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The application of the Sliding Frank-Wolfe algorithm to gridless compressive
beamforming is investigated, for single and multi-snapshots measurements, and
estimation of the three-dimensional position of the sources and their ampli-
tudes. Sources are recovered by solving an infinite dimensional optimization
problem, promoting sparsity of the solutions, and avoiding the basis mismatch
issue. The algorithm does not impose constraints on the source model or the
array geometry. A variant of the algorithm is proposed for greedy identifi-
cation of the sources. Experimental results and Monte-Carlo simulations in
three dimensional settings demonstrate the performances of the method, and
its numerical efficiency compared to the state of the art.

[https://doi.org/10.1121/10.0006790]

[XYZ] Pages: 1–14

Copyright 2021 Acoustical Society of Amer-
ica. This article may be downloaded for personal
use only. Any other use requires prior permis-
sion of the author and the Acoustical Society of
America.

I. INTRODUCTION

In the context of source localization1, spar-
sity based estimation methods offer several ad-
vantages compared to classical methods such as
conventional beamforming, mostly in terms of
spatial resolution and size of the data2. Spar-
sity based methods can be, grossly, classified in
optimization based methods, mostly using the
`1 norm3–5, or similar mixed norms6, and greedy
algorithms, the most popular being Orthogonal
Matching Pursuit7 (OMP). These methods as-
sume that the sources are drawn from a finite
dictionary of sources, and estimate their ampli-
tudes assuming that most of them are zero. This
approach suffers from the basis mismatch prob-
lem, when actual sources cannot be exactly rep-
resented by a member of the dictionary8. It has
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been shown that this problem cannot be miti-
gated by refining the grid: for one dimensional
problems, even in low noise regimes, the LASSO
method yields a number of sources doubled com-
pared to the actual source distribution, even if
sources are located on the grid9.

Several methods have been proposed to deal
with this limitation. A first approach is to ap-
proximate a source at an arbitrary point by a
source on a finite grid, corrected by an additional
term given by a Taylor expansion. The numer-
ical problem is then solved using sparsity based
method10,11, or sparse Bayesian learning12,13.

Grid-free compressive beamforming is pos-
sible for far-field sources and uniform linear
arrays14, or uniform rectangular arrays15, with
possibly missing nodes or multiple snapshots16.
Numerically, a finite dimensional semi-definite
program (SDP)17,18 is used to recover the di-
rections of arrival. Extension to arbitrary ar-
ray shapes was recently introduced19. However,
other source models, such as near-field sources,
cannot be tackled by this method. Finally, the
Newtonized OMP (NOMP) algorithm20,21 is a
variant of OMP, where Newton steps are used
to refine the estimations of the sources at each
iteration.
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In this paper, gridfree source localization
is performed by solving the Beurling LASSO
problem22, an infinite dimensional optimization
problem similar to the LASSO problem. Sources
are assumed to be located in a region of interest
Ω, which is here not assumed to be a discrete
set. The distribution of sources is modeled by a
measure µ defined on Ω. In the particular case of
a finite number of monopolar sources, the mea-
sure µ is a finite sum of Dirac masses, located
at the positions of the sources and weighted by
their amplitudes. In particular, we consider the
Sliding Frank-Wolfe (SFW) algorithm23 to solve
the Beurling LASSO problem and estimate the
positions and amplitudes of the sources.

In this algorithm, a source is added at each
iteration, and the parameters of all sources are
then locally and jointly optimized. Under some
conditions (in particular, that the solution is a
finite sum of Dirac masses, and is unique), this
algorithm was shown to converge in a finite num-
ber of iterations23 .

In addition to its original formulation, the
SFW algorithm is here extended to deal with
multi-snapshots data. Moreover, in addition to
the standard SFW algorithm aiming at solving
the Beurling LASSO problem, a modification of
the SFW algorithm is also used as an OMP al-
gorithm with local refinements, an alternative to
NOMP. Compared to the SFW algorithm for the
BLASSO problem, this variant takes the number
of sources as a parameter, and its number of it-
erations is limited to the number of sources.

The method is demonstrated on experimen-
tal data with the localization of four sources in
a 3D domain, in a case when some sources can-
not be identified by beamforming because of its
limited resolution. Monte-Carlo simulations are
performed, to obtain results on the accuracy and
computational time of the SFW algorithm, com-
pared with previously proposed methods. While
3D localization, compared to 2D localization,
does not raise fundamental challenges, practi-
cal issues arise24–26: the distance between the
sources and the array is an additional parame-
ter to be estimated, the resolution in the radial
direction from the array is poorer than in the
normal direction, and finally, the size of the do-
main of interest is increased from a surface to
a volume. Therefore, efficient methods, in the
sense of computational time, are necessary. The
SFW based gridfree methods are shown to be

competitive, with better or equivalent estima-
tion performances, and reduced computational
complexity. Moreover, the SFW based methods
do not require particular array configurations or
source models.

The paper is organized as follows. Section
II introduces the source localization model and
discusses the state of the art. In section III,
the Beurling LASSO and the SFW algorithm are
recalled, and its multisnapshot variant is intro-
duced. Numerical and experimental results are
given in sections IV and V respectively. Section
VI concludes the paper. The code reproducing
the numerical and experimental results is avail-
able online27.

