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Let (X, T ) be a subshift of finite type equipped with the Gibbs measure ν and let f be a real-valued Hölder continuous function on X such that ν(f ) = 0. Consider the Birkhoff sums

1. For any t ∈ R, denote by τ f t the first time when the sum t + S n f leaves the positive half-line for some n 1. By analogy with the case of random walks with independent identically distributed increments, we study the asymptotic as n → ∞ of the probabilities ν(x ∈ X :

We also establish integral and local type limit theorems for the sum t+S n f (x) conditioned on the set {x ∈ X : τ f t (x) > n}.

Statement of the results and motivation

1.1. Main results. Consider a subshift of finite type (X, T ) endowed with a Gibbs measure ν and let f be a real-valued Hölder continuous function on X (the precise definitions are given in Section 2). Define the Birkhoff sums

S n f = f + f • T + . . . + f • T n-1 , n 1.
A fundamental result of the theory of dynamic systems is the celebrated Birkhoff ergodic theorem which asserts that ν-almost surely,

lim n→∞ S n f n = X f (x)ν(dx) =: ν(f ).
Much effort was made to establish another important property -the central limit theorem for S n f . To formulate the corresponding statement, we first note that the following limit exists:

σ 2 f = lim n→∞ 1 n X (S n f -nν(f )) 2 dν.
It is known that σ 2 f = 0 if and only if f is a coboundary w.r.t. to T , which means that there exists a Hölder continuous function g on X such that f (x) = g(T x)-g(x) for any x ∈ X. In the case when σ f > 0 (or equivalently when f is not a coboundary) the following central limit theorem holds: for any bounded continuous function F : R → R,

lim n→∞ X F S n f (x) -nν(f ) σ f √ n ν(dx) = 1 √ 2π R F (t)e -t 2 2 dt. (1.1)
All these statements, which can be found in the excellent book of Parry and Pollicott [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF], are consequences of many successive works such as Sinai [START_REF] Sinai | The central limit theorem for geodesic flows on manifolds of constant negative curvature[END_REF][START_REF] Sinai | Gibbs measures in ergodic theory[END_REF], Ratner [START_REF] Ratner | The central limit theorem for geodesic flows one-dimensional manifolds of negative curvature[END_REF], Ruelle [START_REF] Ruelle | Thermodynamic formalism[END_REF] and Denker-Phillip [START_REF] Denker | Approximation by Brownian motion for Gibbs measures and flows under a function[END_REF], to cite only a few. The goal of this paper is to complement the central limit theorem (1.1) by proving limit theorems for the Birkhoff sum t + S n f under the condition that the trajectory (t + S k f ) 1 k n stays positive, where t ∈ R is a starting point. A brief historical foray into the subject of conditioned limit theorems and our motivation are presented in Section 1.2.

To state our results assume that ν(f ) = 0 and that f is not a coboundary. For any t ∈ R, the following exit time is finite for ν-almost every x ∈ X:

τ f t (x) := inf {k 1, t + S k f (x) < 0} .
Thus, by definition, the set {x ∈ X : τ f t (x) > n} is the set where the trajectory (t + S k f ) 1 k n stays non-negative.

Our first theorem states the existence of a special Radon measure which will play a central role in the paper and will be used in the formulations of the subsequent results.

Theorem 1.1. Let f be a Hölder continuous function on X such that ν(f ) = 0 and f is not a coboundary. Then, there exists a unique Radon measure µ f on X × R such that for any continuous compactly supported function ϕ on X × R,

lim n→∞ X×R ϕ(x, t)S n f (x)1 {τ f t (x)>n} ν(dx)dt = X×R ϕ(x, t)µ f (dx, dt). (1.2)
Moreover, the Radon measure µ f satisfies the following quasi-invariance property: for every continuous compactly supported function ϕ on X × R,

X×R ϕ(x, t)µ f (dx, dt) = X×R ϕ T -1 x, t -f (T -1 x) 1 {t 0} µ f (dx, dt). (1.
3)

The limit (1.2) takes a simpler form when the function ϕ does not depend on the first argument. Indeed, we will show in Section 3.3 that the marginal of µ f on R is absolutely continuous with respect to the Lebesgue measure. Its density function is a non-decreasing function on R that will be denoted by V f . In particular, by standard arguments, the asymptotic (1.2) is valid for functions ϕ of the form ϕ(x, t) = 1 [a,b] (t) for x ∈ X and t ∈ R. This leads to the following: Corollary 1.2. Let f be a Hölder continuous function on X such that ν(f ) = 0 and f is not a coboundary. Then, for any real numbers -∞ < a < b < ∞, we have, as n → ∞,

lim n→∞ b a X S n f (x)1 {τ f t (x)>n} ν(dx)dt = µ f (X × [a, b]) = b a V f (t)dt. (1.4)
Note that (1.2) and (1.4) are stated in integral forms with respect to t.

It is an open question whether it is possible to give an asymptotic of the integral X S n f (x)1 {τ f t (x)>n} ν(dx) for a fixed value of t. The Radon measure µ f appearing in Theorem 1.1 will be called the harmonic measure associated to the dynamical system (X, T, ν) with the observable f . The reason for this is that the measure µ f is related to the harmonicity property that appears in the study of killed random walks on the half line. We refer to Section 3.3 for precise statements.

The following results describe the limit behavior of the Birkhoff sum t + S n f under the condition that the trajectory (t + S k f ) 1 k n stays non-negative. We start by giving the equivalent of the probability that the trajectory (t + S k f ) 1 k n stays non-negative. Denote by μf the harmonic measure related to the reversed dynamical system (X, T -1 , ν) with the observable f • T -1 . Theorem 1.3. Let f be a Hölder continuous function on X such that f is not a coboundary and ν(f ) = 0. Then, for any continuous compactly supported function ϕ on X × R, we have, as n → ∞,

X×R ϕ(x, t)1 {τ f t (x)>n} ν(dx)dt ∼ 2 σ f √ 2πn X×R ϕ(x, t)µ f (dx, dt) and X×R ϕ(T n x, t + S n f (x))1 {τ f t (x)>n} ν(dx)dt ∼ 2 σ f √ 2πn X×R ϕ(x, t)μ (-f ) (dx, dt).
In particular, as the measure µ f has absolutely continuous marginal on R, Theorem 1.3 also applies to the function ϕ(x, t) = 1 [a,b] (t) for x ∈ X and t ∈ R. Therefore, this gives the following corollary.

Corollary 1.4. Let f be a Hölder continuous function on X such that f is not a coboundary and ν(f ) = 0. Then, for any real numbers -∞ < a < b < ∞, we have, as n → ∞, b a ν x ∈ X :

τ f t (x) > n dt ∼ 2 σ f √ 2πn b a V f (t)dt.
Now we give a conditioned central limit theorem for the Birkhoff sum S n f , which states that the law of S n f conditioned to stay positive converges weakly to the Rayleigh law. Let φ + be the Rayleigh density function:

φ + (u) = ue -u 2 /2 1 {u 0} , u ∈ R.
Theorem 1.5. Let f be a Hölder continuous function on X such that f is not a coboundary and ν(f ) = 0. Then, for any continuous compactly supported function F on X × X × R × R, we have, as n → ∞,

X×R F x, T n x, t, S n f (x) σ f √ n 1 {τ f t (x)>n} ν(dx)dt ∼ 2 σ f √ 2πn X×R X×R F (x, x , t, t )φ + (t )ν(dx )dt µ f (dx, dt).
As above, we can actually apply Theorem 1.5 to the function F (x, x , t, t ) = 1 [a,b] (t)1 [a ,b ] (t ) for x, x ∈ X and t, t ∈ R. Therefore, this implies the following corollary: Corollary 1.6. Let f be a Hölder continuous function on X such that f is not a coboundary and ν(f ) = 0. Then, for any real numbers -∞ < a < b < ∞ and -∞ < a < b < ∞, we have, as n → ∞, b a ν x ∈ X :

S n f (x) σ f √ n ∈ [a , b ], τ f t (x) > n dt ∼ 2 σ f √ 2πn b a V f (t)dt b a φ + (t )dt .
Next we formulate a conditioned local limit theorem for S n f , which is a refinement of the previous result.

Theorem 1.7. Let f be a Hölder continuous function on X such that ν(f ) = 0. Assume that for any p = 0 and q ∈ R, the function pf + q is not cohomologous to a function with values in Z. Then, for any continuous compactly supported function F on X × X × R × R, we have, as n → ∞, X×R F (x, T n x, t, t + S n f (x))1 {τ f t (x)>n-1} ν(dx)dt

∼ 2 √ 2πσ 3 f n 3/2 X×R X×R F (x, x , t, t )µ f (dx, dt)μ (-f ) (dx , dt ).
In Theorem 1.7, we assumed the function f to satisfy a non-arithmeticity condition. When this is not the case but f is still not cohomologous to 0, we could still get an analogue of this result by the same method.

In the particular case when the function F has the form F (x, x , t, t ) = 1 [a,b] (t)1 [a ,b ] (t ) for x, x ∈ X and t, t ∈ R, from the previous theorem we obtain the following: Corollary 1.8. Let f be a Hölder continuous function on X such that ν(f ) = 0. Assume that for any p = 0 and q ∈ R, the function pf + q is not cohomologous to a function with values in Z. Then, for any real numbers

-∞ < a < b < ∞ and -∞ < a < b < ∞, we have, as n → ∞, b a ν x ∈ X : t + S n f (x) ∈ [a , b ], τ f t (x) > n -1 dt ∼ 2 √ 2πσ 3 f n 3/2 b a V f (t)dt b a V (-f ) (t )dt .
In this corollary we have denoted by V (-f ) the density function with respect to the Lebesgue measure of the marginal on R of the Radon measure μ(-f) .

As f is bounded, by taking the interval [a , b ) to be [-c, 0) for c > 0 large enough, we get from Corollary 1.8 the following: Corollary 1.9. Let f be a Hölder continuous function on X such that ν(f ) = 0. Assume that for any p = 0 and q ∈ R, the function pf + q is not cohomologous to a function with values in Z. Then, for any real numbers -∞ < a < b < ∞, we have, as n → ∞, b a ν x ∈ X :

τ f t (x) = n dt ∼ 2 √ 2πσ 3 f n 3/2 b a V f (t)dt 0 -∞ V (-f ) (t )dt .
Our Corollary 1.9 could be extended without difficulties to the case when one only assumes that f is not cohomologous to 0. This assertion could be deduced from a version of Theorem 1.7 for functions f that are cohomologous to functions with values in a set of the form αZ + β for some α, β ∈ R.

Again, similarly to the comment after Corollary 1.2, Theorems 1.3, 1.5 and 1.7 are stated in integral forms with respect to t. It is an open problem to obtain asymptotics for a fixed value of t ∈ R of the following probabilities:

ν x ∈ X : τ f t (x) > n , ν x ∈ X : S n f (x) σ f √ n ∈ [a , b ], τ f t (x) > n , ν x ∈ X : S n f (x) ∈ [a , b ], τ f t (x) > n .
Due to the theory of Markov partitions (see Appendix III of [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF] and Chapter 18.7 of [START_REF] Hasselblatt | Introduction to the modern theory of dynamical systems[END_REF]), Theorems 1.1, 1.3, 1.5 and 1.7 can be applied without any changes to hyperbolic dynamical systems. Finally, using the approach of this paper, one can obtain analogous results for hyperbolic flows. The latter is out of the scope of this article and will be done in another work.

Previous work and motivation.

The first examples of conditioned limit theorems for sums of independent random variables are due to the pioneering work of Spitzer [START_REF] Spitzer | Principles of Random Walk[END_REF] and Feller [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]. Since then integral and local limit theorems for random walks conditioned to stay positive attracted a lot of attention. Very many authors contributed to this subject, among them Borovkov [START_REF] Borovkov | New limit theorems for boundary-valued problems for sums of independent terms[END_REF][START_REF] Borovkov | On the Asymptotic Behavior of the Distributions of First-Passage Times, I[END_REF][START_REF] Borovkov | On the Asymptotic Behavior of Distributions of First-Passage Times[END_REF], Bolthausen [START_REF] Bolthausen | On a functional central limit theorem for random walk conditioned to stay positive[END_REF], Iglehart [START_REF] Iglehart | Random walks with negative drift conditioned to stay positive[END_REF], Eppel [START_REF] Eppel | A local limit theorem for the first overshoot[END_REF], Bertoin and Doney [START_REF] Bertoin | On conditioning a random walk to stay nonnegative[END_REF], Caravenna [START_REF] Caravenna | A local limit theorem for random walks conditioned to stay positive[END_REF], Vatutin and Wachtel [START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF], Doney [START_REF] Doney | Local behavior of first passage probabilities[END_REF], Kersting and Vatutin [START_REF] Kersting | Discrete time branching processes in random environment[END_REF]. Most of this work is based on the Wiener-Hopf factorization and various factorization identities. Recently Denisov and Wachtel [START_REF] Denisov | Random walks in cones[END_REF][START_REF] Denisov | Alternative constructions of a harmonic function for a random walk in a cone[END_REF] have studied the setting of random walks in cones and have developed a new approach based on the construction of the harmonic function thus avoiding the use of the Wiener-Hopf factorization. Following this method, in the case of dependent random variables very recent progress was made in [START_REF] Grama | Conditioned limit theorems for products of random matrices[END_REF][START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF], where conditioned integral limit theorems for products of random matrices and for Markov chains satisfying spectral gap properties have been obtained. In [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF] a conditioned local limit theorem for a Markov chain with finite state space was considered.

The question of establishing conditioned integral and local limit theorems for Birkhoff sums remained for a very long time a challenging problem mainly because the Wiener-Hopf factorisation does not work in the dynamical system framework. The emergence of new approaches for proving the integral and local limit theorems for Markov chains [START_REF] Denisov | Random walks in cones[END_REF][START_REF] Grama | Conditioned limit theorems for products of random matrices[END_REF][START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF][START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF] opens an opportunity to investigate these problems for dynamical systems. However, there are two main difficulties which have motivated our study.

The first difficulty is that the alternative approaches described above are based on the existence of the harmonic function. For Markov chains its existence is proved in [START_REF] Grama | Conditioned limit theorems for products of random matrices[END_REF][START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]. Or a subshift of finite type exhibits a dependence which in general is not of Markovian type and therefore the existence of the harmonic function is not granted, except in some very special cases. Indeed, one of the major findings of the paper is that in the case for the subshift of finite type (X, T, ν) with a general Hölder continuous observable f a more general object -the harmonic measure µ f -has to be introduced. The conditioned integral and local limit theorems in this case are stated in terms of the harmonic measures µ f and μ-f (the second corresponding to the reversed subshift (X, T -1 , ν) with observable f • T -1 ), which therefore cannot be avoided and constitute essential characteristics of the model. The construction of µ f is performed first for a Birkhoff sum t + S n f , where the observable f depends only on the future coordinates (in the reversed setting it corresponds to studying a Markov chain). Then it is extended gradually to a function f depending on the whole set of coordinates using some smoothing techniques and a vague convergence argument, see Section 3.

The second difficulty resides in adapting the approaches from the Markov chains [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF][START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF] to the case of dynamical systems. Our approach is close to that of the recent paper [START_REF] Grama | Conditioned local limit theorems for random walks on the real line[END_REF], where random walks with independent increments are considered. We shall first establish the corresponding theorems for the Birkhoff sum t + S n f with an observable f depending only on the future coordinates (which corresponds to dealing with some Markov chain). Then using the technique similar to that in the previous point we extend them to the general case. The main difficulty here consists in the construction of the dual Markov chain, which is an important step in establishing a conditioned local limit theorem. Fortunately, in the case of the subshift of finite type the dual Markov chain corresponds again to a dynamical system -the reversed subshift (X,

T -1 , ν) with observable f • T -1 .
To put it a perspective, the approach developed in our paper can be applied to Birkhoff sums with drift, via a Cramér Type change of measure, see Parry and Pollicott [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF] and Waddington [START_REF] Waddington | Large deviation asymptotics for Anosov flows[END_REF]. It is also possible to apply the developed approach for studying local limit theorems for products of random matrices and more generally for Markov chains with values in general state spaces in contrast to [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF], where the chain with finite state spaces have been considered. This will be the subject of a forthcoming paper.

Background and auxiliary statements

2.1. Subshift of finite type and Gibbs measure. We start by precisely introducing the subshift of finite type. Let k 2 be an integer and A = {1, 2, . . . , k}. Let M be a transition matrix on A, that is to say, M = (M (i, j)) i,j∈A is a matrix with coefficients in {0, 1}. We assume that the transition matrix M is irreducible in the sense that there exists an integer p 1 such that all the coefficients of the matrix M p are strictly positive. Consider the associated subshift of finite type

X = x = (x n ) n∈Z ∈ A Z : M (x n , x n+1 ) = 1, n ∈ Z ⊂ A Z ,
equipped with the shift map T defined by (T x) n = x n+1 for x ∈ X and n ∈ Z. The set {1, 2, . . . , k} is equipped with the discrete topology, so the space A Z is compact with the corresponding Tychonov product topology. We equip X with the induced topology, which is also compact. For any

x = (x n ) n∈Z ∈ X and y = (y n ) n∈Z ∈ X, define ω(x, y) = min{k 0 : x k = y k or x -k = y -k }.
Note that for any constant α ∈ (0, 1), the function (x, y) → α ω(x,y) is a distance on X which induces the natural product topology.

