) Data recorded: A total of 240 falls are observed (12
targets, 10 subjects, 2 viscosity conditions). For each subject,
during each experiment, the data recorded includes:

« an array of the end-effector’s Cartesian velocity v €
R3 X

« the ground truth array L € RS, L is a boolean array
containing 1 for samples were it was manually labeled
a fall and O otherwise.

Notice that the robot Achilles has a sampling frequency
of 1kHz which means that a new sample is recorded at
each millisecond. The value s represents the duration in
milliseconds of the whole experiment including 12 falls.

III. FALL DETECTION ALGORITHM

In this paper the reasoning of the proposed method is
based on the hypothesis that the movement of a falling
object attached to the robot can be differentiated from those
originated by a human manipulating the robot in free-mode.
In other words, we count on the fact that trajectories due to
wrong compensations are predominated by low frequencies
- as they are exited only by low-frequency forces, e.g. the
non-compensated weight and dynamic friction at the trocar -
whereas human manipulation generates more saccadic move-
ments and therefore, less smooth. In next section we present
a smoothness parameter that can be used to differentiate
between these two kind of movements.

A. Assessing smoothness

In literature, smoothness metrics are used to asses the level
of complexity of a curve [12]. For instance, curvature is used
as a measure of how sharply a curve bends [13]. Another
example is the Spectral Arc Length [12]. It is the opposite
of the length along the spectral curve of a movement; it
gives an image of the complexity of the movement. In this
paper, a new parameter is proposed as possible candidate of
smoothness indicator.

Proposed method: Fig.5 represents a trajectory of the
end-effector of the robot with respect to the robot base frame

Vi—at

Fig. 5: Tllustration of robot’s end-effector trajectory

V, is a vector parallel to the end-effector velocity at t = k
with magnitude equal to one, whereas Vi_, is a vector
parallel to the end-effector velocity at time k — Ar with
magnitude equal to one. Let’s define A®(k) as the angle
between vectors V, and Vi_,, calculated as shown in (3).

AP (k) = arccos (Vi Viar) (3)

This function represents the change of direction in velocity
during a determined time step Az. The lower this value, the
straighter the trajectory.

A density criteria was adopted to identify whether the
trajectory is smooth or not: If the function A®(k) is below
a threshold A®y during Ny consecutive time steps the algo-
rithm will declare smoothness of the trajectory and therefore,
a fall will be declared. In other words, two functions were
defined as shown in (4) and (5):

a(k) = {(1)

Function Z(k) is one when a fall is declared and zero
otherwise:

if Ad(k) < AD

. “4)
it Ad(k) > AD

k
Lif Y ai) >N
L(k) = e ®)
0 if Z o(i) < Ny
i=k—N,

B. Implemented Algorithm

The proposed algorithm computes the following 3 steps at
each time step of the control loop of the robot: (i) Compute
A®(k), (i) Compute a(k), (iii) Compute L(k).
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Fig. 6: (a) Above: Velocity and vertical coordinate of robot end-effector. Below: value of parameter A®. The fall is delimited
by vertical dashed lines. (b) Behavior of one typical fall. The different performance indicators are shown.
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Fig. 7: Average values of performance indicators with respect
to parameter tuning and viscosity conditions. Each bar is the
mean value and the standard deviation for 120 falls at a given
condition of A and b.

a) Filtering data: Since human movements have a
frequency limit of 20Hz [14], the values of end-effector
velocities were low-pass filtered with a cutoff frequency at
this limit. In this way the method will not be influenced by
high frequencies as noise from the encoders. On the other
hand, the values of AP presented a noisy behavior which
made difficult to compare it with the threshold Ady. For this
reason a moving average filter of M number of sample points
were implemented. Therefore, M is another parameter to set
for the implementation of the algorithm.

b) Optimization method to tune parameter: To imple-
ment the computation, there are four parameters to tune:
ADy, At, Ny and M. A data set of s = 344 x 103 ms obtained
from one of the subjects is used to tune the proposed
algorithm. The conditions from which the data was acquired
presented viscosity » = 100Nsm~!. Notice that the data-set
from only one subject was used to tune these parameters.
This was meant to demonstrate the generalisation of the
algorithm over new data-sets.

A prediction function L(k) can be defined as follows:

1 ﬁ.i a(i)>Ny & L(k)=1

i=k —N()
k
Lky=<A if Y a(>Ny & Lk)=0 (6)
i=k—N
k
0 if Y a(i)<Ny & L(k)=0
i=k—N

Therefore, an array L € RS can be obtained using a set
of parameters p = {APy,Ar, Ny, M }.
An objective function can be defined as follows:

f(Aq)07At7NO7M): ||L7Z’|| (7)

Thus an optimization problem is proposed to find the best
set of parameters p that minimizes (7), i.e. :

min IL—L|
ADy, At,Ng,M
s.t. At,No,M € 7",

Notice that A in (6) is a weight that can be adjusted in
order to increase the euclidean norm shown in (7) each time
a false positive is declared. The bigger the value of A the
more sensitive is the optimization for false positives.

