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Abstract

Automatic generation of advertising layouts shows high
economic interest, but as identified with our industrial partner,
there is no public document layout dataset that matches this
particular application. In this context, we produced two
synthetic datasets that allow both the evaluation and training of
any learning model on web advertising layout generation, and
a small dataset of real cases to demonstrate the contribution
of our work. We compared the results obtained by different
learning models on the real cases, with and without prior use of
our synthetic datasets, and our results show that these datasets
allow to build and decisively improve models for the genera-
tion of real-world advertising layouts. Our three datasets, as
well as useful data processing tools, are available at : https:
//github.com/romain-rsr/synth_datasets_
for_web_advertising_layout/tree/master

1 Introduction

1.1 Automatic advertising layout applications

Laying out advertisements consists essentially of positioning
and sizing rectangular bounding boxes containing the graphic
elements. It is a long and still very manual job, which may
seem simple due to the small number of input parameters, but it
is not: the diversity and multiplicity of criteria combinations to
be integrated, as well as their subjective nature require a certain
level of abstraction, and small variations in a layout parameters
can strongly impact the visual rendering.

1.2 Restricted access to real data

Due to advertisement ownership policies, bringing together
thousands of advertising layouts within a dataset would require
the agreement of too many separate entities. Furthermore, the
same information (e.g. the position of an element) can be coded
in thousands of different ways, due to the specificity of HTML
and CSS languages, and it is currently impossible to retrieve the
positions and dimensions of the elements by only parsing the
code of the advertisement. The acquisition of a public dataset,

to develop, evaluate and compare models for online advertis-
ing layout is therefore a problem in its own right, to which our
work seeks to respond.

Figure 1. Real case application of an automatic advertising
layout. Types and dimensions of input assets are processed by
the model to generate dimensions and positions of these as-
sets within a given rectangular area. Assets contents have been
warped for privacy matters.

2 Related works

2.1 Former works

Early work on automatic layout problems sought to provide
basic tools for designers. Some such as Myers [1] or Lok et al.
[2] focus on the simple use of templates, others such as Feiner
et al. [3], propose to the user to combine low-level rules. But
these first tools are either too limited in terms of functionalities
or too complicated to use.

More recent studies aim to bring the layout guidelines to-
gether in elaborate, multi-dimensional quantitative functions.
Merrell et al. [4] incorporate these guidelines as terms in a
density function, where the inputs are the positions and the di-
mensions of the elements to be arranged within a given space,
and then apply a Markov Chain Monte Carlo sampler on this
density function to generate layout suggestions. Other authors
combine the layout guidelines into an objective function to be
optimized. To this nonlinear optimization problem, Lin [5]
adapt a linear two-pass method based on the simplex algorithm.
He considers images and texts as inputs to its system, and out-
put the distribution of these elements on a rectangular page,
ideally seeking to leave no empty space, contrary to what is
sought in online advertising.
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Lisa Purvis et al. [6] encode various layout criteria, such
as the degree of alignment, the balance of empty spaces, the
legibility and compactness of the elements on the layout space,
and the balance between images and text areas. They generate
layouts that optimize the sum of these different encoded criteria
by evolving a population of randomly initialized sets of layout
parameters via a genetic algorithm. However, the authors put
the quality of the examples thus generated into perspective and
points out that very close scores at the output of their system
can give very different quality renderings.

Therefore, the prioritization of terms within the objective
functions defined by these various works remains problematic
and these first methods remain on the whole too reductive to
integrate the aesthetic canons of online advertising, which are
highly complex and constantly evolving.

2.2 Learning methods

More recent work on automatic document layout has made use
of deep learning models. These models have the advantage of
being able to learn implicit rules of arrangement via very sim-
ple objective functions, and the depth of these models makes it
possible to achieve abstraction capacities which are very well
adapted to the complexity of document layout tasks.

Li et al [7] apply generative networks to different document
layout problems. Their architecture is particularly elaborate
and integrates several state-of-the-art concepts. They model
the elements to be arranged in the form of wireframes, train
and apply a Generative Adversarial Network (GAN) model to
these inputs, and nevertheless add corrections at the GAN out-
put to ensure, among other things, the alignment of the ele-
ments among themselves. Their results are significantly bet-
ter than those obtained by conventional non-learning methods.
However, deep learning models require a lot of training exam-
ples, which is not an obstacle in the applications covered by Li
et al. article, but which is very problematic in the field of online
advertising, where there is no dataset available.

