
HAL Id: hal-03385048
https://hal.science/hal-03385048

Submitted on 19 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Switching Logistic Maps to Design Cycling Approaches
Against Antimicrobial Resistance

E A Hernandez-Vargas, C Parra-Rojas, S Olaru

To cite this version:
E A Hernandez-Vargas, C Parra-Rojas, S Olaru. Switching Logistic Maps to Design Cycling Ap-
proaches Against Antimicrobial Resistance. IEEE 60th Conference on Decision and Control (CDC
2021), Dec 2021, Austin, United States. �10.1109/cdc45484.2021.9683702�. �hal-03385048�

https://hal.science/hal-03385048
https://hal.archives-ouvertes.fr


Switching Logistic Maps to Design Cycling Approaches Against
Antimicrobial Resistance

E.A. Hernandez-Vargas1,2, C. Parra-Rojas2 and S. Olaru3

Abstract— Antimicrobial resistance is a major threat to
global health, in particular, new SARS-CoV-2 variants during
the COVID-19 pandemic. Scheduling cycling therapies by
targeting phenotypic states associated with specific mutations
can help us to eradicate pathogenic variants. In this paper,
we introduce a logistic switching model to abstract mutation
networks of collateral resistance. We found conditions for which
the unstable zero-equilibrium of the logistic maps can be stabi-
lized through a switching signal. That is, persistent populations
can be eradicated through tailored switching regimes.

Starting from an optimal-control formulation, the switching
policies show their potential in the stabilization of the zero-
equilibrium for dynamics governed by logistic maps. Simulation
results show the applicability of Parrondo’s Paradox to design
cycling therapies against drug resistance.

I. INTRODUCTION
Antimicrobials such as antibiotics and antivirals are pow-

erful antidotes to fight against infections. However, the mis-
use and overuse of drugs have led to drug resistance, which
can be roughly defined as the ability of a microorganism to
replicate in the presence of a drug. For instance, during the
COVID-19 pandemic, there have been new variants such as
the B.1.1.7 in the UK and B.1.351 in South Africa which
are more resistant to neutralization by convalescent plasma
and vaccine sera [1].

Modeling of infectious diseases has been developed at dif-
ferent scales and pursuing different goals [2]. Between-hosts
models have helped to propose new vaccination strategies
or support public health strategies [3], [4]. On the other
hand, for within-host infection, mathematical modeling has
been used to capture the dynamics of different infectious
diseases inside the host and understand the interaction of the
pathogen and the immune system, as well as the scheduling
of therapies [5], [6]. Most mathematical models to represent
microbial dynamics are shown to be based on variations of
the classical Verhulst logistic growth equation. For instance,
the logistic model has served as a key mathematical tool in
representing the growth of tumors [7] and microbes [8].

The logistic model indicates that a stable population has
a saturation level, known as the carrying capacity which
forms a numerical upper bound on the growth size [9]. While
theoretical approaches to mitigate drug resistance have been
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mainly developed at between-host level [10], too little has
been directed at investigating within-host strategies against
antimicrobial resistance [6].

Here, for a given mutation network, we introduce a logistic
switching map to capture the drug resistance dynamics of
bacteria. This model is instrumental to design control strate-
gies to minimize the ability of a bacterial sub-population to
survive a drug concentration, known as persistence. How-
ever, designing switching strategies in dynamical systems is
not trivial and leads to a context similar to the so-called
Parrondo’s Paradox [11], in which two losing games are
combined in a determined order as to obtain a winning game
[12]. Previous numerical simulations of switching logistic
maps [11] have shown that switching decisions may follow
either the “undesirable + undesirable = desirable” or the
“chaotic+chaotic = order” dynamics.

In the next sections, the mathematical abstraction of an-
timicrobial resistance dynamics is formulated in the form
of switched systems. Subsequently, evolutionary and control
algorithms are used to find sub-optimal switching policies.
Simulation results show the applicability of Parrondo’s Para-
dox to design cycling therapies against drug resistance.

II. LOGISTIC SWITCHING MAPS

Throughout, R denotes the field of reals, Rn stands for
the vector space of all n-tuples of real numbers. Rn×n is the
space of n× n matrices with real entries. N denotes the set
of natural numbers, while the restriction to positive natural
numbers bounded by q will be used under the compact
notation Nq = {n ∈ N : 1 ≤ n ≤ q}. For x in Rn , xi
denotes the ith component of x, and the notation x � 0
means that xi ≥ 0 for 1 ≤ i ≤ n. Rn+ = {x ∈ Rn : x � 0}
denotes the non-negative orthant in Rn. The transpose is
represented as A′.

