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Abstract—As we have proved in [11], the geodesic flows associated with the flat metrics on
T2 minimize the polynomial entropy hpol. In this paper, we show that, among the geodesic
flows that are Bott integrable and dynamically coherent, the geodesic flows associated with flat
metrics are local strict minima for hpol. To this aim, we prove a graph property for invariant
Lagrangian tori in near-integrable systems.
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1. INTRODUCTION

Let (M,g) be a compact Riemannian manifold. The Hamiltonian geodesic flow φg is the flow
associated with the geodesic Hamiltonian H on T ∗M defined by

H : T ∗M −→ R

(m, p) 7→ g∗m(p, p),

where g∗m is deduced from gm by the Legendre transform. Throughout this paper, we will consider
only the restriction of φg to the unit cotangent bundle of M , which we still denote by φg.

There are several ways to measure the complexity of the geodesic flow φg, one of them being the

growth rate of the volume of balls in the Riemannian covering M̃ of M . We recall that the volumic
entropy hvol(g) of (M,g) is defined as:

hvol(g) := lim sup
r→∞

1

r
Log VolB(x, r),

where B(x, r) is the ball in M̃ centered at x and of radius r. Another way to determine the
complexity of φg is the topological entropy. Given a compact metric space (X, d) and a continuous
flow φ : R ×X → X : (t, x) 7→ φt(x), for each t > 0, one defines the dynamical metric

dφt (x, y) = max
06k6t

d(φt(x), φt(y)). (1.1)

All the metrics dφt are equivalent to d. In particular, (X, dφt ) is compact. So, for any ε > 0, X can

be covered by a finite number of balls of radius ε for dφt . Let Gt(ε) be the minimal cardinal of such
a covering. The topological entropy of φ is defined by:

htop(φ) = lim
ε→0

lim sup
t→∞

1

t
logGt(ε).
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Manning proved in [13] that hvol(g) 6 htop(φg), with equality if (M,g) has sectional non positive
curvature.

Besson, Courtois and Gallot ([4, 5]) proved that locally symmetric metrics of negative curvature
(and in particular hyperbolic metrics) are strict minima for htop. This result was already proved in
dimension 2 by Katok in [9]. Therefore, one knows the “simplest” metrics for surfaces with genus
> 2 and we would like to find the metrics that minimize the complexity for surfaces with genus 1.

A first remark is that the volume growth is quadratic, and that the topological entropy may
vanish. Indeed, a flat metric on T

2 is an equality case in Manning’s formula. Hence, since the growth
of the volume is quadratic, the entropy is zero. Flat metrics are not the only ones for which the
topological entropy vanishes. Indeed, Paternain proved in [16] that if the geodesic flow admits a
first integral f such that the critical points of f (in restriction to the unit cotangent bundle) form
strict submanifolds, then its topological entropy vanishes.

This leads us to consider a “polynomial measure” of the complexity, namely the polynomial
entropy hpol, defined below, and to search the minimizers of hpol among the metrics g whose
geodesic flow φg possesses a first integral that satisfies Paternain’s hypotheses.

The polynomial entropy is defined as follows:

hpol(φ) = lim
ε→0

lim sup
t→∞

1

log t
logGt(ε) = Inf

{
σ > 0 | lim

t→∞

1

tσ
Gφt (ε) = 0

}
,

where, as before, φ is a flow on a compact metric space X. We refer to [15] for a complete
introduction. In [12], we proved that if H is a Hamiltonian system on T ∗

T
n (with the canonical

symplectic form dθ ∧ dr) which is in action-angle form (that is, H(θ, r) = h(r), for a smooth map
h : R

n → R) then the polynomial entropy in restriction to a compact energy level E = H−1({e})
of H is

hpol(φH ,E ) = max
r∈h−1({e})

∂2
(
h|h−1({e})

)
(r).

An immediate consequence of this result is that if g0 is a flat metric on T
n, then hpol(φg0) = n− 1.

Now, for a Riemannian manifold (M,g) we set

τ(M) = lim sup
r→∞

log VolB(x, r)

log r
= inf

{
s > 0 | lim sup

r→∞

1

rs
VolB(x, r) = 0

}
.

One checks that τ(M) is independent of x. Indeed, it is the degree of growth of the fundamental
group π1(M). In [11], we proved that, denoting by φg the geodesic flow of g:

τ(M) 6 hpol(φg) + 1.

Therefore, since τ(Tn) = n , the flat metrics on T
n do minimize hpol.

Finally, in [12], we showed that if a Hamiltonian flow φH on a 4-dimensional symplectic manifold
possesses a first integral, independent of H, that is nondegenerate in the Bott sense on a compact
regular level E of H and that satisfies an additional property of “dynamical coherence”, then
hpol(φH ,E ) belongs to {0, 1, 2} and hpol(φH ,E ) = 2 if and only if φH possesses a hyperbolic orbit.
This result and the definition of dynamical coherence are recalled in Section II. The main result of
this paper is the following. We denote by DC the set of metrics on T

2 with dynamically coherent
geodesic flows.

Theorem A. Let g0 be a flat metric on T
2. There exists a neighborhood U of g0 in the set of C5

metrics such that for any g ∈ U ∩ DC :

• either g is flat,

• or g possesses a hyperbolic orbit.