2.3 Related datasets, unsuitable for online advertising

Datasets exist on applications that are partially related to ad-
vertising layout, including the Layout Analysis dataset, which
presents articles containing mostly text, the RICO dataset,
which contains mobile application pages, and the Abstract
Scenes dataset, which presents layouts of a small number of
different elements: characters, accessories, and background el-
ements. But these datasets do not address the critical applica-
tion issues of web advertising layout. Logos and call to action
(CTA), for example, are two predominant categories of ele-
ments in the field of online advertising, and they do not present
any similarity with the elements of these related datasets.

Furthermore, we find neither the spacing of the elements,
nor the balance of spaces, nor the asymmetry that are systemat-
ically observed in online advertising. Finally, the reading order
of the elements within an online advertisement is always se-
quential and circumvolutive and the combination of these two
criteria is not found in any of these datasets. Therefore, we

built two synthetic datasets in order to be able to develop and
evaluate truly incisive models for online advertising placement.

3 Datasets

3.1 First synthetic dataset : fictitious layouts, of
arbitrary complexity

(a) (b) (c)

Figure 2. Layouts of our first dataset, created by fictitious lay-
out rules. Layouts (a) have been created from general rules
while layouts (b) and (c) have been generated through special
rules, activated on layouts where the colors of the elements
match specific combinations.

The first synthetic dataset contains 100,000 samples. For
each sample, the input variables correspond to the information
given to the designers at the start of any layout job : the cate-
gories (which in this first dataset are fictitious), the starting di-
mensions and the sequential order of the assets to be arranged.
The corresponding output layout is then generated via a series
of two sets of fictitious rules.

General rules, which apply to a large majority of samples,
randomly size and position the elements within given con-
straints. Among these constraints, elements must not overlap,
must not exceed the background frame and a minimum space
is set between the elements.

Then, specific rules reposition and resize the elements of
certain samples via specific and deterministic functions. An ex-
ample of a specific rule is as follows: if the three elements are
of the fictitious ”blue” category, they are positioned against the
left border. Yet, their dimensions are not affected by this rule
and remain randomly defined within general rules constraints
presented previously. These specific rules each relate to a par-
ticular order and combination of categories, to which a very
small minority of the dataset samples correspond: about 3% of
the entire dataset for each of the specific rules.

These artificial rules recreate and even increase tenfold the
learning difficulties found in the real cases of advertising lay-
out. The precision and diversity of our layout rules, the degree
of contradiction between some of them, the fact that some rules
concern only a very small minority of elements when others
concern almost all the elements: each of these difficulties is in-
spired by a real problem in advertising layout and is arbitrarily
increased within our first dataset.

Finally, while layout rules are only available in their
implicit form in real document datasets, our artificial rules
can both be presented in their implicit form during training
(through the synthetic layouts they have created) and in their
explicit form during evaluation, which makes it possible to
evaluate any learning layout model with absolute precision.



3.2 Second synthetic dataset : realistic layouts, matching
real advertising layout characteristics

The second synthetic dataset aims to allow a model to be pre-
trained on it then used on real cases layouts. It contains 100,000
samples and was created through several realistic layout rules,
identical to decisive rules in online advertising layout. As in the
first dataset, the input elements to be laid out are rectangles of
different types and sizes, except that here their categories are
real categories used in advertising : ”image”, ”text”, ”CTA”
and ”logo” The constraints of dimensions and positions of our
explicit layout rules are here specific to these real categories,
with for example the ”image” elements being often bigger than
CTA elements, position of the logo being imperatively in first
or last position, etc. Output layouts parameters are then very
similar to those of the real advertising layouts.

3.3 Real cases dataset for evaluation

To verify the contribution of these two synthetic datasets, we
created a small dataset of a hundred real-life layouts, by man-
ually gathering and segmenting advertisements arranged by
our industrial partner. The quantitative and visual results ob-
tained on the real cases presented in this article come from this
dataset.

4 Models

Previous research on automatic document layouts jumped from
methods without learning to unsupervised deep generative net-
works, that are particularly heavy to set up and train. Since
there is no published evidence that supervised models can’t
achieve layout generation and since our synthetic datasets aim
to enhance the performance of the broadest range of learning
models, experiments have been run on our datasets with super-
vised networks, which are more common and whose training is
also more stable.

We conceived and experimented several adaptations of the
resnet architecture [8], presented in Figure 3. Model δ, which
systematically reached better performances against the other
deep residual models, is presented and referenced within our
experiment results as our deep residual network. It is com-
posed of 14 residual blocks followed by a fully connected layer
of 12 neurons, activated by a sigmoid activation function. Each
residual block contains one fully connected layer of 15 neu-
rons, activated by a ReLU activation function.

A simple neural network of three fully connected layers
(of respectively 12, 12 and 15 neurons) has also been experi-
mented, aside of our deep residual model, to evaluate the added
value of a deeper model on our datasets.

