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Abstract—The paper aims to review recent developments and
points to the challenges and opportunities for the instrumenta-
tion, control and management technologies in relationship with
the emergence of novel Energy Storage Systems. It exemplifies
this trend with a technology that has received an increasing
interest in recent studies: the Zinc-air batteries.

Index Terms—Control, mathematical modelling, identification,
estimation

I. INTRODUCTION

The current decade came with added momentum in the
research related to the energy storage systems in general with
particular emphasis on the modules exploiting electrochemical
principles of functioning.

This increased research activity was driven by multiple
social needs and priorities. One of the most important as-
pects is the wide interest of the public in renewable energy
sources which enables different subjects of research from the
physical principles, to the harvesting, energy conversion and
transmission. These topics are popular around the world in
connection with the global increase in energy consumption
and the current concerns related to the climate change and
its irreversible impact. For example, the advances in photo-
voltaic power production research and development1 proved
on large scales the capacity of harvesting the solar energy
(by converting the solar radiation to heat and subsequently
to different types of energy) but in the same time showed
that solar radiation comes with a high irregularity and leads
to voltage fluctuations in the power networks. These issues
can be mitigated if the photo-voltaic plant is operated in
conjunction with an energy storage system, (most commonly
electrochemical batteries). Similarly, the wind energy may be
limited due to the variability of weather conditions and this
extends to the other renewable sources. To solve this problem,
a reliable and cost-effective energy storage system is required,
which, in addition, will has to be able to increase the stability

The work is financed by the RTE Chair at CentraleSupélec.
1See the project DESERTEC [1], officially launched in July 2009 enabled

by the outstanding solar capacity in Africa.

and flexibility of power supply networks for both suppliers
and consumers of electricity.

From another perspective, the introduction of storage ele-
ments may be seen as a game changer for the power grids
which are considered classically as a ”zero inventory supply
chain”. The storage elements will bring a novel controllability
degree and eventually offer margins for real-time operation by
using this lever on a safety and economical mixed optimiza-
tion.

As an example in this respect, an increasing number of high-
voltage transmission lines (63kV-90kV) reached the level of
congestion due to the massive integration of renewable power
generation sources [2]. The trend is increasing and will pursue
its rapid development on the production side while the grid
expansion plan will be too expensive to accommodate 100% of
the nominal power. As such, the power curtailment continues
to play its role for the congestion handling, but EES (Energy
Storage Systems) and particularly batteries will become com-
ponents of the grid. There are undergoing installation projects
for batteries with 12 MW and 24 MWh energy rating (see for
example the RINGO project in France [3]).

These large storage units have an important advantage in
the control strategies for congestion management as long as
their operation allows a response time of 1s for a transition
from 0 to 12 MW for example. The predictive control finds in
these framework its full interest as long as the pre-positioning
of the batteries can enhance the remedial actions in congestion
situations by energy storage during the high renewable gen-
eration and subsequent discharge when the renewable action
decreases.

In the case of fault or outage, the lines can become over-
loaded and bring the entire network in a dangerous operation
regime, the role of the battery being to charge and rapidly
remove the overload.

While the opportunity offered by such large batteries are
obvious, there are adjacent problems that need to be solved:
• Where to place the batteries in such a way such that the

above mentioned capabilities are to be optimally used



by the control strategies. This problem relates to the
theoretical notion of controllabiliy in the case of large
scale systems;

• How to dimension the batteries, knowing that their op-
eration is concentrated on tackling congestion and faults
that represent rare events and as such lead to an operation
of the batteries at around 10% of the time.

In the present paper we aim to add to the above control-
related aspects, a focus on a novel energy technology: the
Zinc-air batteries. This energy storage systems is particularly
promising due to the high specific energy density, which in
practice reaches 700Wh/kg, several times higher than the
value for the popular lithium-ion technology [4]. In such
systems, the flow of electric current occurs during the elec-
trochemical reaction of zinc (anode) and oxygen (cathode).
During battery discharge, the anode oxidizes, forming zincate,
which then turns into zinc oxide, while an oxygen reduction
reaction takes place at the cathode. Other metals, such as
aluminum, lithium, potassium, sodium, etc., are also proposed
to be used as the anode material. Zinc (Zn) is considered to
be the most attractive in this regard, since it does not poison
the environment, is safe, and can be reused after processing, is
widespread in nature, and also has a relatively low cost. Due to
these properties, the technology of zinc-air power sources has
high potential and can find successful commercial applications
as storage batteries for renewable energy sources, as well as
for electric / hybrid vehicles.

