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Switching Logistic Maps to Design Cycling Approaches Against Antimicrobial Resistance

Antimicrobial resistance is a major threat to global health, in particular, new SARS-CoV-2 variants during the COVID-19 pandemic. Scheduling cycling therapies by targeting phenotypic states associated with specific mutations can help us to eradicate pathogenic variants. In this paper, we introduce a logistic switching model to abstract mutation networks of collateral resistance. We found conditions for which the unstable zero-equilibrium of the logistic maps can be stabilized through a switching signal. That is, persistent populations can be eradicated through tailored switching regimes.

Starting from an optimal-control formulation, the switching policies show their potential in the stabilization of the zeroequilibrium for dynamics governed by logistic maps. Simulation results show the applicability of Parrondo's Paradox to design cycling therapies against drug resistance.

I. INTRODUCTION

Antimicrobials such as antibiotics and antivirals are powerful antidotes to fight against infections. However, the misuse and overuse of drugs have led to drug resistance, which can be roughly defined as the ability of a microorganism to replicate in the presence of a drug. For instance, during the COVID-19 pandemic, there have been new variants such as the B.1.1.7 in the UK and B. 1.351 in South Africa which are more resistant to neutralization by convalescent plasma and vaccine sera [START_REF] Wang | Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7[END_REF].

Modeling of infectious diseases has been developed at different scales and pursuing different goals [START_REF] Hernandez-Vargas | A new view of multiscale stochastic impulsive systems for modeling and control of epidemics[END_REF]. Between-hosts models have helped to propose new vaccination strategies or support public health strategies [START_REF] Weitz | Modeling shield immunity to reduce COVID-19 epidemic spread[END_REF], [START_REF] Tetteh | Network Models to Evaluate Vaccine Strategies towards Herd Immunity in COVID-19[END_REF]. On the other hand, for within-host infection, mathematical modeling has been used to capture the dynamics of different infectious diseases inside the host and understand the interaction of the pathogen and the immune system, as well as the scheduling of therapies [START_REF] Rivadeneira | Impulsive Zone Model Predictive Control ( iZMPC ) for Therapeutic Treatments : application to HIV dynamics[END_REF], [START_REF] Hernandez-Vargas | Modeling and Control of Infectious Diseases: with MATLAB and R[END_REF]. Most mathematical models to represent microbial dynamics are shown to be based on variations of the classical Verhulst logistic growth equation. For instance, the logistic model has served as a key mathematical tool in representing the growth of tumors [START_REF] Adam | A Survey of Models for Tumor-Immune System Dynamics, ser. Modeling and Simulation in Science[END_REF] and microbes [START_REF] Juška | Growth of microbial populations: Mathematical modeling, laboratory exercises, and modelbased data analysis[END_REF].

The logistic model indicates that a stable population has a saturation level, known as the carrying capacity which forms a numerical upper bound on the growth size [START_REF] Tsoularis | Analysis of logistic growth models[END_REF]. While theoretical approaches to mitigate drug resistance have been mainly developed at between-host level [START_REF] Blanquart | Evolutionary epidemiology models to predict the dynamics of antibiotic resistance[END_REF], too little has been directed at investigating within-host strategies against antimicrobial resistance [START_REF] Hernandez-Vargas | Modeling and Control of Infectious Diseases: with MATLAB and R[END_REF].

Here, for a given mutation network, we introduce a logistic switching map to capture the drug resistance dynamics of bacteria. This model is instrumental to design control strategies to minimize the ability of a bacterial sub-population to survive a drug concentration, known as persistence. However, designing switching strategies in dynamical systems is not trivial and leads to a context similar to the so-called Parrondo's Paradox [START_REF] Maier | Switching induced oscillations in the logistic map[END_REF], in which two losing games are combined in a determined order as to obtain a winning game [START_REF] Harmer | Losing strategies can win by Parrondo's paradox[END_REF]. Previous numerical simulations of switching logistic maps [START_REF] Maier | Switching induced oscillations in the logistic map[END_REF] have shown that switching decisions may follow either the "undesirable + undesirable = desirable" or the "chaotic+chaotic = order" dynamics.

In the next sections, the mathematical abstraction of antimicrobial resistance dynamics is formulated in the form of switched systems. Subsequently, evolutionary and control algorithms are used to find sub-optimal switching policies. Simulation results show the applicability of Parrondo's Paradox to design cycling therapies against drug resistance.