II. MODEL AND STATE OF THE ART

We consider an array of M microphones, lo-
cated at positions ym ∈ R3 (m denoting the
index of the microphone), measuring acoustical
data. Complex amplitudes of the measurements
at a given frequency f are obtained at times ts,
for s = 1 . . . S, S being the number of snapshots
(in practice, time domain measurements are an-
alyzed by a Short Time Fourier Transform). As-
suming the presence of K sources at positions
xk, with complex amplitudes aks, the measured
data ps ∈ CM at ts can be decomposed as

ps =
K∑
k=1

aksg(xk) + ns (1)

where g(xk) is the vector collecting the values of
the Green function from the source at xk to the
sensors, and ns is a measurement noise, assumed
to be white in space and time. When S = 1, we
write p = p1, and ak = ak1. In free field condi-
tions, the vector g(x) is given by its coefficients

gm(x) =
exp (−ik‖x− ym‖2)

‖x− ym‖2

, (2)

where k = 2πf/c, with c the wave velocity. How-
ever, no particular shape is assumed for g(x).
Our goal is to estimate the positions xk and the
amplitudes aks from the measured data ps. Grid-
based and grid-free methods are now recalled.

A. Grid-based estimation

In grid based methods, the source positions
xk are assumed to lie on a discrete grid of N
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points. A finite dimensional dictionary D ∈
CM×N is then assembled by collecting the Green
functions of the grid points, and the vector of the
amplitudes of the sources a ∈ CN is recovered
by solving the system

p ≈ Da. (3)

The goal of sparse recovery is to find the solu-
tion of (3) with the least nonzero coefficients, i.e.
with the lowest `0-”norm”, defined as the num-
ber of nonzero coefficients. This problem is not
tractable.

In OMP, an approximate solution of `0 min-
imization is found by selecting the sources iter-
atively, by identifying the source the most cor-
related to the data, and then by projecting the
data on the orthogonal of the space spanned by
the previously identified sources.

In `1 based approaches, the `0-”norm” is
replaced by its convex relaxation, the `1-norm
(or, in multiple snapshots settings, a mixed
norm6,28). A convex minimization problem is
then solved, yielding a sparse distribution of
sources. The LASSO is a penalized formulation
of the problem, where the vector of estimated
amplitudes aλ ∈ CN is obtained by solving

aλ = argmin
a∈CN

‖Da− p‖2
2 + λ‖a‖1 (4)

where the `1-norm is defined as ‖a‖1 =∑N
n=1 |an|. Alternatively, a constrained version

can be used, by minimizing an `1-norm under a
`2 constraint (Basis Pursuit DeNoising, BPDN),
or vice-versa. Application of this method to
acoustical source localization was investigated in
Refs.4 and25.

Grid-based estimation methods are limited
by the basis mismatch problem8, when a source
does not exactly lie on a grid point. Then, a
source is spread out over multiple grid points,
hindering correct estimation of its position and
amplitude.

B. Atomic norm based compressing beamforming

In some particular cases, grid-free compres-
sive beamforming can be achieved using finite
dimensional positive semi-definite problems14,15.
This is the case for far-field sources and uniform
linear arrays, where g(x) has a particular shape
(that is, complex exponentials). This type of

methods is limited to specific shapes of micro-
phone arrays and, more importantly, to the far-
field case, as it takes advantage of properties of
complex exponentials. This method can be ex-
tended to multiple snapshots16, and to arbitrary
array shapes, using a Fourier decomposition of
the measure modeling the source distribution19.
However, this method imposes constraints on the
model (shape of the array, far-field sources), that
will not be satisfied in our numerical and exper-
imental settings, as we consider arbitrary array
shapes and non-far-field sources.

C. OMP with local optimization

Starting from the OMP algorithm, New-
tonized OMP was proposed for spectral
estimation20, recently extended to source
localization21. The idea of NOMP is to augment
the OMP algorithm with local optimization of
the positions and amplitudes of the sources, us-
ing Newton steps. To do so, sources are added
at each iteration on a finite grid, and refined us-
ing a Newton optimization step, leaving other
positions fixed.

After introduction of a new source, positions
and amplitudes of all sources are refined one at a
time, cyclically by local Newton steps, until the
decrease of the energy of the residual between
iterations falls below a tolerance τ . A new iter-
ation is then executed, with addition of a new
source, until a stopping criterion is reached.

Results in two dimensional localization
showed that estimation of the positions of the
sources was improved compared to OMP, using
the same finite grid21. However, the method fails
with coarse grids, when local Newton iterations
do not converge towards a local minimum of the
objective function20.

D. Block sparsity with Taylor approximations

Block-sparsity, combined with Taylor ap-
proximations, can be used for grid-free sparse
estimation. With z a member of the grid, an
off-grid source at position z + ∆, with offset
∆ = (∆x,∆y,∆z), of amplitude a can be ap-
proximated as

ag(z+∆) ≈ ag(z)+a∆x
∂g

∂x
+a∆y

∂g

∂y
+a∆z

∂g

∂z
.