Using a switching signal σ(t), one can formally deal
with a selection mechanism among q ∈ N possible sub-
systems. These subsystems are represented mathematically
by a family of functions fi(·) : Rn −→ Rn, i ∈ Nq
which characterize the right hand side of ordinary differential
equation. Based on these elements, one can define a switched
non-linear autonomous system as follows:

ẋ(t) = fσ(t)(x(t)), (1)

where x(t) ∈ X is the system state at time t, and the state
space X is a closed subset of Rn. Given the initial condition
x(0) = x0 at time t0 = 0, the solution of (1) is denoted
x(t, x0, σ(t)).



Problem 1: In this work, σ(·) is considered as the only
manipulable control signal for the system (1). The primary
goal would be to design, whenever this is possible, a switch-
ing path to make the origin of the system (1) stable. However,
for practical application of the policy described in the next
sections and biological reasons, we relax the problem to the
design of a sub-optimal switching path σ(·) that yields a
minimal cost functional J in a fix horizon of time (tf ).

A. Modeling Antimicrobial Resistance as Logistic Maps

To abstract the dynamics of the different genotypes dur-
ing drug therapy, the following switched logistic model is
described:

ẋi(t) = ρi,σ(t)xi(t)

(
1− xi(t)

K

)
−δxi(t)+µ

η∑
j 6=i

mi,jxj(t).

(2)
The population of different η pathogenic variants are repre-
sented by the state variable xi. ρi,σ(t) is the proliferation rate
of the variant i under the treatment σ(t) ∈ {1, 2, 3, ..., N}
which can be changed at any time t. N is the total number
of possible drug therapies that can be administered. The
maximum carrying capacity is K. δ is the clearance of the
variant xi.

The mutation rate is represented by µ. The genetic connec-
tions between genotypes are represented by mi,j ∈ {0, 1},
that is, mi,j = 1 if and only if it is possible for genotype
j to mutate into genotype i. An illustrative example to
represent the mutation network for n variant and m therapies
is presented in Figure 1. However, more complex mutation
trees can be considered.

III. STABILITY ANALYSIS WITHOUT SWITCHING OF
THERAPIES

Let us consider the system (2) and focus on the case of
a single therapy. Without loss of generality, we simplify the
notation by taking ρi,σ(t) → ρi, and normalize the bacterial
populations by the carrying capacity of the system, xi/K →
xi, so that

ẋi(t) = ρixi(t) (1− xi(t))− δxi(t) + µ

η∑
j 6=i

mi,jxj(t).

(3)

The strains that mutate act as a source to one or more
strains, whereas each strain can have at most one source, with
the case of zero sources corresponding to the wildtype. In
other words, we do not take into account the case when two
or more different strains can yield exactly the same genotype
upon mutation, since this is unlikely in a real-life scenario.
At the same time, and for the same reason, all backwards
mutations are forbidden, so that if mj,i 6= 0 then necessarily
mi,j = 0. More generally, there is no way of coming back to
strain i starting from strain i; that is, once a mutation from
strain i to strain j occurs, there exists no possible sequence
of L mutations xj1 → xj2 → . . . → xjL → xi for any
length L.
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Fig. 1. Illustrative mutation tree for n variants and m therapies. WT
represents the wild type. Different variants would mutate as effect of a given
therapy which is indicated with color squares. The appearance of a highly
resistant variant (black circle HR) is hypothesized as o consequence of a
sequence of mutations, meaning that it is resistant to all available therapies.

The equilibrium points of the system with n strains, which
we denote by (x̄1, . . . , x̄n), can be found recursively by
solving for ẋi = 0 in Eq. (3), and have the form

x̄i =



{
0,max

(
λi
ρi
, 0

)}
, s̄i = 0

λi +
√
λ2
i + 4µρis̄i

2ρi
, s̄i > 0

(4)

Here, we have denoted by s̄i the equilibria of the strain that
acts as a source of xi; this means that, if xi results from the
mutation of a certain xk, then s̄i = x̄k. At the same time,

λi = ρi − δ − µci (5)

where ci is the number of ”offsprings” of strain i.
Theorem 1: λi > 0 ensures the existence of the equilib-

rium point with x̄i > 0 and x̄k > 0 for all xk that can be
reached starting from xi, otherwise x̄k = 0 for λi < 0. This
point is locally stable if, additionally, λk < 0 for all other k.

