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Abstract 

Purpose: Methods for response shift (RS) detection at the individual level could be of great 

interest when analyzing changes in patient-reported outcome data. Guttman errors (GEs), which 

measure discrepancies in respondents’ answers compared to the average sample responses, 

might be useful for detecting RS at the individual level between two time points, as RS may 

induce an increase in the number of discrepancies over time. This study aims to establish the 

link between recalibration RS and the change in the number of GEs over time (denoted index 

𝐼) via simulations and explores the discriminating ability of this index. 

Methods: We simulated the responses of individuals affected or not affected by recalibration 

RS (defined as changes in the patients’ standard of measurement) to determine whether 

simulated individuals with recalibration had a greater change in the number of GEs over time 

than individuals without recalibration. The effects of factors related to the sample, the 

questionnaire structure and recalibration were investigated. As an illustrative example, the 

change in the number of GEs was computed in patients suffering from eating disorders. 

Results: Within simulations, simulated individuals affected by recalibration had, on average, a 

greater change in the number of GEs over time than did individuals without RS. Some of the 

parameters related to the questionnaire structure and recalibration magnitude appeared to have 

substantial effects on the values of 𝐼. Discriminating abilities appeared, however, globally low. 

Conclusion: Some evidence of the link between recalibration and the change in GEs was 

found in this study. GEs could be a valuable nonparametric tool for RS detection at a more 

individual level, but further investigation is needed. 
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Introduction 

Patient-reported outcomes (PROs) are increasingly being used in longitudinal studies to take 

into account patients’ perspectives on healthcare and to assess perceived health changes over 

time [1]. PROs are often investigated via questionnaires (directly completed by patients), 

including several items usually grouped into domains (e.g., physical, emotional, social 

functioning, etc.). The unobservable attributes targeted by these questionnaires (such as fatigue 

and anxiety) are assumed to be represented by nonobservable continuous variables known as 

“latent variables”. 

It is usually assumed that patients’ perception of the concept of interest, the questions, and the 

response categories remain the same over time and that observed changes reflect changes in the 

latent variable (i.e., longitudinal measurement invariance). Hence, patients’ responses at two 

different times are assumed to be directly comparable. However, the cognitive [2] and affective 

processes involved in questionnaires completion are complex, and PRO changes in longitudinal 

studies can be difficult to analyze and interpret. Moreover, the assumption of invariance may 

be questionable, particularly in the context of chronic diseases where patients regularly adapt 

to their life circumstances. Hence, there might be changes in the meaning of patients’ self-

evaluations of a target construct, referred to as response shift (RS) [3]. RS is usually assumed 

to have 3 manifestations: (1) recalibration (changes in the patient’s internal standards of 

measurement), (2) reprioritization (changes in the relative importance a patient gives to a certain 

component of the target construct, e.g., social functioning, which can become more important 

than physical functioning) and (3) reconceptualization (changes in the patient’s definition of 

what is being measured). It is essential to assess changes experienced by patients taking into 

account RS to avoid measurement bias1 and to detect and quantify RS in a reliable and unbiased 

manner because of its possible association with patients’ adaptation [3–5]. 

Several statistical methods have been proposed for RS detection. Until recently, these methods 

were all developed and applied at the domain level, which means that analyses are performed 

on the domain scores of a multidimensional scale. The most widely used method is Oort’s 

procedure based on structural equation modeling (SEM) [6], which allows for the detection of 

the three manifestations of RS. 

                                                 
1 i.e., nonrandom errors in the latent variable estimates 
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Recently, interest in exploring RS at the item level has increased [7]. Indeed, item-level 

methods could provide an interesting and complementary perspective when investigating RS, 

as domain-level analyses may sometimes not appropriately reflect what is occurring at the item 

level, especially if RS has opposite effects on different items. Among the item-level methods, 

ROSALI (RespOnse Shift ALgorithm at Item-level) based either on Item Response Theory 

(IRT) or Rasch Measurement Theory (RMT) has been proposed [8, 9]. IRT-based ROSALI 

aims at detecting RS between two measurement occasions by allowing the item parameters of 

a longitudinal generalized partial credit model to vary over time (i.e., item discrimination 

parameter and item difficulty parameter). Changes in discrimination parameters and difficulty 

parameters are assumed to be indicative of reprioritization and recalibration RS, respectively. 

RMT-based ROSALI follows the same algorithm as IRT-based ROSALI but relies on a 

longitudinal partial credit model; hence, it enables the detection of recalibration only. For SEM, 

Oort’s procedure has also been applied at the item level in different ways to detect recalibration 

and reprioritization [10–14]. 