(5)
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For positive real amplitudes a, off-grid sources
can be localized by the Continuous Basis Pur-
suit method10, minimization of the `1 norm of
the sources with additional convex constraints
on the corrections, ensuring that they remain
bounded by δ/2, with δ the grid step. However,
it was shown that for small grid steps δ, this
method, as the finite dimensional LASSO, rep-
resents a unique source by multiple grid points29.
For complex amplitudes, the constraints nec-
essary to ensure that the corrections are not
larger than δ/2 are non-convex. In this case,
a mixed-norm can be used11. For each grid
point, a vector of amplitudes (â0, â1, â2, â3) ≈
(a, a∆x, a∆y, a∆z) (most of them begin null) is
estimated, from which the correction of the posi-
tion is obtained. However, compared to the pos-
itive real amplitudes case, this formulation does
not ensure that the corrected point stays near
the associated grid point (in fact, the quotients
â1,2,3/â0 are, in general, complex). Finally, the
step δ has to be small enough so that the lin-
ear approximation around the center of a cell re-
mains precise enough in the cell, implying small
steps δ and large computational grids.

III. THE SLIDING FRANK-WOLFE ALGORITHM

We introduce now the Beurling LASSO prob-
lem, and the Sliding Frank-Wolfe algorithm used
to solve it. Assuming that the sources are lo-
cated in a region of interest Ω, the distribution
of sources is modeled by a measure µ, i.e. a func-
tion taking as input a subset30 of Ω, yielding a
positive, real, or complex value (resp measure,
signed measure, and complex measure). The
measure µ models the distribution of sources in
the domain of interest Ω, without the need of a
discrete grid.

A particular example of measure is the Dirac
mass δx which can be used to model a point
source at position x ∈ Ω of unit amplitude. We
recall that the integral of a function f with re-
spect to the Dirac mass δx is given by∫

Ω

f dδx = f(x). (6)

In general, a distribution of K sources at
time ts with positions xk and complex ampli-
tudes aks is modeled by the discrete measure

µs =
K∑
k=1

aksδxk
. (7)

Equation (1) can be rewritten as

ps =

∫
Ω

g dµs + ns. (8)

The source localization method introduced in
this paper is based on the Sliding Frank-Wolfe
algorithm23, which aims at solving the Beurling
LASSO problem, which is defined for S = 1 by

µ? = argmin
µ∈M

1

2

∥∥∥∥∫
Ω

g dµ− p

∥∥∥∥2

2

+ λ|µ|(Ω) (9)

whereM is the set of complex measures defined
on Ω. Then, positions and amplitudes of the
sources are given by the decomposition of µ? in
(7).

The regularization term |µ|(Ω) is the total
variation norm of the complex measure µ, de-
fined by31

|µ|(Ω) = max
f∈C1

∫
Ω

f dµ (10)

where C1 is the set of continuous functions on Ω
with absolute value bounded by 1. For a discrete
measure µ =

∑K
k=1 akδxk

(with pairwise distinct
xk), the definition reduces to

|µ|(Ω) =
K∑
k=1

|ak|. (11)

We observe that we recover here the `1 norm of
the amplitudes of the sources. It can also be
considered as the atomic norm of µ using Dirac
masses as building blocks. The Beurling LASSO
is similar to the LASSO problem (4), with the
important difference that positions of the esti-
mated sources are not limited to a predefined
finite grid.

The SFW algorithm solves problem (9) by
iteratively adding Dirac masses to the measure
being optimized, alternating with local updates
of the positions and amplitudes of the Dirac
masses. The steps of the algorithm are given in
detail in Algorithm 1. The notation G(X) de-
notes the M×k matrix collecting the values of g
for the positions in the tuple X = (x1, . . .xk). ()
denotes the empty tuple, and (X,x?) the inser-
tion of x? into the tuple X. Kmax is the maximal
number of iterations. An iteration consists of the
following steps:
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• firstly, a source is added by solving the
global optimization problem (12). To this
end, the maximum of η[k] (defined in (13))
is searched on a finite grid, and used as ini-
tialization for a local optimization.

• Amplitudes are then updated in problem
(14), a LASSO problem.

• Finally, amplitudes and positions are jointly
optimized in problem (15). This problem is
non-convex (indeed, the objective function
is left unchanged by permutation of the po-
sitions and amplitudes of two sources, and
replacing the positions and amplitudes of
these two sources by their mean is unlikely
to yield a lower value of the objective func-
tion as would be the case for a convex objec-
tive function). However, local optimization
is sufficient, e.g. with a quasi-Newton algo-
rithm, initialized at positions X[k−1/2] and
amplitudes a[k−1/2].

Under some constraints on the solution µ?

(in particular, that it is a finite sum of Dirac
masses), the algorithm is shown to converge in
a finite number of iterations23. In our imple-
mentation, the Matlab 2019b function fmincon
was used to solve problems (12), (14) and
(15), using the sequential quadratic program-
ming algorithm32.
A.Multi-snapshots data

In this subsection, we present a modifica-
tion of the SFW algorithm aimed at process-
ing multi-snapshot data. In the case of several
snapshots, the measured data ps is assembled
in the M × S matrix P. Amplitudes for each
source and each snapshot are optimized in prob-
lems (14) and (15). In problem (15), positions
of the sources are common among the snapshots.
In these problems, the `1-norm is replaced by a
mixed-norm6,28. With A the k × S matrix con-
taining the complex amplitudes of k sources for
S snapshots, and each row ar,j corresponding to
the amplitudes of the j-th source for the S snap-
shots, we define the `2,1 mixed norm as

‖A‖2,1 =
k∑
j=1

‖ar,j‖2. (16)

In a given row, the `2 norm is considered, which
does not impose sparsity inside the row. Indeed,
this would imply temporal sparsity of the source,

Algorithm 1: Sliding Frank-Wolfe algorithm, solving prob-
lem (9)

µ[0] ← 0, r[0] ← p, X[0] ← ()

for k = 1, . . . ,Kmax do

Identify a new source by solving

x? = argmax
x∈Ω

η[k](x) (12)

where

η[k](x) =
1

λ
|g(x)?r[k−1]| (13)

if η(x?) ≤ 1 then

Stop

else

X[k−1/2] = (X[k],x?)