In order to avoid local minimums the function
S(ADy, At, Ny, M) was mapped using 1000 random draws of
parameter sets. Then the set of parameter which gave the
minimum value of the function was used as first seed to
find the general minimum using the function fminsearch in
Matlab.

TABLE II: Parameters obtained for A =1 and A =4

A=1 A=4
A®D [rad] 0.1598 | 0.2744
At [samples] 150 221
Ny [samples] | 338 787
M [samples] 325 64

Two set of parameters were obtained using two values of
A: 1 and 4. These values were considered suitable candidates
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Fig. 8: (a) Scheme for compensation method to update the gravity model of the robot (b) Scheme for control law to set th

to show the influence of A in the optimization: A = 1 means
that there is no punishment for false positives, therefore,
its corresponding set of parameter is expected to lead to
results with good sensitivity but lesser specificity. The mirror
effect is expected for parameters obtained with A = 4. Each
parameter set are shown in Table II.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Indicators

The performance of the algorithm was tested in two
experimental condition: viscosity » = 50Nsm~' and b =
100Nsm~!. In addition, the influence of the selection of A
used in the optimization is evaluated as well. The indicators
to evaluate the performance of the proposed method are the
following:

e Nrp: Number of true positives (TP) during the experi-

ment (the endoscope falls and its fall has been detected).

o drp: Delay to detect TP (see Fig.6b).

o At7p: Duration of TP during an actual fall (see Fig.6b).

e Atgr: Actual duration of the falls (see Fig.6b).

o AZrp: Vertical displacement of the robot end-effector

before a fall is detected (see Fig. 6b).

o Npp: Quantity of false positive (FP) during the experi-

ment (a fall is detected, but it should not have been).

e Atpp: Duration of FP.

B. Results

Fig.6a shows the velocity’s end-effector of the robot and
its vertical position with respect to the robot base frame
(above) and the value of the parameter AP (below) during
50s of manipulation by a subject. For this data set the
parameters used were the ones obtained using A =4 and
a viscosity of b= 100Nsm~!. This result can be considered
as a typical output where:

1) First, the endoscope is released and presents a fall

(delimited by vertical dashed lines)

2) Then, the subject manipulates the endoscope to find

the next target (starting from around t = 10s).

Notice that during the fall, values of AP rapidly decrease
below the threshold Ad, (depicted with the horizontal dot-
dashed line). As this condition is steadily kept during more

than Ny samples, the algorithm declares a fall, i.e. L is set
to one. On the other hand, A® presents oscillating values
and barely reach the threshold Ady when the subject is
manipulating the endoscope (starting from around t = 10s).

Table III shows the general performance of the method
in terms of sensitivity and specificity for each condition of
viscosity and for each different set of parameters. Notice
that Sensitivity is calculated as Nyp/P and Specificity as
(Atrnror — Atppror) | Atrnior. Where P represents all the actual
falls per experiment, i.e. P = 120, Afry;o represents all the
milliseconds where there were not an actual fall and Atzp;.s
represents the sum of all the milliseconds where a false
positive was declared.

TABLE III: Sensitivity and Specificity for data sets of 120
falls. Number of false positives and their average duration
are shown as well

A=1 A=4
b =50 b =100 b=50 b =100
Sensitivity | 0.9917 0.9167 0.9750 0.9000
Specificity | 0.9976 0.9959 0.9995 0.9991
Nrp 40 85 9 21
Atpp [ms] 167+176 | 184+163 | 110155 | 150+ 140

The bar chart in Fig.7 shows the performance obtained in
terms of parameters AZrp, dyp and the ratio Arpp/Atgr.

C. Discussion

Small values of AZrp and drp are signs of good perfor-
mance. This means the method took less time to detect a
fall and the end-effector fell less before the detection. The
fastest detection time dyp was obtained for the condition
b=50Nsm~! and A = 1. Whereas the smallest fall before
detection was presented for condition » = 100Nsm~! and
A = 1. This is coherent with the selection of A = 1: Smaller
values of A mean that the optimization method punishes less
the false positives. This can be translated in faster reaction
time, or in other words, smaller values of Ny (see (5)).
Following Table III we can conclude that better sensitivity
is related with small values of A and viscosity.