Most methods, such as Oort’s procedure and ROSALI, assume homogeneous RS within the 

sample or subgroups of patients known in advance. This assumption is probably too restrictive. 

Indeed, RS is likely to occur at different times and have different manifestations and various 

effect sizes among patients. In addition, whether at the domain or item level, these methods are 

parametric and thus rely on assumptions (e.g., normal latent variable distribution, normally 

distributed item responses, and link functions) that might be too restrictive. 

A method relaxing these assumptions and focusing on the item and individual levels could be 

of great practical value. At the item level, Blanchin et al. suggested that RS (by interfering with 

patients’ internal standards of measurement and life priorities) might induce discrepancies in 

individuals’ responses over time relative to sample responses [15]. Based on this assumption, 

they identified, in a real data application, two groups of patients: one with an approximately 

constant number of discrepancies over time (assumed unlikely to be affected by RS) and another 

with an increasing number of discrepancies (assumed likely to be affected by RS). The 

discrepancies were measured nonparametrically using the (weighted) Guttman errors (GEs), 

which were obtained by comparing the individual responses to the distribution of the sample 

responses. The ROSALI algorithm detected RS in the subgroup of patients identified as likely 

to be affected by RS and did not detect RS in the other subgroup. Hence, it was hypothesized 

that GE could be a useful nonparametric tool for item-level RS detection at a more individual 

level; however, this was an empirical example, and one may wonder whether RS actually leads 
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to an increase in the number of GE and to what extent RS has occurred if the number of GE 

increases over time. In addition, no information is currently available on the ability of the 

change in the number of GEs to discriminate patients affected by RS from the others. 

We performed an exploratory simulation study aiming at 1) establishing the link between 

recalibration RS and the change in the number of GEs over time (i.e., determining whether 

recalibration comes with an increase in the number of GEs over time) in various scenarios 

representative of clinical research studies, 2) determining the simulation parameters associated 

with this change, and 3) providing some data on the discriminating ability of this GEs-based 

index in the case of recalibration RS. 

 

Methods 

We chose to ascribe our GEs-based index to the detection of recalibration in this first simulation 

study for the following reasons: 1) we wanted to focus on unidimensional scales; hence, 

reconceptualization could not be considered for now 2) the potential different meanings and 

interpretations of reprioritization at the item level from a methodological or conceptual 

perspective have already been raised [7], and Blanchin et al. went even further by questioning 

the pertinence of the concept of reprioritization at the item level [9]. 

Guttman errors for recalibration RS detection 

Let us consider a fictitious sample of individuals responding to a scale composed of 4 items, 

with 4 response categories, namely, 0, 1, 2 and 3, at two measurement occasions (𝑡1 and  𝑡2). 

Let us assume that the following assumptions hold at both time points: 1) unidimensionality 

(i.e., all items in the questionnaire measure the same latent variable), 2) local independence 

(i.e., given the latent variable, item responses are independent), and 3) monotonicity (i.e., when 

the latent variable increases, the probability of obtaining at least score 𝑥 on item 𝑗 does not 

decrease). For simplicity, let us also assume that the underlying latent variable remains stable 

over time for all patients. The distributions of the sample responses at 𝑡1 are given in Figure 1.  
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Guttman errors 

To define GEs, we have to order all the response categories above 0 based on their difficulty. 

The term “difficulty” refers to how frequently a response category is endorsed: the less a 

category is endorsed, the more difficult it is considered to be. At 𝑡1, all response categories 

greater than 0 can be ordered from the easiest to the most difficult. The difficulty of the response 

category 𝑥 (= 1, 2, 3) from item 𝑗 (= 1, 2, 3, 4) at 𝑡1 is the proportion of patients scoring below 

𝑥 for item 𝑗 at 𝑡1. 

In our example, we can observe that the easiest positive response category is “1” of item 4 since 

only 10% of the sample scored below this option. The second easiest category is “1” of item 3 

(15% of the sample scored below this option). And so on, until the most difficult category which 

is “3” of item 1, since 80% of the sample scored below this option (i.e., 0, 1 or 2). Null 

categories are not included in this order since all patients endorse them. The order so defined is 

called the difficulty order observed at 𝑡1. The term “difficulty” is sometimes referred to as 

“popularity” [16], easy and difficult response categories are then called “popular” and 

“unpopular”, respectively. 