Optimize the amplitudes:

a[k−1/2] = argmin
a∈Ck

+

1

2
‖G(X[k−1/2])a− p‖22 + λ‖a‖1 (14)

Optimize the amplitudes and positions:

(X[k],a[k]) = argmin
X∈Ωk,a∈Ck

+

1

2
‖G(X)a− p‖22 + λ‖a‖1 (15)

µ[k] ←
∑k

n=1 a
[k]
n δ

x
[k]
n
, r[k] ← p−G(X[k])a[k]

end if

end for

which is not expected here. Then, the `1 norm of
the `2 norms is computed, as we expect spatial
sparsity.

The function η is updated, with

η[k](x) =
1

λ

√√√√ S∑
s=1

∣∣∣g(x)?r
[k−1]
s

∣∣∣2 (17)

where r
[k−1]
s is the residual for the s-th snapshot,

defined by

r[k]
s = ps −G(X[k])a[k]

c,s, (18)

a
[k]
c,s being the s-th column of A[k], containing the

amplitudes of the sources for the s-th snapshot.
Details on this choice of η are given in the Ap-
pendix.

Problems (14) and (15) are replaced by:

A[k−1/2] = argmin
A∈CkS

1

2
‖G(X[k−1/2])A−P‖2

F+λ‖A‖2,1

(19)
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and

(X[k],A[k]) = argmin
X∈Ωk,A∈CkS

1

2
‖G(X)A−P‖2

F+λ‖A‖2,1

(20)
where ‖ · ‖F denotes the Frobenius norm of a
matrix, defined as the `2 norm of its coefficients.

B. Setting the regularization parameter λ

Setting the regularization parameter is
known to be a difficult problem. To help this
tuning, the homotopy approach can be used33:
results of the algorithm for several parameters
λ can be obtained by sequentially running the
SFW algorithm for decreasing λ, initializing each
run with the output of the previous run. In this
case, the algorithm starts by solving (15) and
checking the value of η, to avoid addition of a
source if not necessary. The search of the pa-
rameter λ can be stopped when an appropriate
number of sources is found, or according to Mo-
rozov’s principle34, by setting λ such that the
error between the measurements and the acous-
tical field generated by the estimated sources
‖G(X)A − P‖2

F is in the order of the expected
noise level.

C. A greedy version of SFW

While the SFW algorithm solves a minimiza-
tion problem, it structure is similar to greedy
sparse recovery algorithms such as OMP. The
SFW algorithm can be used for greedy identifica-
tion of acoustical sources by setting λ = 0, using
a normalized dictionary gn(x) = g(x)/‖g(x)‖2,
and stopping the algorithm after a fixed num-
ber of iterations. This version of SFW is more
practical when an estimation of the number of
sources is known. Moreover, the number of it-
erations is limited to the iterations necessary to
recover the sources, whereas additional spurious
sources can slow the algorithm down, because of
the additional iterations and the higher number
of parameters to optimize in problems (14) and
(15).

Compared to NOMP, where positions and
amplitudes of the sources are optimized sequen-
tially, at each iteration, here positions and am-
plitudes of all identified sources are locally and
jointly optimized. The normalized dictionary
gn will also be used when solving the BLASSO
problem (9).

IV. NUMERICAL RESULTS

Performances of the SFW algorithm for
acoustical source localization, in comparison to
the state of the art, are now assessed using simu-
lated data. Both version of SFW are considered:
penalized SFW, solving problem (9), and greedy
SFW, introduced in subsection III C.

A. A simple 1D example

To allow comparison between the semi-
definite programming based method, BPDN,
block-sparsity, penalized SFW, a first simulation
is made in the case of a simple one dimensional
direction of arrival estimation. Results of ESM-
IRLS24 are also given.

Figure 1 shows the result of localization of
two far field sources of amplitudes 1 and 2 Pa,
arriving from angles θ1 = 0.21 and θ2 = −0.53,
with a uniform linear array of 20 microphones
with pitch half the wavelength, using S = 1
snapshot. For the SDP problem, BPDN and
block-sparsity estimation, the tolerance ε is set
as twice the norm of the noise, and for SFW,
λ = 1. ESM-IRLS24 is used with p = 0. The grid
used for BPDN, block-sparsity and ESM-IRLS,
and to initialize problem (12) in SFW, is a regu-
lar sampling of 40 values of sin(θ) in the interval
[−π/2, π/2]. For block-sparsity, the derivative of
the dictionary is normalized so that the decom-
position of a source located between grid points
has coefficients in the dictionary and its deriva-
tive of the same order.

Although θ1 and θ2 are not on the grid, SDP
and SFW are capable of estimating the direc-
tions of arrival correctly. For BPDN, block-
sparsity and EMS-IRLS, each source is repre-
sented by two spikes. Moreover, several spurious
sources appear, caused by the basis mismatch.