The space of real-valued continuous functions f : X → R is denoted by C(X). For any function f ∈ C(X), we say that f is α-Hölder continuous on X if there exist constants C > 0 and α ∈ (0, 1) such that for all x, y ∈ X,

|f (x) -f (y)| Cα ω(x,y) .
Denote by B α the space of all real-valued α-Hölder continuous functions on X, equipped with the following norm

f Bα := sup x∈X |f (x)| + sup x,y∈X:x =y |f (x) -f (y)| α ω(x,y) . (2.1)
In the sequel we shall say that a real-valued function on X is Hölder continuous if there exists α ∈ (0, 1) such that f is α-Hölder continuous. Let B = ∪ 0<α<1 B α be the set of all real-valued Hölder continuous functions on X.

For any f ∈ B, we consider the Birkhoff sum process (S n f ) n 0 by setting S 0 f = 0 and

S n f = f + . . . + f • T n-1 , n 1.
Let us denote by X + ⊂ A N the set

X + = x = (x n ) n∈N ∈ A N : M (x n , x n+1 ) = 1, n ∈ N ⊂ A N .
The set of continuous functions on X + is denoted by C(X + ). By abuse of notation, the one-sided shift map X + → X + will still be denoted by T .

The Ruelle operator L f : C(X + ) → C(X + ) related to f ∈ C(X + ) is defined as follows: for any g ∈ C(X + ),

L f g(x) = y: T y=x e -f (y) g(y), x ∈ X + . (2.2)
One can easily see that L f is a bounded linear operator on C(X + ). From (2.2), by iteration, it follows that for any n 1,

L n f g(x) = y: T n y=x e -Snf (y) g(y), x ∈ X + .
Also, if h ∈ C(X + ), we have the conjugacy relation

L f +h•T -h g = e -h L f e h g , (2.3) 
which tells us that the spectral properties of the transfer operator L f only depend on the cohomology class of f . We say that a real valued and Hölder continuous function

ψ on X + is normalized if L ψ 1 = 1. By [22, Chapter 2, Theorem 2.2]
, there exist a real valued Hölder continuous function h and a real number λ such that L ψ e h = e λ+h . From the conjugacy relation (2.3), this tells us that the function ψ -h•T +h+λ is also normalized. Therefore, all over the paper, we will assume that ψ is normalized. In this case, it is well known (e.g. [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]) that the operator L ψ admits a unique invariant probability measure ν + . The measure ν + is called the Gibbs measure related to the potential ψ. Since ψ is normalized, the measure ν

+ is T -invariant, that is, for any f ∈ C(X + ), ν + (f • T ) = ν + (f ), (2.4) 
see [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Chapter 2]. Note that ν + is also T -ergodic, meaning that any T -invariant Borel subset B of X + has ν + measure 0 or 1:

T -1 B = B ⇒ ν + (B) ∈ {0, 1}.
Thanks to the following lemma, the measure ν + allows to define a Tinvariant measure on X. Lemma 2.1. Let ν + be a Borel probability measure on X + which is T -invariant. Then there exists a unique T -invariant Borel probability measure ν on X such that the image of ν under the natural projection map X → X + is equal to ν + . The proof of this lemma is just a consequence of Kolmogorov's extension theorem. We will actually give an explicit formula for the measure ν below.

Conditional measures on the past.

For any z ∈ X + , we shall construct a measure ν - z , which is the conditional measure of ν with respect to the map x ∈ X → x + ∈ X + . To this end, for any a ∈ A, let

X - a = y ∈ A -N * : M (y -1 , a) = 1, M (y -n-1 , y -n ) = 1, ∀n 1 
, where M is the transition matrix on the set A which was used to define the finite type subshift X ⊂ A Z . For any z ∈ X + , we set X - z = X - z 0 , where z 0 is the first coordinate of z ∈ X + . We have the decomposition

X = z∈X + X - z × {z}.
The point z may be thought of as the future of the trajectory whereas the elements of X - z describe the pasts which are compatible with this future. Let us introduce some notation related to this decomposition. For any z ∈ X + and y ∈ X - z , we denote y • z = (y, z) ∈ X. For z ∈ X + and k 1, we set

A k z = (y -k , . . . , y -1 ) ∈ A {-k,...,-1} : M (y -1 , z 0 ) = 1, M (y -n-1 , y -n ) = 1, ∀1 n k -1 .
For (y -k , . . . , y -1 ) ∈ A k z , we set y -k . . . y -1 • z to be the element w ∈ X + defined by

w n =    y n-k if 0 n k -1 z n-k if n k. For a ∈ A k z , let C a,z = {y ∈ X - z : y -k = a -k , . . . , y -1 = a -1 } (2.5)
be the associated cylinder of length k in X - z . Recall that the two-sided shift map T : X → X and its inverse T -1 are defined by (T x) n = x n+1 and (T -1 x) n = x n-1 for any x ∈ X and n ∈ Z. By abuse of notation, the one-sided forward shift map will be denoted by T : X + → X + and is defined by T (x) = (x 1 , x 2 , x 3 , . . .), for any x = (x 0 , x 1 , x 2 , . . .) ∈ X + . Let us define conditional measures on the past of trajectories. For k 0, define ν k z as a function on cylinders of length k in X - z by the formula

ν k z (C a,z ) = exp(-S k ψ(a • z)), (2.6) 
for a ∈ A k z . Since L ψ 1 = 1, we have that for any a

∈ A k z , ν k z (C a,z ) = b∈A M (b,a -k )=1 ν k+1 z (C b•a,z ).
(2.7) By Kolmogorov's extension theorem, from equation (2.7) it follows that there exists a unique Borel probability measure ν - z on X - z such that for any k 0, ν k z is the restriction of ν - z to cylinders of length k. We can now give an explicit formula for the measure ν in terms of the measures ν + and ν - z . Lemma 2.2. Let ϕ ∈ C(X). Then we have

ν(ϕ) = X + X - z ϕ(y • z)ν - z (dy)ν + (dz).
Proof. By Lemma 2.1, it suffices to prove that the measure ν on X defined by the above equation is T -invariant. This property is a direct consequence of the definition of the measures ν - z , z ∈ X + , and of the fact that ν + is L ψinvariant.

We shall use the fact that the measures ν - z and ν - z are equivalent.

Lemma 2.3.

There exists a real-valued continuous function θ on the set

X 3 := (y, z, z ) ∈ A -N * × X + × X + : z 0 = z 0 , y ∈ X - z = X - z
such that for any z, z ∈ X + and any continuous function ϕ on X - z , one has

X - z ϕ(y)ν - z (dy) = X - z ϕ(y)e θ(y,z,z ) ν - z (dy).
Besides, there exists a constant c > 0 such that for any (y, z, z

) ∈ X 3 , |θ(y, z, z )| cα ω(z,z ) .
Proof. Indeed, it suffices to set

θ(y, z, z ) = ∞ k=1 ψ(T -k (y • z)) -ψ(T -k (y • z )) .

General properties of exit times.

From the following lemma it follows that the function

x → τ f t (x) is finite ν-almost surely. Lemma 2.4. Let f ∈ B with ν(f ) = 0. Assume that f is not a coboundary. Then for ν-almost every x ∈ X, one has inf n 1 S n f (x) = -∞.

Proof. Consider the Borel set

A = x ∈ X : inf n 1 S n f (x) > -∞ . It is clear that the set A is T -invariant. Therefore ν(A) = 0 or ν(A) = 1.
Assume that ν(A) = 1, then let us show that f is a coboundary. Indeed, for any x ∈ A, we have that h(x) := lim inf n→∞ S n f (x) > -∞. Since ν(f ) = 0, it is well known that S n f (x) admits finite limit points for ν-almost every x ∈ X, so that h(x) < ∞. Now by definition, we have h(T x) = h(x) -f (x), hence f is a coboundary as a measurable function on X. Therefore, by [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Proposition 6.2], we get that f is a coboundary as a Hölder continuous function on X.

For notational reasons, it is more convenient to study objects defined by the reverse shift T -1 . Note that the two studies are equivalent.

Indeed, let us define the flip map ι : A Z → A Z by the following relation: for any x = (. . . , x -1 , x 0 , x 1 , . . .) ∈ A Z it holds ι(x) = (. . . , x 1 , x 0 , x -1 , . . .) ∈ A Z , that is (ιx) n = x -n for n ∈ Z. The following lemma is classical (see [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Chapter 2]).

Lemma 2.5. The set ιX is a subshift of finite type and the measure ι * ν is a Gibbs measure on ιX.

For f ∈ B, consider the reversed Birkhoff sum process ( Šn f ) n 1 which is defined as follows: for any x ∈ X,

Šn f (x) = f (T -1 x) + f (T -2 x) + . . . + f (T -n x) = S n f (T -n x), n 1.
In the same way, denote by τ f t (x) the first time when t + Šn f (x) becomes negative: for any x ∈ X,

τ f t (x) := inf k 1, t + Šk f (x) < 0 . (2.8)
Then the relation between the exit times τ f t and τ f •ι t is given by

τ f t (T x) = τ f •ι t (ιx), x ∈ X.
In the present paper we deal with the measure

ν x ∈ X : τ f t (x) > n (2.9)
which, by the discussion above, is equivalent to studying the measure

ν x ∈ X : τ f t (x) > n .
(2.10)

In turn, Lemma 2.2 shows that in order to study (2.10), it suffices to investigate

ν - z y ∈ X - z : τ f t (y • z) > n , (2.11) 
for z ∈ X + . We will do it by using tools from the theory of Markov chains [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]. In particular, we will make use of the martingale approximation for the process ( Šn f ) n 1 .

Martingale approximation.

Recall that B = ∪ 0<α<1 B α , where B α is the space of real-valued α-Hölder continuous functions on X endowed with the norm (2.1). In the same way, we denote by B + α the space of real-valued α-Hölder continuous functions on X + endowed with the norm y) .

f B + α := sup x∈X + |f (x)| + sup x,y∈X + :x =y |f (x) -f (y)| α ω(x,
Let B + = ∪ 0<α<1 B + α . Note that every Hölder continuous function f on X + can be extended to a Hölder continuous function on X defined by x = (. . . , x -1 , x 0 , x 1 , . . .) ∈ X → f (x 0 , x 1 , . . .), so we can identify B + with a subspace of B.

Let f ∈ B. Define the cohomology class of f as the following set of Hölder continuous functions:

C (f ) = {f 0 ∈ B | f 0 = f -h • T + h, h ∈ B}.
The following proposition tells us that there exists a natural choice in C (f ). Proposition 2.6. Let f ∈ B be such that ν(f ) = 0. Then there exists a unique function f 0 ∈ B + such that L ψ f 0 = 0 and its extension on X belongs to C (f ).

Proof. First we prove the existence of f 0 . By Proposition 1.2 in [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF], there exists a Hölder continuous function g on X + , whose extension to X is cohomologous to f . As ν(f ) = 0, we have ν + (g) = 0. Now we choose α ∈ (0, 1) close enough to 1 so that L ψ is bounded on B α and g ∈ B α . By the spectral gap property for the operator L ψ (see Theorem 2.2 of [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]), there exists a Hölder continuous function h ∈ B α such that

h -L ψ h = L ψ g.
(2.12)

Since h = hL ψ 1 = L ψ (h • T ), it follows that L ψ (g -h • T + h) = 0.
Hence there exists a function

f 0 := g -h • T + h ∈ C (f ) satisfying L ψ f 0 = 0.
Now we prove the uniqueness of f 0 . Suppose that there exist

f 0 , f 0 ∈ C (f ) such that L ψ f 0 = L ψ f 0 = 0. Then f 0 -f 0 is a coboundary, namely, there exists h 1 ∈ B such that f 0 -f 0 = h 1 • T -h 1 .
As f 0 and f 0 depend only on the future coordinates, it is well known that h 1 depends only on the future coordinates. It follows that L ψ (h 1 • T -h 1 ) = 0 and hence L ψ h 1 = h 1 . This implies that h 1 is a constant and therefore f 0 = f 0 .

For any z ∈ X + , we have defined a probability measure ν - z on the set X - z ⊂ A -N * of past sequences which are compatible with z. For n 1, we let F n denote the σ-algebra of subsets of A -N * generated by the coordinate maps y → (y -1 , . . . , y -n ). By convention, we also define F 0 as the trivial σ-algebra.

And we let F z n be the σ-algebra induced on X - z . The following proposition is a classical result from [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]: Proposition 2.7. Let f 0 ∈ C(X + ). Then L ψ f 0 = 0 if and only if for any z ∈ X + , the sequence of random variables

y ∈ X - z → Šn f 0 (y • z), n 0 is a martingale on X - z equipped with the probability measure ν - z w.r.t. the filtration (F z n ) n 0 . Proof. Denote by g z n : X - z → R the function y → Šn f 0 (y • z). Then for y ∈ X - z
and n 1, we have by the definition of the measure

ν - z , ν - z g z n F z n-1 (y) = g z n-1 (y) + L ψ f 0 (T -n (y • z)).
From this identity, the assertion follows.

The following result shows that the difference Šn f -Šn g is bounded, for f and g in the same cohomology class.

Lemma 2.8. Let f ∈ B and g ∈ C (f ). Let h ∈ B be such that f -g = h • T -h.
Then, for any x ∈ X and any n 1 we have

Šn f (x) -Šn g(x) c = 2 h ∞ .
Proof. Indeed, we have

S n f -S n g = h • T n -h. Since Šn f = (S n f ) • T -n , we get Šn f -Šn g = h -h • T -n
, which proves the assertion.

2.5. The Hölder continuity and approximation. We establish several technical results which will be used in the proofs of the main results of the paper. In particular, they will allow us to prove that several convergences hold uniformly in z ∈ X + .

Lemma 2.9. For any g ∈ B, there exists a constant c 0 > 0 such that for any

n 1, z, z ∈ X + with z 0 = z 0 and y ∈ X - z (= X - z ), one has Šn g(y • z) -Šn g(y • z ) c 0 α ω(z,z ) . (2.13)
In particular, for any g ∈ B, there exists a constant c 0 > 0 such that for any

n 1, z, z ∈ X + with z 0 = z 0 and y ∈ X - z (= X - z ), it holds Šn g(y • z) Šn g(y • z ) + c 0 .
Proof. Since g ∈ B, there exists a constant L g such that for any x, x ∈ X,

|g(x) -g(x )| L g α ω(x,x ) ,
where 0 < α < 1. Hence for any z, z ∈ X + with z 0 = z 0 and y ∈ X - z , and n 1, one has

Šn g(y • z) -Šn g(y • z ) n-1 k=0 L g α n-k+ω(z,z ) L g α 1+ω(z,z ) 1 -α =: c 0 α w(z,z ) .
The desired result follows.

Corollary 2.10. For any g ∈ B, there exist constants c 0 > 0 and α ∈ (0, 1) such that for any n 1, z, z ∈ X + with z 0 = z 0 and y ∈ X - z (= X - z ), we have

min 1 j n Šj g(y • z) -min 1 j n Šj g(y • z ) c 0 α w(z,z ) . (2.14)
Proof. By Lemma 2.9, there exist constants c 0 > 0 and α ∈ (0, 1) such that for any n j 1,

min 1 j n Šj g(y • z) Šj g(y • z) Šj g(y • z ) + c 0 α w(z,z ) .
Taking the minimum over 1 j n on the right hand side, we get

min 1 j n Šj g(y • z) min 1 j n Šj g(y • z ) + c 0 α w(z,z ) . (2.15)
In the same way, again by Lemma 2.9, there exist constants c 0 > 0 and α ∈ (0, 1) such that for any n j 1, Šj g(y

• z) Šj g(y • z ) -c 0 α w(z,z ) min 1 j n Šj g(y • z ) -c 0 α w(z,z ) .
Taking the minimum over 1 j n on the left hand side, we get

min 1 j n Šj g(y • z) min 1 j n Šj g(y • z ) -c 0 α w(z,z ) . (2.16)
Combining (2.15) and (2.16), we conclude the proof of (2.14).

We will also need the following technical lemma that allows us to approximate the function g ∈ B by a function x → g m (x) on X which only depends on the coordinates

{x k } k -m . Lemma 2.11. Let g ∈ B.
Then there exist constants α ∈ (0, 1), c 1 > 0 and a sequence of Hölder continuous functions (g m ) m 0 on X which only depend on the coordinates {x k } k -m such that L ψ g 0 = 0 and for any m 0,

sup n 1 Šn g m -Šn g ∞ c 1 α m .
(2.17)

Proof. By Proposition 2.6, there exist g 0 ∈ B + and h ∈ B with L ψ g 0 = 0 and

g 0 = g -h • T + h. (2.18) Since h ∈ B, there is α ∈ (0, 1) such that h ∈ B α .
Then, for any m 0, there exists a Hölder continuous function h m on X which only depends on the coordinates

{x k } k -m such that h -h m ∞ c 1 α m , ( 2.19) 
where c 1 > 0 is a fixed constant not depending on p, and by convention h 0 = 0. We define for any m 0,

g m = g 0 + h m • T -h m . (2.20)
From (2.18), (2. [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]) and (2.20), we get (2.17).

2.6. Duality. The next duality property will be crucial in the proof of the main results.

Lemma 2.12. Let g ∈ B. For any n 1 and any non-negative measurable function

F : X × R × X × R → R, we have R X F x, t, T -n x, t + Šn g(x) 1 {τ g t (x)>n-1} ν(dx)dt = R X F T n x, u -S n g(x), x, u 1 {τ -g u (x)>n-1} ν(dx)du.
Proof. By a change of variable t = u -Šn g(x), it follows that

I : = R X F x, t, T -n x, t + Šn g(x) 1 {t+ Šn-1 g(x) 0,...,t+ Š1 g(x) 0} ν(dx)dt = R X F x, u -Šn g(x), T -n x, u × 1 {u-g(T -n x) 0,...,u-g(T -n x)-...-g(T -2 x) 0} ν(dx)du.
Since the measure ν is T -1 -invariant, we obtain

I = R X F T n x, u -S n g(x), x, u 1 {u-S 1 g(x) 0,...,u-S n-1 g(x) 0} ν(dx)du,
which ends the proof of the lemma.