GEs measure discrepancies in individual patient responses compared to the distribution of the 

sample responses. A GE occurs every time a patient endorses a response category for a given 

item, while he/she does not endorse an easier response category (for another item) [17]. For 

instance, a patient who responded item 1 = 2, item 2 = 1, item 3 = 2 and item 4 = 2 at 𝑡1 

has one GE according to the order defined at 𝑡1. Indeed, he/she endorsed category “2” for item 

1 but not category “2” for item 2. A formal definition of GE can be found in Emons’ works 

[18]. 

Guttman errors and recalibration RS 

Let us now assume that recalibration is observed on item 4 for half the sample between 𝑡1 and 

𝑡2 (same manifestation and effect size for all affected patients) and that its three positive 

response categories’ difficulties have increased at 𝑡2. 

At time 𝑡2, patients without RS should give similar responses to those at 𝑡1 since neither their 

latent variable nor their perception of the response categories have changed. Hence, among 

patients without RS, the GEs according to the order at 𝑡1 is expected to remain the same over 

time. In contrast, at time 𝑡2, responses for item 4 from patients affected by recalibration should 

deviate from the distribution of the sample responses observed at time 𝑡1. The order observed 
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at 𝑡1 should no longer fit their responses due to recalibration, inducing more discrepancies. 

Hence, the number of GE (based on the order at 𝑡1) of patients affected by recalibration is 

expected to increase over time. For example, if the patient previously introduced was affected 

by the recalibration on item 4, he/she could have responded at the second time point: item 1 =

2, item 2 = 1, item 3 = 2 and item 4 = 0 (due to recalibration, the response categories of item 

4 became more difficult to endorse). According to the order defined at 𝑡1, he/she has eight GEs 

at 𝑡2 (instead of one at 𝑡1). His/her overall sum score (computed by summing item responses) 

has changed but reflects the occurrence of recalibration and not a latent variable change. 

Hence, counting the number of GEs over time using the order observed at 𝑡1 could help identify 

recalibration. Indeed, patients without recalibration should have an approximately constant 

number of GEs over time, while an increase should be observed among patients with 

recalibration. We introduced a GEs-based index: the change over time in the number of GEs 

computed using the difficulty order defined at 𝑡1 (denoted 𝐼), defined as follows: 

𝐼 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝐸𝑠𝑜𝑟𝑑𝑒𝑟 𝑡1
(𝑡2) − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝐸𝑠𝑜𝑟𝑑𝑒𝑟 𝑡1

(𝑡1)  

where 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝐸𝑠𝑜𝑟𝑑𝑒𝑟 𝑡1
(𝑡∗)  denotes the number of GEs observed at 𝑡∗ using the difficulty 

order defined at 𝑡1. It should be noted that at the second time point, the Guttman errors are 

computed using the ordering defined at 𝑡1, hence there are not Guttman errors in the 

conventional sense, but slight adaptations of Guttman errors. The index 𝐼 can be computed for 

each individual. We can expect that 𝐼 ≈ 0 among patients without RS and 𝐼 ≥  0 among those 

with recalibration. 

The link between recalibration RS and GEs was explored using a simulation study. Different 

parameters commonly encountered in analyses of PRO data were explored to determine their 

effect on the values of 𝐼. In a second step, we assessed the ability of 𝐼 to discriminate patients 

affected by recalibration from others. 

Simulation study 

Data simulation 

We simulated the responses of 𝑁 individuals to a unidimensional questionnaire composed of 𝐽 

polytomous items with 𝑀 response categories, numbered from 0 to 𝑀 − 1, at two different time 

points. Endorsing difficult response categories was assumed to be manifestations of a high 

latent variable level. The longitudinal partial credit model (LPCM) [19] was chosen to generate 
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data since it allowed modelling response category probabilities of polytomous items forming a 

unidimensional scale across time and provided a possibility to simulate recalibration for a 

changing proportion of individuals. All simulation parameters chosen for data generation are 

given in Table 1. Additional information on the simulation implementation is provided in 

Appendix 1. 

Recalibration operationalization 

Recalibration was operationalized as changes over time in the LPCM difficulty parameters [8, 

9]. Recalibration may be uniform (UR: a change in all difficulty parameters of a given item in 

the same direction and to the same extent) or nonuniform (NUR: changes occur in various 

directions and intensities). 

At the second time point 𝑡2, recalibration was simulated as follows: 

- Only one type of recalibration (UR or NUR) with the same size per data set was considered. 