II. LOGISTIC SWITCHING MAPS

Throughout, R denotes the field of reals, R n stands for the vector space of all n-tuples of real numbers. R n×n is the space of n × n matrices with real entries. N denotes the set of natural numbers, while the restriction to positive natural numbers bounded by q will be used under the compact notation N q = {n ∈ N : 1 ≤ n ≤ q}. For x in R n , x i denotes the i th component of x, and the notation x 0 means that

x i ≥ 0 for 1 ≤ i ≤ n. R n + = {x ∈ R n : x 0} denotes the non-negative orthant in R n . The transpose is represented as A .
Using a switching signal σ(t), one can formally deal with a selection mechanism among q ∈ N possible subsystems. These subsystems are represented mathematically by a family of functions f i (•) : R n -→ R n , i ∈ N q which characterize the right hand side of ordinary differential equation. Based on these elements, one can define a switched non-linear autonomous system as follows:

ẋ(t) = f σ(t) (x(t)), (1) 
where x(t) ∈ X is the system state at time t, and the state space X is a closed subset of R n . Given the initial condition x(0) = x 0 at time t 0 = 0, the solution of (1) is denoted x(t, x 0 , σ(t)).

Problem 1: In this work, σ(•) is considered as the only manipulable control signal for the system (1). The primary goal would be to design, whenever this is possible, a switching path to make the origin of the system (1) stable. However, for practical application of the policy described in the next sections and biological reasons, we relax the problem to the design of a sub-optimal switching path σ(•) that yields a minimal cost functional J in a fix horizon of time (t f ).

A. Modeling Antimicrobial Resistance as Logistic Maps

To abstract the dynamics of the different genotypes during drug therapy, the following switched logistic model is described:

ẋi (t) = ρ i,σ(t) x i (t) 1 - x i (t) K -δx i (t)+µ η j =i m i,j x j (t).
(2) The population of different η pathogenic variants are represented by the state variable x i . ρ i,σ(t) is the proliferation rate of the variant i under the treatment σ(t) ∈ {1, 2, 3, ..., N } which can be changed at any time t. N is the total number of possible drug therapies that can be administered. The maximum carrying capacity is K. δ is the clearance of the variant x i .

The mutation rate is represented by µ. The genetic connections between genotypes are represented by m i,j ∈ {0, 1}, that is, m i,j = 1 if and only if it is possible for genotype j to mutate into genotype i. An illustrative example to represent the mutation network for n variant and m therapies is presented in Figure 1. However, more complex mutation trees can be considered.

III. STABILITY ANALYSIS WITHOUT SWITCHING OF THERAPIES

Let us consider the system (2) and focus on the case of a single therapy. Without loss of generality, we simplify the notation by taking ρ i,σ(t) → ρ i , and normalize the bacterial populations by the carrying capacity of the system,

x i /K → x i , so that ẋi (t) = ρ i x i (t) (1 -x i (t)) -δx i (t) + µ η j =i m i,j x j (t). (3) 
The strains that mutate act as a source to one or more strains, whereas each strain can have at most one source, with the case of zero sources corresponding to the wildtype. In other words, we do not take into account the case when two or more different strains can yield exactly the same genotype upon mutation, since this is unlikely in a real-life scenario. At the same time, and for the same reason, all backwards mutations are forbidden, so that if m j,i = 0 then necessarily m i,j = 0. More generally, there is no way of coming back to strain i starting from strain i; that is, once a mutation from strain i to strain j occurs, there exists no possible sequence of L mutations x j1 → x j2 → . . . → x jL → x i for any length L. The equilibrium points of the system with n strains, which we denote by (x 1 , . . . , xn ), can be found recursively by solving for ẋi = 0 in Eq. ( 3), and have the form

xi =            0, max λ i ρ i , 0 , si = 0 λ i + λ 2 i + 4µρ i si 2ρ i , si > 0 (4) 
Here, we have denoted by si the equilibria of the strain that acts as a source of x i ; this means that, if x i results from the mutation of a certain x k , then si = xk . At the same time,

λ i = ρ i -δ -µc i (5)
where c i is the number of "offsprings" of strain i. Theorem 1: λ i > 0 ensures the existence of the equilibrium point with xi > 0 and xk > 0 for all x k that can be reached starting from x i , otherwise xk = 0 for λ i < 0. This point is locally stable if, additionally, λ k < 0 for all other k.