B. Performances of the SFW algorithm

Now, performances of the SFW algorithm,
in its original penalized version (SFW p.) and
greedy version (SFW g.), OMP, and NOMP
are compared, in function of several parame-
ters: step δ of the discretization grid, frequency,
SNR, number of snapshots, and resolution, using
Monte-Carlo simulations. The SDP based grid-
free method cannot be used here, as is cannot
deal with the source model. The block-sparsity
method was also considered, but long running
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FIG. 1. Simulations. Direction of arrival estima-
tion, (a) SFW and SDP, (b) BPDN and block spar-
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times (typical running times of 500s compared
to less than a second for the greedy SFW algo-
rithm at δ = 0.1m) prevented its use in the sim-
ulations. An array of 128 microphones is used,
with positions of the microphones shown on fig-
ure 2 in the plane Z = 0. The domain Ω is de-
fined by −1 ≤ X ≤ 1, −1 ≤ Y ≤ 1, 3 ≤ Z ≤ 5
(in meters), discretized with a step δ = 0.05m
(except when stated otherwise). Three sources
are randomly placed in Ω using a uniform den-
sity, with amplitudes 0.1 Pa, 0.2 Pa and 0.4 Pa
resp., and random phases. For the original SFW
algorithm, the λ parameter is chosen as the min-
imal value such that three sources are identified.
Estimated amplitudes obtained by least-squares
fitting of the data to the sources identified by the
BLASSO problem, avoiding the bias introduced
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FIG. 3. Simulations. Performances of greedy SFW,
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grid step. (a) MSE in position (left) and amplitude
(right), (b) computational time (left) and number
of positions visited (right). (color online)

by the regularization terms, are also given (SFW
p. LS ).

50 realizations of the data are used to esti-
mate the Mean Square Error (MSE) of the posi-
tions and amplitudes of the sources.

a. Grid step. In OMP, estimated positions
will necessarily lie on the grid, while for NOMP
and SFW, the grid is used only at the identifi-
cation step, followed by local optimization, and
should have a lesser impact on the localization
results.

MSE for the position and amplitude estima-
tion are given on figure 3-(a), for OMP, NOMP
with tolerances τ = 10−7 and τ = 10−9, and
SFW, with S = 1, F = 4858Hz and a SNR
of 20dB. As expected, performances of OMP
worsen as the step increases. Compared to OMP,
the local optimization of NOMP with τ = 10−7

improves the localization performances. NOMP
with τ = 10−9 reaches similar performances to
SFW for steps up to 0.1m. However, at δ =
0.2m, performances of NOMP degrades, com-
pared to SFW. This can be explained by the fact
that the condition for convergence of the Newton
method towards a local maximum of the like-
lihood function are not satisfied20: at the grid
point where a source is first placed, the objec-
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FIG. 4. Simulations. Position (left) and amplitude
MSE (right) in function of (a) frequency F , (b) SNR,
(c) number of snapshots S. (color online)
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FIG. 5. Simulations. Position MSE in the case of
two sources with varying distance, with sources in
the same plane parallel to the array (left), and in
the same axis normal to the array (right). (color
online)

tive function is non-convex, and the Newton step
does not yield a relevant update of the position.
For larger steps, SFW also fails. Here, the grid is
too coarse compared to the wavelength to allow
to initialize the optimization problem (12) near
the global optimum.

Amplitude estimated by solving the Beurling
LASSO problem with the penalized SFW algo-

rithm are biased. Reestimating the amplitudes
improve the estimation of the amplitudes.

For the following numerical experiments, the
tolerance τ = 10−9 will be used for NOMP.

b. Frequency. Performances with respect to
the frequency are plotted on figure 4-(a), with
S = 1, a grid step of 0.05m, and a SNR of 20dB.
At low frequencies, the methods can return sev-
eral sources with identical positions when the
distance between sources is not sufficient. In this
case, estimation of the amplitude of the sources
is ill-conditioned. To avoid large error in ampli-
tude estimations cause by this ill-conditioning,
when two sources have estimated position x and
x′ such that |〈g(x),g(x′)〉| / (‖g(x)‖‖g(x′)‖) >
0.98, their amplitudes are replaced by their av-
erages, and similarly when the three sources are
estimated at the same position.

Here, it is expected that the performances
improve with increasing frequencies. This im-
provement is visible for all methods at lower fre-
quencies (performances of OMP are however lim-
ited by the coarse grid used here). Above fre-
quency 10kHz for NOMP, and 18kHz for SFW,
performances of the methods degrade. This fail-
ure is explained as in the case of varying grid
step, by the coarseness of the grid compared to
the wavelength.

c. SNR. Here, we analyze the effect of the
noise level on the estimation. Figure 4-(b) shows
the MSE in position and amplitudes with respect
to the SNR, with S = 1, F = 4858Hz. Perfor-
mances of OMP are limited by the grid. NOMP
and greedy SFW show similar performances ex-
cept at high SNR. This discrepancy is caused by
stopping the local optimization of NOMP when
the tolerance τ is reached, before convergence.