3. Harmonicity for dynamical system 3.1. Existence of the harmonic function. The aim of this section is to prove the existence of a function V f on the state space R which we call the harmonic function of f by analogy with the theory developed for Markov chains in [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]. Our main result is the following theorem:

Theorem 3.1. Let f be a Hölder continuous function on X such that f is not a coboundary and ν(f ) = 0. Then there exists a unique non decreasing and right continuous function V f : R → R + such that for any continuous compactly supported function ϕ on R,

lim n→∞ R ϕ(t) X S n f (x)1 {τ f t (x)>n} ν(dx)dt = R ϕ(t)V f (t)dt. (3.1)
Besides, there exists a constant c > 0 such that for any t ∈ R,

max{t -c, 0} V f (t) max{t, 0} + c. (3.2) Note that, the bound (3.2) implies that V f (t)/t → 1 as t → ∞.
The proof of Theorem 3.1 will be given at the end of this section. At this point we start by giving an explicit formula for the harmonic function in the case where the observable only depends on future coordinates. Let g ∈ B + with ν(g) = 0 and assume that g is not a coboundary. Let g 0 be the unique element of B + such that L ψ g 0 = 0 and g 0 is cohomologous to g, as in Proposition 2.6. For z ∈ X + and t ∈ R, we set

V g (z, t) = - X - z Šτ g t (y•z) g 0 (y • z)ν - z (dy). (3.3) 
This integral makes sense. Indeed, first, by Lemma 3.3, the stopping time

y → τ g t (y • z) is finite ν - z -almost everywhere. Second, the Birkhoff sum t + Šτ g t (y•z) g(y • z) takes values in the interval [-g ∞ , 0
] when t is non-negative, and in the interval [t -g ∞ , 0] when t is negative. Third, by Lemma 2.8, the difference of the Birkhoff sums for g and g 0 is uniformly bounded.

The function V g (z, •) plays a crucial role in proving conditioned limit theorems for products of random matrices and more generally for Markov chains, see [START_REF] Grama | Conditioned limit theorems for products of random matrices[END_REF] and [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]. From the results of [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] it follows that V g (z, •) has the following harmonicity property. Lemma 3.2. Let g be in B + such that ν + (g) = 0 and g is not a coboundary. Then for any (z, t) ∈ X + × R, we have

V g (z, t) = z ∈X + :T (z )=z e -ψ(z ) 1 {t+g(z ) 0} V g (z , t + g(z )). (3.4)
The proof of the existence of the harmonic function V g given in [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] is rather difficult. In the case of the subshift of finite type (since the jumps are bounded) it is possible to give a much shorter direct proof, which is not included because of the space limitations.

We shall extend the definition of V g (z, •) to the case of any function g ∈ B, that is, the case of a function g that depends on both the past and the future coordinates. We will use the following technical assertion:

Lemma 3.3. Let g ∈ B such that ν(g) = 0 and g is not a coboundary with respect to T. Then, for any t ∈ R, it holds uniformly in z ∈ X + that lim n→∞ ν - z y ∈ X - z : τ g t (y • z) > n = 0.
Proof. Let c 0 > 0 be as in Lemma 2.9. By Lemma 2.4 and Fubini's theorem, for any a ∈ A, there exists z ∈ X + such that z 0 = a and the function

y → τ g t+c 0 (y • z ) on X - z is finite ν - z -almost everywhere. Then for any z ∈ X + with z 0 = a, we have y ∈ X - z : τ g t (y • z) > n ⊆ y ∈ X - z : τ g t+c 0 (y • z ) > n . From Lemma 2.3, we get that for some constant c > 0, ν - z y ∈ X - z : τ g t (y • z) > n cν - z y ∈ X - z : τ g t+c 0 (y • z ) .
Thus, the lemma follows from the fact that ν -

z y ∈ X - z : τ g t+c 0 (y • z ) > n con- verges to 0 as n → ∞.
Now we give an alternative definition of the function V g (z, •) for g ∈ B + , where the key point is that in this case, the function y → τ g t (y • z) is a stopping time with respect to the filtration {F z k } k 0 . Lemma 3.4. Let g ∈ B + with ν(g) = 0 and assume that g is not a coboundary. Let g 0 be the unique element of B + such that L ψ (g 0 ) = 0 and g 0 is cohomologous to g. Then, for any z ∈ X + and t ∈ R, we have

V g (z, t) = lim n→∞ X - z t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy) = lim n→∞ X - z Šn g 0 (y • z)1 {τ g t (y•z)>n} ν - z (dy). (3.5)
In addition, there is a constant c > 0 such that, for any z ∈ X + and t ∈ R,

X - z Šn g(y • z)1 {τ g t (y•z)>n} ν - z (dy) max{t, 0} + c, (3.6) for any z ∈ X + and t ∈ R + , t -c V g (z, t) t + c, (3.7)
and for any z ∈ X + and t < -c, it holds that V g 0 (z, t) = 0. Moreover, for any z ∈ X + , the function V g (z, •) is non decreasing on R.

Proof. By Lemmas 2.8 and 3.3, the limits in (3.5) coincide since the difference of the Birkhoff sums for g and g 0 is uniformly bounded and ν

- z (y ∈ X - z : τ g t (y • z) > n) → 0 as n → ∞.
By the optional stopping theorem,

X - z Šn g 0 (y • z)1 {τ g t (y•z)>n} ν - z (dy) = X - z Šn g 0 (y • z)ν - z (dy) - X - z Šn g 0 (y • z)1 {τ g t (y•z) n} ν - z (dy) = - X - z Šτ g t (y•z) g 0 (y • z)1 {τ g t (y•z) n} ν - z (dy). By Lemma 3.3, we have τ g t (y • z) < +∞ for ν - z -almost every y ∈ X - z .
Using the Lebesgue convergence theorem, we obtain (3.5) as well as (3.6).

Since for any z ∈ X + and t ∈ R + , the function

y → t + Šτ g t (y•z) g 0 (y • z) takes values in [-g ∞ -c, c], where c > 0 is from Lemma 2.8, we get V g (z, t) ∈ [t -c, t + g ∞ + c]. Besides, if t < -g ∞ , we get τ g t (y • z) = 1
everywhere, for all z ∈ X + , thus by (2.6) and (2.2) we have

V g (z, t) = A 1 z (g 0 (y -1 • z)) ν 1 z (dy -1 ) = L ψ (g 0 )(z) = 0.
As τ g t 1 τ g t 2 for any t 1 t 2 , and t 2 + Šn g 0 on the set {τ g t 2 > n}, it follows that

X - z t 1 + Šn g(y • z) 1 {τ g t 1 (y•z)>n} ν - z (dy) X - z t 2 + Šn g(y • z) 1 {τ g t 2 (y•z)>n} ν - z (dy).
Letting n → ∞ yields that the function V g (z, •) is non decreasing on R.

By using Lemma 3.4, we can now give a definition of V g for a function g only depending on finitely many negative coordinates. Lemma 3.5. Let g ∈ B such that ν(g) = 0 and g is not a coboundary. Assume that g only depends on m negative coordinates for some m 0. In other words, the function

h = g • T m ∈ B + . Then, for any t ∈ R, we have uniformly in z ∈ X + , lim n→∞ X - z Šn g(y • z)1 {τ g t (y•z)>n} ν - z (dy) = L m ψ V h (•, t) (z).
Let g and h be as in Lemma 3.5. We set for z ∈ X + and t ∈ R,

V g (z, t) = L m ψ V h (•, t) (z).
Lemma 3.5 implies that this notation is coherent with that introduced in (3.3).

Proof of Lemma 3.5. By conditioning over the m first coordinates of y, we get for n 0,

X - z Šn g(y • z)1 {τ g t (y•z)>n} ν - z (dy) = a∈A m z exp(-S m ψ(a • z)) X - a•z Šn g((y • a) • z)1 {τ g t ((y•a)•z)>n} ν - a•z (dy) = a∈A m z exp(-S m ψ(a • z)) X - a•z Šn h(T -m (y • a) • z)1 {τ h•T -m t ((y•a)•z)>n} ν - a•z (dy) = a∈A m z exp(-S m ψ(a • z)) X - a•z Šn h(y • (a • z))1 {τ h t (y•(a•z))>n} ν - a•z (dy),
where we have used the relations (y

•a)•z = T m (y•(a•z)) and τ h•T -m t = τ h t •T -m .
The conclusion now follows from Lemma 3.4 and the definition of the transfer operator L m ψ . We will prove that the convergence in Lemma 3.5 holds in a weak sense for every function g ∈ B. The key step to prove Theorem 3.1 is the following technical lemma which shows that the convergence of Lemma 3.5 holds for all functions g ∈ B in a weak sense. Lemma 3.6. Assume that g ∈ B is not a coboundary w.r.t. to T and ν(g) = 0. Then, for any continuous compactly supported function ϕ on R, uniformly in z ∈ X + , the following limit exists and is finite:

lim n→∞ R ϕ(t) X - z Šn g(y • z)1 {τ g t (y•z)>n} ν - z (dy)dt.
Proof. Assume that g ∈ B. Let (g m ) m 0 , c 1 > 0 and α ∈ (0, 1) be as in Lemma 2.11. Set

W n (z, t) = X - z t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy)
and

W n,m (z, t) = X - z t + Šn g m (y • z) 1 {τ gm t (y•z)>n} ν - z (dy).
By (2.17), we have the inclusions

τ gm t-2c 1 α m > n ⊆ {τ g t > n} ⊆ τ gm t+2c 1 α m > n , which imply that W n,m (z, t -2c 1 α m ) W n (z, t) W n,m (z, t + 2c 1 α m ).
(3.8)

In the same way, we have

W n,m (z, t) W n,0 (z, t + 2c 1 ) c 2 + 2 max{t, 0}, (3.9) 
where the last bound follows from (3.6).

By lemma 3.5, for fixed m 0, as n → ∞, the function W n,m (z, t) converges to V gm (z, t), uniformly in z ∈ X + . From (3.8) we get

V gm (z, t -2c 1 α m ) lim inf n→∞ W n (z, t) lim sup n→∞ W n (z, t) V gm (z, t + 2c 1 α m ). Now we have R ϕ(t) V gm (z, t + 2c 1 α m ) -V gm (z, t -2c 1 α m ) dt = R [ϕ(t -2c 1 α m ) -ϕ(t + 2c 1 α m )] V gm (z, t)dt.
Using (3.9) and Lemma 3.5, we have that V gm (z, t) c 2 + max{t, 0}. As ϕ is continuous on R with compact support, by the Lebesgue dominated convergence theorem, we get that uniformly in z ∈ X + ,

lim m→∞ R ϕ(t) V gm (z, t + 2c 1 α m ) -V gm (z, t -2c 1 α m ) dt = 0.
This tells us that R ϕ(t)W n (z, t)dt has a uniform limit as n → ∞.

We will use the previous lemma to build a function V g (z, t). The existence of this function will be deduced from the following elementary fact from the theory of distributions. Lemma 3.7. Let (V n ) n 1 be a sequence of non decreasing functions on R. Assume that for every continuous compactly supported function ϕ on R, the sequence R V n (t)ϕ(t)dt admits a finite limit. Then there exists a unique right continuous and non decreasing function V on R such that for any continuous compactly supported function ϕ, we have

lim n→∞ R V n (t)ϕ(t)dt = R V (t)ϕ(t)dt.
Now we construct the function V g (z, t) for any g ∈ B.

Lemma 3.8. Assume that g ∈ B is not a coboundary w.r.t. to T and ν(g) = 0. Then, for any z ∈ X + , there exists a unique non decreasing and right continuous function

V g (z, •) on R such that 1. For any continuous compactly supported function ϕ on R, uniformly in z ∈ X + , lim n→∞ R ϕ(t) X - z Šn g(y • z)1 {τ g t (y•z)>n} ν - z (dy)dt = R ϕ(t) V g (z, t)dt. (3.10)

For any continuous compactly supported function

ϕ on R, the mapping z → R ϕ(t) V g (z, t)dt is continuous on X + .
3. There exists a constant c > 0 such that for any z ∈ X + and t ∈ R + ,

t -c V g (z, •) t + c. (3.11)
In addition, for any z ∈ X + and t -c, we have V g (z, t) = 0.

By Lemma 3.4, in the case g ∈ B + , the notation V g (z, •) is coherent with the one in (3.3).

Proof of Lemma 3.8. Fix z ∈ X + . By Lemmas 3.3 and 3.6, the following limit exists: for any continuous compactly supported function ϕ on R,

lim n→∞ R ϕ(t) X - z t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy)dt. (3.12) For t ∈ R, set V g n (z, t) = X - z t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy). (3.13)
Then the function V g n (z, •) is non decreasing on R. By Lemma 3.7, there exists a unique non decreasing and right continuous function V g (z, •) on R such that for any continuous function ϕ on R with compact support,

lim n→∞ R V g n (z, t)ϕ(t)dt = R V g (z, t)ϕ(t)dt.
Note that for t < -g ∞ , we have τ g t = 1 everywhere. Hence V g (z, t) = 0 for t -c.

We now prove (3.11). By Proposition 2.6, there exists g 0 ∈ B + such that L ψ (g 0 ) = 0 and g is cohomologous to g 0 . By Lemma 2.11, we can choose a constant c > 0 large enough such that for any n 1, it holds that Šn g -Šn g 0 ∞ c. By Lemmas 3.3 and 3.6, we have, for any continuous non negative function ϕ on R with compact support,

lim n→∞ R ϕ(t) X - z t + c + Šn g 0 (y • z) 1 {τ g t (y•z)>n} ν - z (dy)dt = R V g (z, t)ϕ(t)dt.
Note that from Lemma 3.3, we have

ν - z (y ∈ X - z : τ g t (y •z) > n) → 0 as n → ∞.
As we have the following inclusion: for any t ∈ R,

{τ g 0 t-c > n} ⊂ {τ g t > n} ⊂ {τ g 0 t+c > n} ,
and as t + c + Šn g 0 0 on the set {τ g 0 t+c > n}, we get

R V g 0 (z, t -c)ϕ(t)dt R V g (z, t)ϕ(t)dt R V g 0 (z, t + c)ϕ(t)dt.
Since this holds for any continuous non-negative test function ϕ on R, we obtain

V g 0 (z, t -c) V g (z, t) V g 0 (z, t + c). (3.14)
This, together with Lemma 3.7, concludes the proof of (3.11).

We now want to prove the continuity in z ∈ X + of the function z → V g n (z, t) defined in (3.13). Indeed, as usual, we have V g n (z, t)

V g 0 n (z, t + c). Now the optional stopping theorem gives V g 0 n (z, t) = tν - z y ∈ X - z : τ g 0 t (y • z) > n - X - z Šτ g 0 t (y•z) g 0 (y • z)1 {τ g 0 t (y•z) n} ν - z (dy) |t| + |t| + g 0 ∞ = 2|t| + g 0 ∞ . From (3.14) we get V g n (z, t) 2|t| + 2c + g 0 ∞ . (3.15)
It remains to prove that for any continuous compactly supported function ϕ on R, the mapping z → R ϕ(t) V g (z, t)dt is continuous on X + . It suffices to prove that for any n 1, the mapping

z → R ϕ(t) V g n (z, t)dt is continuous on X + .
A priori, for fixed t ∈ R, the function z → V g n (z, t) is not continuous. Nevertheless, we claim that it satisfies the following weak continuity property: for ε > 0, there exists k ∈ N such that for any z, z ∈ X + with w(z, z

) k we have V g n (z, t -ε) V g n (z , t) V g n (z, t + ε).
Indeed, this follows from the inequality (2.13) in Lemma 2.9. This, together with the bound (3.15) and the uniform continuity of the function ϕ, implies that the mapping z → R ϕ(t) V g n (z, t)dt is continuous on X + . The previous statements can be summarized as follows: Theorem 3.9. Let g be a Hölder continuous function on X such that ν(g) = 0 and g is not a coboundary. Then there exists a unique non decreasing and right continuous function V g : R → R + with the following properties: 1. For any continuous compactly supported function ϕ on R,

lim n→∞ R ϕ(t) X Šn g(x)1 {τ g t (x)>n} ν(dx)dt = R ϕ(t) V g (t)dt. (3.

16)

2. There exists a constant c > 0 such that for any t ∈ R it holds

max{t -c, 0} V g (t) max{t, 0} + c. (3.17) Proof. Let g ∈ B. For t ∈ R, we set V g (t) = X + V g (z, t)ν + (dz).
Then the points 1 and 2 of Theorem 3.9 follow from (3.10) and (3.11) in Lemma 3.8, respectively.

Proof of Theorem 3.1. It is easy to see that Theorem 3.1 is equivalent to Theorem 3.9 for the reversed dynamics, i.e. by replacing

f with g = f • T -1 • ι = f • ι • T ,
and ν with ι * ν.

Properties of the harmonic function.

The goal of this section is to give some additional properties of the harmonic function V g which will be necessary for the proof of Theorem 1.3. We start with a continuity result on the cohomology class of the function g.