Proof: The Jacobian of the system evaluated at a given equilibrium point can be decomposed as J = D + µM 1 , where M 1 contains the off-diagonal elements of M , and thus only encodes the mutations between strains. The entries of D are given by

d ii = ρ i -δ -µc i -2ρ i xi
The properties derived above for the constraints on the mutation patterns imply that M 1 can be thought of as the adjacency matrix of a directed acyclic graph (DAG) [START_REF] Mckay | Acyclic digraphs and eigenvalues of (0, 1)-matrices[END_REF]; therefore, there exists a topological ordering of the strains that renders M 1 strictly upper triangular [START_REF] Nicholson | Matrices with permanent equal to one[END_REF]. In other words, we can relabel the strains so that for every mutation from x i to x j , we have i < j. The Jacobian becomes upper triangular, and its eigenvalues will be given by the entries of D. At the origin, the i-th eigenvalue will correspond to λ i from Eq. ( 5). On the other hand, the eigenvalues associated with non-zero coordinates are given by

∆ i = -λ 2 i + 4µρ i si
and they are always negative. As a consequence, whenever a strain x i is able to persist by itself -which translates into λ i > 0 -then all of its offsprings will also persist, as seen from Eq. ( 4), even if they would be eradicated in isolation. If all other strains in the system are unable to persist in isolation, the eigenvalues associated to the equilibrium point where xi > 0, with xk > 0 if k corresponds to a offspring of i (that is, sk = xi ) and xk = 0 otherwise, will be given by

-λ i < 0 ∆ k < 0 sk = xi λ k < 0 sk = xi
and the equilibrium is thus asymptotically stable.

Theorem 2: If we explicitly separate the zero and nonzero equilibrium coordinates-so that the i-th element of an equilibrium point is either 0 or xi -then the set defined by

Ω = {x ∈ R n |0 ≤ x i ≤ xi ∀i}
is positively invariant with respect to the system described by Eq. (3). Equivalently, for any given initial condition x 0 ∈ Ω, the solution to (3) satisfies x(t) ∈ Ω ∀t > 0.

Proof: Let us recall that

ẋ = f (x) = (f 1 (x), . . . , f n (x)),
and consider the boundaries of Ω, given by

B (1) i = {x|x i = 0, 0 < x j < xj ∀j = i} B (2) i = {x|x i = xi , 0 < x j < xj ∀j = i}
The invariance condition [START_REF] Blanchini | Set invariance in control[END_REF] translates into f • n ≥ 0 along the boundaries above, where n is a normal vector pointing towards Ω. We note that the normal vectors that correspond to each boundary are given by n(1)

i = êi for B (1) i and n(2) i = -ê i for B (2)
i , where êi is the i-th unitary vector, (ê i ) j = δ ij , with δ ij the Kronecker delta.

Choosing an initial condition x 0 along B

i , with

x j = p j ∈ [0, xj ] ∀j = i we have f (x 0 ) • n(1) i = f i (x 0 ) = µ η j =i p j m i,j ≥ 0 ∀i
Similarly, for the case of B

i , we choose an initial condition x 0 with x i = xi and x j = p j ∈ [0, xj ] ∀j = i; this yields

f (x 0 ) • n(2) i = -f i (x 0 ) = -ρ i xi (1 -xi ) + δ xi + µc i x i + µ η j =i m i,j p j
Now, we use the fact that (x 1 , . . . , xn ) is an equilibrium point of the system, so that

ρ i xi (1 -xi ) -δ xi -µc i xi + µ η j =i m i,j xj = 0
and

-ρ i xi (1 -xi ) + δ xi + µc i xi = µ η j =i m i,j xj Hence, f (x 0 ) • n(2) i = µ η j =i m i,j (x j -p j ) ≥ 0 ∀i since 0 ≤ p j ≤ xj ∀j = i.
Therefore, Ω is positively invariant with respect to the system (3).

Corollary 1: Given the system (3) with µ = 0, the equilibrium at the origin (x k = 0) is globally asymptotically stable when ρ i < δ ∀i ∈ {1, . . . , n}. Proof: We have seen above that the origin is a locally asymptotically stable equilibrium point of (3) when ρ i < δ + µc i , ∀i simultaneously. In order to establish the global stability of the origin in Ω, let us choose a Lyapunov function

V (x) = η i x i
We note that V ≥ 0, ∀x ∈ Ω, and V = 0 iff x = 0. Now,

V (x) = η i ẋi = η i ρ i x i (1 -x i ) -δx i = η i (ρ i -δ)x i - η i ρ i x 2 i (6)
From the expression above, ρ i < δ ∀i ensures that V ≤ 0 ∀x ∈ Ω, and V = 0 iff x = 0. Therefore, the origin is globally asymptotically stable under this condition.