However, the maturity of the technology (as it is the case
for the lithium-ion batteries) builds on many aspects, such as
the constituent materials of the battery, production processes,
as well as a control/monitoring strategy. These last elements
deserve a particular attention as they will operate the energy
systems in real-time and consequently should be developed to
a sufficiently reliable technological level. At the same time, the
battery must meet modern standards of reliability and perfor-
mance. Model-based analysis is an effective tool in the design
and manufacture of power supplies, as well as an analysis of
their behavior in various operating conditions. Consequently,
an effective mathematical model is a key element for the
development of Battery Management System (BMS).

The main function of the BMS is the ability to evaluate in
real time the unmeasurable states of the power supply: charge
(state of charge - SOC), health (state of health - SOH) and
power (state of power - SOP), through the signals actually
available for measuring: potential and current in the cell.
Thus, the mathematical model underlying BMS must meet
the requirements for accuracy and performance (in terms of
prediction) for use in real time, and also have a structure con-
venient for identifying its parameters (adaptation, scalability).
The model built on these principles will allow to study the
dynamic characteristics of the power source and improve its
performance by determining the optimal combination of input
parameters and control strategy.

II. A BRIEF POSITIONING OF BATTERIES IN THE ENERGY
STORAGE SYSTEMS LANDSCAPE

The story of the batteries in the stable and reproducible
forms leading to an established technology can be traced back
to 1859, to the French scientist Gaston Panté. Is interesting
to see the actuality of the Planté’s first studies who tried
in his study ”Storage of Electrical Energy” to deepen the
understanding of the ”the accumulation and transformation of
the energy of voltaic battery by meas of secondary currents”.
Even nowadays, the philosophy of the control engineering
problems can be resumed by the same objectives.

After these early beginings, the solutions for the energy
storage varied in time and span a large spectrum of functioning
principles according to the range of applications. One can
recall, for example, the flywheels which are costly equipments
which provide a relative low storage capacity but can be
designed and implemented in various configurations and thus
offer flexibility. Another safe and large scale deployed energy
storage solution is the one based on hydro pumping which
has the highest storage capacity at a low price. However, such
solutions are conditioned geographically and come with a high
environmental impact. Aside these classical alternatives which
can be seen as extreme options in terms of the cost (flexibility)-
capacity trade-off for storing the energy, there exist a variety
of electro-chemical solutions known under the broad name of
battery systems.

The construction of the batteries has a history of over 200
years and relies on different technologies. One can cite among
the important classes those based on NaS, lead-acid, flow
batteries and Li ion to mention only the ones that can be
encountered in configurations with diverse scales and mature
solutions. Obviously the cost-capacity trade-off will differen-
tiate those categories and orient their usage with respect to the
applications.

In the case of NaS, the batteries have a high energy density
and a long life cycle but they are penalized by the highly
corrosive nature of the components and the fire hazards of
the pure sodium. As such they are representing a solution of
energy storage well-suited for the support of the electric grid,
as for example for voltage regulation.

The Li ion batteries are preferred for the home appliances
and mobile electro-mechanical or communication solutions
while lead batteries are known for their ability to deliver high
instantaneous currents and the advantageous power-to-weight
ratio. Finally the flow batteries are interesting for the high
levels of power output and energy stored.

III. A MODEL-BASED PERSPECTIVE ON BATTERY SYSTEM
OPERATION

According to the current trends, the coming decades will see
the class of galvanic batteries becoming predominant among
energy storage devices. Simulation based on mathematical
modeling is a primary concern in designing and manufacturing
a battery, and also acts as a tool for assessing conditions
such as SOC (state of charge) and SOH (state of health) in



support of implementing real-time battery management sys-
tems. Hence, for precise control and monitoring, sufficiently
accurate battery models are required, while simultaneously
being efficient in terms of computational costs. Currently, the
most common and developed types of electric batteries include
lithium-ion, lead-acid and nickel-metal hybrid batteries [5].
In this regard, considerable attention is paid in the scientific
literature to the issues of mathematical modeling and design
of monitoring and control systems for power elements of these
types [6], [7]. In turn, zinc-air power sources are mainly the
subject of analysis of applied chemical research, the purpose
of which is to model individual chemical processes inside the
battery to determine the effect of intrinsic parameters on its
characteristics [8]–[10].

A. Mathematical models for batteries

The most common mathematical modelling efforts can be
divided into two groups: electrochemical models and models
of equivalent electrical circuits. Also, in connection with the
active development of intelligent technologies at present, a
number of researchers identify a third category - the “black
box” model.