Therefore, if g ∈ U ∩ DC is not flat, then hpol(φg) = 2 > hpol(φg0) = 1. The proof of Theorem A
will be given in Section III.
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2. DYNAMICALLY COHERENT SYSTEMS

Consider a 4-dimensional symplectic manifold (M,Ω) and a smooth Hamiltonian function

H : M → R, with its associated vector field XH and its associated Hamiltonian flow φH . We fix
a (connected component of ) a compact regular energy level E of H. It is an orientable compact
connected submanifold of dimension 3.

Definition 1. A first integral F : M → R of the vector field XH is said to be nondegenerate in the
Bott sense on E if the critical points of f := F|E form nondegenerate strict smooth submanifolds

of E , that is, the Hessian ∂2f of f is nondegenerate on complementary subspaces to these
submanifolds. The triple (E , φH , f) is called a nondegenerate Bott system.

By the Arnol’d–Liouville theorem, if the regular levels of the moment map (H,F ) are

compact, the regular set of (H,F ) admits a covering by domains Â saturated for (H,F ) and
symplectomorphic to T

2 ×B (B ⊂ R
2), namely the action-angle domains. On such a domain, the

leaves of the foliation induced by (H,F ) are homotopic tori that are symplectomorphic to the
tori T

2 × {r}, r ∈ B and the flow is conjugated to a Hamiltonian flow φ on T
2 ×B of the form

φt(θ, r) = (θ + ω(r) [Z2], r).

In the following, we consider the restrictions of the vector field and the flow to E , they are still
denoted by XH and φH . Let us describe the geometry of the level sets of f . We denote by R(f) the
set of regular values of f and by Crit(f) the set of its critical values. If c ∈ Crit(f), we denote by
Rc the union of the connected components of f−1({c}) that does not contain any critical point. We

define the regular set of f as R := f−1({R}) ∪
(⋃

c∈Crit(f) Rc

)
. A connected component of R is

contained in the connected component of an intersection A := Â ∩ E , where Â is an action-angle
domain.

The singularities of f are well known. The following proposition is proved in [14] and [8].

Proposition 1. The critical submanifolds may only be circles, tori or Klein bottles.

The critical circles for f are periodic orbits of the flow φH . Their index is the number of negative
eigenvalues of the restriction of ∂2f to a supplementary plane to RXH . Let us summarize briefly the
two possibilities that occur (see [14] for more details). Fix a critical circle C for f with f(C ) = c.

• If C has index 0 or 2, there exists a neighborhood U of C , saturated for f , that is diffeomorphic
to the full torus D × T (where D is an open disk in R

2 containing 0) such that f−1{c} ∩ U = C .
Denoting by Ψ the diffeomorphism, we assume that C = Ψ({0} × T). The levels f−1({c′}) for c′

close to c are tori Ψ(C × T), where C is a circle in D homotopic to 0. Denoting by D∗ the pointed
disk, one shows (see [3] and references therein) that U \ C = Ψ(D∗ × T) is contained in a action-
angle domain A .

• If C has index 1, there exists a neighborhood U of C such that f−1{c} ∩ U is a stratified
submanifold homeomorphic to a “fiber bundle” with basis a circle and with fiber a “cross”. The
connected component P of f−1({c}) containing C is a finite union of critical circles and cylinders
T × R whose boundary is either made of one or two critical circles. All the critical circles contained
in P are homotopic and have index 1. Such a stratified submanifold is called a polycycle. In [8],
Fomenko assumes that a polycycle contains only one critical circle. In this case, we say that P is
a “eight-level”, and we write ∞-level.

Finally in [12], we have shown that if T is a critical torus for f , then T is contained in a

action-angle domain Â . We denote by Tc the set of all critical tori of f and we introduce the

domain R̂ := R ∪ Tc. A connected component of R̂ is the connected component of an intersection

A := Â ∩ E , where Â is an action-angle domain.

Such a domain A is diffeomorphic to T
2 × I, where I is an interval of R and it satisfies the

following properties:

• there exist a, b ∈ Crit(f) with a < b and A = f−1(]a, b[),

REGULAR AND CHAOTIC DYNAMICS Vol. 17 No. 6 2012
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• for all x ∈ ]a, b[, f−1(x) ∩A is diffeomorphic to T
2,

• there is a critical point of f in each connected component of ∂A .

We say that A is a maximal action-angle domain of (E , φH , f). This discussion can be summarized
in the following lemma.

Corollary 1. The energy level E is a finite disjoint union of maximal action-angle domains A ,
critical circles with index 0 or 2, ∞-levels and Klein bottles.

Now, consider the Hamiltonian flow ψ on an energy level E of a Hamiltonian function on a 4-
dimensional symplectic manifold and let γ be a periodic orbit of ψ with period T . The eigenvalues of
DψT (q) do not depend on q in γ and X is an eigenvector for DψT associated with the eigenvalue 1.
We denote by λ1, λ2 the other two eigenvalues. Due to the conservation of the volume, one has
λ1λ2 = 1. The closed orbit γ is said to be nondegenerate if λ1 and λ2 are not equal to 1. There are
two types of nondegenerate closed orbit:

• elliptic if λ1 and λ2 are complex conjugate numbers lying on the unit circle U.

• hyperbolic if (λ1, λ2) ∈ R
2 with |λi| 6= 1.