Remark 1: The condition above arises trivially from considering all strains as independent of one another, in absence of mutations, and it is more restrictive than the condition found previously, since mutations have a stabilizing effect on the origin. However, Eq. ( 6) can be employed as a basis to establish a switching policy in order to ensure the eradication of the pathogen in the case with mutations under a set of different available therapies.

IV. SWITCHING THERAPIES Based on the general model ( 2), the problem formulation can then be broadly described as the design of a switching policy for the gradual eradication of pathogenic strains. To formally state the problem we need the following definitions:

Definition 1: A switching policy is the cycling choice between therapies σ with a period T σ , which can be represented by a piecewise constant function σ(t) : R → {1, 2, . . . , N }. σ(t) remains constant for all t ∈ [kT σ , (k + 1)T σ ).

Definition 2: A periodic cycling policy is the periodic switching between therapies i with regular intervals T i . For example, for the case of two therapies with periods T 1 and T 2 , we have σ(T 1 ) = 1 and σ(T 2 ) = 2, then the periodic cycling policy sequence is

σ = {σ = 1 T1 , σ = 2 T2 , • • • , σ = 1 T1 , σ = 2 T2 }. (7) 
Next, we describe the design of switching policies of the system (2) in a discrete-time version. To this end, we will divide the analysis into two parts. The first is assuming the variants do not mutate that is µ = 0, this is still an interesting biological scenario as the main goal is to eradicate different variants of a pathogenic micro-organism. The second part will consider mutation, as µ = 0 for the case of not backward mutations, as from the evolution point of view, it is very difficult that this type of mutation occurs.

A. Switching Therapies Assuming No Mutations (µ = 0)

Assuming that the variants do not present mutations, that is µ = 0, we can re-parameterize the model (2) for a fixed period of treatment (σ(t) = σ) as follows:

ẋi (t) = b i,σ x i (t) 1 - x i (t) a i,σ (8) 
where b i,σ = ρ i,σ -δ and a i,σ = Kb i,σ /ρ i,σ . Equation ( 8) has the conventional logistic form which can be solved analytically or by the nearly exact method [START_REF] Kwessi | Nearly exact discretization of single species population models[END_REF], thus the recursive form of ( 2) is as follows:

z i (k + 1) = a i,σ z i (k) z i (k) + (a i,σ -z i (k))e -bi,σTσ (9) 
where k is the discrete-time step, and T σ is the period where the therapy σ is provided. Theorem 3: Let the dynamics in (2) without mutation (µ = 0) and a periodic cycle (T σ ) for each of the therapies (σ = 1, ..., N ). The different variants will be eradicated if and only if the following condition is satisfied

N σ=1 ρ i,σ T σ T < δ ( 10 
)
where T = N σ=1 T σ . Proof: Considering the initial condition z 0 = z(0) = 0 and the first two cycles of therapies σ = 1, 2 with their respective period T σ=1,2 , by construction, we have the Jacobian matrix J σ=1,2 at the origin as follows:

J σ=1,2 = e bi,1T1+bi,2T2 (11) 
In a similar vein, we can generalize the Jacobian J σ=1,..,N in the origin as follows,

J σ=1,...,N = e N σ=1 bi,σTσ (12) 
as b i,σ = ρ i,σ -δ and and we are interested in the stability of the origin, we check the exponential term to be less than 1, then

N σ=1 (ρ i,σ -δ)T σ ≤ 0 (13) N σ=1 ρ i,σ T σ ≤ δT (14) N σ=1 ρ i,σ T σ T < δ ( 15 
)
Remark 2: The condition (10) can additionally serve to design the duration of the therapies (T σ ) to eradicate all different variants during the course of an infection if the following inequality system has a solution

                               N σ=1 ρ 1,σ T σ < δT N σ=1 ρ 2,σ T σ < δT . . . N σ=1 ρ n,σ T σ < δT.
This can be formulated as a feasibility problem in a linear programming framework. While this could provide a sufficient condition for a possible success of a cycling therapy, the unfeasible solution does not necessarily imply the failure of a switching trajectory to stabilize the origin.