Lemma 3.10. Let g ∈ B with ν(g) = 0. Assume that g is not a coboundary. Let α ∈ (0, 1) and (h n ) n 0 be a sequence of element of B α that converges to 0 with respect to the Hölder norm • α . For n 0, set

g n = g + h n • T -h n .
Then, there exists a constant c > 0 such that for any n 0, z ∈ X + and t ∈ R, one has

V gn (z, t) max{t, 0} + c. (3.18)
Moreover, for any continuous compactly supported function ϕ on R, we have,

uniformly in z ∈ X + , lim n→∞ R ϕ(t) V gn (z, t)dt = R ϕ(t) V g (z, t)dt. (3.19)
Proof. The bound (3.18) follows from (3.11) and the relation

g n = g + h n • T -h n .
The construction of the function V g in (3. [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]) can be performed in the same way as in Lemmata 3.6 and 3.8.

We can also describe how the function V g behaves when the function g is shifted by the dynamics. Lemma 3.11. Let g ∈ B with ν(g) = 0. Assume that g is not a coboundary. Then, for any z ∈ X + and t ∈ R, we have

V g•T -1 (z, t) = L ψ (V g (•, t)) (z).
Proof. By Lemma 3.8, for any continuous compactly supported function ϕ on R, we have

R ϕ(t) V g•T -1 (z, t)dt = lim n→∞ R ϕ(t) X - z Šn g(T -1 (y • z))1 {τ g•T -1 t (y•z)>n} ν - z (dy)dt.
By conditioning on the coordinate y -1 , we get

X - z Šn g(T -1 (y • z))1 τ g•T -1 t (y•z)>n ν - z (dy) = A 1 z X - z Šn g(w • (y -1 • z))1 {τ g t (w•(y -1 •z))>n} ν - z (dy)ν 1 z (dy -1 ).
Again by Lemma 3.8, we obtain

V g•T -1 (z, t) = A 1 z V g (y -1 • z, t)ν 1 z (dy -1 ) = L ψ (V g (•, t)) (z),
as desired.

3.3. The harmonic measure and the proof of Theorem 1.1. In the case when g depends only on the future (g ∈ B + ), the function V g satisfies the harmonicity equation (3.4). In general when g depends also on the past, this property may not hold. It turns out that equation (3.4) can be reinterpreted as a kind of invariance property of a certain Radon measure, which we will introduce at the end of this section. Indeed, we have: Lemma 3.12. Let g be in B + and let V be a locally integrable non-negative function on X + × R. Then the following are equivalent:

(1) For ν + ⊗ dt almost every (z, t) in X + × R, we have

V (z, t) = z ∈X + :T (z )=z e -ψ(z ) 1 {t+g(z ) 0} V (z , t + g(z )).
(2) For any continuous compactly supported function ϕ on X + ×R, we have

X + ×R ϕ(z, t)V (z, t)ν + (dz)dt = X + ∞ 0 ϕ(T z, t -g(z))V (z, t)ν + (dz)dt. (3.20)
Proof. The proof is a direct computation. Indeed, for any continuous compactly supported function ϕ on X + × R, by a change of variable, the right hand side of (3.20) can be written as

R X + ϕ(T z, t)1 {t+g(z) 0} V (z, t + g(z))ν + (dz)dt.
As ν + is L ψ invariant, by using (2.4), we get for t ∈ R,

X + ϕ(T z, t)1 {t+g(z) 0} V (z, t + g(z))ν + (dz) = X + ϕ(z, t) T z =z e -ψ(z ) 1 {t+g(z ) 0} V (z , t + g(z )) ν + (dz).
This proves the lemma.

We will now show that the functions V g and V g can be seen as the densities with respect to the Lebesgue measure on R of the projections on R of certain natural Radon measures μg and µ g on X × R, which satisfy an invariance property similar to (3.20). Those measures will play a key role in the statement of the conditioned local limit theorem. The purpose of this subsection is to build them. This construction will follow the same lines as the one of the harmonic functions. We will first use Markov chain arguments to define these objects when g ∈ B + and then use approximation arguments to extend the definition to the general case.

We first assume that g is in B + . In that case, for (z, t) ∈ X + × R with V g (z, t) > 0, let us introduce a Borel probability measure μg,z,t on X - z . To do this, for n 1, let A n z be as in the definition (2.6). For a ∈ A n z , let us write a • z for the element X + whose n first coordinates are a -n , . . . , a -1 and whose k-th coordinate is z k-n for k n. Lemma 3.13. Let g be in B + such that ν + (g) = 0 and g is not cohomologous to 0. Let (z, t) be in X + × R with V g (z, t) > 0. Then, there exists a unique Borel probability measure μg,z,t on X - z such that for any n 0 and any a ∈ A n z we have

μg,- z,t ({y ∈ X - z : y -n = a -n , . . . , y -1 = a -1 }) = 1 V g (z, t) exp(-S n ψ(a • z)) V g (a • z, t + S n g(a • z)), (3.21 
)

as soon as t + S k g(T k (a • z)) 0 for all 1 k n.
Proof. The proof is a translation of the general construction of the Markov measures on the set of trajectories of a Markov chain.

Recall that, for a ∈ A n z , we denoted by C a,z (see (2.5)) the associated cylinder of length n in X - z . For n 0, define μg,n z,t as a function on cylinders of length n in X - z by the formula

μg,n z,t (C a,z ) = 1 V g (z, t) exp(-S n ψ(a • z)) V g (a • z, t + S n g(a • z)), if t + S k g(T k (a • z)) 0 for all 1 k n; if not, we set μg,n z,t (C a,z ) = 0, (compare with (2.6)). We claim that for any a ∈ A n z , we have μg,n z,t (C a,z ) = b∈A M (b,a -n )=1 μg,n+1 z,t (C b•a,z ), (3.22) 
(compare with (2.7)). Indeed, this follows from the harmonicity property of the function V g established in Lemma 3.2. By Kolmogorov's extension theorem, equation (3.22) implies that there exists a unique Borel probability measure μg,z,t on X - z such that for any n 0, μg,n z,t is the restriction of μg,z,t to cylinders of length n. The lemma follows.

In the same way as for the function V g , we can give an alternative definition of the measures μg,z,t , which relies on a convergence property. Lemma 3.14. Let g ∈ B + with ν(g) = 0 and assume that g is not a coboundary. Let (z, t) be in X + × R and ϕ be a continuous function on X - z . Then, we have

μg,- z,t (ϕ) V g (z, t) = lim n→∞ X - z Šn g(y • z)ϕ(y)1 {τ g t (y•z)>n} ν - z (dy). (3.23)
Proof. By Lemma 3.3, the limit in equation (3.23) is the same as the limit of

X - z t + Šn g(y • z) ϕ(y)1 {τ g t (y•z)>n} ν - z (dy).
The latter quantity is non-negative whenever ϕ is non-negative. Besides, if ϕ = 1, the convergence follows from Lemma 3.4. Therefore, it suffices to check the convergence when ϕ is the indicator function of a cylinder set. Thus, let m 0 be an integer. Pick a ∈ A m z and let C a,z be the associated cylinder in X - z . If S k g(T k (a • z)) < 0 for some 1 k m, we have for n m,

X - z t + Šn g(y • z) 1 Ca,z (y)1 {τ g t (y•z)>n} ν - z (dy) = 0.
If not, we have for n m,

X - z t + Šn g(y • z) 1 Ca,z (y)1 {τ g t (y•z)>n} ν - z (dy) = exp(-S m ψ(a • z)) × X - a•z t + Šn-m g(y • a • z) + S m g(a • z) 1 τ g t+Smg(a•z) (y•a•z)>n-m ν - a•z (dy). By Lemma 3.4, as n → ∞, this converges to exp(-S m ψ(a • z)) V g (a • z, t + S m g(a • z)),
which, by the definition of μg,z,t in Lemma 3.13, is equal to μg,z,t (C a,z ) V g (z, t).

Using Lemma 3.14, we can now give a definition of μg,z,t for a function g only depending on finitely many negative coordinates. Lemma 3.15. Let g ∈ B such that ν(g) = 0 and g is not a coboundary. Assume that g only depends on m negative coordinates for some m 0. In other words, the function h = g • T m ∈ B + . Let (z, t) be in X + × R and ϕ be a continuous function on X - z . For a ∈ A m z , set ϕ a to be the function y → ϕ(y • a) on X - a•z . Then, we have

lim n→∞ X - z Šn g(y • z)ϕ(y)1 {τ g t (y•z)>n} ν - z (dy) = a∈A m z exp(-S m ψ(a • z)) V h (a • z, t)μ h,- a•z,t (ϕ a ).
Before proving this lemma, we recall some useful facts. Let g and h be as in Lemma 3.15. For z ∈ X + and t ∈ R,

V g (z, t) = L m ψ V h (•, t) (z) = a∈A m z exp(-S m ψ(a • z)) V h (a • z, t). If V g (z, t) > 0 and ϕ is a continuous function on X - z , we set μg,- z,t (ϕ) = 1 V g (z, t) a∈A m z exp(-S m ψ(a • z)) V h (a • z, t)μ h,- a•z,t (ϕ a ). (3.24) 
Lemma 3.15 implies that the notation (3.24) is coherent with that introduced in Lemma 3.13.

Proof of Lemma 3.15. As in the proof of Lemma 3.5, by conditioning over the m first coordinates of y, we get for n 0,

X - z Šn g(y • z)ϕ(y)1 {τ g t (y•z)>n} ν - z (dy) = a∈A m z exp(-S m ψ(a • z)) X - a•z Šn g((y • a) • z)ϕ(y • a)1 {τ g t ((y•a)•z)>n} ν - a•z (dy) = a∈A m z exp(-S m ψ(a • z)) X - a•z Šn h(T -m (y • a) • z)ϕ a (y)1 {τ h•T -m t ((y•a)•z)>n} ν - a•z (dy) = a∈A m z exp(-S m ψ(a • z)) X - a•z Šn h(y • (a • z))ϕ a (y)1 {τ h t (y•(a•z))>n} ν - a•z (dy),
where we have used the relations (y•a)

•z = T m (y•(a•z)) and τ h•T -m t = τ h t •T -m .
The conclusion now follows from Lemma 3.14. Now we prove that the convergence in Lemma 3.15 holds in a weak sense for every function g ∈ B.

Lemma 3.16. Assume that g ∈ B is not a coboundary w.r.t. to T and ν(g) = 0. Then, for any z ∈ X + , for any continuous compactly supported function ϕ on X - z × R, the following limit exists and is finite:

lim n→∞ R X - z Šn g(y • z)ϕ(y, t)1 {τ g t (y•z)>n} ν - z (dy)dt.
Proof. First let us assume that ϕ is of the form (y, t) → ϕ 1 (y)ϕ 2 (t), where ϕ 1 and ϕ 2 are non-negative continuous functions on X - z and R, and ϕ 2 is compactly supported. In that case, let (g m ) m 0 , c 1 > 0 and α ∈ (0, 1) be as in Lemma 2.11. Set

W n (z, t) = X - z t + Šn g(y • z) ϕ 1 (y)1 {τ g t (y•z)>n} ν - z (dy)
and

W n,m (z, t) = X - z t + Šn g m (y • z) ϕ 1 (y)1 {τ gm t (y•z)>n} ν - z (dy).
By (2.17), we have the inclusions

τ gm t-2c 1 α m > n ⊆ {τ g t > n} ⊆ τ gm t+2c 1 α m > n , which imply that W n,m (z, t -2c 1 α m ) W n (z, t) W n,m (z, t + 2c 1 α m ).
(3.25)

By lemma 3.15, for fixed m 0, as n → ∞, the function W n,m (z, t) converges to μgm,z,t (ϕ 1 ) V gm (z, t). From (3.25) we get μgm,-

z,t-2c 1 α m (ϕ 1 ) V gm (z, t -2c 1 α m ) lim inf n→∞ W n (z, t) lim sup n→∞ W n (z, t) μgm,- z,t+2c 1 α m (ϕ 1 ) V gm (z, t + 2c 1 α m ). Now we have R ϕ 2 (t) μgm,- z,t+2c 1 α m (ϕ 1 ) V gm (z, t + 2c 1 α m ) -μgm,- z,t-2c 1 α m (ϕ 1 ) V gm (z, t -2c 1 α m ) dt = R [ϕ 2 (t -2c 1 α m ) -ϕ 2 (t + 2c 1 α m )] μgm,- z,tα m (ϕ 1 ) V gm (z, t)dt. (3.26)
Using (3.9) and Lemma 3.5, we have that V gm (z, t) c 2 + max{t, 0}. As ϕ 2 is continuous on R with compact support, by the Lebesgue dominated convergence theorem, we get that the left hand side of (3.26) converges to 0 as m → ∞. This tells us that R ϕ 2 (t)W n (z, t)dt has a limit as n → ∞. In other words, the lemma holds for the function ϕ(y, t) = ϕ 1 (y)ϕ 2 (t). This is also true when ϕ 1 and ϕ 2 are not necessarily non-negative.

The general case follows from a standard but tedious approximation argument. Indeed, we can find a continuous compactly supported function θ on R with support K such that for any ε > 0, there exist an integer p 0 and continuous functions ϕ i,1 on X - z and continuous compactly supported functions ϕ i,2 on R with support included in K,

1 i p, with sup y∈X - z |ϕ(y, t) -ϕ ε (y, t)| εθ(t), t ∈ R, (3.27) 
where ϕ ε (y, t) = p i=1 ϕ i,1 (y)ϕ i,2 (t). We set t 0 = sup t∈K |t|. By Lemma 3.3, we need to show that

U n = R X - z t 0 + Šn g(y • z) ϕ(y, t)1 {τ g t (y•z)>n} ν - z (dy)dt
has a limit as n → ∞. By the first case, we know that

U n,ε = R X - z t 0 + Šn g(y • z) ϕ ε (y, t)1 {τ g t (y•z)>n} ν - z (dy)dt
has a limit U ε as n → ∞. Besides, by Lemma 3.6, we get that

R X - z t 0 + Šn g(y • z) θ(t)1 {τ g t (y•z)>n} ν - z (dy)dt converges to R V g (z, t)θ(t)dt. By (3.27), we have U ε -ε R V g (z, t)θ(t)dt lim inf n→∞ U n lim sup n→∞ U n U ε + ε R V g (z, t)θ(t)dt, which gives lim sup n→∞ U n -lim inf n→∞ U n 2ε R V g (z, t)θ(t)dt.
Hence the proof of Lemma 3.16 is complete. Now we use the previous lemma to build a Radon measure μg,-

z on X - z × R for any g ∈ B.
Lemma 3.17. Assume that g ∈ B is not a coboundary w.r.t. to T and ν(g) = 0. Then, for any z ∈ X + , there exists a unique Radon measure μg,z on X - z × R such that for any continuous compactly supported function ϕ on X - z × R,

lim n→∞ R X - z ϕ(y, t) Šn g(y • z)1 {τ g t (y•z)>n} ν - z (dy)dt = R X - z ϕ(y, t)μ g,- z (dy, dt). (3.28)
Besides, the marginal measure of μg,z on R under the natural projection map is the absolutely continuous measure V g (z, t)dt.

Proof. By Lemma 3.16, the limit on the left hand side of (3.28) exists. By Lemma 3.3, the limit is the same as the one of

lim n→∞ R X - z ϕ(y, t) t 0 + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy)dt,
where t 0 > 0 is arbitrarily large. In particular, this limit is non-negative. By Riesz representation theorem, it may be written as μg,z (ϕ), where μg,z is a Radon measure on X - z × R. By Lemma 3.8, the marginal measure of μg,z on R under the natural projection map is the absolutely continuous measure V g (z, t)dt.

We define the Radon measure μg on X × R by setting, for any continuous compactly supported function ϕ on X × R,

μg (ϕ) = X + R X - z ϕ(y • z, t)μ g,- z (dy, dt)ν + (dz).
The main result of this section is stated as follows.

Theorem 3.18. Let g be a Hölder continuous function on X such that ν(g) = 0 and g is not a coboundary. Then, for any continuous compactly supported function ϕ on X × R, we have

lim n→∞ X R ϕ(x, t) Šn g(x)1 {τ g t (x)>n} ν(dx)dt = X×R ϕ(x, t)μ g (dx, dt). (3.29)
Moreover, the following harmonicity property holds:

X×R ϕ(x, t)μ g (dx, dt) = X ∞ 0 ϕ(T x, t -g(x))μ g (dx, dt). ( 3 

.30)

Proof. We can assume that ϕ is non-negative. By Lemma 3.17, for every z ∈ X + and t ∈ R, we have

lim n→∞ X - z R ϕ(y • z, t) t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy)dt = X - z R ϕ(y • z, t)μ g,- z (dy, dt).
Thanks to the dominated convergence theorem, this will imply (3.29). Indeed, for t ∈ R, set θ(t) = sup x∈X ϕ(x, t), so that θ is a continuous compactly supported function on R. Note that

X - z R ϕ(y • z, t) t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy)dt X - z R θ(t) t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy)dt.
By Lemma 3.8, we have, uniformly in z ∈ X + ,

lim n→∞ R θ(t) t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy)dt = R θ(t) V g (z, t)dt.
By the dominated convergence theorem, we get (3.29). Now we prove (3.30). By (3.29),

X×R ϕ(x, t)μ g (dx, dt) = lim n→∞ X R ϕ(x, t) Šn g(x)1 {τ g t (x)>n} ν(dx)dt. As ν is T -invariant, we have X R ϕ(x, t) Šn g(x)1 {τ g t (x)>n} ν(dx)dt = X R ϕ(T x, t) Šn-1 g(x) + g(x) 1 {τ g t+g(x) (x)>n-1} 1 {t+g(x) 0} ν(dx)dt = X R ϕ(T x, t -g(x)) Šn-1 g(x) + g(x) 1 {τ g t (x)>n-1} 1 {t 0} ν(dx)dt
. By Lemma 3.3, the latter has the same limit, as n → ∞, as X R ϕ(T x, t -g(x)) Šn-1 g(x)1 {τ g t (x)>n-1} 1 {t 0} ν(dx)dt. We will prove below that we can apply (3.29) to the function (x, t) → ϕ(T x, tg(x))

1 {t 0} to get lim n→∞ X R ϕ(T x, t -g(x)) Šn-1 g(x)1 {τ g t (x)>n-1} 1 {t 0} ν(dx)dt = X ∞ 0 ϕ(T x, t -g(x))μ g (dx, dt),
which proves (3.30).