Let us come back now to the Bott system (E ,XH , f). We first observe that a periodic orbit
that is nondegenerate must be a critical circle for f . We also see that an elliptic orbit is a critical
circle with index 0 or 2 and that a hyperbolic orbit is a critical circle with index 1. Indeed, if γ
is a hyperbolic periodic orbit, it possesses invariant manifolds W s and W u that meet transversaly
along γ: this is possible if and only if γ is contained in a ∞-level.

Conversely, a critical circle is not always a nondegenerate periodic orbit. This led us to the
introduce the following definition.

Definition 2. The system (E , φH , f) is said to be dynamically coherent if the critical circles C

are nondegenerate periodic orbits.

Example 1. In [11], we show that the geodesic flows of generic tori of revolution are dynamically
coherent systems with hyperbolic periodic orbits.

We conclude this section with the following result proved in [12]:

Theorem 1. Let (E , φH , f) be a dynamically coherent system. Then

hpol(φH) ∈ {0, 1, 2}.
Moreover, hpol(φH) = 2 if and only if φH possesses a hyperbolic orbit.

3. PROOF OF THEOREM A

Let (M,g) be a compact Riemannian manifold. The geodesic action is defined on the set of
absolutely continuous curves c : [a, b] 7→M by

Ag(c) =
1

2

∫ b

a
||ċ(t)||2dt.

A variation of a curve γ : [a, b] →M is a differentiable map

Γ : [a, b]×] − ε, ε[→ M, ε > 0

such that Γ(t, 0) = γ(t) for all t ∈ [a, b]. The variation is proper if the endpoints are fixed, that is,

Γ(a, s) = γ(a) and Γ(b, s) = γ(b) for all s ∈] − ε, ε[. The vector field V (t) = ∂Γ
∂s (t, 0) along γ is the

variation field of Γ. It is called proper if V (a) = V (b) = 0.

REGULAR AND CHAOTIC DYNAMICS Vol. 17 No. 6 2012



Flat metrics minimize the polynomial entropy 483

The geodesic segments, that is, the projections γ : [a, b] →M of curves [a, b] → T ∗M : t 7→ φtg(x),
are the critical points of Ag in the following sense: for any proper variation Γ of γ, denoting by γs
the curves γs := Γ(. , s), one has:

d

ds
Ag(γs) = 0.

A variation Γ : [a, b]×] − ε, ε[→M of γ is a geodesic variation if the curves γs are geodesic
segments for all s. One says that γ(b) is conjugate to γ(a) (along γ) if γ admits a geodesic variation
with proper variation field. The following proposition is a classical consequence of the possibility
of “rounding the corners”.

Proposition 2. Let γ : [a, b] →M be a segment of geodesic. If there exists τ ∈ ]a, b[ such that γ(τ)
is conjugate to γ(a) along γ, then, γ cannot be minimizing between γ(a) and γ(b).

The following result was proved in the framework of the theory of Hamilton–Jacobi equations
(see [7]). We denote by Xg the geodesic vector field associated with the geodesic flow φg on T ∗M .

Theorem 2. Let γ be the projection of a solution of Xg which is contained in a C1 Lagrangian
graph over M . Then, for any a < b in R, the curve γ|[a,b] : [a, b] →M is a minimizer of Ag. In
particular, γ does not have conjugate points.

The following theorem was conjectured by Hopf who proved it in dimension 2. The proof for
arbitrary dimensions is due to Burago and Ivanov ([6]).

Theorem 3. (Hopf, Burago–Ivanov). Assume that g is a Riemannian metric on the torus T
n

which does not have conjugate points. Then g is flat.

A simple but remarkable consequence of this theorem is the following. Let g be a Riemannian
metric on T

n and Eg be the unit cotangent bundle of T
n.

Corollary 2. The metric g is flat if and only if Eg is foliated by φg-invariant tori that are C1

graphs over T
n.

Indeed, (=⇒) is obvious. Conversely, assume that Eg is foliated by φg-invariant tori that are
graphs over the base T

n. Therefore, by Theorem 2, a geodesic cannot have conjugate points, and
by the Hopf theorem, g is flat.

The proof of Theorem A is based on corollary 2 and on the following particular properties
of pertubations of action-angle Hamiltonian systems with two degrees of freedom defined by a
quadratic form.

Lemma 1. Consider a positive definite quadratic form h. Let H be the Hamiltonian function on
T

2 × R
2 defined by H(θ, r) = h(r). Let f : T

2 × R
2 be a C5 function with ||f ||C5 = 1. For ε > 0,

we set Hε : H + εf , and we denote by φε the Hamiltonian flow associated with Hε. There exists ε0
such that for all ε 6 ε0,

1. there exist φε-invariant tori in H−1
ε ({1}) that are the graphs of C1 functions T

2 → R
2,

2. if T ⊂ H−1
ε ({1}) is a φε-invariant torus that is homotopic to T

2 × {0}, then T is the graph
of a Lipschitz function T

2 → R
2,

3. there does not exist any φε-invariant Klein bottle in H−1
ε ({1}).

The proof of this lemma is given in section 4. Actually, (1) is exactly the result of the KAM
theorem, and (3) is an easy consequence of the particular property for KAM tori to “block” the
dynamics in 3-dimensional energy levels and of the form of the Hamiltonian H. The main interest
of lemma 1 is concentrated in (2).