5 Experimental Setup

In the first dataset, samples where only general rules apply and
samples concerned by a specific additional rule are shuffled all
together. In each dataset, data has been split as usual into a
train set, a validation set (to compare training and validation
accuracy and assert the absence of over-fitting during training)

and a test set (for post-training performance evaluation). The
results presented in this article have been recorded on the test
set, which represents 20% of the samples in each dataset.

Since our goal is to integrate layout rules without giving
their explicit form to the model during training, a very general
learning metric has been used in all experimented models :

L(y, ŷ) = 1
N

N∑
n=0

(yi − ŷi)2 . (1)

L(y, ŷ) represents the mean squared error between the vec-
tors y and ŷ, that respectively contain the original and pre-
dicted parameters of each layout, and where N is the number
of layouts to predict. Optimization is run through the Adam al-
gorithm, which adapts the learning rate to each parameter and
to the first and second moments of recent gradient magnitudes.

While the only purpose of our fictitious synthetic dataset
is to evaluate a model on artificially challenging layouts, our
realistic synthetic dataset aims to pre-train any learning model
to generate real advertising layouts. Therefore, two training
protocols were experimented and compared to assert such con-
tribution. The first protocol is to train and evaluate a model
on our small dataset of real cases only. The second protocol
consists of training a model on our second synthetic data set,
then re-training this model on the real cases train set and finally
evaluating the model on the real cases test set.

6 Evaluation and results

6.1 Evaluation metrics

While in real cases layout, training and evaluation have to deal
with implicit layout rules, the artificial rules that created our
synthetic layouts can be shown implicitly to an experimented
model during training (through the synthetic layouts them-
selves) then used in their explicit form during evaluation of the
model results.

Once a model has been trained on a synthetic dataset, the
layouts generated by this model must thus comply with a set
of explicit layout rules, depending on the category of each el-
ement and the order of these elements, vertically and horizon-
tally. These rules are defined exhaustively in our git directory,
indicated in the abstract. In the real cases dataset, the layouts
have been designed by hand by designers who follow intuitive,
implicit layout rules, so our evaluation is limited to critical cri-
teria : assets must not overlap and must not exceed screen bor-
ders. For each dataset, the respect of the dataset criteria by the
generated layouts is evaluated through two different metrics.

A first metric is the Samples Average Maximum Error. For
each sample, we measure the difference between the expected
value of each feature, defined by the set of rules impacting this
sample, and the value of this feature within the layout gener-
ated by the model. We then consider the maximum of these
differences for each layout and compute the average of theses
maximums to get the Samples Average Maximum Error. This
value is set in pixels, and has to be put into perspective with the
banner frame dimensions, which is 300x600 pixels.
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Figure 3. Experimented deep residual models. Best performance is reached by model δ, referenced in this article as our deep
residual model.

A second metric is the percentage of Samples Containing
Critical Errors, where, as specified, critical errors are those
identified as strongly unacceptable in the industry : when one
of the layout elements overlap on another or when it exceeds
a screen border. Concerning layouts generated after a training
on the first synthetic dataset, only layouts where general rules
apply are evaluated by this metric. The details and code of our
evaluation methods are also available in our git directory.

6.2 Results on our synthetic datasets

Figure 4. layouts generated by a three-layers fully connected
network (first row) and by our deep residual model (middle
row), after training on our synthetic dataset. Original synthetic
layouts are presented in the lower row.

Evaluation Metric
Three Layers

Fully Connected
Network

Our Deep
Residual
Network

Samples Average
Maximum Error 17 3

Samples Containing
Critical Errors 13% 0.7%

Table 1. Models performances on our fictitious synthetic
dataset

Evaluation Metric
Three Layers

Fully Connected
Network

Our Deep
Residual
Network

Samples Average
Maximum Error 9 2

Samples Containing
Critical Errors 8% 0%

Table 2. Models performances on our realistic synthetic dataset

In Figure 4, generated layouts are compared to original syn-
thetic layouts. As indicated in the dataset section, some param-
eters have been set randomly in each layout, so while some
layout parameters are expected to be the same between a gen-
erated layout and an original layout, some other parameters are
not concerned by this criteria and can be different without im-
pacting the validity of a generated layout, at the evaluation step.

On the left column layout, due to the sequence of asset cat-
egories (which here is red-green-red), only general rules apply :
a large range of positions and dimensions are valid but no over-



lap is tolerated. On other columns, on the contrary, additional
virtual rules apply, which are specific to the related sequence
of asset categories and can even override some of the general
rules. Therefore on each of these other columns, exact values
are expected for some particular parameters, e.g. lefts must all
be equal to zero on the second column, precise overlap patterns
are expected on the third column (which is deliberately contra-
dictory with the general no-overlap criteria), tops must all be
equal to zero on the fourth column.

