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This article presents a machine learning workflow allowing to
construct spectrophotometric equations predicting nitrate and
nitrite concentrations within microalgae culture samples. First,
numerous samples with various nitrate and nitrite concentra-
tions (in mixture or separated) were drawn from cultures. Their
UV absorbance spectra were recorded with a tabletop spec-
trophotometer before being analyzed using ion chromatogra-
phy. Then, the data collected were used to construct a machine
leaning model based on partial least square regression. From
a practical perspective, the best model involves 3 wavelengths
to quantify both nitrate and nitrite within the samples. The
proposed equations can readily be used (LoQ of 0.5 mg.L−1,
uncertainty of ± 10 %). They greatly shorten the delay to ob-
tain sample nitrate and nitrite concentrations compared to ion
chromatography while retaining adequate accuracy. Further-
more, the workflow is presented step-wisely, with emphasis on
relevant details so that other scholars may deploy in their own
laboratory to best suit their own needs. Finally, the data and
source files are made available in an online repository.
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1. Introduction

Efficient microalgal cultivation requires to supply the cells
with adequate nutrients in the proper amount within a growth
promoting environment. Those nutrients include macronutri-
ents, such as carbon and nitrogen, and micronutrients, such as
trace elements and vitamins. Not only one has to supply them
adequately at the beginning of the culture, but one should also
ensure their availability throughout the whole process or con-
trol their depletion if a stressing strategy is intended. The lat-
ter strategies are quite common in microalgal biotechnology
as they can trigger secondary metabolites hyperaccumulation
(1, 2). The most common ones are salinity stress, light stress
and nitrogen stress.

Nitrogen is an essential macronutrient that takes part in
amino, proteins, enzymes and nucleic acids syntheses. It
can be delivered to microalgae under three inorganic forms
(ammonium, nitrate and nitrite) or under various organic
forms (the most common being urea) (3). Among the dif-
ference sources of nitrogen, nitrate is the widest spread one

within laboratories as it comes into play in almost every syn-
thetic medium (4). Urea and nitrite are more commonly en-
countered in wastewater treatment applications. Ammonium,
while it is microalgae favorite source of nitrogen, is rarely
used from a biotechnological perspective because it is highly
volatile.

Nitrate key role in the culture of microalgae makes it a vital
parameter to follow. To do so, several techniques have been
deployed over the years. They range from basic colorimetric
approaches to advanced chromatographic methods. The first
ones are relatively inexpensive but may require to manipu-
late hazardous chemical species, or simply involves numer-
ous sample manipulations, making them undesirable (5–7).
The second ones depend upon high end equipment requir-
ing sizable capital expenditure and expertise (8). In addition,
none of these techniques yield immediate results and both
lead to sample destruction. Still, when operating a microal-
gal process, swift actions may sometimes be required not to
lose the culture. A third kind of methods can yield nitrate
quantification almost instantaneously, maybe at the price of
a somewhat lower accuracy, namely UV spectrophotometric
methods.

UV spectrophotometric nitrate and nitrite quantifications
are known to the ecotoxicity community but are singularly
unfamiliar to microalgal biotechnologists. This is all the
more surprising as, for example, spectrophotometric pig-
ments quantification is a basic laboratory procedure (9). For
nitrate and nitrite, the working principle is the same as for
pigments. Peaks absorbance wavelengths are used to identify
each species contribution, and a wavelength far from those
peaks is used to nullify background noise originating from
dissolved organic matter (10–13). Resulting equations (also
sometimes referred to as algorithms) are calibrated either us-
ing artificial or genuine samples whose absorbance spectra
are correlated with chromatographic measurements. In the
case of nitrate and nitrite, this procedure is greatly facilitated
by the existence of very strong absorbance peaks in the UV
range (190 - 230 nm), in addition to moderate ones in the
lower part (275 - 400 nm) of the visible spectrum (Fig. 1).
This represents an advantage. Indeed, in order to access UV
absorbance peaks associated with nitrate and nitrite (190 -
230 nm), one has to considerably dilute the sample (more
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Fig. 1. Normalized absorbance spectra of pure nitrate, pure nitrite and Dissolved Organic Matter (DOM). Obtained with two measurements with two different concentrations
for each species. Black line: nitrate, gray line: nitrite, light gray: Dissolved Organic Matter (measured from 190 to 340 nm after a special run of two weeks including 1 week
nitrogen source exhaustion)

than 200 fold in our case). This procedure almost nullifying
background noise originating from dissolved organic matter.