d. Number of snapshots. The performances
of the methods are now compared for increas-
ing number of snapshots, from S = 1 to S = 10,
with F = 4858Hz and a SNR of 10dB, on Fig-
ure 4-(c). Here, the amplitudes of the sources at
each snapshot are drawn from independent ran-
dom complex Gaussian variables, such that their
RMS amplitudes are 0.1 Pa, 0.2 Pa and 0.4 Pa
resp.. All methods fail for a unique snapshot.
This is caused by the lower SNR, and the ran-
dom amplitudes, which thus can be close to zero
for some sources in some configurations. Using
several snapshots ensures that all sources have
a sufficient amplitude for at least one snapshot.
Results of the MUSIC algorithm are also given

8 J. Acoust. Soc. Am. / 26 October 2021 Sliding Frank-Wolfe compressive beamforming



when the number of snapshots is larger than the
number of sources, showing better performances
of SFW compared to MUSIC, for the values of
S used here.

e. Resolution. Finally, the resolution of the
methods is compared. Two sources of identical
amplitudes are used with S = 1, F = 4858Hz,
and SNR of 20dB, with varying distance be-
tween the sources. Figure 5 shows the posi-
tion error when the two sources are in a plane
parallel to the array (left panel), and with the
two sources have identical X and Y coordinates
(right panel). Greedy SFW, penalized SWF and
NOMP improve at the same threshold (approx.
0.075m in the XY plane and 0.44m in the Z
axis). Greedy SFW exhibits better performances
for distances up to twice this threshold.

f. Computational effort. On figure 3-(b), the
computational time (on a personal laptop
equipped with an Intel Core i7-7820HQ @
2.90GHz × 8 CPU and 16 GB memory) of the
four methods is plotted, as well as the number of
positions x where g(x) is computed, for varying
grid step. SFW yields results in a shorter time
than NOMP at τ = 10−9 by an order of mag-
nitude, with fewer visited positions. This dis-
crepancy is, in part, explained by the fact that
SFW optimizes the positions and amplitudes of
all sources jointly, while NOMP considers them
separately.

In conclusion, these numerical experiments
show that the SFW algorithm compares favor-
ably with respect to the NOMP method. In-
deed, when both methods succeed in locating
the sources, the SFW algorithm yields similar
or better performances than NOMP. Addition-
ally, the SFW algorithm does not necessitate
grids as fine as NOMP. At fixed grid size, NOMP
shows higher computational times at a tolerance
τ yielding similar performances to SFW. These
observations show that the SFW algorithm is
better suited than NOMP for gridfree source
localization, in particular at high frequencies,
as the necessary grid step scales like the wave-
length. The greedy version of SFW was found to
yield slightly better performances than the SFW
algorithm solving BLASSO problem, even after
re-estimation of the amplitudes.

X

Y

Z 1
2

3

4

FIG. 6. Acoustical sources and coordinate frame.
(color online)

V. EXPERIMENTAL RESULTS

In the experimental results, four sources
(Visaton-BF32 omnidirectional loudspeakers)
are used, pictured on Fig. 6, emitting white
noise. The acoustical field is measured us-
ing an array of 128 MEMS microphones (IN-
VENSENSE–INMP441), with positions shown
on Fig. 2. The sampling frequency is Fs = 50
kHz, and signals are analyzed by a Short-Time
Fourier Transform, with Hann window of du-
ration 82ms (4096 samples) and 50% overlap.
More details on the experimental setup are found
in Ref.35.

The domain of interest is the box defined by
−2 ≤ X ≤ 1, −1 ≤ Y ≤ 0, 4 ≤ Z ≤ 5 (in
meters), containing the four sources. S = 10
snapshots are used, and results are obtained at
frequency F = 1818Hz. Results of conventional
beamforming are given on Figure 9-(a). At the
chosen frequency, the two central sources cannot
be separated by beamforming.

The penalized SFW algorithm is run for sev-
eral values of λ in the BLASSO problem (9) us-
ing the homotopy approach described in sub-
section III B, with the normalized dictionary
gn. Estimated amplitudes and positions of the
sources depend on the regularization parameter
λ. Fig. 7 shows the evolution of the estimated
amplitudes of the sources in function of λ. Am-
plitudes are defined as the root mean square of
the amplitudes for each snapshot, normalized
by the amplitude of the most powerful source,
estimated by beamforming from measurements
where it is the only active source. Each color
represents a source identified by the algorithm.
For high λ, amplitudes of the sources are un-
derestimated, while for low λ, several spurious
sources appear.

Figure 8 highlights the importance of the
normalization of the dictionary. Here, the es-
timated Z coordinates for each source are plot-
ted in function of the regularization parameter
λ, using the un-normalized dictionary g and the

J. Acoust. Soc. Am. / 26 October 2021 Sliding Frank-Wolfe compressive beamforming 9
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amplitudes of the sources (identified by a color)
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FIG. 8. Experimental results. Z-coordinate of the
sources identified by penalized SFW for the normal-
ized gn and un-normalized model g, in function of
the regularization parameter λ. (color online)

`2-normalized dictionary gn. Using g, estimated
positions are biased towards the array for large
λ. Indeed, in these cases, it is preferable to es-
timate a source at a position closer to the ar-
ray, where the model does not match the data
as well as the correct position, but the necessary
amplitude is smaller, and therefore generates a
smaller penalization. While estimated Z coordi-
nates fluctuate in function of λ when using gn,
no clear bias is visible.

On figure 9, estimated positions for λ = 648
(just before the appearance of a fifth source,
denoted as penalized SFW) are plotted. On
this same figure, results of the greedy version
of SFW, OMP, NOMP (the data-dependent tol-
erance τ is here τ = 0.01, which has been ob-
served to yield similar results to SFW), MUSIC
and CSCD combined with ESM-IRLS24 are re-
ported, with four iterations.