Electrochemical models are usually focused on the fun-
damental, physical aspects that underline the operation of
power supplies [11]. The electrochemical model is a numerical
model consisting of nonlinear partial differential equations
describing kinetics with high accuracy. They are useful in
designing a battery, however, the complex structure of the
model requires a difficult identification of parameters and
makes them difficult to simulate/evaluate efficiently. This
makes such models unsuitable for use in real-time control
systems. The “black box” model or data-driven model is
formed by training on experimental data using, for example,
artificial neural networks. Since this approach does not imply
the presence of state dynamic equations in the model, the
accuracy of the simulation directly depends on both the quality
and volume of the training data set, which in practice cannot
always be guaranteed (see over-fitting problems).

Mathematical models of equivalent electrical equivalent
circuits, due to their simplicity, are widely used in describing
the behavior of various types of batteries, assessing the level of
charge and monitoring their condition. An equivalent circuit is
a circuit consisting of ideal components that together function
in much the same way as a simulated system. The main
elements of the circuit are a source of voltage, resistance and
capacitance. There are several types of equivalent circuits,
depending on which elements are used and what internal
effects of the system need to be described. Classical equivalent
circuits include internal resistance, Thevenin, RC models [12]–
[14] and, regardless of the structure, are models with lumped
parameters.

A basic scheme is presented in Figure 1 where the following
notations are employed:
• OCV open circuit voltage
• I load current (charge or discharge)
• Ut terminal voltage

Fig. 1. Basic electric equivalent model

• R1, R2 polarization resistances
• C1, C2 polarization capacitances

and the relationships:
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leading to an equivalent transfer function:

Ut(s) = OCV −
(
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+

R2

sR2C2 + 1

)
I(s)

Models with lumped parameters are prefered for analysis,
control, and optimization of power supplies, since in such
approaches, the main objective is the global general charac-
terization of the dynamics in terms of evolution of the output
voltage, discharge current, temperature, and SOC, and rivals
with respect to the concentration and the internal state of
electro-chemical reactions in the battery.

According to the authors, the studies concentrate on differ-
ent lumped parameters. A non-exhaustive list can be:
• SOC – state of charge is defined as a measures the

quantity of charge of the battery

SOC(t) =
1

Q0

t∫
−∞

I(τ)dτ

and should be understood as a ratio between the remain-
ing capacity and the nominal capacity

• SOE – state of energy, the product between capacity and
OCV [15]

• SOP – state of power, the product between
charge/discharge current and voltage

• RDT – remaining discharge time; it can be seen as
the quantity of time for which the battery (at a desired
discharge current) can sustain the desired terminal voltage
[16]

• RCE – rate capacity effect; shows how the battery capac-
ity depends on the charge/discharge profile [16]

• PRDT – predicted rate discharge time
• EMF – electromotive force; OCV is the steady state of

the EMF and they are linked through a relation depending
on temperature and aging [17]



However, it should be remembered that the mathematical
model constructed using the equivalent circuit remain linear.
In order to take into account the nonlinear effects that occur in
real power sources, the dependence of the model parameters
(resistance, capacity, voltage) on the state of charge, tempera-
ture, or other external factors that vary with time needs to be
introduced whenever the modeling needs to cover the entire
life-time and different operating regimes.

One of the popular approaches for handling the nonlinearity
of the ECM is to hide it in the dependence between OCV and
SOC. An empirical nonlinear relation proposed in [18] uses
five terms whose parameters need to be identified:

OCV (SOC) = A0 +A1SOC +A2
1

SOC
+A3 lnSOC +A4 ln (1− SOC).

Other dependencies modeled by approximation polynomials
are constructed from measurements, or using correspondence
tables [19], [20]. It should be noted that the state of charge
(SOC) is not a measurable indicator, various methods are used
to determine its values, generally using estimations. These
include methods based on information treatment based on
battery parameters, Coulomb counting, methods based on data
analysis, and methods based on estimations using dynamic
models built using equivalent electrical circuits.

The methods of the first category directly measure the open
circuit voltage at known values of the state of charge and the
subsequent approximation of the profile of the discharge of the
battery. However, each type of battery has its own signature
related to the chemistry or the architecture. While determining
the state of charge by the voltage curve performs well, for
example, for a lead-acid battery (OCV(SoC) dependence is
linear), zinc-air batteries have a substantially flat discharge
curve, which makes this approach inapplicable. In addition,
while the battery is under load, it is not possible to update
SoC values in real time using OCV measurements. For these
reasons, OCV-based SoC assessment is usually used as an
additional or corrective method in the background of the real-
time control.