While efficient and easy to deploy, current spectrophoto-
metric nitrate and nitrite quantifications can be regarded as
suboptimal in two ways. First, wavelengths corresponding to
chemical species are selected beforehand and may not ac-
count for potential matrix effect. Then, dissolved organic
matter contribution may vary for sampling location to sam-
pling location. Luckily, this second drawback is unlikely to
be encountered in biotechnology laboratories, where cultures
are well controlled and usually carried out on a time scale
short enough to prevent excessive dissolved organic matter
accumulation. Still, the question of wavelengths selection re-
mains.

Using tabletop spectrophotometers to acquire absorbance
spectra of dissolved molecules mixtures to quantify them is
a well-established technique. A whole field of research has
been dedicated to this question over many years and produced
streamlined workflows and mathematical background to sup-
port this technique. In a nutshell, mixtures with known con-
centrations of the species of interest are created and the cor-
responding spectrum is acquired. This constitutes a dataset
that is then used to calibrate a model. This model correlates
input spectra with output concentrations. Among the candi-
date models, such as Principal Component Analysis or Mul-
tiLinear Regression, Partial Least Square (or PLS) regression
algorithm is of choice (14) and has also proven successful in
microalgal biotechnology applications (15, 16). Its particu-
larity is that it uses principal component decompositions to
create a set of components (linear combination of variables)
associated to both input and output variables (through maxi-
mization of covariance between the scores). In this way, the

most meaningful information is retained, making it a robust
model (low sensibility to the training data) that handles well
colinear inputs (when multiple variables provide the same
information, two neighboring wavelengths in the case of a
spectrum) (17). Still, in the case of spectrophotometric read-
ings processing, two metaparameters remain to be optimized
by the operator: the number of components (boiling down to
the number of wavelengths that intervene in the correlations)
and the selected wavelengths themselves.

This article reports how such technique can be deployed
within a biotechnology laboratory to produce a correlation
linking spectrophotometric measurements to nitrate and ni-
trite concentrations. Spectra and nitrogen sources concen-
trations were obtained from Chlorella vulgaris cultures. It
yielded a rich dataset over a wide range of nitrate and nitrite
concentrations at different stages of the culture. They were
then used to power the machine learning workfow process-
ing quantifying nitrate and nitrite concentrations from those
spectra. Finally, the source files associated to this work are
freely available in an online repository for anyone to down-
load. This way the interested reader could deploy the work-
flow and obtain correlations best-suiting its need (nitrogen
sources, type of biomass, ...).

2. Experiments and data acquisition

2 1. Culture protocol
Chlorella vulgaris (CV 211-11b) obtained from SAG Cul-
ture Collection, Germany, were cultivated on B3N medium
variants (4). Seven alternative media were formulated with
the same total molar nitrogen content, only the source was
varied, either nitrate (from NaNO3) or nitrite (from NaNO2).
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2.2 Nitrate and nitrite concentrations monitoring and spectra recording

The tested nitrite fractions were: 0, 20, 40, 50, 60, 80 and 100
% NO−

2 . Cultures were carried out over seven days, samples
being drawn twice a day for both cell growth monitoring and
nitrogen quantification. The study was carried out in biolog-
ical triplicates. A total of 273 samples were produced during
this experimental campaign.