REGULAR AND CHAOTIC DYNAMICS Vol. 17 No. 6 2012
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Proof (Proof of Theorem A). We denote byHg0 the geodesic Hamiltonian function on T ∗
T

2 defined

by g0. For ε > 0, we denote by Uε the set of C5 Riemannian metrics g on T
2, such that

||g − g0||C5 6 ε (where || · ||C5 is the C5-norm on the space of metrics on T
2). For g ∈ Uε, we denote

by Hg the geodesic Hamiltonian function on T ∗
T

2 defined by g. Fix a compact neighborhood K

of H−1
g0 ({1}). There exists c > 0, independent of ε, such that ||Hg0 −Hg||K,C5 6 cε (where here,

|| · ||K,C5 is the C5-norm on the space of functions H : K → R).

By lemma 1 (1), if ε is small enough, there exist invariant tori in H−1
g ({1}) that are the graphs

of C1 functions: T
2 → R

2.
Assume now that g ∈ DC and that g is not flat. We denote by f a nondegenerate Bott integral

for φg in restriction to the unit cotangent bundle Eg of T
2. We want to see that Eg contains a

hyperbolic orbit. Since Hg is dynamically coherent, it suffices to show that Eg contains a ∞-level.

By corollary 2, at least one leaf of the foliation induced by f in Eg is not a C1 graph over T
2.

Let L be such a leaf. By lemma 1 (3), L is either an elliptic orbit, or a ∞-level, or a torus. Note
that such tori are C1 submanifolds.

If L is a ∞-level, the proof is complete. If L is an elliptic orbit, there exists a neighborhood U
of L , saturated for f , such that A = U \ L is a maximal action-angle domain. The domain A is
foliated by tori homotopic to L , these tori are obviously non homotopic to T

2 × {0}. Now if L is
a torus, by lemma 1 (2), this torus is not homotopic to T

2 × {0}. So L is contained in a maximal
action-angle domain A that is foliated by tori non homotopic to T

2 × {0}.
Now, each torus T that is a C1 graph over T

2 is contained in an action-angle domain A ′ in Eg.

Such a domain A ′ is foliated by tori homotopic to T (indeed, by lemma 1 (2), these tori are C1

graph over T
2). Therefore the boundary of one of the domains A ′ must intersect the boundary of

one of the previous domains A and this intersection must be contained in a ∞-level.

4. PROOF OF LEMMA 1

The proof is based on two results of the theory of dynamical systems. The first one is the KAM
theorem, describing the behavior of small perturbations of Hamiltonian systems in action-angle
form, and the second one is the Birkhoff theorem, that deals with particular dynamical systems on
the cylinder T × I (where I is an interval of R), namely the twist maps.

In parts A and B we briefly recall these two results. The proof of lemma 1 is given in part C.

4.1. Basic KAM Theory

In this section, B is a bounded domain of R
n and h : B → R is a smooth function. We consider

the Hamiltonian function H : T
n ×B → R : (θ, r) 7→ h(r) and we denote by φH the Hamiltonian

system associated with H. It is a system in action-angle form: the whole phase space is completely
foliated by the invariant tori T

n × {r}. On each of these tori T
n × {r} the Hamiltonian system

φH induces a quasi-periodic motion, that is, a linear flow with frequency ω(r) := ∇h(r). With any
ω ∈ R

n \ {0}, we associate the following submodule of Z
n:

M (ω) := {k ∈ Z
n | 〈k, ω〉 = 0} = (Rω)⊥ ∩ Z

n,

where 〈 , 〉 is the canonical scalar product on R
n. A vector ω ∈ R

n \ {0} is said to be resonant if
M (ω) 6= ∅ and nonresonant otherwise. If ω is nonresonant, all the orbits are dense.

In an informal way, the KAM theory is the study of persistence of certain nonresonant tori
under small perturbations of the system, that is, for systems of the form H + εf , where f is a
“sufficiently regular” bounded function. The work of Kolmogorov, Arnol’d and Moser show that
tori corresponding to “strongly nonresonant” frequency vectors persist if the pertubation is small
enough and if H satisfies some nondegeneracy conditions. This statement is made more precise
below. There are a lot of articles, manuals, surveys on the fundamentals of KAM theory. We refer
for example to [2] and [1].

We say that a hypersurface S ⊂ R
n satisfies the transversality property (T) if for every point

u ∈ S, Ru is transverse to S. For a value e of h, we set Ωe := ω(H−1({e})).

REGULAR AND CHAOTIC DYNAMICS Vol. 17 No. 6 2012
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Definition 3. The Hamiltonian system associated with H is said to be isoenergetically nondegen-
erate in the neighborhood of H−1({e}) if there exists a neighborhood V of e in h(B), such that ω
never vanishes in H−1(V ) and that for any e ∈ V , Ωe satisfies (T).

In particular, Ωe is (n− 1)-dimensional. One easily checks that if h is strictly convex, H is
isoenergetically nondegenerate in the neighborhood of its regular energy levels.

Let us recall the following definition that explains what means for a frequency vector to be
“strongly nonresonant”.

Definition 4. Fix two positive numbers τ, γ. We say that ω ∈ R
n belongs to D(τ, γ) if

|〈ω, k〉| >
γ

||k||τ , ∀k ∈ Z
n \ {0}.