Corollary 2: For a cycle of the therapies with equal time duration, the stability condition [START_REF] Blanquart | Evolutionary epidemiology models to predict the dynamics of antibiotic resistance[END_REF] can be further simplified to N σ=1 ρ i,σ N < δ Proof: Following the Theorem 3, we have that the period of each therapy is equal, that is T 1 = T 2 = ... = T N . Then, N σ=1 T σ = N T σ . Therefore condition [START_REF] Blanquart | Evolutionary epidemiology models to predict the dynamics of antibiotic resistance[END_REF] becomes independent of T σ .

Remark 3: The corollary 2 points out that in order to eradicate a variant i with cycling therapies, the average expansion of the variant i through the cycling should be less than its contraction.

B. Switching Therapies Assuming Mutations (µ = 0)

For the case with mutation (µ = 0), a condition similar to [START_REF] Blanquart | Evolutionary epidemiology models to predict the dynamics of antibiotic resistance[END_REF] is difficult to prove. Model Predictive Control (MPC) appears to be suitable for a sub-optimal application to the biomedical application, due to its robustness to disturbances, model uncertainties and the capability of handling constraints [START_REF] Hernandez-Vargas | Modeling and Control of Infectious Diseases: with MATLAB and R[END_REF], [START_REF] Hernandez-Vargas | Switching Strategies to Mitigate HIV Mutation[END_REF], [START_REF] Hernandez-Vargas | Discrete-time control for switched positive systems with application to mitigating viral escape[END_REF], [START_REF] Zurakowski | A model predictive control based scheduling method for HIV therapy[END_REF]. Thus, the selection of therapies based on the MPC will be employed on similar reasoning as in our previous work based on switched linear systems [START_REF] Hernandez-Vargas | Discrete-time control for switched positive systems with application to mitigating viral escape[END_REF]. In summary, if the total population size is small enough during a finite time of treatment, then there is a significant probability that the population becomes zero. Therefore, we consider the cost

J := c x(t f ) ( 16 
)
where c is the column vector with all ones. The final time, t f , is the time point at which the cost function will be evaluated. This cost should be minimized under the action of the switching rule. The decision time to switch therapy is T c . Thus, the control algorithm predicts the future dynamic behavior of the system over a prediction horizon T p and computes an open-loop optimal control sequence over the prediction horizon. Then the first decision of the open-loop optimal control is applied. The problem is written as follows: Problem 2: The internal variables of the controller will be denoted as (x, σ), with constraints

x(k) ∈ Ω ⊆ R n and σ(•) ∈ U ⊆ N n q . Find min σ J(x(k), σ(•); T c , T p ), with J(x(k), σ(•); T p , T c ) := cx(t + T p )
subject to:

ẋ(τ ) = A σ(τ ) x(τ ) x(τ ) = x(k) σ(τ ) ∈ U, ∀τ ∈ [k, k + T c ] σ(τ ) = σ(τ + T c ), ∀τ ∈ [k + T c , k + T p ] x(τ ) ∈ Ω, ∀τ ∈ [k, k + T p ]
This MPC problem involves a nonlinear and complex optimization problem, the global optimization algorithm known as differential evolution [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF] is applied here for the implementation of the algorithm without further tuning of the solver.

V. NUMERICAL SIMULATIONS

In a similar way to [START_REF] Hernandez-Vargas | Discrete-time control for switched positive systems with application to mitigating viral escape[END_REF], simple illustrative examples are considered based on 4 genetic variants and two different therapies. Thus, η = 4, and 2 drug therapies, N = 2. The strain i = 1 is considered the Wild Type (WT) which is susceptible to most of the drugs. The Genotype 1 (G 1 ) is resistant to therapy 1 but it is susceptible to therapy 2. The Genotype 2 (G 2 ) is resistant to therapy 2, but it is susceptible to therapy 1. The Highly Resistant Genotype (R G ) is a genotype with a low replication rate, but it is resistant to all drug therapies. Pathogen clearance rate is fixed, δ = 0.24 day -1 , which corresponds to a half life of slightly less than 3 days [START_REF] Perelson | Mathematical Analysis of HIV-1 Dynamics in Vivo[END_REF]. Typical mutation rates are of the order of µ = 10 -4 . The following mutation matrix is considered: Three different scenarios are proposed as in the Table I. The first scenario, the most ideal case, describes a stabilizable switched system with a full symmetry between G 1 and G 2 , in the sense that first therapy inhibits G 2 with the same intensity that therapy 2 inhibits G 1 . In practice, a small difference in relative replication ability is expected. The second scenario shows a system that can not be stabilized with symmetry between G 1 and G 2 (similar to Case 1) but there is a resistant genotype that can not be stabilized under switching. The third scenario is a switched system that can be stabilized under switching and it has full asymmetry for replication rates in G 1 and G 2 . In general, the finite set of possible To compute optimal switching trajectories, we consider a "brute force" approach, which calculates all possible combinations of the therapies (N c = t f /T c ) and then finding the minimum for the cost function [START_REF] Kwessi | Nearly exact discretization of single species population models[END_REF]. However, this approach is computational unfeasible for checking N c > 15. Thus, in order to check larger treatment combinations we consider the differential evolution algorithm [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF].