To finish the proof, we need to show that (3.29) implies that for any continuous compact supported function ϕ on X × R, as n → ∞, the quantity

I n = X ∞ 0 ϕ(x, t) Šn g(x)1 {τ g t (x)>n} ν(dx)dt converges to X ∞ 0 ϕ(x, t)μ g (dx, dt). (3.31)
This is a standard argument by an approximation. Indeed, for ε > 0 and As for the function V g , the measure μg enjoys the following continuity property on cohomology classes. Lemma 3.19. Let g ∈ B with ν(g) = 0. Assume that g is not a coboundary. Let α ∈ (0, 1) and (h m ) m 0 be a sequence of element of B α that converges to 0 with respect to the Hölder norm

t ∈ R, set χ - ε (t) = 0 if t < 0; χ - ε (t) = t ε if 0 t ε and χ - ε (t) = 1 if t > ε. Define also χ + ε (t) = χ - ε (t + ε). Then,
• α . For m 0, set g m = g + h m • T -h m .
Then, for any continuous compactly supported function ϕ on X × R, we have,

lim m→∞ X×R ϕ(x, t)μ gm (dx, dt) = X×R ϕ(x, t)μ g (dx, dt).
(3.32)

Proof. We can assume that ϕ is non-negative. By Theorem 3.18, for m 0, we have

X×R ϕ(x, t)µ gm (dx, dt) = lim n→∞ X×R ϕ(x, t) t + Šn g m (x) 1 {τ gm t (x)>n} ν(dx)dt.
For any n 0, we have S n g m S n g + 2 h m ∞ . Hence, for t ∈ R, we have τ gm t τ g t+2 hm ∞ . We get

X×R ϕ(x, t) t + Šn g m (x) 1 {τ gm t (x)>n} ν(dx)dt X×R ϕ(x, t) t + Šn g m (x) 1 τ g t+2 hm ∞ >n ν(dx)dt.
Again by Theorem 3.18, as n → ∞, the latter quantity converges to

X×R ϕ(x, t -2 h m ∞ )μ g (dx, dt).

Thus we have

X×R ϕ(x, t)μ gm (dx, dt) X×R ϕ(x, t -2 h m ∞ )μ g (dx, dt).
In the same way, one also has

X×R ϕ(x, t)μ gm (dx, dt) X×R ϕ(x, t + 2 h m ∞ )μ g (dx, dt).
As ϕ is continuous, the conclusion follows from the dominated convergence theorem.

Proof of Theorem 1.1. So far we have proved Theorem 3.18 which is an analogue of Theorem 1.1 for the reversed dynamical system (X, T -1 , ν). By Lemma 2.5, this dynamical system is isomorphic to a subshift of finite type equipped with a Gibbs measure. Therefore, Theorem 1.1 is actually equivalent to Theorem 3.18. Formally, the former can be obtained from the latter by replacing

f with g = f • T -1 • ι = f • ι • T , and ν with ι * ν.
The reader may notice that (3.20) is a particular case of (1.3), which is the reason to call the Radon measure µ f harmonic.

Conditioned limit theorems

In this section we prove Theorems 1.3 and 1.5.

Proof of Theorem 1.3.

As in the construction of the harmonic function V g and the harmonic measure μg , we will prove Theorem 1.3 in several steps. The first step is to deal with the case of functions g depending only on the future. The following result follows from the general result for Markov chains established in [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]Theorem 2.3]. The assumptions of this statement can be checked to hold thanks to the spectral gap properties of the Ruelle operator formulated in Section 5.1. Lemma 4.1. Let g ∈ B + with ν(g) = 0 and assume that g is not a coboundary. Then, for t ∈ R, we have, uniformly in z ∈ X + ,

lim n→∞ σ g √ 2πn ν - z y ∈ X - z : τ g t (y • z) > n = 2 V g (z, t).
We have to strengthen Lemma 4.1 by proving the following integral form: Lemma 4.2. Let g ∈ B + with ν(g) = 0 and assume that g is not a coboundary. Then, for any (z, t) ∈ X + ×R and for any continuous compactly supported function ϕ on X - z , we have

lim n→∞ σ g √ 2πn X - z ϕ(y)1 {τ g t (y•z)>n} ν - z (dy) = 2 V g (z, t) X - z ϕ(y)μ g,- z,t (dy).
Proof. It suffices to prove this result when ϕ is the indicator function of a cylinder set in X - z , since the general case follows by a standard approximation argument. Thus, let m 0 and a ∈ A m z and, as before, denote by C a,z the associated cylinder in X - z (see (2.5)).

If t + S k g(T m-k (a • z)) 0 for every 1 k m, we have

σ g √ 2πn X - z 1 Ca,z (y)1 {τ g t (y•z)>n} ν - z (dy) = σ g √ 2πn exp(-S m ψ(a • z)) X - a•z 1 τ g t+Smg(a•z) (y•(a•z))>n-m ν - a•z (dy).
By Lemma 4.1, as n → ∞, the latter quantity converges to

2 V g (a • z, t + S m g(a • z)) exp(-S m ψ(a • z)),
which, by definition, is equal to 2 V g (z, t)μ g,- z,t (C a,z ). If there exists 1 k m with t+S k g(T m-k (a•z)) < 0, we have μg,z,t (C a,z ) = 0 and

X - z 1 Ca,z (y)1 {τ g t (y•z)>n} ν - z (dy) = 0,
for n > k. The conclusion follows.

From Lemmas 4.1 and 4.2, we deduce the analogous result for functions which depend only on finitely many negative coordinates. Lemma 4.3. Let g ∈ B be such that ν(g) = 0 and there exists m 0 with g • T m ∈ B + . Assume that g is not a coboundary. Then, for t ∈ R, we have, uniformly in z ∈ X + ,

lim n→∞ σ g √ 2πn ν - z y ∈ X - z : τ g t (y • z) > n = 2 V g (z, t).
Moreover, for any (z, t) ∈ X + × R and for any continuous compactly supported function ϕ on X - z , we have

lim n→∞ σ g √ 2πn X - z ϕ(y)1 {τ g t (y•z)>n} ν - z (dy) = 2 V g (z, t) X - z ϕ(y)μ g,- z,t (dy).
Proof. As in Lemma 3.15, for a ∈ A m z , let ϕ a be the continuous function

y → ϕ(a • y) on X - a•z . We have, by setting h = g • T m , X - z ϕ(y)1 {τ g t (y•z)>n} ν - z (dy) = a∈A m z exp(-S m ψ(a • z)) X - a•z ϕ a (y)1 {τ h t (y•(a•z))>n} ν - a•z (dy).
The conclusion now follows from Lemmas 4.1 and 4.2 and (3.24). Now we use the same approximation argument as before to deduce from Lemma 4.3 a slightly weaker statement that works for every function g in B. This is the main result of this section. Theorem 4.4. Let g ∈ B be such that ν(g) = 0. Assume that g is not a coboundary. Then, for any continuous compactly supported function ϕ on R, we have, uniformly in z ∈ X + ,

lim n→∞ σ g √ 2πn R ϕ(t)ν - z y ∈ X - z : τ g t (y • z) > n dt = 2 R ϕ(t) V g (z, t)dt.
Moreover, for any continuous compactly supported function ϕ on X × R, we have

lim n→∞ σ g √ 2πn X×R ϕ(x, t)1 {τ g t (x)>n} ν(dx)dt = 2 X×R ϕ(x, t)μ g (dx, dt). Proof. For (z, t) ∈ X + × R, denote V g n (z, t) = 1 2 σ g √ 2πn ν - z y ∈ X - z : τ g t (y • z) > n .
Let (g m ) m 0 be the sequence of Hölder continuous functions as in Lemma 2.11.

For z ∈ X + and t ∈ R, we have

V gm n (z, t -2c 1 α m ) V g n (z, t) V gm n (z, t + 2c 1 α m )
. By taking the limit as n → ∞, we get by Lemma 4.3,

V gm (z, t -2c 1 α m ) lim inf n→∞ V g n (z, t) lim sup n→∞ V g n (z, t) V gm (z, t + 2c 1 α m ).
The first part of the lemma now follows from Lemma 3.10.

Let now ϕ be a non-negative continuous compactly supported function on X × R. For m, n 0, we have X×R ϕ(x, t)1 

τ gm t-2c 1 α m (x)>n ν(dx)dt X×R ϕ(x,
= f • T -1 • ι = f • ι • T , and ν with ι * ν.
The third assertion is equivalent to the second one by Lemma 2.12.

From Theorem 1.3, we get the following coarse domination which will be used in the proof of the conditioned local limit theorem (Theorem 1.7). Corollary 4.5. Let g be in B + with ν(g) = 0. Assume that g is not cohomologous to 0. Let G be a continuous compactly supported function on X + × R. Then there exists a constant c > 0 such that for any n 1,

R sup z∈X + X - z G(T -n (y • z) + , t + Šn g(y • z))1 {τ g t (y•z)>n} ν - z (dy)dt c √ n .
Proof. By replacing G with the function sup z∈X + |G(z, t)|, we can assume that G does not depend on the first coordinate. Let c 0 be as in Lemma 2.9. For t ∈ R, set G 1 (t) = sup |t -t| c 0 |G(t )|. Then for any t ∈ R and z, z ∈ X + with z 0 = z 0 , we have

X - z G(t + Šn g(y • z))1 {τ g t (y•z)>n} ν - z (dy) X - z G 1 (t + Šn g(y • z ))1 {τ g t+c 0 (y•z )>n} ν - z (dy) c X - z G 1 (t + Šn g(y • z ))1 {τ g t+c 0 (y•z )>n} ν - z (dy),
for some constant c > 0 coming from Lemma 2.3. By integrating over z ∈ X + , we get

sup z∈X + X - z G(t + Šn g(y • z))1 {τ g t (y•z)>n} ν - z (dy) c c 1 X G 1 (t -c 0 + Šn g(x))1 {τ g t (x)>n} ν(dx)
, where c 1 = inf a∈A ν + {z ∈ X + : z 0 = a}. Integrating over t ∈ R, we get the result by Theorem 1.3.

Proof of Theorem 1.5. Again we start with the case of Markov chains.

As in the previous section, using the argument of [13, Theorem 2.5], we get the following result. Lemma 4.6. Let g ∈ B + with ν(g) = 0 and assume that g is not a coboundary. Then, for any t ∈ R and continuous compactly supported function F on X + × R, we have, uniformly in z ∈ X + ,

lim n→∞ σ g √ 2πn X - z F T -n (y • z) + , Šn g(y • z) σ g √ n 1 {τ g t (y•z)>n} ν - z (dy) = 2 V g (z, t) X + ×R F (z , u)φ + (u)duν + (dz ).
We shall extend the previous lemma to allow functions F depending on the past coordinates in X. Lemma 4.7. Let g ∈ B + with ν(g) = 0 and assume that g is not a coboundary. Then, for any t ∈ R and continuous compactly supported function F on X × R, we have, uniformly in z ∈ X + ,

lim n→∞ σ g √ 2πn X - z F T -n (y • z), Šn g(y • z) σ g √ n 1 {τ g t (y•z)>n} ν - z (dy) = 2 V g (z, t) X×R F (x, u)φ + (u)duν(dx).
Lemma 4.9. Let g ∈ B be such that ν(g) = 0 and there exists m 0 with g • T m ∈ B + . Assume that g is not a coboundary. Then, for any t ∈ R and continuous compactly supported function F on X × R, we have, uniformly in z ∈ X + ,

lim n→∞ σ g √ 2πn X - z F T -n (y • z), Šn g(y • z) σ g √ n 1 {τ g t (y•z)>n} ν - z (dy) = 2 V g (z, t) X×R F (x, u)φ + (u)ν(dx)du.
Moreover, for any (z, t) ∈ X + × R and for any continuous compactly supported function F on X - z × X × R, we have

lim n→∞ σ g √ 2πn X - z F y, T -n (y • z), Šn g(y • z) σ g √ n 1 {τ g t (y•z)>n} ν - z (dy) = 2 V g (z, t) X - z ×X×R F (y , x, u)φ + (u)μ g,- z,t (dy )ν(dx)du.
Proof. We prove only the second assertion, since the first one is a particular case of the second. As in Lemma 3.15, for a ∈ A m z , set F a to be the function on Lemma 4.8 and (3.24).

X - a•z × X × R defined by F a (y, x, t) = F (y • a, T m x, t). We have, by setting h = g • T m , X - z F y, T -n (y • z), Šn g(y • z) σ g √ n 1 {τ g t (y•z)>n} ν - z (dy) = a∈A m z exp(-S m ψ(a • z)) X - a•z F a y, T -n (y • (a • z)), Šn h(y • (a • z)) σ g √ n × 1 {τ h t (y•(a•z))>n} ν - a•z (

dy). The conclusion now follows from

The same technique as in Lemma 4.4 gives Lemma 4.10. Let g ∈ B with ν(g) = 0 and assume that g is not a coboundary. Then, for any continuous compactly supported function

F on X × X × R × R, we have lim n→∞ σ g √ 2πn X×R F x, T -n x, t, Šn g(y • z) σ g √ n 1 {τ g t (x)>n} ν(dx)dt = 2 X×R×X×R F (x, x , t, t )φ + (t )ν(dx )dt μg (dx, dt).
Theorem 1.5 easily follows from Lemma 4.10.

Effective local limit theorems

So far we have adapted some results from the theory of Markov chains to the case of hyperbolic dynamical systems by constructing the analogs of the harmonic functions V g and V g and building the harmonic measures µ g and μg . In the remaining part of the paper we shall use these objects to establish conditioned limit theorems, by adapting the strategy from the case of sums of independent random variables [START_REF] Grama | Conditioned local limit theorems for random walks on the real line[END_REF]. We start with formulating an effective version of the ordinary local limit theorem which is adapted to our needs. 

∈ B + α , L ψ+itf ϕ(z) = z : T z =z e -ψ(z )-itf (z ) ϕ(z ), z ∈ X + , t ∈ R.
(5.1)

By iteration, it follows that for any ψ, f ∈ B α and t ∈ R,

L n ψ+itf ϕ(z) = z : T n z =z e -Sn(ψ+itf )(z ) ϕ(z ), z ∈ X + .
The following result (see [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]) provides the spectral gap properties for the perturbed operator L ψ+itf . For similar statements in the case of Markov chains we refer to [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF].

Lemma 5.1. Assume that f ∈ B + α is not a coboundary and that ν(f ) = 0. Then, there exists a constant δ > 0 such that for any t ∈ (-δ, δ),

L n ψ+itf = λ n t Π t + N n t , n 1, (5.2)
where the mappings t → Π t : (-δ, δ) → L (B + α , B + α ) and z → N t : (-δ, δ) → L (B + α , B + α ) are analytic in the operator norm topology, Π t is a rank-one projection with Π 0 (ϕ)(z) = ν + (ϕ) for any ϕ ∈ B + α and z ∈ X + , Π t N t = N t Π t = 0. Moreover, there exist n 0 1 and q ∈ (0, 1) such that for any t ∈ (-δ, δ) the

N n 0 t B + α →B + α q.
The eigenvalue λ t has the asymptotic expansion: as t → 0,

λ t = 1 - σ 2 f 2 t 2 + O(|t| 3 ). ( 5.3) 
Note that since f is not a coboundary w.r.t. to T , the asymptotic variance σ 2 f appearing in (5.3) is strictly positive.

Lemma 5.2. Let f ∈ B + α and t = 0. Assume that for any p = 0 and q ∈ R, the function pf + q is not cohomologous to a function with values in Z. Then, for any t = 0, the operator L ψ+itf has spectral radius strictly less than 1 in B + α . More precisely, for any compact set K ⊂ R \ {0}, there exist constants c K , c K > 0 such that for any ϕ ∈ B + α and n 1,

sup t∈K L n ψ+itf ϕ B + α c K e -c K n ϕ B + α . (5.4)
Proof. The proof of the first assertion can be found in [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF]Theorem 4.5]. Now we prove (5.4). For every t ∈ K, there exist n 0 (t) 1 and α(t) ∈ (0, 1) such that L

n 0 (t) ψ+itf B + α →B + α < α(t).
As the operator L ψ+itf depends continuously on t for the operator norm topology, there exists δ = δ(t) such that for any s ∈ (tδ(t), t + δ(t)), we still have

L n 0 (t) ψ+isf B + α →B + α < 1.
In particular, for every n 0 we have t) , for some c(t) > 0. By compactness, we can find t 1 , . . . , t r ∈ K such that K ⊂ r i=1 (t i -δ(t i ), t i +δ(t i )). In particular, by setting c = max 1 i r c(t i ), α = max 1 i r α(t i ) and n 0 = max 1 i r n 0 (t i ), we get for any s ∈ K and n 0,

L n ψ+isf B + α →B + α c(t)α(t) n/n 0 (
L n ψ+isf B + α →B + α cα n/n 0 .