Coulomb counting consists in calculating the integral of
the instantaneous current value at the terminals to determine
the charge given to the batteries. The disadvantage of this
approach is the need to know the initial value of the state
of charge, as well as the use of high-precision sensors in
order to avoid the accumulation of measurement errors. It is
also proposed to combine a method based on measuring stress
without load with a Coulomb calculation to obtain the correct
initial SOC value.

In order to reduce the uncertainties of the previously men-
tioned methods for estimating SoC, recently novel methods are
introduced that introduce the state of charge into the number
of phase variables of the dynamics model and then use one of
the following observers to estimate its value: Luenberger [20],
sliding mode (SMO) [21], Kalman Advanced Filter (EKF)
[18], Kalman Adaptive Advanced Filter (AEKF) [22] and H∞
observer [19].

B. Control problems

Model-based methods are reliable in nature thanks to a
feedback structure in which a state-space model containing
SOC as one of the phase variables is used to represent the
dynamic behavior of the battery. It is worth noting that the
quality of the method depends on the accuracy of the system
simulation. In addition, due to differences between power
supplies, the parameters defined for one battery may not
correspond to the parameters for another battery of the same
type.

To resume, in battery energy management we are interested
in maximizing performance and longevity. This optimization
process requires a detailed understanding of the underlying
electrochemistry. However, the electrochemical state variables
are not directly measurable. At best, one can measure voltage,
current, and temperature. Consequently, modeling and control
are necessary to extract the full potential from batteries.

After the overview of the problems related with the model
design presented in the previous subsection, one can describe
from a control theory perspective [23], the batteries operation
challenges by means of three important classes of problems:

• Parameter Identification Problem: use the measurements
(current, voltage and temperature) to estimate uncertain
parameters related to aging (charge capacity fade and
impedance rise). The issues in addressing this problems
come from the parametric modeling, nonlinear systems’
identifiability, the need of persistent excitation.

• State Estimation Problem: use the measurements to es-
timate the electro-chemical variables of interest. The
issues here are mainly related to the lack of complete
observability and the model’s nonlinearity.

• Constrained Control Problem: use the measurements to
control the current such that critical electro-chemical
variables are maintained within safe operating constraints.

IV. ZINC-AIR BATTERIES AND CONTROL ENGINEERING
PROBLEMS

Zinc is used in different configurations for primary or sec-
ondary cells: Zinc–air, Zinc–carbon, Zinc-ion, Zinc–bromine,
Zinc–cerium to mention only a few. Let us consider next the
Zinc-air batteries as one of the technologies reporting active
research results in the last years [10], [24], [25]. Such a system
is considered promising for large-scale energy storage due to
its high energy density at a fraction of the cost. Also, active
research on the chemical related topics are currently focusing
on the development of electrode materials.

In short, the Zinc-air battery stores and discharges energy
via electrochemical reaction of zinc (Zn) and oxygen (O2).
Potassium hydroxide (KOH) solution is typically used as
electrolyte. During discharge, Zn oxidation proceeds at anode.
Zn reacts with hydroxide ions (OH−) to generate zincate ion
(Zn(OH)2−4 ) and electrons. Zn(OH)2−4 is precipitated to zinc
oxide (ZnO) when its concentration exceeds the saturation
limit.



The electrons generated from anode are transfered to cath-
ode via the external circuit. At cathode, O2 from the atmo-
sphere receives electrons and is converted to OH−.

A. Mathematical modelling

Discharge profiles are available as open data [24], [26] and
allow the construction of gray-box mathematical models by
exploiting the structural properties, the trends of the discharge
signals and concentrating the computational effort on the off-
line parameter identification and online adaptation.

Fig. 2. Cell voltage and current at different (constant) discharge rates.