The set D(τ, γ) is the set of Diophantine vectors of type (τ, γ). The union

D(τ) :=
⋃

γ>0

D(τ, γ)

is the set of Diophantine vectors of type τ .

It is well known that D(τ) has full measure when τ > n− 1.

Theorem 4. The KAM Theorem. Let k > 2n and f : T
n×R

n be a Ck function with ||f ||Ck = 1.
For ε > 0, we set Hε := H + εf . We denote by φε the Hamiltonian flow associated to Hε.

Fix τ ∈ ]n− 1, 1
2k − 1[ and γ > 0. Let e ∈ H(B). Assume that the Hamiltonian system is

isoenergetically nondegenerate in the neighborhood of H−1({e}). There exists ε0 > 0, such that, for
all 0 < ε < ε0 and for all r ∈ h−1({e}) such that ω(r) ∈ D(τ, γ) ∩ Ωe, there exists a φε-invariant
torus Tr that satisfies:

• Tr is homotopic to T
n × {r},

• there exists δ > 0 independent of ε, Tr ⊂ T
n × [r − δ

√
ε, r + δ

√
ε],

• Hε(Tr) = e.

If moreover H is convex, Tr is the graph of a C1 function ℓ : T
2 → R

2, with ||ℓ− r||C1 6 c
√
ε, for

a positive number c independent of ε.

4.2. Twist Maps

In this short section, we consider a particular class of maps on the cylinder C := T × [a, b[ with
a ∈ R and b ∈ ]a,+∞]. We could also consider cylinders of the form C := {(θ, r(θ)) | a 6 r(θ) 6

g(θ)}, where g : T →]a,+∞[ is a continuous function. The cylinder C is endowed with the canonical
symplectic form Ω := dθ ∧ dr.

The universal covering of C is the strip R × [a, b[. We denote by π the canonical projection
π : R × I → C. A lift of a map f : C → C is a map F : R × I → R × I such that π ◦ F = f ◦ π.

Definition 5. An area-preserving twist map on C is a diffeomorphism f : C → C such that:

1. f preserves the symplectic form,

2. f preserves the boundary T × {a} in the sense that there exists ε > 0 such that there exists
c ∈]a, b[ such that if (θ, r) ∈ T × [0, ε[, then f(θ, r) ∈ T × [a, c[,

3. Torsion condition: if F is any lift of f to R × I, then, ∂F
∂r (x, r) > 0.

Remark 1. Let fε be a diffeomorphism C → C such that f∗εΩ = Ω and that ||f − fε||C1 6 ε, with
ε > 0. Then, for ε small enough, fε is a twist map.

REGULAR AND CHAOTIC DYNAMICS Vol. 17 No. 6 2012
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Recall that if f : X → X is a continuous map of a metric space X, a point x ∈ X is said to
be nonwandering for f if for any neighborhood U of x, there exists an integer n ∈ N

∗ such that
fn(U) ∩ U 6= ∅. We denote by NW (f) the set of nonwandering points.

We refer to [10] for a proof of the following theorem due to Birkhoff.

Theorem 5 (Birkhoff’s Theorem). Let f : C → C be an area-preserving twist map. Let D be
an f -invariant open relatively compact domain containing T×{a} and with connected boundary ∂D.
Assume that D ⊂ NW (f). Then ∂D is the graph of Lipschitz function T → ]a, b[.

4.3. Proof of Lemma 1

Proof (Proof of lemma 1). One juste has to prove 2 and 3. We denote respectively by X and Xε the
vector fields associated with the Hamiltonian functions H and Hε, and by φ and φε their respective
flows.

We begin with studying the geometry of H−1
ε ({1}). Set H := {(r1, r2) ∈ R

2 |h(r1, r2) = 1}.
Therefore H−1({1}) := T

2 ×H. The vector field X reads:

θ̇1 = 2ar1 + cr2, ṙ1 = 0

θ̇2 = cr1 + 2br2, ṙ2 = 0.

We denote by D1 and D2 the lines with respective equations ar1 + cr2 = 0, br2 + cr1 = 0 in R
2.

Then, for i = 1, 2, Di intersects H at two points Ai, Bi. The connected components of H \
{A1, B1, A2, B2} are

D
++ := {r ∈ H | ar1 + cr2 > 0, cr1 + br2 > 0}, D

+− := {r ∈ H | ar1 + cr2 > 0, cr1 + br2 < 0},
D

−− := {r ∈ H | ar1 + cr2 < 0, cr1 + br2 < 0}, D
−+ := {r ∈ H | ar1 + cr2 < 0, cr1 + br2 > 0}.

In each of the domains D∗∗, we fix a point A∗∗
ε , where ∗ stand for + or −, such that A∗∗

ε ∈ h−1(1− ε).

Now fix θ0 ∈ T
2. Consider the surface Σθ0 defined by θ = θ0. Since Σθ0 is transverse to H−1({1}),

for ε small enough, Σθ0 is transverse to H−1
ε ({1}) and their intersection is a compact submanifold of

dimension 1, that is, a circle. Moreover, the projection p(H−1
ε ({1})) on R

2 of this circle is contained
in the annulus delimited by the ellipses with equations h(r) = 1 + ε and h(r) = 1 − ε.