2 2. Nitrate and nitrite concentrations monitoring and
spectra recording
Nitrate and nitrite concentrations were determined for all the
sampling points. Samples were prepared by filtration (0.22
µm polypropylene) before being diluted with milliQ water
(Integral-5, Merck, also analysed for correction) in order to
be in the range of 0.2 to 10 mg.L−1, corresponding to a peak
absorbance of about 0.5. UV absorption spectrum (190 -
340 nm) was acquired using a spectrophotometer (Shimadzu
UV-1800). Nitrate and nitrite quantifications were carried
out on an ICS-5000+ Ion Chromatography system (Thermo
Fisher Scientific) coupled with a conductivity detector. Sep-
aration was achieved on an AS11-HC column (2x250 mm,
4 µm) protected by a guard column AG11-HC (2x50 mm,
4 µm). Column temperature was maintained at 35 °C. The
mobile phase was potassium hydroxide at a flow rate of 0.3
mL.min−1 and was delivered by an EGC 500 eluent gener-
ator. Elution was achieved in gradient mode; initial concen-
tration of KOH was 5 mM which was held for 0.5 minute,
the concentration was gradually increased to 25 mM in 15.5
minutes, then rapidly to 30 mM in 0.1 minute and held at 350
mM for 8 minutes followed by going back to initial compo-
sition and stabilization of the column for 10 more minutes.
The eluent generated was then purified by a CR-TC to trap
impurities such as carbonate. The suppressor was an ADRS
600, 4 mm, operated in recycle mode at 38 mA. The injec-
tion volume was 2 µl and total run analysis was 34 minutes.
All ions were identified by comparison with their retention
times with standard solutions. Quantification was achieved
using the height of the peak in external calibration, the range
of concentrations was from 0.2 to 10 mg.L−1. All standards
were purchased from Sigma-Aldrich with a TraceCert qual-
ity which is a standard at 1000 ± 4 mg.L−1. This protocol
ensures that the nitrate and nitrite concentrations can be di-
rectly related to the measured spectra as there was no inter-
mediary manipulations between spectra acquisition and ion
chromatography quantification.

3. Data management
The experimental campaign resulted in 273 data points: ab-
sorbance spectrum from 190 to 340 nm, resolution 1 nm re-
sulting in 151 input variables, and measurements of nitrate
and nitrite concentrations, resulting in 2 output variables. As
a first step, manual curation of the data was undergone. 6
data points were excluded as they exhibited distorted spec-
tra. 6 others data points were discarded because of obviously
incorrect or lacking concentration measurements. The sec-
ond step was to transform data so that all the values could be
processed by PLS algorithm. Indeed, nitrate or nitrite values
below the limit of quantification could be reported either as

’N.A.’ or a random value below 0.2 mg.mL−1. The question
of data replacement in the case of a value below detection
limit for PLS algorithm was already investigated in depth by
other scholars (18). Their conclusions are clear when the ac-
tual value is known, one can use it to replace the machine
reading. Otherwise, replacing the value by 0 is a safe proce-
dure as it does not induce a bias and limits variance. In our
case, thanks to our experimental design, we have access to
the known value, which is 0. Thus, values below the detec-
tion limit were replaced by 0.

Data were then split into two datasets, one for calibration
(80 % of the total, randomly drawn, n = 208) and one for vali-
dation (complementary 20 %, n = 53). The validation dataset
is put aside until the very last stage of the protocol. The cal-
ibration dataset was further split into a training dataset (80
% of the calibration dataset, randomly drawn, n = 166) and
a test dataset (complementary 20 %, n = 42). Training and
test datasets were used to identify the relevant wavelengths to
include in the PLS algorithm. Once the wavelengths were se-
lected, the algorithm was calibrated on the calibration dataset
as a whole. Finally, the algorithm predictions were tested on
the validation dataset. This way the quality of the prediction
is assessed from data never presented to the algorithm before.
For the sake of readability, the data management workflow is
summarized in Figure 2.

4. Partial least square calibration
As presented in the introduction, in our case, the partial least
square model features two metaparameters to optimize: the
number of components, in our case simply the number of
wavelengths to be used to predict the concentrations (e.g. 3,
4, ... wavelengths in total), and the list of the particular wave-
lengths that are retained (e.g. 200 nm, 232 nm, ...).

4 1. Optimal number of components
The first step was to determine the optimal number of wave-
lengths to include in the final correlation. This number is
a tradeoff between the improvement each additional wave-
length adds to the model and the actual usability of the model.
Regarding usability, 3-wavelength spectrophotometric corre-
lations are common and easy to implement in tabletop spec-
trophotometer user interface. On the contrary, one would
easily understand that a 9-wavelength correlation quantify-
ing two concentrations would be quite troublesome to use
and raise doubts about the relevance of all the involved wave-
lengths. Furthermore, from a technical perspective, using an
excessive number of wavelengths would lead to overfitting,
i.e. very good performances on the calibration dataset which
are not reproducible.