Local limit theorem for smooth target functions.

In the following we establish a local limit theorem for Markov chains with a precise estimation of the remainder term. Let F be a measurable non-negative bounded target function on X × R. The probability we are interested in can be written as follows: for any z ∈ X + ,

X - z F (T -n y • z) + , Šn g(y • z) ν - z (dy).
The main difficulty is to give a local limit theorem with the explicit dependence of the remainder terms on F . We first describe the kind of target functions that we will use.

Lemma 5.3. Let X be a compact metric space. Let F be a real-valued function on X × R such that 1. For any t ∈ R, the function z → F (z, t) is α-Hölder continuous on X.

2. For any z ∈ X, the function t → F (z, t) is measurable on R.

Then, the function (z, t) → F (z, t) is measurable on X × R and the function t → F (•, t) α is measurable on R, where the norm • α is the usual norm on the space of α-Hölder continuous functions on X. Moreover, if the integral R F (•, t) α dt is finite, we define the partial Fourier transform F of F by setting for any z ∈ X and u ∈ R,

F (z, u) = R e -itu F (z, t)dt.
This is a continuous function on X × R. In addition, for every u ∈ R, the function z → F (z, u) is α-Hölder continuous and

F (•, u) α R F (•, t) α dt. Proof.
Since the space X is separable and the function z → F (z, t) is continuous on X for any t ∈ R, the supremum sup z∈X |F (z, t)| can be taken over a countable dense subset, so that t → sup z∈X |F (z, t)| is measurable. In the same way, since the function z → F (z, t) is α-Hölder continuous on X for any t ∈ R, one can also verify that sup z,z ∈X

|F (z,t)-F (z ,t)| α ω(z,z )
is a measurable function in t.

In case the integral R F (•, t) α dt is finite, the partial Fourier transform F is well defined and continuous by the dominated convergence theorem. The norm domination is obvious.

We denote by H + α the set of real-valued functions on X + × R such that conditions (1) and (2) of Lemma 5.3 hold and the integral R F (•, t) B + α dt is finite. For any compact set K ⊂ R, denote by H + α,K the set of functions F ∈ H + α such that the Fourier transform F (z, •) has a support contained in K for any z ∈ X + . Theorem 5.4. Let α ∈ (0, 1). Assume that g ∈ B + α such that ν + (g) = 0 and for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z. Let K ⊂ R be a compact set. Then there exists a constant c K > 0 such that for any

F ∈ H + α,K , n 1 and z ∈ X + , √ n X - z F (T -n y • z) + , Šn g(y • z) ν - z (dy) - X + ×R 1 σ g φ u σ g √ n F (z , u) duν + (dz ) c K √ n R F (•, t) B + α dt. (5.5)
Proof. Without loss of generality, we assume that σ g = 1. By the Fourier inversion formula, the Fubini theorem and a change of variable t to t √ n , we get √ n

X - z F (T -n y • z) + , Šn g(y • z) ν - z (dy) = √ n 2π X - z ×R e -it Šng(y•z) F ((T -n y • z) + , t)ν - z (dy)dt = 1 2π X - z ×R e -it √ n Šng(y•z) F (T -n y • z) + , t √ n ν - z (dy)dt =: I.
Note that the Fubini theorem can be applied since the integral on X - z is in fact a finite sum. Denote

J(t) = X - z e -it √ n Šng(y•z) F (T -n y • z) + , t √ n ν - z (dy) -e -t 2 2 X + F z , t √ n ν + (dz ).
We decompose the integral I into three parts:

I = I 1 + I 2 + I 3 ,
where

I 1 = 1 2π |t| δ √ n J(t)dt, I 2 = 1 2π δ √ n<|t| X - z e -it √ n Šng(y•z) F (T -n y • z) + , t √ n ν - z (dy) dt, I 3 = 1 2π |t| δ √ n e -t 2 2 X + F z , t √ n ν + (dz ) dt. Estimate of I 1 . Since R F (•, u) B + α du < ∞, the function z → F (z, t) is Hölder continuous on X + with Hölder norm at most R F (•, u) B +
α du, for any fixed t ∈ R. Applying (5.2), we get

J(t) = L n ψ+ it √ n g F •, t √ n (z) -e -t 2 2 X + F z , t √ n ν + (dz ) = λ n t √ n -e -t 2 2 Π t √ n F •, t √ n (z) + e -t 2 2 Π t √ n -Π 0 F •, t √ n (z) + N n t √ n F •, t √ n (z) =: J 1 (t) + J 2 (t) + J 3 (t).
For the first term, by (5.3) and simple calculations, we get

|J 1 (t)| c λ n t √ n -e -t 2 2 sup |t | δ F (•, t ) B + α C √ n e -t 2 4 R F (•, u) B + α du.
For the second and third terms, using again Lemma 5.1, we obtain

|J 2 (t)| + |J 3 (t)| C |t| √ n e -t 2 2 + e -cn R F (•, u) B + α du.
Therefore, we obtain the following upper bound for I 1 :

|I 1 | C √ n + Ce -cn R F (•, u) B + α du C √ n R F (•, u) B + α du. (5.6) Estimate of I 2 . Since the function F (z, •) is compactly supported on K ⊂ [-C 1 , C 1 ],
where C 1 > 0 is a constant not depending on z ∈ X + , we have

I 2 = 1 2π X - z δ √ n<|t| C 1 √ n e -it √ n Šng(y•z) F (T -n y • z) + , t √ n dt ν - z (dy) = √ n 2π δ<|t| C 1 L n ψ+itf F (•, t) (z) dt.
Note that, for any

t satisfying δ < |t| C 1 , sup z∈X + L n ψ+itf F (•, t) (z) L n ψ+itf F (•, t) B + α L n ψ+itf L(B + α ,B + α ) F (•, t) B + α .
Then, by Lemma 5.2, it follows that

|I 2 | = 1 2π δ<|t| C 1 √ n L n ψ+itf L(B + α ,B + α ) dt sup |t |∈[δ,C 1 ] F (•, t ) B + α c K √ ne -c K n sup |t |∈[ε,C 1 ] F (•, t ) B + α c K e -c K n R F (•, t) B + α dt. (5.7)
Estimate of I 3 . Notice that

I 3 = 1 2π R e -t 2 2 X + F z, t √ n ν + (dz) dt - 1 2π |t|>δ √ n e -t 2 2 X + F z, t √ n ν + (dz) dt.
For the first term, by the Fourier inversion formula,

1 2π R e -t 2 2 X + F z, t √ n ν + (dz)dt = 1 √ 2πn X + R e -t 2 2n F (z, t) dtν + (dz).
(5.8)

For the second term, using the fact that F z, t

√ n R |F (z, u)|du, we have 1 2π |t|>δ √ n e -t 2 2 X + F z, t √ n ν + (dz) dt 1 2π |t|>δ √ n e -t 2 2 dt X + ×R |F (z, u)|duν + (dz) ce -δ 2 4 n R F (•, u) B + α du. ( 5.9) Combining (5.6), (5.7), (5.8) and (5.9) 
, and taking into account that δ is a fixed constant, we conclude the proof of (5.5).

5.3.

Local limit theorem for ε-dominated target functions. Let ε > 0.

Let f, g be functions on R. We say that the function g ε-dominates the function f (or f ε-minorates g) if for any t ∈ R, it holds that

f (t) g(t + v), ∀ |v| ε.
In this case we write f ε g or g ε f . For any functions F and G on X + × R, we say that

F ε G if F (z, •) ε G(z, •) for any z ∈ X + .
In the proofs we make use of the following assertion. Denote by ρ the nonnegative density function on R, which is the Fourier transform of the function

(1 -|t|)1 |t| 1 for t ∈ R. Set ρ ε (u) = 1 ε ρ( u ε )
for u ∈ R and ε > 0. Lemma 5.5. Let ε ∈ (0, 1/4). Let f : R → R + and g : R → R + be integrable functions and that f ε g. Then for any u ∈ R,

f (u) 1 1 -2ε g * ρ ε 2 (u), g(u) f * ρ ε 2 (u) - |v|>ε f (u -v) ρ ε 2 (v)dv.
Remark 5.6. The domination property ε implies, in particular, that if f ε g and the function g is integrable, then f is bounded and lim u→∞ f (u) = 0, lim u→-∞ f (u) = 0. Indeed, since f ε g and g is an integrable function, by Lemma 5.5 we have f

1 1-2ε g * ρ ε 2 . Since the Fourier transform of g * ρ ε 2 is compactly supported on [-1 ε 2 , 1 ε 2 ]
, by the Fourier inversion formula,

|g * ρ ε 2 (x)| = 1 2π R e itx g(t) ρ ε 2 (t)dt c.
Therefore, g * ρ ε 2 is bounded on R, so that f is bounded on R.

Below, for any function F ∈ H + α , we use the notation

F * ρ ε 2 (z, t) = R F (z, t -v)ρ ε 2 (v)dv, z ∈ X + , t ∈ R,
and

F H + α = R F (•, u) B + α du, F ν + ⊗Leb = X + R |F (z, u)|duν + (dz).
The following properties will be useful in the proofs:

Lemma 5.7. Let F ∈ H + α and ρ ∈ L 1 (R). Then F * ρ ∈ H + α and F * ρ H + α F H + α ρ L 1 (R) .
Theorem 5.8. Let α ∈ (0, 1) and g ∈ B + α be such that ν + (g) = 0. Assume that for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z. Then for any ε ∈ (0, 1 8 ), there exist constants c, c ε > 0 such that for any non-negative function F and any function

G ∈ H + α satisfying F ε G, n 1 and z ∈ X + , X - z F (T -n y • z) + , Šn g(y • z) ν - z (dy) 1 √ n X + R 1 σ g φ u σ g √ n G (z , u) duν + (dz ) + cε √ n G ν + ⊗Leb + c ε n G H + α , (5.10)

and for any non-negative function F and non-negative functions G, H ∈ H

+ α satisfying H ε F ε G, n 1 and z ∈ X + , X - z F (T -n y • z) + , Šn g(y • z) ν - z (dy) 1 √ n X + R 1 σ g φ u σ g √ n H (z , u) duν + (dz ) - cε √ n G ν + ⊗Leb - c ε n G H + α + H H + α .
(5.11)

Proof. Without loss of generality, we assume that σ g = 1. We first prove the upper bound (5.10). By Lemma 5.5, we have F (1 + 4ε)G * ρ ε 2 , and hence

X - z F (T -n y • z) + , Šn g(y • z) ν - z (dy) (1 + 4ε) X - z G * ρ ε 2 (T -n y • z) + , Šn g(y • z) ν - z (dy).
(5.12) By Lemma 5.7, G * ρ ε 2 ∈ H + α , and the support of the function

G * ρ ε 2 (z, •) = G(z, •) ρ ε 2 (•). is included in [-1 ε 2 , 1 ε 2 ]
, for all z ∈ X + . Using Theorem 5.4, for any ε ∈ (0, 1 4 ), there exists c ε > 0 such that for all n 1 and z ∈ X + ,

X - z G * ρ ε 2 (T -n y • z) + , Šn g(y • z) ν - z (dy) 1 √ n X + R φ u √ n G * ρ ε 2 (z, u) duν + (dz) + c ε n G H + α .
(5.13) By a change of variable and Fubini's theorem, we have for any 

z ∈ X + , R φ u √ n G * ρ ε 2 (z, u) du = √ n R φ √ n * ρ ε 2 (t) G(z,
R φ √ n * ρ ε 2 (t) G(z, t)dt R ψ (t) G(z, t)dt + R |v| ε φ √ n (t -v) ρ ε 2 (v)dvG(z, t)dt =: J 1 + J 2 .
For J 1 , by Taylor's expansion and the fact that the function φ is bounded on R, we derive that

J 1 = 1 √ n -ε -∞ φ t + ε √ n G(z, t)dt + ε -ε 1 √ 2π G(z, t)dt + ∞ ε φ t -ε √ n G(z, t)dt 1 √ n R φ t √ n G(z, t)dt + cε √ n R G(z, t)dt.
(5.15)

For J 2 , since φ √ n 1 √ n and |v| ε ρ ε 2 (v)dv 2ε, we get J 2 1 √ n R |v| ε ρ ε 2 (v)dv G(z, t)dt 2ε √ n R G(z, t)dt.
(5.16)

From (5.15) and (5.16), together with (5.12) and (5.13), we get (5.10). Now we prove the lower bound (5.11). Since F ε H, using the second inequality in Lemma 5.5, we get

X - z F (T -n y • z) + , Šn g(y • z) ν - z (dy) X - z H * ρ ε 2 (T -n y • z) + , Šn g(y • z) ν - z (dy) - X - z |v| ε H (T -n y • z) + , Šn g(y • z) -v ρ ε 2 (v)dvν - z (dy).
(5.17)

For the first term, by Theorem 5.4, for any ε > 0, there exists c > 0 such that for all n 1 and z ∈ X + ,

X - z H * ρ ε 2 (T -n y • z) + , Šn g(y • z) ν - z (dy) 1 √ n X + R φ u √ n H * ρ ε 2 (z, u) duν + (dz) - c ε n R H(•, u) B + du. (5.18)
In the same way as in (5.14), we have

R φ u √ n H * ρ ε 2 (z, u) du = √ n R φ √ n * ρ ε 2 (t) H(z, t)dt. (5.19)
Using the first inequality in Lemma 5.5, we have

φ √ n * ρ ε 2 (t) (1 -2ε)ψ(t), for t ∈ R, where ψ(t) = inf |v| ε φ √ n (t + v).
Proceeding in the same way as in (5.15) and (5.16), we obtain that

X + R φ u √ n H * ρ ε 2 (z, u) duν + (dz) X + R φ u √ n H (z, u) duν + (dz) -cε X + R H(z, u)duν + (dz). (5.20)
For the second term on the right hand side of (5.17), using (5.10) and the fact that H ε F and φ 1, we get that there exist constants c, c ε > 0 such that for any v ∈ R and n 1,

X - z H (T -n y • z) + , Šn g(y • z) -v ν - z (dy) c √ n X + R φ u √ n F * κ ε 2 (z, u -v) duν + (dz) + c ε n R F (•, u) B + α du c √ n X + R F (z, u) duν + (dz) + c ε n R F (•, u) B + α du.
This, together with the fact that |v| ε ρ ε 2 (v)dv 2ε, implies

X - z |v| ε H (T -n y • z) + , Šn g(y • z) -v ρ ε 2 (v)dvν - z (dy) cε √ n X + R F (z, u) duν + (dz) + c ε n R F (•, u) B + α du.
(5.21)

From (5.17), (5.18), (5.20) and (5.21), and the fact that H F , we obtain the lower bound (5.11). 6. Effective conditioned local limit theorems 6.1. Formulation of the result. We will prove the following conditioned local limit theorem for Markov chains which provides a rate of order n -1 . This result will serve as an intermediate step between the conditioned central limit Theorem 1.5 and the conditioned local limit Theorem 1.7. The interest of this result lies in the fact that it is uniform in the function F . In particular, the theorem is effective when the support of the function F moves to infinity with the rate √ n. This strategy is inspired by [START_REF] Denisov | Random walks in cones[END_REF] for random walks in cones of R d , see also [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF] for finite Markov chains and [START_REF] Grama | Conditioned local limit theorems for random walks on the real line[END_REF] for random walks on R. For a different approach based on the Wiener-Hopf factorisation we refer to [START_REF] Caravenna | A local limit theorem for random walks conditioned to stay positive[END_REF][START_REF] Doney | Local behavior of first passage probabilities[END_REF][START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF]. Theorem 6.1. Let α ∈ (0, 1) and g ∈ B + α be such that ν + (g) = 0. Assume that for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z. Let t 0 ∈ R + . Then, there exist a constant c > 0 and a sequence (r n ) of positive numbers satisfying lim n→∞ r n = 0 with the following properties. For any ε ∈ (0, 1 8 ), there exists a constant c ε > 0 such that for any n 1, z ∈ X + and t t 0 , 1. For any non-negative function F and any function

G ∈ H + α satisfying F ε G, n X - z F (T -n y • z) + , t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy) 2 V g (z, t) σ 2 g √ 2π X + R G (z , u ) φ + u σ g √ n du ν + (dz ) + c ε 1/4 + r n ε 1/4 G ν + ⊗Leb + c ε √ n G H + α . (6.1)

For any non-negative function F and non-negative functions G, H ∈ H

+ α satisfying H ε F ε G, n X - z F (T -n y • z) + , t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy) 2 V g (z, t) σ 2 g √ 2π X + R H(z , u )φ + u σ g √ n du ν + (dz ) -c ε 1/12 + r n ε 1/4 G ν + ⊗Leb - c ε √ n G H + α + H H + α . (6.2)
6.2. Auxiliary statements. The normal density of variance v > 0 is denoted by

φ v (x) = 1 √ 2πv e -x 2 2v , x ∈ R,
and the Rayleigh density with scale parameter √ v is denoted by

φ + v (x) = x v e -x 2 2v 1 R + (x), x ∈ R.
The standard normal density is denoted by φ(x) = φ 1 (x), x ∈ R. The following lemma from [START_REF] Grama | Conditioned local limit theorems for random walks on the real line[END_REF] shows that when v is small the convolution φ v * φ + 1-v behaves like the Rayleigh density. Lemma 6.2. For any v ∈ (0, 1/2] and x 0, it holds that

√ 1 -vφ + (x) φ v * φ + 1-v (x) √ 1 -vφ + (x) + √ ve -x 2 2v .
We need the following inequality of Haeusler [17, Lemma 1], which is a generalisation of Fuk's inequality for martingales. Lemma 6.3. Let ξ 1 , . . . , ξ n be a martingale difference sequence with respect to the non-decreasing σ-fields F 0 , F 1 , . . . , F n . Then, for all u, v, w > 0, P max

1 k n k i=1 ξ i u n i=1 P (|ξ i | > v) + 2P n i=1 E ξ 2 i |F i-1 > w + 2 exp u v 1 -log uv w .
In order to control certain natural quantities appearing in the proof, we shall need the following definitions. For ε > 0,

χ ε (u) = 0 for u -ε, χ ε (u) = u + ε ε for u ∈ (-ε, 0), χ ε (u) = 1 for u 0. (6.3) Denote χ ε (u) = 1 -χ ε (u) and note that χ ε (t -ε) 1 (0,∞) (t) χ ε (t) , χ ε (t) 1 (-∞,0] (t) χ ε (t -ε) . ( 6.4) 
Lemma 6.4. Let α ∈ (0, 1) and g ∈ B + α be such that ν + (g) = 0. Assume that g is not a coboundary. Let κ be a smooth compactly supported function on R and ε > 0. Then there exists a constant c > 0 such that for any G ∈ H + α and any m 1, the function A m defined on X + × R by

A m (z, t) := X - z G * κ (T -m y • z) + , t + Šm g(y • z) × χ ε t -ε + min 1 j m Šj g(y • z) ν - z (dy),
belongs to H + α and satisfies

A m ν + ⊗Leb R |κ(t)|dt G ν + ⊗Leb , A m H + α c ε G H + α . Proof.
For the first inequality, we write

|A m (z, t)| X - z |G * κ| (T -m y • z) + , t + Šm g(y • z) ν - z (dy),
which gives

A m ν + ⊗Leb X×R |G * κ| (T -m x) + , t + Šm g(x) ν(dx)dt = X×R |G * κ| (x + , t) ν(dx)dt R |κ(t)|dt G ν + ⊗Leb .
This finishes the proof of the first inequality.