Proof: The Jacobian of the system evaluated at a given
equilibrium point can be decomposed as J = D + µM1,
where M1 contains the off-diagonal elements of M , and thus
only encodes the mutations between strains. The entries of



D are given by

dii = ρi − δ − µci − 2ρix̄i

The properties derived above for the constraints on the
mutation patterns imply that M1 can be thought of as the
adjacency matrix of a directed acyclic graph (DAG) [13];
therefore, there exists a topological ordering of the strains
that renders M1 strictly upper triangular [14]. In other words,
we can relabel the strains so that for every mutation from xi
to xj , we have i < j. The Jacobian becomes upper triangular,
and its eigenvalues will be given by the entries of D. At the
origin, the i-th eigenvalue will correspond to λi from Eq. (5).
On the other hand, the eigenvalues associated with non-zero
coordinates are given by

∆i = −
√
λ2
i + 4µρis̄i

and they are always negative. As a consequence, whenever
a strain xi is able to persist by itself – which translates into
λi > 0 – then all of its offsprings will also persist, as seen
from Eq. (4), even if they would be eradicated in isolation.
If all other strains in the system are unable to persist in
isolation, the eigenvalues associated to the equilibrium point
where x̄i > 0, with x̄k > 0 if k corresponds to a offspring
of i (that is, s̄k = x̄i) and x̄k = 0 otherwise, will be given
by

−λi < 0

∆k < 0 s̄k = x̄i

λk < 0 s̄k 6= x̄i

and the equilibrium is thus asymptotically stable.
Theorem 2: If we explicitly separate the zero and non-

zero equilibrium coordinates—so that the i-th element of an
equilibrium point is either 0 or x̄i—then the set defined by

Ω = {x ∈ Rn|0 ≤ xi ≤ x̄i ∀i}

is positively invariant with respect to the system described by
Eq. (3). Equivalently, for any given initial condition x0 ∈ Ω,
the solution to (3) satisfies x(t) ∈ Ω ∀t > 0.

Proof: Let us recall that

ẋ = f(x) = (f1(x), . . . , fn(x)),

and consider the boundaries of Ω, given by

B
(1)
i = {x|xi = 0, 0 < xj < x̄j ∀j 6= i}

B
(2)
i = {x|xi = x̄i, 0 < xj < x̄j ∀j 6= i}

The invariance condition [15] translates into f · n̂ ≥ 0 along
the boundaries above, where n̂ is a normal vector pointing
towards Ω. We note that the normal vectors that correspond
to each boundary are given by n̂(1)

i = êi for B(1)
i and n̂(2)

i =

−êi for B(2)
i , where êi is the i-th unitary vector, (êi)j = δij ,

with δij the Kronecker delta.

Choosing an initial condition x0 along B
(1)
i , with xj =

pj ∈ [0, x̄j ] ∀j 6= i we have

f(x0) · n̂(1)
i = fi(x0) = µ

η∑
j 6=i

pjmi,j ≥ 0 ∀i

Similarly, for the case of B
(2)
i , we choose an initial

condition x0 with xi = x̄i and xj = pj ∈ [0, x̄j ] ∀j 6= i;
this yields

f(x0) · n̂(2)
i = −fi(x0)

= −ρix̄i(1− x̄i) + δx̄i + µcixi + µ

η∑
j 6=i

mi,jpj

Now, we use the fact that (x̄1, . . . , x̄n) is an equilibrium
point of the system, so that

ρix̄i(1− x̄i)− δx̄i − µcix̄i + µ

η∑
j 6=i

mi,j x̄j = 0

and

−ρix̄i(1− x̄i) + δx̄i + µcix̄i = µ

η∑
j 6=i

mi,j x̄j

Hence,

f(x0) · n̂(2)
i = µ

η∑
j 6=i

mi,j (x̄j − pj)