On the flip side, small values of A also mean the presence
of more false positive: See in Table III that configurations for



A =1 present 40 and 85 false positives, for each value of b,
whereas configurations obtained with A = 4 presented only
9 and 21. However, notice as well that false positives were
short in duration, being 184 + 163 ms the biggest average
value of Atpp.

Low values of sensitivity were observed for high values of
viscosity. This can be related to a very specific phenomenon
observed during the experiments: for several releases of
the endoscope the viscosity was high enough to produce
a fall at a particularly low velocity. This movement was
characterized by saccadic displacements of the endoscope
that can be attributed to a transition phase between the static
and dynamic friction within the trocar. When this behavior
occurred the method did not identify the fall.

D. Perspectives

Once the fall is detected, different strategies can be trig-
gered in order to compensate the fall. Scheme shown in
Fig.8a introduce one possible strategy to this aim. When the
detection algorithm declares the movement of the robot’s
end-effector as “smooth”, it means that a fall is occurring.
While smoothness is declared, the parameter m in the gravity
model of the robot - equation (12) - can be updated at
each time step until the fall stops. This parameter has to be
increased or reduced depending on the robot’s end-effector
velocity direction when smoothness is declared. This means
that, after the first fall, the model will be updated with a
value of m that will avoid further falls for future releases
of the endoscope. Notice that the same logic can be adopted
when the robot overcompensates, i.e., the endoscope presents
a rise when it is released.

Another approach is introduced in scheme shown in
Fig.8b. Once the detection algorithm declares a fall, the
control law of the robot switches to a PID control that will
bring the end-effector back to the release position. In order to
avoid any harm to the patient, the low-stiffness PID presented
in [3] or the PI presented in [15] are good candidates for
this purpose. This option can be interesting when, due to
small errors in the gravity model of the robot, the endoscope
presents small displacements when it is released, meaning
that it will not present a risk for the patient. Notice that, in
order to implement this scheme, it is necessary to storage
the position of the robot’s end-effector xy at each time the
endoscope is released. In Fig.8a and Fig.8b mgy and xgq
are seed values for endoscope’s gravity parameters of mass
and position of center of mass, respectively. F, represents
a Cartesian force applied by the robot at its end-effector by
means of (10).

The set-up presented in section II-A presents static con-
ditions, i.e. it does not reproduce physiological movements
as the respiration of the patient, which is a low-frequency
movement. As a perspective, a set-up that considers this
movement should be considered to validate the robustness
of the proposed algorithm.

V. CONCLUSION

In this article a fall detection for a comanipulated robotic
endoscope holder was proposed. An in-vitro set-up and a
methodology to record data during the manipulation of the
endoscope was implemented. An experiment was carried
out with 10 different subjects where 240 releases of the
endoscope were performed while it was poorly compensated.
Results showed that the algorithm succeed to identify the
falls with a sensitivity up to 99.17 %. As the proposed
approach can be run in real time during manipulation, it
can be used into a control law to compensate and stop the
fall when it is detected. Finally, two possible strategies to
compensate the fall are proposed as perspectives.

APPENDIX : ACHILLES FREE MODE

The Achilles free mode is based on a control law using
the trocar constraint and a gravity compensation algorithm.
1) Trocar constraint: The presence of a fixed fulcrum
point T at the trocar imposes two kinematic constraints,
reducing the Cartesian DoFs of the system from six to four:

« three to determine the orientation of the laparoscope;

« one for the laparoscope penetration depth.

When the laparoscope is inserted through the trocar,
positioning W with the first three joints of the robot allows
to control the orientation of the laparoscope axis (W,zop),
and its penetration depth d. Where:

1
m(xT —Xw) ®)

L—|jxr —xwl| ©)

L is the length from W to the distal tip of the laparoscope
and xj; stands for the position of a given point M. In
the practical implementations of the robot controller, xy is
known from the robot kinematic model and the first three
joint positions, while x7 is identified on-line thanks to an
algorithm described in [16].

Note that because of the passive wrist at point W, the
first three joint torques (7y,7»,73) bijectively map into an
equivalent force F, applied at point W, as:

F,=3T(n n o), (10)

where J is the robot jacobian matrix mapping the three first
joint velocities into Point W velocity:

Zopt

d =

sw=J(a @ @) . (1n)
2) Gravity compensation: As explained in the introduc-
tion, the robot uses a model-based algorithm, proposed by
[11], to compensate for the weight of the endoscope when
this has been released. This algorithm consists in mapping a
Cartesian force defined as shown in 12.
CcG

Fo=-m(B(I- Zongpr) +Z0szgpt))gv B= W

Where CG is the distance from the tip of the camera to
its center of mass and TW the distance from the fulcrum
point to the wrist W. For the experiment presented in Section
II, values of m and CG were set to 0.487kg and 0.360m
respectively.

12)
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