For the second inequality, recall that

A m H + α = R sup z∈X + |A m (z, t) |dt + R sup z,z ∈X + |A m (z, t) -A m (z , t) | α ω(z,z ) dt.
We pick c 0 > 0 as in Lemma 2.9 and for t ∈ R we set κ 1 (t) = sup |s| c 0 |κ(t + s)| and H(t) = sup z∈X + |G(z, t)|. We get for z, z ∈ X + with z 0 = z 0 and t ∈ R,

|A m (z, t)| X - z H * κ 1 t + Šm g(y • z ) ν - z (dy).
By Lemma 2.3, we get

|A m (z, t)| c X - z H * κ 1 t + Šm g(y • z ) ν - z (dy),
for some constant c. By integrating over z , we get

|A m (z, t)| c X H * κ 1 t + Šm g(x) ν(dx).
By integrating over t, it follows that

R sup z∈X + |A m (z, t)|dt c R H * κ 1 (t) dt = c R |κ 1 (t)|dt R H(t)dt.

Now we dominate the second term in the norm

A m H + α . For t ∈ R, set κ 2 (t) = sup |s| c 0 |κ (t + s)|. We get for |t -t | c 0 and z ∈ X + , |G * κ(z, t) -G * κ(z, t )| |t -t |H * κ 2 (t).
Hence for z, z , z ∈ X + with z 0 = z 0 = z 0 and t ∈ R,

I 1 (z, z , t) =: A m (z, t) - X - z G * κ (T -m y • z) + , t + Šm g(y • z ) × χ ε t -ε + min 1 j m Šj g(y • z) ν - z (dy) cα ω(z,z ) X - z H * κ 2 t + Šm g(y • z ) ν - z (dy) c 1 α ω(z,z ) X - z H * κ 2 t + Šm g(y • z ) ν - z (dy),
where we have used Lemma 2.3. Again by integrating over z , we get that

I 1 (z, z , t) c 2 α ω(z,z ) X H * κ 2 t + Šm g(x) ν(dx). (6.5) Besides, as G is in H + α , the function L(t) = sup z,z ∈X + α -ω(z.z ) |G(z, t) - G(z , t)| is integrable on R and for z, z ∈ X + with z 0 = z 0 and t ∈ R, we have I 2 (z, z , t) : = X - z G * κ (T -m y • z) + , t + Šm g(y • z ) -G * κ (T -m y • z ) + , t + Šm g(y • z ) × χ ε t -ε + min 1 j m Šj g(y • z) ν - z (dy) α ω(z.z ) X - z L * κ t + Šm g(y • z ) ν - z (dy) cα ω(z.z ) X L * κ 1 t + Šm g(x) ν(dx), ( 6.6) 
where we have again used Lemmas 2.3 and 2.9. As χ ε is 1/ε-Lipschitz continuous on R, by reasoning in the same way and using Corollary 2.10, we get

I 3 (z, z , t) =: X - z G * κ (T -m y • z ) + , t + Šm g(y • z ) × χ ε t -ε + min 1 j m Šj g(y • z) -χ ε t -ε + min 1 j m Šj g(y • z ) ν - z (dy) c ε α ω(z.z ) X H * κ 1 t + Šm g(x) ν(dx).
(6.7) By Lemma 2.3, we have

I 4 (z, z , t) =: X - z G * κ (T -m y • z ) + , t + Šm g(y • z ) × χ ε t -ε + min 1 j m Šj g(y • z ) ν - z (dy) -A m (z , t) cα ω(z.z ) X H * κ 1 t + Šm g(x) ν(dx). ( 6.8) 
Putting (6.5), (6.6), (6.7) and (6.8) together, and integrating over t ∈ R, yields the required domination. 6.3. Proof of the upper bound. We prove the inequality (6.1) in Theorem 6.1. It is enough to prove (6.1) only for sufficiently large n > n 0 (ε), where n 0 (ε) depends on ε, otherwise the bound becomes trivial.

Without loss of generality, we assume that σ

g = 1. Let ε ∈ (0, 1 8 ). With δ = √ ε, set m = [δn] and k = n -m. Note that 1 2 δ m k δ 1-δ for n 2 √ ε . Denote, for z ∈ X + and t ∈ R, Ψ n (z, t) = X - z F (T -n y • z) + , t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy).
By the Markov property, we have that for any z ∈ X + and t ∈ R,

Ψ n (z, t) = X - z Ψ m (T -k y • z) + , t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy). (6.9)
By bounding the indicator function by 1 in the definition of Ψ m , we get

Ψ m (z, t) X - z F (T -m y • z) + , t + Šm g(y • z) ν - z (dy) =: J m (z, t). (6.10)
By the local limit theorem (cf. Theorem 5.8), there exist constants c, c ε > 0 such that for any m 1, z ∈ X + and t ∈ R,

J m (z, t) H m (t) + cε √ m G ν + ⊗Leb + c ε m G H + α , ( 6.11) 
where for brevity we set

H m (t) = X + R G (z, u) 1 √ m φ u -t √ m duν + (dz). ( 6 
.12)

Using (6.9), (6.10) and (6.11), and Lemma 4.1, we get that for any z ∈ X + and t ∈ R,

Ψ n (z, t) X - z H m t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy) + cε √ mk G ν + ⊗Leb + c ε m √ k G H + α . (6.13)
Now we deal with the first term on the right hand side of (6.13). Denote L m (s) = H m ( √ ks) for s ∈ R. We have

L m (s) = X + R G z, √ ku 1 m/k φ   s -u m/k   duν + (dz). (6.14) 
Since the function s → L m (s) is differentiable on R and vanishes as s → +∞, using integration by parts, we have, for any z ∈ X + and t ∈ R,

H m,k (z, t) : = X - z H m t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy) = X - z L m t + Šk g(y • z) √ k 1 {τ g t (y•z)>k} ν - z (dy) = R + L m (s)ν - z t + Šk g(y • z) √ k > s, τ g t (y • z) > k ds. (6.15)
Applying the conditioned central limit theorem (see Lemma 4.6), we have (6.16) where r k → 0 as k → ∞. By (6.14), we have

H m,k (z, t) 2 V g (z, t) √ 2πk R + L m (s) (1 -Φ + (s)) ds + r k k 1/2 R + |L m (s)|ds,
R + |L m (s)|ds = X + R R G   z, √ m u m/k   φ   s -u m/k   du m/k ds m/k ν + (dz) = X + R R G z, √ mu φ (s -u) dsduν + (dz) c X + R G z, √ mu duν + (dz) = c √ m G ν + ⊗Leb . (6.17)
By integration by parts and a change of variable, we have

R + L m (s) 1 -Φ + (s) ds = R + H m (s)φ + s √ k ds √ k .
Hence, from (6.15), (6.16) and (6.17), we obtain

H m,k (z, t) 2 V g (z, t) √ 2πk R + H m (s)φ + s √ k ds √ k + r k √ km G ν + ⊗Leb . (6.18)
Implementing this bound into (6.13) we get, for any z ∈ X + ,

Ψ n (z, t) 2 V g (z, t) √ 2π I m,k + cε + r k √ km G ν + ⊗Leb + c ε m √ k G H + α , (6.19) 
where

I m,k = 1 √ k R + H m (s)φ + s √ k ds √ k .
By the definition of H m (cf. (6.12)) and Fubini's theorem, it follows that

I m,k = R + X + R φ √ m (u -s)G (z, u) duν + (dz)φ + s √ k ds k = X + R G (z, u) R + φ √ m (u -s)φ + s √ k ds k duν + (dz). Denote δ n = m n = [δn]
n . By a change of variable, we have

I m,k = 1 √ n X + R G z, √ nu R + φ δn (u -s)φ + 1-δn (s) ds duν + (dz) = 1 √ n X + R G z, √ nu φ δn * φ + 1-δn (u)duν + (dz) = 1 n X + R G (z, u) φ δn * φ + 1-δn u √ n duν + (dz).
Using Lemma 6.2 and the fact that .20) Substituting this into (6.19), and using the fact that V g (z, t) t + c gives

√ 1 -δ n = k n , it follows that I m,k √ k n 3/2 X + R G (z, u) φ + u √ n duν + (dz) + √ m n 3/2 X + R G (z, u) e -u 2 2m duν + (dz) √ k n 3/2 X + R G (z, u) φ + u √ n duν + (dz) + √ m n 3/2 G ν + ⊗Leb . ( 6 
Ψ n (z, t) 2 V g (z, t) √ 2π √ k n 3/2 X + R G (z, u) φ + u √ n duν + (dz) + c √ m n 3/2 + cε + r k √ mk G ν + ⊗Leb + c ε m √ k G H + α . Since ε 1/2 n m 1 2 ε 1/2 n and n > k 1 2 n, we obtain Ψ n (z, t) 2 V g (z, t) √ 2πn X + R G (z, u) φ + u √ n duν + (dz) + c n ε 1/4 + r n ε 1/4 G ν + ⊗Leb + c ε n 3/2 G H + α ,
which finishes the proof of the upper bound (6.1). 6.4. Proof of the lower bound. We now proceed to prove the second assertion (6.2) of Theorem 6.1. We use the same notation as that in the proof of the upper bound. Recall that δ

= √ ε, m = [δn] and k = n -m. For z ∈ X + , t ∈ R and n 1, denote Ψ n (z, t) : = X - z F (T -n y • z) + , t + Šn g(y • z) 1 {τ g t (y•z)>n} ν - z (dy).
By the Markov property, we have that for any z ∈ X + and t ∈ R,

Ψ n (z, t) = X - z Ψ m (T -k y • z) + , t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy). (6.21)
We write Ψ m as a sum of two terms: for any z ∈ X + and t ∈ R,

Ψ m (z, t) =: A m (z, t) -A m (z, t), ( 6.22) 
where (6.24) This implies that for any z ∈ X + and t ∈ R,

A m (z, t) = X - z F (T -m y • z) + , t + Šm g(y • z) ν - z (dy), (6.23) A m (z, t) = X - z F (T -m y • z) + , t + Šm g(y • z) 1 {τ g t (y•z) m} ν - z (dy).
Ψ n (z, t) = J n (z, t) -K n (z, t), ( 6.25) 
where

J n (z, t) := X - z A m (T -k y • z) + , t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy), (6.26) K n (z, t) := X - z A m (T -k y • z) + , t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy). (6.27)
We proceed to give a lower bound for the term J n (z, t). It can be handled as the case of the upper bound, but here the situation is more complicated. By the local limit theorem (cf. Theorem 5.8), we get that there exist constants c, c ε > 0 such that for any m 1, z ∈ X + and t ∈ R,

A m (z, t) H m (t) - cε √ m G ν + ⊗Leb - c ε m G H + α + H H + α , ( 6.28) 
where for brevity we set

H m (t) = X + R 1 √ m φ u -t √ m H (z, u) duν + (dz). ( 6.29) 
Using (6.23), (6.26) and (6.28), and Lemma 4.1, we get that for any z ∈ X + and t ∈ R,

J n (z, t) X - z H m t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy) - cε √ km G ν + ⊗Leb - c ε √ km G H + α + H H + α . ( 6 

.30)

For the first term on the right hand side of (6.30), proceeding in the same way as that in the proof of (6.18), using the lower bound in the conditioned central limit theorem (see Lemma 4.6), one can verify that

X - z H m t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy) 2 V g (z, t) √ 2πk R + H m (s)φ + s √ k ds √ k - r k √ km H ν + ⊗Leb . ( 6 

.31)

Implementing this bound into (6.30), we get that for any z ∈ X + , .32) where, in the same way as in the proof of (6.20),

J n (z, t) 2 V g (z, t) √ 2π I m,k - r k √ km H ν + ⊗Leb - cε √ km G ν + ⊗Leb - c ε √ km G H + α + H H + α . ( 6 
I m,k : = R + H m (s)φ + s √ k ds k = √ k n 3/2 X + R H (z, u) φ + u √ n duν + (dz).
Substituting this into (6.32), and using the fact that H ε G and V g (z, t) t + c, we get

J n (z, t) 2 V g (z, t) √ 2π √ k n 3/2 X + R H (z, u) φ + u √ n duν + (dz) - cε + r k √ km G ν + ⊗Leb - c ε √ km G H + α + H H + α .
Since n k 1 + cε 1/4 , m 1 2 ε 1/2 n and k 1 2 n, using again H ε G we deduce that for n sufficiently large,

J n (z, t) 2 V g (z, t) √ 2πn X + R H (z, u) φ + u √ n duν + (dz) - c n ε 1/4 + r n ε 1/4 G ν + ⊗Leb - c ε n 3/2 G H + α + H H + α . (6.33)
The bound of the term K n (z, t) (cf. (6.27)) is rather long and needs to employ the duality (cf. Lemma 2.12). We start by splitting K n (z, t) into two parts according to whether the values of t + Šk g(y • z) are less or larger than ε √ n: for z ∈ X + and t ∈ R, K n (z, t) = K 1 + K 2 , (6.34)

where

K 1 = X - z
A m (T -k y • z) + , t + Šk g(y • z) 1 {t+ Šk g(y•z) ε 1/6 √ n} 1 {τ g t (y•z)>k} ν - z (dy),

K 2 = X - z
A m (T -k y • z) + , t + Šk g(y • z) 1 {t+ Šk g(y•z)>ε 1/6 √ n} 1 {τ g t (y•z)>k} ν - z (dy).

For K 1 , since χ ε 1, using the upper bound in the local limit theorem (cf. Theorem 5.8) and taking into account that φ 1, we get

A m (z, t) L m (ε) √ m , where L m (ε) = c G ν + ⊗Leb + c ε √ m G H + α .
This, together with (6.4), (6.36) and the fact that n k c, implies that does not in general belong to the space H + α . We start by smoothing the indicator functions in (6.27) and (6.24). Define for ε > 0,

K 1 L m (ε) √ m X - z 1 {t+ Šk g(y•z) ε 1/6 √
A m,ε (z, t) := X - z G * κ ε/2 (T -m y • z) + , t + Šm g(y • z) × χ ε t -ε + min 1 j m Šj g(y • z) ν - z (dy),
where χ ε is the same as in (6.3) and χ ε = 1 -χ ε . Note that G * κ ε/2 ε/2dominates the function F . By the identity By Corollary 4.5, the first term is dominated by c/ √ m for some constant c > 0. For the second term, we start by noticing that by Lemma 2.9, there exists a constant c 0 > 0 such that for any z, z ∈ X + with z 0 = z 0 , t ∈ R and y ∈ X Besides, as G is α-regular and has compact support, we have for any z, z ∈ X + with z 0 = z 0 , and t ∈ R, by Lemma 2.9, Finally, for any z, z ∈ X + with z 0 = z 0 , t ∈ R, we have Lemma 7.3. Let α ∈ (0, 1) and g ∈ B + α be such that ν + (g) = 0. Assume that for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z. Let t ∈ R. Then, for any ε ∈ (0, 1 8 ) and z ∈ X + , and for any non-negative function F and non-negative α-regular compactly supported Proof. We first prove (7.4). As in (6.21), denote, for z ∈ X + and t ∈ R, By using F ε G, we get that Ψ m ε Ψ m . Note that by Lemma 7.2, the function Ψ m belongs to the space H + α , so that we are exactly in the setting of Theorem 6.1. Therefore, using the bound (6.1) of Theorem 6.1, we get

Ψ n (z, t) 2 V g (z, t) σ 2 g √ 2πk X + R + Ψ m (z , u ) φ + u σ g √ k du ν + (dz ) + c k ε 1/4 + r k ε 1/4 Ψ m ν + ⊗Leb + c ε k 3/2 Ψ m H + α =: J 1 + J 2 + J 3 .
For J 1 , applying the duality (Lemma 2.12), we deduce that

X + R + Ψ m (z, u) φ + u σ g √ k duν + (dz) X + R + X - z G (T -m y • z) + , u + Šm g(y • z) × 1 {τ g u+2ε (y•z)>m-1} ν - z (dy)φ + u σ g √ k duν + (dz) = X R + G (T -m x) + , u + Šm g(x) φ + u σ g √ k 1 {τ g u+2ε (x)>m-1} duν(dx) = X R G (x + , t -ε) φ + t -S m g(x) -2ε σ g √ k 1 {τ -g t (x
)>m-1} dtν(dx). Using the conditioned central limit theorem (Theorem 1.5), we get

lim n→∞ σ g √ 2πm X R G (x + , t -2ε) φ + t -S m g(x) -ε σ g √ k 1 {τ -g t (x)>m-1} dtν(dx) = 2 X R G(x + , t -2ε)µ -g (dx, dt) R + φ + (t ) 2 dt = √ π 2 X R G(x + , t -2ε)µ (-g) (dx, dt).
Therefore, we obtain lim n→∞ n 3/2 J 1 = 2 V g (z, t) σ 3 g √ 2π X R G(x + , t -2ε)µ (-g) (dx, dt).