Determining which set of wavelengths is relevant before-
hand is not an easy task (19). The first possibility is to let the
human operator select the wavelengths. An adequate start-
ing point would be to retain one for each absorption peak of
the species (nitrate, nitrite, dissolved organic matter). Still,
the question of how to select additional wavelengths remains.
Another possibility is to use a numerical optimizer to selected
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Fig. 2. Model development workflow and data management schematic

the most suitable wavelengths. We chose the second possibil-
ity.

The numerical procedure is as follows:

• First, the optimizer selected a subset of the 151 pos-
sible wavelengths, trains the PLS algorithm on train-
ing dataset and evaluates its performances on the test
dataset. From this, it produces a cost function value
associated to this first subset of wavelengths,

• Then, it determines another subset of wavelengths
likely to produce a lower cost function value and eval-
uate it

Still, a special care has to be taken in choosing the cost
function associated to this optimizer. Indeed, it is very likely
that including a large number of wavelengths would produce
lower cost function values biasing the process towards corre-
lations featuring a large number of wavelengths. Though the
question of the information added by each newly included
wavelength is to be raised. Luckily, a special metric, called
the Akaike Information Criterion (Eq. 1) (20), has been engi-
neered to deal with this problem. This metric combines both
the residual sum of square (RSS, over n data points), meaning

the prediction error, and the number of wavelengths involved
(k) to achieve this prediction. This way, models with a high
number of wavelengths but rather poor prediction improve-
ment are discarded.

AIC = 2k+nln(RSS) (1)
Then, the question of the choice of the optimizer itself

has to be addressed. Given the very high number of possi-
ble combinations (2151), brute force approach lies out of the
scope. The inclusion, or not, of a wavelength being a boolean
value and considering the large dimensionality (151 vari-
ables) of the problem, gradient based methods do not seem
appropriate either. Stochastic methods on the contrary have
been shown to cope well with such configurations. Among
them, particle swarm optimization is of note (21), as it is
rather easy to implement, to deploy on a parallel architec-
ture and capable of browsing considerable candidate spaces.
Still, its main drawback is that because of the social nature of
the swarm, it can sometimes lead to premature convergence.
To avoid this pitfall, it can be coupled with another stochas-
tic optimization method: the genetic algorithms. Together,
these optimization techniques form an adequate tool to solve
the problem at hands (for more details, the reader can refer
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4.2 3 and 4-wavelength models

to (22), a practical implementation can be found in the repos-
itory associated to this article). The optimization algorithm
parameters were set as follows: 400 particles/exemplars, cog-
nitive and social parameters of the swarm were both set to
0.6, the inertia followed a random chaotic model, the muta-
tion probability was set to 0.001. Runs were stopped after the
swarm’s best particle stagnated for 50 iterations.

Because of the stochastic nature of the optimizer and the
considerable size of candidate space, one cannot be sure of
uniqueness of the obtained solution. Thus, the optimizer
was run 1000 times (lasting about 2 days and a half, using
a laptop - Intel(R) Core(TM) i9-9880H CPU @ 2.30GHz -).
Most of the time, it selected 3 wavelengths, rarely 4. Us-
ing those 1000 thousand runs, 151 wavelengths were ranked
by occurrence. Then, models with increasing numbers of
wavelengths, starting by the most reported ones, were trained
and tested. The quality of the prediction was evaluated using
Predicted Residual Error Sum of Squares (PRESS) as output
metric. The influence of the number of wavelengths included
on the prediction PRESS score can be found in Figure 3. In
addition, the figure also reports the improvement associated
with the step-wise wavelength addition. The first comment is
that going from 1 to 2 wavelengths dramatically improves the
prediction (88 %). This is normal as one wavelength alone
cannot differentiate both nitrate and nitrite. Going to 3 and
4 wavelengths improved the prediction by 14 and 10 % re-
spectively. Afterwards, any additional wavelength does not
bring any relevant information (improvement ± 2 % centered
around 0).