Consider the four lines D+
1 := (A++

ε , A+−
ε ), D−

1 := (A−+
ε , A−−

ε ), D+
2 := (A−+

ε , A++
ε ) and D−

2 =

(A+−
ε , A−−

ε ). We denote by D
+
1 the domain bounded by D+

1 and the ellipses h(r) = 1 + ε and
h(r) = 1− ε, which is contained in the set {ar1 + cr2 > 0}. We define in the same way the domains

D
−
1 , D

+
2 and D

−
2 (see the simplified drawing in Fig. 1). There exists α > 0 such that

• D
+
1 ⊂ {2ar1 + cr2 > α} and D

−
1 ⊂ {2ar1 + cr2 < −α}

• D
+
2 ⊂ {cr1 + 2br2 > α} and D

−
1 ⊂ {cr1 + 2br2 < −α}.

The four domains T
2 × D

±
1 and T

2 × D
±
2 form a covering of H−1

ε ({1}). Moreover, since for all

(θ, r) ∈ T
2 × D

+
1 , ∂Hε

∂r1
(θ, r) 6= 0, by the implicit function theorem there exist an interval I+

2 and a

function R+
1 : T

2 × I+
2 → R such that:

H−1
ε ({1}) ∩

(
T

2 × D
+
1

)
= {(θ,R+

1 (θ, r2), r2) | (θ, r2) ∈ T
2 × I+

2 }. (4.1)

In the same way, there exist intervals I−2 , I
+
1 and I−1 and functions R−

1 , R
+
2 and R−

2 such that

H−1
ε ({1}) ∩

(
T

2 × D
−
1

)
= {(θ,R−

1 (θ, r2), r2) | (θ, r2) ∈ T
2 × I−2 },

H−1
ε ({1}) ∩

(
T

2 × D
+
2

)
= {(θ, r1, R+

2 (θ, r1) | (θ, r1) ∈ T
2 × I+

1 },
H−1
ε ({1}) ∩

(
T

2 × D
−
2

)
= {(θ, r1, R−

2 (θ, r1) | (θ, r2) ∈ T
2 × I−1 }.
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D+
1D−1

H

A++
ε

A−−ε A+−
ε

A−+
ε

The domains D
+
1 and D

−

1

D+
2

D−2

p(H−1
ε ({−1})) ∩ Σθ0

A++
ε

A+−
εA−−ε

A−+
ε

The domains D
+
2 and D

−

2

Fig. 1. The section Σθ0
.

Since the set of Diophantine numbers D(2) is dense in R
2 and since ω : r 7→ ω(r) is a

diffeomorphism, for any δ > 0, there exists r++ ∈ B(A++, δ) such that ω(r) ∈ D(2). Moreover,

since A++ ∈ D
+
1 ∩ D

+
2 , we can assume that δ is small enough so that r++ ∈ D

+
1 ∩ D

+
2 . Finally,

since D(2) is stable under multiplication by a real number and since ω is linear, we can assume
that r++ ∈ H.

Similarly, there exist r+−, r−+ and r−− in H∩D
+
1 ∩D

−
2 , H∩D

−
1 ∩D

+
2 and H∩D

−
1 ∩D

−
2 whose

images by ω are in D(2). Let γ > 0 such that {ω(r++), ω(r−+), ω(r+−), ω(r−−)} ⊂ D(2, γ).

By the KAM theorem, there exists ε0 > 0 such that for all ε < ε0, there exist tori T ++,T +−,T −+

and T −− in H−1
ε ({1}), invariant under the flow φε, that are the graphs of C1-functions g∗∗ : T

2 →
R

2 with ||g∗∗ − r∗∗||C1 6 c
√
ε.

We set T ∗∗ := {(θ, r∗∗(θ)) | θ ∈ T
2}. We choose ε < ε0 small enough so that

T ++ ⊂ T
2 ×

(
D

+
1 ∩ D

+
2

)
, T +− ∈ T

2 ×
(
D

+
1 ∩ D

−
2

)
,

T −+ ⊂ T
2 ×

(
D

−
1 ∩ D

+
2

)
, T −− ∈ T

2 ×
(
D

−
1 ∩ D

−
2

)
.

Fix θ0 ∈ T
2. The intersection H−1

ε ({1}) ∩ Σθ0 is the union of the curves:

• C+
1 (θ0) with endpoints r+−(θ0) and r++(θ0), contained in T

2 × D
+
1

• C−
1 (θ0) with endpoints r−−(θ0) and r−+(θ0), contained in T

2 × D
−
1

• C+
2 (θ0) with endpoints r−+(θ0) and r++(θ0), contained in T

2 × D
+
2

• C−
2 (θ0) with endpoints r+−(θ0) and r−−(θ0), contained in T

2 × D
−
2 .

The vector field Xε reads

θ̇1 = 2ar1 + cr2 + ε
∂f

∂r1
(θ, r), ṙ1 = −ε ∂f

∂θ1
(θ, r)

θ̇2 = cr1 + 2br2 + ε
∂f

∂r2
(θ, r), ṙ2 = −ε ∂f

∂θ2
(θ, r).