- The proportion 𝑝 of the sample that was affected by recalibration was variable. 

- The items affected by this recalibration were randomly selected (the same for all individuals 

affected by recalibration). 

To generate the responses of the simulated patients affected by UR at 𝑡2, all the difficulty 

parameters of the item(s) affected by recalibration decreased (-1), making the associated 

response categories easier. For simulated patients affected by NUR, difficulty parameters were 

differentially shifted at 𝑡2 by values ranging from 0 to 2𝜂, with 𝜂 = 1.8. The first positive 

response category kept the same difficulty parameter over time, while other categories became 

more difficult. For simulated patients not affected by RS, the difficulty parameters remained 

constant over time. 

We aimed to investigate the effect of recalibration RS-related factors (such as the number of 

items with recalibration 𝐽𝑅𝑆, the proportion of the sample that was affected by recalibration 𝑝, 

and the recalibration type: UR and NUR) but also more global simulation parameters (the 

sample size 𝑁, the number of items in the questionnaire 𝐽, the number of response categories 

per item 𝑀, and the average change in the latent variable over time ∆). Simulation parameters 

were chosen to be representative of clinical research studies (Table 1). 
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The combination of all the simulation parameter values led to a total of 810 scenarios, and 

each of them was replicated 500 times. 

Statistical analysis 

Within the 500 replications of each scenario, index 𝐼 was computed for each individual. For 

each scenario, the boxplots of the 500 mean values of index 𝐼 obtained respectively among 

simulated patients affected and not affected by recalibration RS were plotted. 

Over all replications, the discriminating abilities associated with the change in the number of 

GEs over time (i.e., index 𝐼) were estimated by the area under the receiver operating 

characteristic curve (AUROC), where response shift was the response variable and index 𝐼 was 

the explanatory variable. Boxplots of the 500 AUROCs were also plotted (one per scenario). 

Stata software release 15 was used for data generation (simirt module) and statistical analyses 

(StataCorp, 2015). Graphics were realized using the 3.5.3 version of R software (R Core Team, 

2019). 

Results 

Simulation study 

A small subset of scenarios is selected to present a representative portrayal of the variability of 

index 𝐼 across experimental conditions (𝑁 = 200, 25% of the sample affected by recalibration, 

negative average change in the latent variable over time Δ = −0.2; these values were chosen 

to approach the empirical example). Of note, all results are available in Online Resource 1. 

Boxplots of the 500 average values of 𝐼 among simulated patients with/without recalibration 

obtained for every scenario where 𝑁 = 200, 25% of the sample was affected by recalibration 

RS, Δ = −0.2 (negative average change in the latent variable over time) and RS = uniform 

recalibration are given in Figure 2 according to the number of items affected by recalibration 

(𝐽𝑅𝑆), the number of items (𝐽) and the number of response categories/item (𝑀). Graphs under 

the same simulation conditions but for scenarios with nonuniform recalibration are given in 

Figure 3. 

Among simulated patients not affected by recalibration, the means of 𝐼 fluctuated around values 

close to 0, regardless of the scenario considered. A slight increase in the means of 𝐼 could, 

however, be observed when 𝐽 and 𝑀 increased. Among simulated patients with UR, the means 
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of 𝐼 fluctuated around positive values. These values remained low for scenarios with 𝑀 = 4; 

however, they rose sharply when M increased. This rise was larger when 𝐽 and 𝐽𝑅𝑆 were large. 

For simulated patients affected by NUR (𝜂 = 1.8), similar effects as those observed among 

simulated individuals affected by UR were observed for the average index values, but the trends 

were much less pronounced. 

For each scenario, the dispersion of the means of 𝐼 increased with 𝐽 and 𝑀; the larger the overall 

number of response categories was, the wider the range of possible values for the number of 

GEs. This dispersion decreased logically as 𝑁 increased. 

Boxplots of the 500 AUROCs obtained for every scenario where 𝑁 = 200, 25% of the sample 

was affected by recalibration RS, and Δ = −0.2 (negative average change in the latent variable 

over time) are given in Figure 4 (for uniform recalibration) and Figure 5 (for nonuniform 

recalibration) according to the number of items affected by recalibration (𝐽𝑅𝑆), the number of 

items (𝐽) and the number of response categories/item (𝑀). 

For UR, the discriminating abilities of 𝐼 appeared to be low over all scenarios, particularly when 

𝑀 = 4. Indeed, in these cases, the average AUROC remained under 0.60. A slight increase 

could nonetheless be observed with increasing 𝑀 and 𝐽𝑅𝑆. For instance, the scenario with 3 

items affected by recalibration, 𝐽 = 7 and 𝑀 = 10 resulted in an average AUROC close to 0.70. 