Using a modelling approach which involves a scalar state
vector z(k) denoting the SOC [27], one can concentrate on its
evolution on the principles:

z(k + 1) = z(k)− ηiTs

Cn
u(k) + w(k),

y(k) = K0 − K1

z(k) +K3ln(z(k)) +K4ln(1− z(k))

−Ru(k) + v(k)

where u(k) is the discharge current, w(k) the disturbance
and y(k) is the cell’s output voltage. The nonlinear dynamics
can be enhanced with a linear subsystem, assimilated to an
equivalent electrical circuit able to represent the fast transitory
phenomena. The nonlinear feed-through takes into account the
possible difference between the reference and the delivered
discharge current:

x1(k + 1) = x1(k) + Tsf1(x1(k), u(k)) + w1(k),
x2(k + 1) = Ax2(k) +Bf21(x1(k), u(k)) + w2(k),

y(k) = Cx2(k) +Rf1(x1(k), u(k)) + vk.
(1)

The nonlinear function f21(x1, u) depicts the dependence of
the output voltage in terms of the state of charge and the
discharge current. The results obtained based on interpolations
between Boltzman approximation are depicted in Figure 3.

Interesting nonlinear phenomena have been observed as for
example the non-linearity in the transitory, the flat discharge
curve which lead to low observability indicators and other
notions which deserve a mathematical formulation as for
example the self-discharge susceptibility.

It is interesting to observe that reliable performance data
and material properties are needed from experimental investi-
gations and this is not always the case as long as the refuel-
able batteries are subject to a dispersion on the structure and
organization of the zinc content which need to be considered
in the corresponding mathematical model.

Fig. 3. Example of identification results with respect to SOC the nonlinear-
ities.

B. Estimation problems

The state-of-charge concentrates the sensitive information
about the operation of a battery. As it encapsulates a notion
which is not directly measured, in some sense or another, it
needs to be estimated based on real-time measurements. Its
accuracy is important because errors in its measuring lead to
infeasible discharging levels which adversely affect the battery
performance and lifetime.

In control engineering terms, the OCV is the measured
signal which is directly influenced by the SOC, and thus, at
different SOC levels, the same discharge current leads to a
different terminal voltage. This basic principle is exploited
by the estimation mechanism starting from the basic idea of
an inversion of the identified function OCV (SOC). Such an
approach can be both sensitive and non-robust in the case
of Zinc-air batteries due to the flat discharge curve due to
defective observability of the dynamics. The alternative is
based on current counting and should be enhanced by means
of persistent excitation with a rich discharge signal. All these
elements can lead to a robust estimation in particular with
respect to the refuelable Zinc-air batteries (both in terms of
electrolyte and Zinc) which can suffer from different charging
levels and arrangements of the components within the same
geometry of the cell.

C. Fault detection and isolation

When discussing the long-term functioning of a battery, the
focus moves from the state-of-charge to the state-of-health
(SOH). This last notion deals with the ability of that battery
to repeatedly provide its rated capacity over time. In general
terms this covers the qualitative measure of the aging and
degradation. In practice, the SOH deals with the monitoring
the degradation of specific battery model parameters and is
particularly efficient when a model-based approach can be
employed. The principle is to trigger the fault-detection and
identification by means of a residual signal involving the
model-based predictions and the measured signals

Wehn the SOH is jointly analysed with the SOC, the anal-
ysis is denoted ”state-of-functioning” and deals with the fault
detection and identification (FDI), followed by a estimation of
the state of charge in the corresponding mode of functioning.



D. Real-time optimization-based operation

Once a reliable state estimation is implemented (supervised
by a FDI monitoring block), the Zinc-air battery capabilities
can be unleashed by opening the architecture and designing
refuelable Zinc-air Batteries. Such battery structures provide
novel degrees of freedom by the exchange of the chemi-
cal components of the electrochemical reaction with fresh
elements. This research avenue is studied in the ”Zinc and
electrolyte regeneration” studies.

In a control engineering perspective, the objective can be
stated as a reference tracking problem with respect to the
exogenous discharge setpoints. The state estimation block need
to monitor in real-time the state of charge and produce the the
residuals able to detect the entrance of the cell in a depletion
stage. The feeedback control has two levers: one one side the
adjustable quality of the tracking and on the other hand the
regeneration signals on both the zinc and electrolyte side. Is
worth to be noticed that the re-circulation of the electrolyte
can help producing punctually high discharge intensity.

On the long run, the integration of the model-based pre-
dictive capabilities will allow an optimal operation in the
sense of a receding horizon optimization and to monitor
the functioning according to predefined discharge reference
signals (patterns). The region of optimal performance will the
region where the cell can be maintained in nominal functioning
by countering through control reconfiguration the depletion,
despite disturbances and uncertainties.

V. CONCLUSION

The paper recalled the interest of energy storage systems
in recent energy related applications. A short review of the
modelling approaches needed for the design of control mod-
ules was provided and the particular case of the Zinc-air
batteries was described as a particular example of the active
developments in the field.
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