We assume that ε is so small that:

2ar1 + cr2 + ε
∂f

∂r1
(θ, r) >

1

2
α, ∀(θ, r) ∈ C+

1 , 2ar1 + cr2 + ε
∂f

∂r1
(θ, r) < −1

2
α, ∀(θ, r) ∈ C−

1

(4.2)

cr1 + 2br2 + ε
∂f

∂r2
(θ, r) >

1

2
α, ∀(θ, r) ∈ C+

2 , cr1 + 2br2 + ε
∂f

∂r2
(θ, r) < −1

2
α, ∀(θ, r) ∈ C−

2 .

(4.3)
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r++(θ0)r−+(θ0)

r−−(θ0) r+−(θ0)

C
+
2

C
−

2

C
+
1C

−

1

Fig. 2. The curves C
+
1 , C−

1 , C +
2 and C

−
1

We set:

H+
1,ε :=

⋃

θ∈T2

C+
1 (θ), H−

1,ε :=
⋃

θ∈T2

C−
1 (θ)

H+
2,ε :=

⋃

θ∈T2

C+
2 (θ), H−

2,ε :=
⋃

θ∈T2

C−
2 (θ).

The four sets above are 3-dimensional manifolds with boundary. They cover H−1
ε ({1}). Since the

boundary of each of them is the disjoint union of two KAM tori T ∗∗, they are invariant under the
flow φε. Therefore a φε-invariant surface contained in H−1

ε ({1}) is necessarily contained in one of
these submanifolds.

Let L be a φε-invariant surface and let us see that L must be a torus, which will prove 3.

Assume that L ⊂ H+
1,ε. By (4.2), for any θ0

1 ∈ T, the 3-dimensional submanifold Ŝθ01 := {θ1 = θ0
1}

is transverse to H+
1,ε. We denote by S+

θ01
the symplectic surface S+

θ01,ε
:= Ŝθ01 ∩H+

1,ε. We can assume

without loss of generality that r+−
2 < r++

2 .

Notation. 1) In what follows, we will only work in H+
1,ε. We will omit the subscript + and will

write H1,ε.

In the same way, we set Sθ01,ε := S+
θ01,ε

and r+2 := r++
2 , r−2 := r+−

2 .

2) We denote by H1 the intersection H−1({1}) ∩ (T2 × {2ar1 + br2 >
1
4α}). There exist an

interval I2 and a function R1 : I2 → R such that:

H1 = {(θ,R1(r2), r2) | (θ, r2) ∈ T
2 × I2}. (4.4)

Obviously, I2 ⊃ [r−2 (θ), r+2 (θ)] for all θ ∈ T
2.

One has:

Sθ01,ε := {(θ0
1 , θ2, R

+
1 (θ0

1, θ2, r2), r2) | r2 ∈ [r−2 (θ0
1, θ2), r

+
2 (θ0

1, θ2)]},

that is, Sθ01,ε is parameterized by (θ2, r2) ∈ T × [r−2 (θ0
1, θ2), r

+
2 (θ0

1, θ2)].

Since for all θ0
1 ∈ T, L is transverse to Sθ01 ,ε in H1,ε, L ∩ Sθ01,ε is a closed 1-dimensional

submanifold C (θ0
1) possibly non connected. Assume that C (θ0

1) is a finite union of circles Γ1, . . . ,Γm.
The Poincaré return map ℘ε : Sθ01,ε → Sθ01,ε with respect to the flow φε is well defined by (4.2).

Necessarily, for any q ∈ {1, . . . ,m}, there exists p 6= q in {1, . . . ,m} such that ℘ε(Γq) ⊂ Γp. Since

conversely, ℘−1
ε (Γq) ⊂ Γp, one has ℘ε(Γp) = Γq. We set

℘ε(x) = φτ(x)ε (x).
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Observe that the map

[0, 1] × Γq → L

(t, z) 7→ φ
tτ(z)
ε (z)

is a homotopy.

Now, for any z ∈ Γ1, φε(mτ(z), z) ∈ Γ1. Hence, the map

[0, 1] × Γ1 → L

(t, z) 7→ φ
tmτ(z)
ε (z)

is surjective and L is diffeomorphic to the quotient

[0, 1] × Γ1/{(0, φ(mτ(z), z) = (1, z)}.
Since the diffeomorphism z 7→ φε(mτ(z), z) is homotopic to the identity, L is a torus and 3 is
proved.

In remains to prove 2. Fix a φε-invariant torus T in H1,ε. Assume that T is homotopic to

T
2 × {0}. For θ1 ∈ T, we set C (θ1) = T ∩ Sθ1,ε. We have already seen that C (θ1) is a finite union

of circles Γ1, . . . ,Γm.

Observe that for all θ0
1, θ

1
1 in T, there exists a Poincaré map Pθ01 ,θ11 between the surfaces Sθ01,ε

and Sθ11,ε. As before, one checks that Pθ01 ,θ11(C (θ1
0)) = C (θ1

1) and that Pθ10,θ11 leads to a homotopy

between C (θ1
0) and C (θ1

1). Thus, all the submanifolds C (θ0
1) are homotopic (and in particular

homologous) in T . Let us denote by [Γ] the common homology class (in T ) of the circles Γk.
Set C := T × {0} ⊂ T

2. Clearly, [Γ] and [C ] are independent in H1(T ,Z). Since T is homotopic

to T
2 × {0}, the circles Γk must be essential in the cylinder (θ2, r2) ∈ T

2 × [r−2 (θ0
1, θ2), r

+
2 (θ0

1, θ2)],

otherwise T would be homotopic to the curve {(mθ1, 0) | θ1 ∈ T} × {0} ⊂ T
2 × {0}.