≥ 0 ∀i

since 0 ≤ pj ≤ x̄j ∀j 6= i.
Therefore, Ω is positively invariant with respect to the

system (3).
Corollary 1: Given the system (3) with µ = 0, the

equilibrium at the origin (x̄k = 0) is globally asymptotically
stable when

ρi < δ ∀i ∈ {1, . . . , n}.
Proof: We have seen above that the origin is a locally

asymptotically stable equilibrium point of (3) when ρi <
δ + µci, ∀i simultaneously. In order to establish the global
stability of the origin in Ω, let us choose a Lyapunov function

V (x) =

η∑
i

xi

We note that V ≥ 0, ∀x ∈ Ω, and V = 0 iff x = 0. Now,

V̇ (x) =

η∑
i

ẋi

=

η∑
i

ρixi(1− xi)− δxi

=

η∑
i

(ρi − δ)xi −
η∑
i

ρix
2
i (6)

From the expression above, ρi < δ ∀i ensures that V̇ ≤ 0
∀x ∈ Ω, and V̇ = 0 iff x = 0. Therefore, the origin is
globally asymptotically stable under this condition.



Remark 1: The condition above arises trivially from con-
sidering all strains as independent of one another, in absence
of mutations, and it is more restrictive than the condition
found previously, since mutations have a stabilizing effect on
the origin. However, Eq. (6) can be employed as a basis to
establish a switching policy in order to ensure the eradication
of the pathogen in the case with mutations under a set of
different available therapies.

IV. SWITCHING THERAPIES

Based on the general model (2), the problem formulation
can then be broadly described as the design of a switching
policy for the gradual eradication of pathogenic strains. To
formally state the problem we need the following definitions:

Definition 1: A switching policy is the cycling choice be-
tween therapies σ with a period Tσ , which can be represented
by a piecewise constant function σ(t) : R→ {1, 2, . . . , N}.
σ(t) remains constant for all t ∈ [kTσ, (k + 1)Tσ).

Definition 2: A periodic cycling policy is the periodic
switching between therapies i with regular intervals Ti.
For example, for the case of two therapies with periods T1

and T2, we have σ(T1) = 1 and σ(T2) = 2, then the periodic
cycling policy sequence is

σ = {σ = 1︸ ︷︷ ︸
T1

, σ = 2︸ ︷︷ ︸
T2

, · · · , σ = 1︸ ︷︷ ︸
T1

, σ = 2︸ ︷︷ ︸
T2

}. (7)

Next, we describe the design of switching policies of the
system (2) in a discrete-time version. To this end, we will
divide the analysis into two parts. The first is assuming the
variants do not mutate that is µ = 0, this is still an interesting
biological scenario as the main goal is to eradicate different
variants of a pathogenic micro-organism. The second part
will consider mutation, as µ 6= 0 for the case of not backward
mutations, as from the evolution point of view, it is very
difficult that this type of mutation occurs.

A. Switching Therapies Assuming No Mutations (µ = 0)

Assuming that the variants do not present mutations, that
is µ = 0, we can re-parameterize the model (2) for a fixed
period of treatment (σ(t) = σ) as follows:

ẋi(t) = bi,σxi(t)

(
1− xi(t)

ai,σ

)
(8)

where bi,σ = ρi,σ − δ and ai,σ = Kbi,σ/ρi,σ . Equation
(8) has the conventional logistic form which can be solved
analytically or by the nearly exact method [16], thus the
recursive form of (2) is as follows:

zi(k + 1) =
ai,σzi(k)

zi(k) + (ai,σ − zi(k))e−bi,σTσ
(9)

where k is the discrete-time step, and Tσ is the period where
the therapy σ is provided.

Theorem 3: Let the dynamics in (2) without mutation
(µ = 0) and a periodic cycle (Tσ) for each of the therapies
(σ = 1, ..., N ). The different variants will be eradicated if
and only if the following condition is satisfied∑N

σ=1 ρi,σTσ
T

< δ (10)

where T =
∑N
σ=1 Tσ .