For J 2 , by Corollary 4.5, we have

Ψ m ν + ⊗Leb c √ m .
Taking into account that m = [n/2] and k = n-m, we get lim sup n→∞ n 3/2 J 2 cε 1/4 . For J 3 , by Lemma 7.2, we have lim n→∞ n 3/2 J 3 = 0. This finishes the proof of the upper bound. The proof of the lower bound can be carried out in the same way. From Lemma 7.3, we get Theorem 7.1 by a standard approximation procedure.

Lemma 7.4. Fix α ∈ (0, 1). Let F be a non-negative continuous compactly supported function on X + ×R. Then, there exist a decreasing sequence (G n ) n 1 and an increasing sequence (H n ) n 1 of compactly supported α-regular functions, such that H n 1/n F 1/n G n for any n 1, and G n and H n converge uniformly to F as n → ∞.

Proof of Theorem 7.1. This follows directly from Lemmas 7.3 and 7.4. 

5. 1 .

 1 Spectral gap theory. Fix α ∈ (0, 1) such that ψ ∈ B + α , where ψ is the potential function used for the construction of the Gibbs measure ν (see Section 2.1). Denote by L (B + α , B + α ) the set of all bounded linear operators from B + α to B + α equipped with the standard operator norm• B + α →B + α .From the general construction of the Ruelle operator, every f ∈ B + α gives rise to a family of perturbed operators (L ψ+itf ) defined as follows: for any ϕ

  - z ,χ ε t + ε + min 1 j m Šj g(y • z) -χ ε t + ε + min 1 j m Šj g(y • z ) = χ ε t + ε + min 1 j m Šj g(y • z) -χ ε t + ε + min 1 j m Šj g(y • z ) × 1 {t+min 1 j m Šj g(y•z) -c 0 } 1 ε min 1 j m Šj g(y • z) -min 1 j m Šj g(y • z ) 1 {t+min 1 j m Šj g(y•z) -c 0 } c 1 ε α ω(z,z ) 1 {t+min 1 j m Šj g(y•z) -c 0 } ,where in the last inequality we used Corollary 2.10. It follows thatX - z G (T -m y • z) + , t + Šm g(y • z) × χ ε t + ε + min 1 j m Šj g(y • z) -χ ε t + ε + min 1 j m Šj g(y • z ) ν - z (dy) c 1 ε α ω(z,z ) X - z G (T -m y • z) + , t + Šm g(y • z) 1 {t+min 1 j m Šj g(y•z) -c 0 } ν - z (dy).By using again Corollary 4.5, we getR sup z,z ∈X + :z 0 =z 0 α -ω(z,z ) X - z G (T -m y • z) + , t + Šm g(y • z) × χ ε t + ε + min 1 j m Šj g(y • z) -χ ε t + ε + min 1 j m Šj g(y • z ) ν - z (dy)

G

  (T -m y • z) + , t + Šm g(y • z) -G (T -m y • z ) + , t + Šm g(y • z ) × χ ε t + ε + min 1 j m Šj g(y • z ) ν - z (dy) c 3 α ω(z,z ) H(t)ν - z y ∈ X - z : t + c + min 1 j m Šj g(y • z) ,for some compactly supported continuous function H on R. Again by Corollary 4.5, we getR sup z,z ∈X + :z 0 =z 0 α -ω(z,z ) × X - z G (T -m y • z) + , t + Šm g(y • z) -G (T -m y • z ) + , t + Šm g(y • z ) × χ ε t + ε + min 1 j m Šj g(y • z ) ν -

G

  (T -m y • z ) + , t + Šm g(y • z ) χ ε t + ε + min 1 j m Šj g(y • z ) ν - z (dy) = X - z G (T -m y • z ) + , t + Šm g(y • z ) χ ε t + ε + min 1 j m Šj g(y • z ) e θ(y,z ,z) ν - z (dy),where θ is as in Lemma 2.3. By the Hölder continuous domination of θ in Lemma 2.3, we derive thatR sup z,z ∈X + :z 0 =z 0 α -ω(z,z ) X - z G (T -m y • z ) + , t + Šm g(y • z ) χ ε t + ε + min 1 j m Šj g(y • z ) ν - z (dy) -X - z G (T -m y • z ) + , t + Šm g(y • z ) χ ε t + ε + min 1 j m Šj g(y • z ) ν - z (dy) dt c 4 R X - z G (T -m y • z ) + , t + Šm g(y • z ) χ ε t + ε + min 1 j m Šj g(y • z ) ν - z (dy)dt c 5 √ m α ω(z,z ) , (7.3)where the last inequality follows from Corollary 4.5. Putting together (7.1), (7.2) and (7.3) gives R sup z,z ∈X + :z 0 =z 0 |Ψ m,ε (z, t) -Ψ m,ε (z , t) | α ω(z,z ) a technical version of Theorem 7.1.

F

  (T -n y • z) + , t + Šn g(y • z) 1 {τ g t (y•z)>n-1} ν - z (dy).Set m = [n/2] and k = n -m. By the Markov property we have that for any z ∈ X + and t ∈ R,Ψ n (z, t) = X - z Ψ m (T -k y • z) + , t + Šk g(y • z) 1 {τ g t (y•z)>k} ν - z (dy). (7.6)For any z ∈ X + and t ∈ R, we setΨ m (z , t ) := X - z G (T -m y • z ) + , t + Šm g(y • z ) × χ ε t + ε + min 1 j m Šj g(y • z ) ν - z (dy).

  for any n 0, we have

	X×R	χ -ε (t)ϕ(x, t) t + Šn g(x) 1 {τ g t (x)>n} ν(dx)dt
	I n	X×R	χ + ε (t)ϕ(x, t) t + Šn g(x) 1 {τ g t (x)>n} ν(dx)dt.
	By (3.30) and Lemma 3.3, we get	
		χ -ε (t)ϕ(x, t)μ g (dx, dt)
	X×R			
	lim inf n→∞	I n lim sup n→∞	I n	X×R	χ + ε (t)ϕ(x, t)μ g (dx, dt).
	We claim that the left and right hand sides of the latter inequality converge to
	the integral in (3.31).		

Indeed, for (x, t) ∈ X × R, we have that |χ + ε (t)ϕ(x, t)| and |χ - ε (t)ϕ(x, t)| are dominated by |ϕ(x, t)|. The conclusion now follows from the dominated convergence theorem.

  For brevity, denote ψ(t) = sup |v| ε φ √ n (t+v), t ∈ R. Using the second inequality in Lemma 5.5, we have

		t)dt,	(5.14)
	where φ √	n (t) = 1 √ 2πn e -t 2 2n , t ∈ R.

  Using Lemma 4.6, we get that uniformly in z ∈ X + , We proceed to give an upper bound for K 2 , see (6.34). Note that the functionA m (z, t) = -m y • z) + , t + Šm g(y • z) 1 {τ g t (y•z) m} ν - z (dy)

	K 1	L m (ε) √ m		2 V g (z, t) √ 2πk	0	cε 1/6	φ + (t ) dt +	o(1) k 1/2
		L m (ε) √ mk		0	cε 1/6	φ + (t ) dt + o(1)	L m (ε) n	1 4 ε 1	cε 1/3 + o(1)
		L m (ε) n	cε	1 12 +	o(1) 4 ε 1	.	(6.35)
			z X -	F (T
								n} 1 {τ g t (y•z)>k} ν -z (dy)
		L m (ε) √ m	ν -

z t + Šk g(y • z) √ k cε 1/6 , τ g t (y • z) > k .

  •), we get that the function A m,ε ε/2-dominates the function A m . Moreover, by Lemma 6.4, there exists a constant c ε such that for any m 1, the function A m,ε belongs to H + α and satisfiesA m,ε H + α c ε G H + α , A m,ε ν + ⊗Leb G ν + ⊗Leb . Denote W m,ε (z, t) = A m,ε (z, t) 1 {t ε 1/6 √ n} .Then Ψ m,ε ∈ H + α and Ψ m,ε H +

									α	c √ ε m .
	Proof. Recall that			
	Ψ m,ε H + α =	R	sup z∈X +	|Ψ m,ε (z, t) |dt +	R	sup z,z ∈X +	|Ψ m,ε (z, t) -Ψ m,ε (z , t) | α ω(z,z )	dt.
									(6.37)
	Using the upper bound (6.1) and the fact that φ + 1, we obtain
	K 2	X -z	W m (T -k y • z) + , t + Šk g(y • z) 1 {τ g t (y•z)>k} ν -z (dy)
		2 V g (z, t) √ 2πk	+	c k	ε 1/4 +	r n ε 1/4	W m,ε ν + ⊗Leb +	c ε √ nk	W m,ε H + α .
									(6.38)

1 {τ g t (y•z)>m} = 1 [0,∞) t + min 1 j m Šj g(y • z) , (6.36) using the bounds (6.4) and F (z, •) G * κ ε/2 (z,

  functions G, H satisfying H ε F ε G, we have -n y • z) + , t + Šn g(y • z) 1 {τ g t (y•z)>n-1} ν -

	lim sup n→∞	n 3/2	z X -	F (T z (dy)
	2 V g (z, t) σ 3 g √ 2π X R	G(x + , t)µ (-g) (dx, dt)	(7.4)
	and			
	lim inf n→∞	n 3/2	X -z	F (T -n y • z) + , t + Šn g(y • z) 1 {τ g t (y•z)>n-1} ν -z (dy)
	2 V g (z, t) σ 3 g √ 2π X R	H(x

+ , t)µ (-g) (dx, dt).

(7.5) 

R ϕ(t) V g (z, t)dt. To this aim, we establish a uniform bound for the quantity

Proof. By a standard approximation argument, it suffices to prove the result for the set of functions F of the form (x, t) → 1 {x -m =a -m ,x -m+1 =a -m+1 ,...,x -1 =a -1 } F 1 (x + , t), where F 1 is a continuous compactly supported function on X + × R, and a -m , . . . , a -1 ∈ A with M (a i-1 , a i ) = 1 for -m + 1 i -1. We want to determine the limit as n → ∞,

Note that in this integral, all the terms only depend on the coordinates y -n , y -n+1 , . . . , y -1 except T -n (y • z). By integrating first over the deep past coordinates . . . , y -n-2 , y -n-1 , we get by using Lemma 2.2,

where, for (z , t) ∈ X + × R,

= 2 V g (z, t)

By construction of the measure ν in Lemma 2.2, we have

which ends the proof of the lemma.

As for Theorem 1.3, we get the following version of Lemma 4.7, where we add a source target function. Lemma 4.8. Let g ∈ B + with ν(g) = 0 and assume that g is not a coboundary. Then, for any (z, t) ∈ X + × R and continuous compactly supported function F on X - z × X × R, we have

The proof of Lemma 4.8 can be carried out in the same way as that of Lemma 4.2 and therefore is left to the reader. By using again conditioning and Lemma 3.15, we extend the previous lemma to functions g depending on finitely many coordinated of the past.

For the first term on the right hand side of (6.38), by the definition of W m and Fubini's theorem, we have

Using the duality (Lemma 2.12) yields that

Since the measure ν is T -invariant, it follows that

By Propositions 2.6 and 2.7, there exists a Hölder continuous function g 0 on X + satisfying L ψ g 0 = 0 such that { Šk g 0 (y • z)} k 0 is a martingale and sup k 0 | Šk g 0 -Šk g| c for some constant c > 0. Therefore, for any t ε 1/6 √ n, by Fuk's inequality for martingales (Lemma 6.3), we have that with

which implies that ν x ∈ X : max

(6.41)

Combining (6.41) and (6.39), we obtain

For the second term on the right hand side of (6.38), by (6.37) and Lemma 6.4, we get

Therefore, from (6.38), (6.42) and ( 6.43), we derive the upper bound for K 2 :

Combining (6.33), (6.35) and (6.44), the lower bound (6.2) follows.

7. Proof of Theorem 1.7

As for Theorems 1.3 and 1.5, we first establish the result when g is in B + . The general case of a function g in B will follow using the same method as in Section 4.

Theorem 7.1. Let g ∈ B + be such that ν + (g) = 0. Assume that for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z. Let F be a continuous compactly supported function on X + × R. Then, we have, uniformly in z ∈ X + and t in a compact subset of R,

In the proof of this theorem, we will make use of several technical lemmas which are stated below. We say that a function G on X + × R is α-regular if there is a constant c such that for any (z, t) and (z , t ) in

In other words, a function is α-regular if and only if it is Lipschitz continuous on X + × R when R is equipped with the standard distance and X + is equipped with the distance (z, z ) → α ω(z,z ) . The following result is similar to Lemma 6.4. It will allow us to smooth certain functions appearing in the proof of Theorem 7.1 in order to be able to apply Theorem 6.1. Recall that for ε ∈ (0, 1), χ ε (u) = 0 for u -ε, χ ε (u) = u+ε ε for u ∈ (-ε, 0), and χ ε (u) = 1 for u 0. Lemma 7.2. Let α ∈ (0, 1) and g ∈ B + α be such that ν + (g) = 0. Assume that g is not a coboundary. Let G be an α-regular function with compact support on

From Theorem 7.1 we deduce a new lemma in which the target function F may depend on the past coordinates. Lemma 7.5. Let g ∈ B + be such that ν + (g) = 0. Assume that for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z. Let F be a continuous compactly supported function on X × R. Then, uniformly in z ∈ X + and t in a compact subset of R,

Proof. As in the proof of Lemma 4.7, it suffices to prove this result when F is of the form (x, t)

and F 1 is a continuous compactly supported function on X + × R. For such a function, we have

where, for (z , t ) ∈ X + × R,

Since F 2 (•, t ) depends only on the future, we can apply Theorem 7.1, which gives

To conclude, it remains to show that

Indeed, by the definition of the measure µ (-g) (see Theorem 1.1) and by using Lemma 2.2, we get

which ends the proof of the lemma. Now we will put a target on the starting point y ∈ X - z .

Lemma 7.6. Let g ∈ B + be such that ν + (g) = 0. Assume that for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z. Then, for any (z, t) ∈ X + × R and any continuous compactly supported function F on X - z × X × R, we have

F (y , x , t ) µ (-g) (dx , dt )μ g,- z,t (dy ).

Proof. As usual, it suffices to prove the lemma when F is of the form (y, x, t ) → 1 Ca,z (y)G(x, t ), where a ∈ A m z and G is a continuous compactly supported function on X × R.

If t + S k g(T m-k (a • z)) 0 for every 1 k m, we have that for n > m,

By Lemma 7.5, as n → ∞, the latter quantity converges to

which, by the definition of measure μg,z,t (see (3.21)), is equal to

If there exists 1 k m with t+S k g(T m-k (a•z)) < 0, we have μg,z,t (C a,z ) = 0 and

for n > k. The conclusion follows.

As usual, from Lemma 7.6, we want to deduce the analogous result for functions which depend only on finitely many negative coordinates. We shall use the following easy formula that relates the measures µ g and µ g•T .

Lemma 7.7. Let g ∈ B be such that ν(g) = 0 and g is not a coboundary. Then, for any continuous compactly supported function F on X × R, we have

Proof. By using the relation τ

as desired.

Lemma 7.8. Let g ∈ B be such that ν(g) = 0 and there exists m 0 with g • T m ∈ B + . Assume that for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z. Then, for any (z, t) ∈ X + × R and any continuous compactly supported function F on X - z × X × R, we have

Proof. As in Lemma 3.15, for a ∈ A m z , set F a to be the function on X - a•z ×X×R defined by F a (y, x, t) = F (y • a, T m x, t). Then we have, by setting h = g • T m ,

By Lemma 7.6, as n → ∞, this converges to

By (3.24), the latter quantity is equal to

dy ).

As h = g • T m , the conclusion now follows from Lemma 7.7.

Now we can give a result for any function g in B.

Lemma 7.9. Let g ∈ B be such that ν(g) = 0. Assume that for any p = 0 and q ∈ R, the function pg + q is not cohomologous to a function with values in Z.

Then, for any continuous compactly supported function F on X × X × R × R, we have

Proof. We can assume that the function F is non-negative. For (z, t) ∈ X + ×R, denote

Let (g m ) m 0 be the sequence of Hölder continuous functions as in Lemma 2.11. For any n, m 0, we set

For z ∈ X + and t ∈ R, it holds that

By taking the limit as n → ∞, we get by Lemma 7.8,