Fig. 3. PLS regression accuracy with increasing number of wavelengths included in
the model. Black line: PRESS score. Grey line: improvement associated with the
last wavelength addition

From this, it can be concluded that at least two wavelengths
have to be included in the model, which is not surprising. In
addition, depending of the complexity one wants to manip-
ulate, 3 to 4 wavelengths in total could be included in the
final model. In the remaining part of this work, 3 and 4-

wavelength models are developed.

4 2. 3 and 4-wavelength models

The two models were calibrated separately using the same
workflow, only the computational time changed. In this
case, a systematic approach was chosen. This represents
151×150×149 = 3 374 850 possible combinations for the 3-
wavelength case and about 500 million for the 4-wavelength
case. All of those combinations were tested. This time, the
metric used to assess the quality of the prediction was the
Mean Squared Error (MSE) as it is less computational inten-
sive than the PRESS metric.

In the case of the 3-wavelength model, the retained wave-
lengths are: 200 nm, 224 nm and 234 nm (Eq. 2 and 3).
The obtained Mean Squared Error on the test dataset is 38.8
10−3 mg2.L−2. By superimposing them on the species spec-
tra (Fig. 4), one can gain some insights on the algorithm un-
derlying logic. In this case, the first wavelength corresponds
to the absorbance peak of nitrite. The second accounts for
a combination of both nitrate and nitrite and the third one to
nitrate only. All those wavelengths are located in the part of
the spectrum where the absorbance is maximum (below 260
nm). Species by species now, given the values of coefficients,
the main part of the nitrite concentration prediction relies on
the difference between the two last wavelengths and seems to
use the first as a correction (negative coefficient). For nitrate,
explanation does not appear to be as straightforward as all the
coefficients are of the same order of magnitude.

NO−
2 = −5.86A200nm + 33.20A224nm

−29.32A234nm −0.07 (2)

NO−
3 = 8.42A200nm −9.95A224nm

−7.69A234nm −0.10 (3)

In the case of the 4-wavelength model, the retained wave-
lengths are: 208 nm, 210, nm, 312 nm and 334 nm (Eq. 4 and
5), and the Mean Squared Error is 35.0 10−3 mg2.L−2. The
first comment is that the relative improvement actually asso-
ciated with the addition of a fourth wavelength is of 9.8 %
which is in agreement with previous section analysis. Then,
here again, some insights can be gained by analyzing the se-
lected wavelengths (Fig. 4). The two first wavelengths are
close-by located and associated with the nitrate peak of high-
est intensity. The third seems to account for nitrite lowest
intensity peak and the fourth to nitrate signal when nitrite
one extinguishes. It is interesting to note that the two first
wavelengths are so close that the nitrate absorbance does not
change between the two while nitrite one varies a lot. This
could allow the algorithm to fine tune its prediction of ni-
trite concentration. Regarding nitrate prediction, the constant
term (-0.31 mg.L−1) is relatively high and lies above ion
chromatography limit of quantification (0.2 mg.L−1). This
remark points towards possible overfitting of the model. Still,
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Fig. 4. Normalized absorbance spectra of pure nitrate, pure nitrite and retained wavelengths. Dotted gray lines: wavelengths retained for the 3-wavelength model. Dashed
black: wavelengths retained for 4-wavelength model. Continuous black line: nitrate absorbance spectrum. Continuous gray line: nitrite absorbance spectrum

further dissection seems irrelevant as increasing the num-
ber of wavelengths increased the complexity of the equations
lessening their explanability.

NO−
2 = −89.51A208nm + 96.49A210nm

−52.70A312nm + 47.54A334nm + 0.05 (4)

NO−
3 = 83.06A208nm −81.77A210nm

−97.16A312nm + 90.53A334nm −0.31 (5)

5. Algorithm validation
The next step after calibration was to challenge the mod-
els on a part of the dataset they never encountered before:
the validation dataset. For the sake of readability, the 3-
wavelength model is detailed first, then the differences with
the 4-wavelength model are highlighted before drawing a rec-
ommendation on which to use.