Proof: Considering the initial condition z0 = z(0) =
0 and the first two cycles of therapies σ = 1, 2 with
their respective period Tσ=1,2, by construction, we have the
Jacobian matrix Jσ=1,2 at the origin as follows:

Jσ=1,2 = ebi,1T1+bi,2T2 (11)

In a similar vein, we can generalize the Jacobian Jσ=1,..,N

in the origin as follows,

Jσ=1,...,N = e
∑N
σ=1 bi,σTσ (12)

as bi,σ = ρi,σ − δ and and we are interested in the stability
of the origin, we check the exponential term to be less than
1, then

N∑
σ=1

(ρi,σ − δ)Tσ ≤ 0 (13)

N∑
σ=1

ρi,σTσ ≤ δT (14)∑N
σ=1 ρi,σTσ

T
< δ (15)

Remark 2: The condition (10) can additionally serve to
design the duration of the therapies (Tσ) to eradicate all
different variants during the course of an infection if the
following inequality system has a solution

N∑
σ=1

ρ1,σTσ < δT

N∑
σ=1

ρ2,σTσ < δT

...
N∑
σ=1

ρn,σTσ < δT.

This can be formulated as a feasibility problem in a linear
programming framework. While this could provide a suffi-
cient condition for a possible success of a cycling therapy,
the unfeasible solution does not necessarily imply the failure
of a switching trajectory to stabilize the origin.

Corollary 2: For a cycle of the therapies with equal time
duration, the stability condition (10) can be further simplified
to ∑N

σ=1 ρi,σ
N

< δ

Proof: Following the Theorem 3, we have that the
period of each therapy is equal, that is T1 = T2 = ... = TN .
Then,

∑N
σ=1 Tσ = NTσ . Therefore condition (10) becomes

independent of Tσ .
Remark 3: The corollary 2 points out that in order to

eradicate a variant i with cycling therapies, the average
expansion of the variant i through the cycling should be less
than its contraction.



B. Switching Therapies Assuming Mutations (µ 6= 0)

For the case with mutation (µ 6= 0), a condition similar to
(10) is difficult to prove. Model Predictive Control (MPC)
appears to be suitable for a sub-optimal application to the
biomedical application, due to its robustness to disturbances,
model uncertainties and the capability of handling constraints
[6], [17], [18], [19]. Thus, the selection of therapies based
on the MPC will be employed on similar reasoning as in
our previous work based on switched linear systems [18]. In
summary, if the total population size is small enough during a
finite time of treatment, then there is a significant probability
that the population becomes zero. Therefore, we consider the
cost

J := c′x(tf ) (16)

where c is the column vector with all ones. The final time,
tf , is the time point at which the cost function will be
evaluated. This cost should be minimized under the action
of the switching rule. The decision time to switch therapy is
Tc. Thus, the control algorithm predicts the future dynamic
behavior of the system over a prediction horizon Tp and
computes an open-loop optimal control sequence over the
prediction horizon. Then the first decision of the open-loop
optimal control is applied. The problem is written as follows:

Problem 2: The internal variables of the controller will
be denoted as (x̄, σ̄), with constraints x(k) ∈ Ω ⊆ Rn and
σ(•) ∈ U ⊆ Nnq . Find

min
σ̄
J(x(k), σ̄(•);Tc, Tp),

with
J(x(k), σ̄(•);Tp, Tc) := cx(t+ Tp)

subject to:

˙̄x(τ) = Aσ̄(τ)x̄(τ) x̄(τ) = x(k)

σ̄(τ) ∈ U , ∀τ ∈ [k, k + Tc]

σ̄(τ) = σ̄(τ + Tc), ∀τ ∈ [k + Tc, k + Tp]

x̄(τ) ∈ Ω, ∀τ ∈ [k, k + Tp]
This MPC problem involves a nonlinear and complex opti-
mization problem, the global optimization algorithm known
as differential evolution [20] is applied here for the imple-
mentation of the algorithm without further tuning of the
solver.

V. NUMERICAL SIMULATIONS

In a similar way to [18], simple illustrative examples are
considered based on 4 genetic variants and two different
therapies. Thus, η = 4, and 2 drug therapies, N = 2. The
strain i = 1 is considered the Wild Type (WT) which is
susceptible to most of the drugs. The Genotype 1 (G1) is
resistant to therapy 1 but it is susceptible to therapy 2. The
Genotype 2 (G2) is resistant to therapy 2, but it is susceptible
to therapy 1. The Highly Resistant Genotype (RG) is a
genotype with a low replication rate, but it is resistant to
all drug therapies.