While the three-layers network results show important is-
sues (prohibited overlaps in the first column and unexpected
values in other columns), the visual accuracy of our deep resid-
ual model is in line with industrial requirements, in terms of
distances between generated parameters and closest valid asset
parameters. These visual results are confirmed quantitatively in
Table 1, where concerning our deep residual model, the Sam-
ples Average Maximum Error is only a few pixels long and the
percentage of Samples in Critical Error is very close to zero.
Same performance shifts are observed on our realistic synthetic
dataset, as quantitatively displayed in Table 2

6.3 Results on real cases

Evaluation Metric
Training
on Real
Cases

Training on Synthetic
Samples Then Training

on Real Cases
Samples Average
Maximum Error 25 11

Samples Containing
Critical Errors 60% 4%

Table 3. Performance gains of our deep residual model on real
cases due to pre-training on our realistic synthetic dataset

In Figure 5, we compare real advertising layouts generated
by our deep residual network after different training protocols.
For now our experiment focus on the layout of assets on a plain
background. More sophisticated backgrounds and their graph-
ical content are not considered yet, therefore they are replaced
by a plain background in the real layouts generated by our mod-
els. Also, assets graphical content have been warped for pri-
vacy matters but their categories are indicated by a color frame
around each asset : logos, cta, texts and images respectively
correspond to red, yellow, green and blue frame colors.

The first column shows poor results, generated by our deep
residual model after training on our small real cases dataset
only. The second column shows much better results, reached
by the same model being pre-trained on our synthetic realistic
dataset, then trained again on on our small real cases dataset.
These results are confirmed by quantitative results displayed in
Table 4.

In Figure 6, we visually compare the results obtained by
a simple three-layer model with those achieved by our deep
residual model. These visual differences, in addition to the
quantitative performance shift seen in Table 4, show that trivial
models are not suitable for real advertising layout tasks, while

Evaluation Metric
Three Layers

Fully Connected
Network

Our Deep
Residual
Network

Samples Average
Maximum Error 38 11

Samples Containing
Critical Errors 16% 4%

Table 4. Models performances on real cases. Each model has
been pre-trained on our realistic synthetic dataset

our own deep residual model matches reliability expectations
on critical layout criteria.

Finally, we see through both visual and quantitative evalua-
tions that the performances shifts (between two different mod-
els) are positively correlated between our synthetic and our
real-cases datasets, showing that our synthetic datasets match
similar problematic with the real cases dataset.

7 Conclusion

7.1 Identified contributions

We created two synthetic datasets that allow for strong quan-
titative evaluation in document layout generation, which is
sorely lacking in current state of the art, where only user studies
are available. These datasets also allow for the training of deep
learning models on advertising layout generation, in a context
where real web advertising layouts are highly restricted and
where related document layout datasets do not match decisive
characteristics of advertising layout.

Our fictitious synthetic dataset allows to evaluate the ca-
pacity of a given model to integrate layout rules that match and
even surpasses specific challenges of advertising layouts gener-
ation. Our results also show that the complexity of these virtual
layout rules is not accessible to trivial neural network models,
and can be addressed only by deeper models. Our realistic syn-
thetic dataset makes it possible to pre-train a model to gener-
ate real advertising layouts that match industry critical criteria,
even when only a few real training samples are available.

Finally, the tools we built to create our synthetic datasets
can easily be handled by designers to teach learning models any
creative bias, in the form of new explicit rules of their choice,
in addition to implicit rules that those models directly learn on
real data. This combines the advantage of both learning and
non-learning approaches that were opposed so far, as described
in our related works section.

7.2 Future works

Since our work aimed to enhance the evaluation and the train-
ing of main deep learning models, we focused our experimen-
tation on supervised models which are widespread, stable to
train and allow, as our results show, to generate real advertising
layouts that match industry decisive requirements. However,
generative unsupervised models are often experimented in re-
lated works on layout generation and they are never compared



Figure 5. Visual comparison between real advertising layouts
generated with and without pre-training (resp. middle and left
columns) on our second synthetic dataset. Ground-truth is pre-
sented in the right column. Several results in the first column
show critical overlapping issues while results of the middle col-
umn match all decisive criteria.

with supervised models. Therefore, it could be very interest-
ing to compare unsupervised generative models with our su-
pervised model. This comparison can be run on our synthetic
datasets but also on related datasets, which do not match ad-
vertising layout requirements but address other valuable layout
problems.

Another interesting approach would be to replace dimen-
sional inputs by actual images content and analyze the graph-
ical and semantic content of input elements in the process of
generating layouts. In addition, adapting saliency maps and
segmentation networks to integrate the background graphical
content and then position elements between important areas of
the background could be of great interest.
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