Estimated powers of the sources are given
in table I for OMP, NOMP, greedy and penal-
ized SFW, and MUSIC, and are compared to
the power estimated by beamforming, in settings
where each source is the unique active source.

VI. CONCLUSION

The application of the Sliding Frank-Wolfe
algorithm for acoustical source localization is in-
troduced. Modifications of the algorithm were
used, to take into account multi-snapshots data,
and perform greedy identification of the sources.
Estimation performances were shown to be bet-
ter, or comparable, than the state of the art.
Additionally, the method is numerically efficient,
with smaller computational times than other
grid-free methods, and is not based on a par-
ticular source model or limited to specific array
shapes. Results for several values of the regu-
larization parameter λ are obtained, helping the
choice of the regularization parameter.
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Power OMP NOMP SFW gr. SFW p. SFW p. LS MUSIC

Source 1 52.9 51.8 51.6 51.5 50.0 51.6 51.7

Source 2 53.3 53.5 53.4 53.4 52.0 53.4 53.6

Source 3 51.0 48.1 49.6 49.6 47.3 49.5 50.1

Source 4 50.8 50.1 50.1 50.1 48.3 50.1 50.3

TABLE I. Experimental results. Estimated powers of the sources for OMP, NOMP, greedy SFW, penalized
SFW (penal. SFW), and penalized SFW with least-squares estimation of the amplitudes (penal. SFW LS).
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APPENDIX A: SELECTION CRITERION η

In Algorithm 1, η[k] is defined as

η[k](x) =
1

λ

∣∣g(x)?r[k−1]
∣∣ . (A1)

At the end of an iteration, where amplitudes and
positions of the estimated sources are locally op-
timal, the objective function can be locally im-
proved only by adding a new source. Defining
hx,ψ(ε) = J(µk + εeiψδx) − J(µk) the variation
of the objective function J of problem (9) when
introducing a source at x with phase ψ and pos-
itive amplitude ε,

h′x,ψ(0) = −Re
(
e−iψg(x)?r[k−1]

)
+ λ. (A2)

Maximal decrease is obtained when ψ is chosen
as the angle ψ? of (g(x)?r[k−1])?, yielding

h′x,ψ?
(0) = −

∣∣g(x)?r[k−1]
∣∣+ λ. (A3)

Maximizing η[k](x) can therefore be interpreted
as choosing the position x where adding a source
maximizes the improvement of the objective
function. Moreover, when h′x,ψ?

(0) ≥ 0 for all

possible positions x (equivalently, η[k](x) ≤ 1),
the objective function cannot be improved by
adding a source, and the algorithm stops.

For the multisnapshot problem, we define
hx,u(ε) as the variation of the objective function
when a source is introduced at x with amplitudes
usε for each snapshot, with ‖u‖2 = 1 and ε ≥ 0.
Then

h′x,u(0) = −
S∑
s=1

Re((usg(x))?r[k−1]
s ) + λ (A4)

Defining v such that vs = g(x)?r
[k−1]
s ,

h′x,u(0) = −Re(u?v) + λ. (A5)

The vector u maximizing the decrease of the
objective function for a given position x is ob-
tained by choosing u colinear with v, that is
u? = v/‖v‖2, and

h′x,u?
(0) = −‖v‖2 + λ (A6)

We then define

η(x) = ‖v‖2/λ (A7)

with η(x) ≤ 1 when the objective function can-
not be decreased by adding a source.
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M. Bianco, “Introduction to compressive sensing in
acoustics,” The Journal of the Acoustical Society of
America 143(6), 3731–3736 (2018) muhttp://asa.

scitation.org/doi/10.1121/1.5043089 doi: mu10.

1121/1.5043089 publisher: Acoustical Society of
America.

3S. S. Chen, D. L. Donoho, and M. A. Saunders,
“Atomic Decomposition by Basis Pursuit,” SIAM Re-
view 43(1), 129–159 (2001) muhttps://epubs.siam.

org/doi/10.1137/S003614450037906X doi: mu10.

1137/S003614450037906X publisher: Society for In-
dustrial and Applied Mathematics.

4P. Simard and J. Antoni, “Acoustic source identifica-
tion: Experimenting the `1 minimization approach,”
Applied Acoustics 74(7), 974–986 (2013) doi: mu10.

1016/j.apacoust.2013.01.012.
5A. Xenaki, P. Gerstoft, and K. Mosegaard, “Com-
pressive beamforming,” The Journal of the Acoustical
Society of America 136(1), 260–271 (2014) muhttp:

//asa.scitation.org/doi/10.1121/1.4883360 doi:
mu10.1121/1.4883360.

6D. Malioutov, M. Cetin, and A. Willsky, “A sparse sig-
nal reconstruction perspective for source localization
with sensor arrays,” IEEE Transactions on Signal Pro-
cessing 53(8), 3010–3022 (2005) doi: mu10.1109/TSP.
2005.850882.

7Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthog-
onal matching pursuit: recursive function approxima-
tion with applications to wavelet decomposition,” in
Proceedings of 27th Asilomar Conference on Signals,
Systems and Computers (1993), pp. 40–44 vol.1, doi:
mu10.1109/ACSSC.1993.342465, iSSN: 1058-6393.

8Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calder-
bank, “Sensitivity to Basis Mismatch in Compressed
Sensing,” IEEE Transactions on Signal Processing
59(5), 2182–2195 (2011) doi: mu10.1109/TSP.2011.

2112650.
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29V. Duval and G. Peyré, “Sparse spikes super-resolution
on thin grids II: the continuous basis pursuit,” In-
verse Problems 33(9), 095008 (2017) muhttps://doi.
org/10.1088/1361-6420/aa7fce doi: mu10.1088/

1361-6420/aa7fce.

J. Acoust. Soc. Am. / 26 October 2021 Sliding Frank-Wolfe compressive beamforming 13

http://http://asa.scitation.org/doi/10.1121/10.0000983
http://http://asa.scitation.org/doi/10.1121/10.0000983
https://doi.org/10.1121/10.0000983
https://doi.org/10.1109/TSP.2012.2222378
https://doi.org/10.1109/JOE.2018.2851119
https://doi.org/10.1109/JOE.2018.2851119
http://http://asa.scitation.org/doi/10.1121/1.4916269
http://http://asa.scitation.org/doi/10.1121/1.4916269
https://doi.org/10.1121/1.4916269
http://http://asa.scitation.org/doi/10.1121/1.4996460
http://http://asa.scitation.org/doi/10.1121/1.4996460
https://doi.org/10.1121/1.4996460
http://http://asa.scitation.org/doi/10.1121/1.5042242
http://http://asa.scitation.org/doi/10.1121/1.5042242
https://doi.org/10.1121/1.5042242
http://http://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21455
http://http://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21455
https://doi.org/https://doi.org/10.1002/cpa.21455
http://https://doi.org/10.1093/imaiai/iaw005
https://doi.org/10.1093/imaiai/iaw005
http://https://asa.scitation.org/doi/10.1121/10.0005059
http://https://asa.scitation.org/doi/10.1121/10.0005059
https://doi.org/10.1121/10.0005059
https://doi.org/10.1121/10.0005059
https://doi.org/10.1109/TSP.2016.2580523
http://http://asa.scitation.org/doi/10.1121/10.0001919
http://http://asa.scitation.org/doi/10.1121/10.0001919
https://doi.org/10.1121/10.0001919
http://https://www.sciencedirect.com/science/article/pii/S0022247X12003952
http://https://www.sciencedirect.com/science/article/pii/S0022247X12003952
https://doi.org/10.1016/j.jmaa.2012.05.011
http://https://doi.org/10.1088/1361-6420/ab2a29
http://https://doi.org/10.1088/1361-6420/ab2a29
https://doi.org/10.1088/1361-6420/ab2a29
https://doi.org/10.1088/1361-6420/ab2a29
http://http://www.sciencedirect.com/science/article/pii/S0022460X20300390
http://http://www.sciencedirect.com/science/article/pii/S0022460X20300390
https://doi.org/10.1016/j.jsv.2020.115208
http://https://www.sciencedirect.com/science/article/pii/S0022460X16302310
http://https://www.sciencedirect.com/science/article/pii/S0022460X16302310
https://doi.org/10.1016/j.jsv.2016.06.009
https://doi.org/10.1109/TSP.2006.881263
http://https://doi.org/10.1088/1361-6420/aa7fce
http://https://doi.org/10.1088/1361-6420/aa7fce
https://doi.org/10.1088/1361-6420/aa7fce
https://doi.org/10.1088/1361-6420/aa7fce


30Technically a member of a σ-algebra of Ω. For sake of
clarity, such technicalities will not be considered here,
and are discussed at length in appropriate textbooks31.

31W. Rudin, Real and Complex Analysis, 3rd Ed.
(McGraw-Hill, Inc., USA, 1987).

32J. Nocedal and S. J. Wright, Numerical Optimization,
2nd Ed. (Springer, 2006) chapter 18.

33J.-B. Courbot and B. Colicchio, “A fast homotopy al-
gorithm for gridless sparse recovery,” Inverse Problems
37(2), 025002 (2021) doi: mu10.1088/1361-6420/

abd29c publisher: IOP Publishing.
34O. Scherzer, “The use of Morozov’s discrepancy prin-

ciple for Tikhonov regularization for solving nonlinear

ill-posed problems,” Computing 51(1), 45–60 (1993)
muhttps://doi.org/10.1007/BF02243828 doi: mu10.
1007/BF02243828.

35G. Chardon, F. Ollivier, and J. Picheral, “Localiza-
tion of sparse and coherent sources by orthogonal
least squares,” The Journal of the Acoustical Soci-
ety of America 146(6), 4873–4882 (2019) muhttp:

//asa.scitation.org/doi/10.1121/1.5138931 doi:
mu10.1121/1.5138931 publisher: Acoustical Society
of America.

14 J. Acoust. Soc. Am. / 26 October 2021 Sliding Frank-Wolfe compressive beamforming

https://doi.org/10.1088/1361-6420/abd29c
https://doi.org/10.1088/1361-6420/abd29c
http://https://doi.org/10.1007/BF02243828
https://doi.org/10.1007/BF02243828
https://doi.org/10.1007/BF02243828
http://http://asa.scitation.org/doi/10.1121/1.5138931
http://http://asa.scitation.org/doi/10.1121/1.5138931
https://doi.org/10.1121/1.5138931