Figures 5 and 6 report the comparison of the predicted and
measured concentrations on the validation dataset for the 3-
wavelength model. As one can see, most of the predictions
fall within a ± 10 % interval around the measured value, few
within a ± 20 % interval and almost none lying more than
20 % away of the measured value. Furthermore the spread
around the first bisector is constant. In addition to being a to-
ken of the quality of the model, this means that the proposed
model is capable of dealing indifferently with samples con-
taining only nitrate, only nitrite or a mixture. These can be
considered as very satisfactory results.

In order to dive further into the results, errors can be an-
alyzed. Error distributions for nitrate and nitrite concentra-

Fig. 5. Comparison of the predicted and measured nitrate concentrations for the
3-wavelength model on the validation dataset. Line: first bisector. Shaded areas:
±10, ±20 and ±30 % deviation.

tions predictions are drawn on Figures 7 and 8. The er-
rors are normally distributed around 0.000 mg.L−1 for ni-
trate and 0.011 mg.L−1 for nitrite, with standard deviations
of 0.104 and 0.092 mg.L−1 respectively. Thus the proposed
model exhibits no bias and a narrow spread of errors. Fi-
nally, Limit of Detection (LoD, Eq. 6) and Limit of Quan-
tification (LoQ, Eq. 7) can be computed using mean blank
value (X̄b) and blank standard deviation (σb) (23). As X̄b

turned out to be negative for both species (-0.074 and -0.021
mg.L−1 for nitrate and nitrite respectively), 0 was retained
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4.2 3 and 4-wavelength models

Fig. 6. Comparison of the predicted and measured nitrite concentrations for the
3-wavelength model on the validation dataset. Line: first bisector. Shaded areas:
±10, ±20 and ±30 % deviation.

instead. For nitrate, this procedure yielded a LoD
NO−

3
of

0.153 mg.L−1 and a LoQ
NO−

3
of 0.509 mg.L−1. While for

nitrite a LoD
NO−

2
of 0.133 mg.L−1 and a LoQ

NO−
2

of 0.444

mg.L−1 were obtained. These values are close to the one of
ion chromatography. Furthermore, LoQs lie just below the
lower bounds of the ranges of values used to calibrate the
algorithm, which is normal.

Fig. 7. Error distribution for the 3-wavelength model nitrate concentration prediction
on the validation dataset. Bin width: 0.025 mg.L−1

LoD = X̄b + 3σb (6)

LoQ= X̄b + 10σb (7)

Fig. 8. Error distribution for the 3-wavelength model nitrite concentration prediction
on the validation dataset. Bin width: 0.025 mg.L−1

The same analyzes were undergone for the 4-wavelength
model. While it provided results similar to the ones of the 3-
wavelength model, differences arose. For example, the Mean
Squared Error on the validation dataset was higher for the 4-
wavelength (8.6 10−3 mg2.L−2) than for the 3-wavelength
one (11.9 10−3 mg2.L−2). The error distribution standard
deviations are also somewhat higher for the 4-wavelength
model, 0.110 and 0.107 mg.L−1 for nitrate and nitrite respec-
tively. It means that not only the predictions of this model are
less accurate, they are also on average further away from the
actual value than those of the 3-wavelength model. Recalling
the high value of the constant term (-0.31 mg.L−1) for the
4-wavelength model, these three observations point towards
potential overfitting (high performances and dependence on
the calibration dataset). Thus, we can only advise to use the
3-wavelength model, which is also incidentally more conve-
nient to use.

6. Conclusion
This article presented a machine learning workflow allowing
to construct spectrophotometric equations in order to quan-
tify nitrate and nitrite within a sample. The quantification
is based on three wavelengths: 200, 224 and 234 nm. From
a practical perspective, the proposed model is not only
calibrated but also carefully validated, so that the equations
can readily be used (LoQ of 0.5 mg.L−1, uncertainty of
± 10 %). This would greatly shorten the delay to obtain
samples nitrate and nitrite concentrations (or only one of
them) compared to ion chromatography while retaining
adequate accuracy. Furthermore, the workflow is presented
step-wisely, with emphasis on relevant details so that other
scholars may deploy in their own laboratory. Finally, the data
and source files are made available in an online repository.
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