M u =     0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0     (17) 
Assuming a prediction horizon of 100 days (T p ), we consider an MPC strategy as discussed in Problem 2. Table II illustrates treatment scenarios of 200 days (t f ) with decision time to switch therapy of 20 days (T c ), that is N c = 10, 2 10 combinations. Based on the column of "brute force" results in the Table II, we can conclude that the DE algorithm can find optimal trajectories. While we can not guarantee that the DE algorithm will find the optimal solution for any example, it might find solutions very close to the optimal. In a similar fashion, the MPC was able to find optimal switching trajectories in cases 1 and 2 but not in the case 3. However, MPC finds a solution that is very close to the optimal. ) is rapidly eradicated. The genotypes 2 (x 2 ) and 3 (x 3 ) are gradually eradicated by switching between therapies. It can be observed that the switching rule does not have a clear pattern. The resistant genotype (x 4 ) is also eradicated due to the appropriate switching between the therapies. Total pathogen load is represented in the cost function J.

The advantage of the MPC would be the computational time, thus we could explore short decision times. Thus, in Fig. 2 we illustrate the performance of MPC for 500 days (t f ) with decision time to switch therapy of 5 days (T c ), that is N c = 100, 2 100 combinations. This scenario would not be computationally feasible for a "brute force" approach. The upper panel in Fig. 2 shows how the MPC strategy can decrease the pathogen load of the different genotypes. The lower panel in Fig. 2 presents the switching trajectory, which does not have any intuitive pattern, thus highlighting the potential of MPC and other control strategies.

VI. CONCLUSIONS

This paper introduced a switching logistic model with the potential to be the basis for scheduling antimicrobial therapies to mitigate resistance. Considering the case of absence of switching between treatments when backward mutations are forbidden, we derived conditions of global stability presented in Theorem 1. Assuming variants without mutations during treatments, conditions for which unstable zero-equilibrium of the logistic maps can be stabilized through a periodic switching signal are derived in Theorem 3 and Corollary 2. For the case with mutations, switching strategies based on receding horizon optimization such as the MPC were formulated in Problem 2. Numerical results highlighted that the MPC strategy will perform very close to optimal control policies while computational resources are largely decreased.

Fig. 1 .

 1 Fig. 1. Illustrative mutation tree for n variants and m therapies. WT represents the wild type. Different variants would mutate as effect of a given therapy which is indicated with color squares. The appearance of a highly resistant variant (black circle HR) is hypothesized as o consequence of a sequence of mutations, meaning that it is resistant to all available therapies.

Fig. 2 .

 2 Fig.2. MPC results for simulation scenario 3. This considers a simulation time of 500 days with a decision time of every 5 days. The wildtype (x 1 ) is rapidly eradicated. The genotypes 2 (x 2 ) and 3 (x 3 ) are gradually eradicated by switching between therapies. It can be observed that the switching rule does not have a clear pattern. The resistant genotype (x 4 ) is also eradicated due to the appropriate switching between the therapies. Total pathogen load is represented in the cost function J.

TABLE II TOTAL

 II PATHOGEN LOAD AT THE END OF TREATMENT OF 200 DAYS WITHA POSSIBILITY TO SWITCH EVERY 20 DAYS.

		Optimal	Optimal	
	Scenario	(Brute Force)	(DE Algorithm)	MPC
	1	2.3615×10 5	2.3615×10 5	2.3615×10 5
	2	1.8851×10 3	1.8851×10 3	1.8851×10 3
	3	0.1040	0.1040	0.1141
	control values causes problems for many control techniques.
	Nevertheless in the cause of MPC, having a finite set of
	options may be an advantage in making the optimization
	easier to solve.		

*This work was funded by the Universidad Nacional Autonoma de Mexico (UNAM) -PAPIIT with the number IA102521.