For 1 6 k 6 m, we denote by Ik the domain in Sθ01 ,ε bounded Γk and the lower boundary

{(θ2, r−(θ0
1, θ2) | θ2 ∈ T}. Now ℘ε is symplectic and in particular preserves the areas, so all the Ik

have the same area, that is, all the Γk coincide and the intersection C (θ0
1) between T with Sθ01 ,ε is

a single essential circle.

Let Lε : Sθ01 ,ε → T × I : (θ2, r2) 7→ (θ2, r2 − r−2 (θ0
1, θ2) + r−2 ) and set

℘̂ε : T × I −→ T × I

(θ2, r2) 7−→ L−1
ε ◦ ℘ε ◦ Lε(θ2, r2),

where T × I is the cylinder contained in T × I whose boundaries are T × {r−2 } and the graph of

the function θ2 7→ r+2 (θ0
1, θ2) − r−2 (θ0

1, θ2) + r−2 .

We will apply Birkhoff’s Theorem to ℘̂ε to see that C (θ0
1) is the graph of a function T → I .

Obviously, ℘̂ε preserves the symplectic form dθ2 ∧ dr2 and the boundary T × {r−2 }. One just

has to check the torsion condition. To do this, we will see that ℘̂ε is
√
ε-close in C1-topology

to the twist map defined by the Poincaré return map ℘ (with respect to φ) associated with

the surface Sθ01 = Ŝθ01 ∩H1. We first observe that there exists δ > 0 independent of ε, such that

|Lε − Id |C1,T2×I 6 δ
√
ε. One has:

Sθ01 := {(θ0
1, θ2, R1(r2), r2) | (θ2, r2) ∈ T × I2}.

The Poincaré map ℘ reads:

℘(θ2, r2) =

(
θ2 +

cR(r2) + 2br2
2aR(r2) + cr2

, r2

)
= (℘1(θ2, r2), ℘2(θ2, r2)).
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Hence:

∂℘1

∂r2
=

(4ab− c2)(R(r2) −R′(r2)r2)

(2aR(r2) + cr2)2
.

Using the fact that r2 7→ aR(r2)
2 + br22 + cR(r2)r2 is a constant function, one gets:

R′(r2) = − 2br2 + cR(r2)

2aR(r2) + cr2
= − 2br2 + cr1

2ar1 + cr2
.

Thus:

∂℘1

∂r2
= − 4ab− c2

(2aR(r2) + cr2)2
r1(2br2 + cr1) + r2(2ar1 + cr2)

2ar1 + cr2
.

Since (r1, r2) ∈ D
+
1 , 2ar1 + cr2 > 0. Now 4ab− c2 = 4deth > 0. Finally, r1(2br2 + cr1) + r2(2ar1 +

cr2) = 〈r, n(r)〉 where n(r) is the normal vector pointing outwards the ellipse H. Since H is convex,
this scalar product has constant sign. We can assume without loss of generalities, that 〈r, n(r)〉 > 0.
Thus, ℘ is an area-preserving twist map. Its return-time map τ : (θ2, r2) 7→ 2aR1(r2) + cr2 only
depends on r2.

For (θ2, r2) ∈ Sθ01,ε, the return-time map τε(θ2, r2) is defined by:

∫ τε(θ2,r2)

0
θ̇1(s)ds =

∫ τ(θ2,r2)

0
2ar1(s) + cr2(s) + ε

∂f

∂r1
(θ(s), r(s))ds = 1.

One easily checks that ||τ − τε||C1,T×I 6 cε for a suitable constant c > 0 independent of ε.

Set J := [0,maxT2×I (τ, τε)] and K := J × (T×I ). We denote by Φ and Φε the maps defined on
K by Φ(t, (θ, r)) = φt(θ, r) and Φε(t, (θ, r)) = φtε(θ, r). By the Gronwall lemma, there exists k > 0
such that:

||Φ − Φε||C1(K) 6 k||X −Xε||C1(K).

Therefore there exists γ > 0 independent of ε, such that:

||℘− ℘̂ε||C1(T×I ) 6 γ sup

(
||X −Xε||C1(K) + ||τ − τε||C1(J)

+ || Id−L−1
ε ||C1(T×I ) + || Id−Lε||C1(T×I )

)
, (4.5)

that is, there exists γ′ independent of ε, such that:

||℘− ℘̂ε||C1 6 γ′
√
ε.

Then for ε small enough, ℘̂ε satisfies the torsion condition by remark 1. Therefore we can apply
Birkhoff’s Theorem and C (θ0

1) is the graph of a Lipschitz function Rθ01 : T → R
2. As a consequence,

L :=
⋃

θ1∈T

C (θ1) =
⋃

θ1∈T

{(θ2, Rθ1(θ2)) | θ2 ∈ T}

= {(θ1, θ2, R(θ1, θ2)) | (θ1, θ2) ∈ T
2}.

and R : (θ1, θ2) 7→ R(θ1, θ2) is continuous. The same argument holds true in each of the domains

H−
1,ε,H−

2,ε and H+
2,ε, which concludes the proof.
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