Pathogen clearance rate is fixed, δ = 0.24 day−1, which
corresponds to a half life of slightly less than 3 days [21].
Typical mutation rates are of the order of µ = 10−4. The
following mutation matrix is considered:

Mu =


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

 (17)

TABLE I
ILLUSTRATIVE SIMULATIONS SCENARIOS FOR DRUG RESISTANCE

BASED ON EQUATION (2)

Scenario Therapy WT(x1) G1 (x2) G2 (x3) RG (x4)
1 1 0.05 0.27 0.05 0.20

2 0.05 0.05 0.27 0.20
2 1 0.01 0.3 0.1 0.3

2 0.01 0.1 0.3 0.3
3 1 0.01 0.26 0.05 0.25

2 0.01 0.15 0.38 0.24

Three different scenarios are proposed as in the Table I.
The first scenario, the most ideal case, describes a stabilizable
switched system with a full symmetry between G1 and G2, in
the sense that first therapy inhibits G2 with the same intensity
that therapy 2 inhibits G1. In practice, a small difference in
relative replication ability is expected. The second scenario
shows a system that can not be stabilized with symmetry
between G1 and G2 (similar to Case 1) but there is a resistant
genotype that can not be stabilized under switching. The
third scenario is a switched system that can be stabilized
under switching and it has full asymmetry for replication
rates in G1 and G2. In general, the finite set of possible

TABLE II
TOTAL PATHOGEN LOAD AT THE END OF TREATMENT OF 200 DAYS WITH

A POSSIBILITY TO SWITCH EVERY 20 DAYS.

Optimal Optimal
Scenario (Brute Force) (DE Algorithm) MPC

1 2.3615×10�5 2.3615×10�5 2.3615×10�5

2 1.8851×103 1.8851×103 1.8851×103

3 0.1040 0.1040 0.1141

control values causes problems for many control techniques.
Nevertheless in the cause of MPC, having a finite set of
options may be an advantage in making the optimization
easier to solve.

To compute optimal switching trajectories, we consider a
“brute force” approach, which calculates all possible combi-
nations of the therapies (Nc = tf/Tc) and then finding the
minimum for the cost function (16). However, this approach
is computational unfeasible for checking Nc > 15. Thus, in
order to check larger treatment combinations we consider the
differential evolution algorithm [20].

Assuming a prediction horizon of 100 days (Tp), we
consider an MPC strategy as discussed in Problem 2. Table II
illustrates treatment scenarios of 200 days (tf ) with decision
time to switch therapy of 20 days (Tc), that is Nc = 10,



210 combinations. Based on the column of “brute force”
results in the Table II, we can conclude that the DE algorithm
can find optimal trajectories. While we can not guarantee
that the DE algorithm will find the optimal solution for any
example, it might find solutions very close to the optimal. In
a similar fashion, the MPC was able to find optimal switching
trajectories in cases 1 and 2 but not in the case 3. However,
MPC finds a solution that is very close to the optimal.
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Fig. 2. MPC results for simulation scenario 3. This considers a simulation
time of 500 days with a decision time of every 5 days. The wildtype (x1) is
rapidly eradicated. The genotypes 2 (x2) and 3 (x3) are gradually eradicated
by switching between therapies. It can be observed that the switching rule
does not have a clear pattern. The resistant genotype (x4) is also eradicated
due to the appropriate switching between the therapies. Total pathogen load
is represented in the cost function J .

The advantage of the MPC would be the computational
time, thus we could explore short decision times. Thus, in
Fig. 2 we illustrate the performance of MPC for 500 days
(tf ) with decision time to switch therapy of 5 days (Tc),
that is Nc = 100, 2100 combinations. This scenario would
not be computationally feasible for a “brute force” approach.
The upper panel in Fig. 2 shows how the MPC strategy
can decrease the pathogen load of the different genotypes.
The lower panel in Fig. 2 presents the switching trajectory,
which does not have any intuitive pattern, thus highlighting
the potential of MPC and other control strategies.

VI. CONCLUSIONS

This paper introduced a switching logistic model with
the potential to be the basis for scheduling antimicrobial
therapies to mitigate resistance. Considering the case of
absence of switching between treatments when backward
mutations are forbidden, we derived conditions of global
stability presented in Theorem 1. Assuming variants without
mutations during treatments, conditions for which unsta-
ble zero-equilibrium of the logistic maps can be stabilized
through a periodic switching signal are derived in Theorem
3 and Corollary 2. For the case with mutations, switching
strategies based on receding horizon optimization such as
the MPC were formulated in Problem 2. Numerical results
highlighted that the MPC strategy will perform very close to
optimal control policies while computational resources are
largely decreased.
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