For NUR, the same phenomena were observed, but the AUROC values were even lower. 

Illustrative example 

To illustrate these results, we used a longitudinal study called EVALADD, which takes place 

at the Addictive Medicine and Psychiatry Department of Nantes University Hospital (France). 

The EVALADD cohort follows patients starting treatment for a behavioral addiction in order 

to assess the determinants of addictive disorders and, consequently, to improve therapies and 

preventive strategies. For this analysis, we focused on patients suffering from eating disorders 

(EDs) included between September 2012 and October 2016 (ED diagnoses were established 

according to the DSM-IV criteria [20] and explored via the French version of the Mini 

International Neuropsychiatric Interview [21, 22]). Patients completed self-reported 

questionnaires, including the Eating Disorder Inventory 2 (EDI-2) [23], at the initiation of 

nutritional and psychotherapeutic care (𝑡1) and one year later (𝑡2). The EDI-2 is an 11-domain 

scale translated into French and validated by Archinard et al. [24]. We focused on the “Drive 

for thinness” domain since clinicians felt that the corresponding items could potentially be 
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affected by recalibration after care (recalibration being part of the goals of care). “Drive for 

thinness” includes 7 items with a six-point Likert response scale ranging from “never” to 

“always” (1. I eat sweets and carbohydrates without feeling nervous; 2. I think about dieting; 

3. I feel extremely guilty after overeating; 4. I am terrified of gaining weight; 5. I exaggerate or 

magnify the importance of weight; 6. I am preoccupied with the desire to be thinner; 7. If I gain 

a pound, I worry that I will keep gaining). We only considered patients who fully completed 

the scale at both time points (209 patients of the 210 who attended both visits). We computed 

the change in the number of GEs (index 𝐼) for each patient. Then, we assessed the association 

between index 𝐼 and the covariates collected at baseline that seemed relevant to clinicians 

involved in the cohort (i.e. sociodemographic data, ED characteristics, psychiatric 

comorbidities [20–22], and character traits measured by the Temperament and Character 

Inventory [25–27]). We assessed the associations between index 𝐼 and the other covariates with 

Mann-Whitney and Kruskal-Wallis tests (for categorical covariates) and Spearman's rank 

correlation coefficient 𝑟 (for quantitative covariates). Due to the low discriminating ability of 

index 𝐼, no strong association was expected. 

Across the sample, the average age at baseline was 24.2 (sd = 8.8), and most patients were 

women (93%). Of the 209 patients, 31% suffered from restricting anorexia nervosa, 13% from 

binge eating/purging anorexia nervosa, 25% had bulimia nervosa, 6% displayed binge eating 

disorder and 24% had eating disorders not otherwise specified (i.e., did not meet the criteria for 

other diagnoses). The ED had, on average, started 7.3 years before (sd = 8.2), and the average 

BMI was 18.7 kg/m² (sd = 5.4). 

Index 𝐼 was associated with baseline “Drive for thinness” score (𝑟 = 0.28, p-value < 0.001) and 

ideal BMI (𝑟 = -0.17, p-value = 0.017). These results indicated that higher values of index 𝐼 

are associated with greater concern about body image, weight, and shape. In addition, patients 

with current mood disorders at baseline showed lower distribution of index 𝐼 than patients 

without (median = 0 versus 1.5, p-value = 0.036). No other significant association was noticed 

(Table 2). These results may suggest several clinical hypotheses related to RS. Indeed, patients 

without mood disorders might be more receptive to interventions targeting cognitive distortions 

related to body image, and they may therefore be more prone to RS. In addition, among patients 

with high concern about body image, weight, and shape, care might tend to focus more on 

deconstructing cognitive distortions and thus induce RS. However, these associations remain 

globally weak in our sample. 
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Discussion 

Main results 

Some evidence of the link between recalibration RS and the change over time in the number of 

GEs was found in our simulation study. Indeed, as expected, the GEs-based index 𝐼 remained 

on average close to 0 among simulated patients not affected by RS, while its average values 

increased among simulated patients with recalibration. However, the performance of 𝐼 

depended on 𝑀, 𝐽𝑅𝑆, and the type of recalibration. 

The best results were obtained within scenarios with UR. Indeed, when 𝑀 > 4, substantial 

differences between the means of 𝐼 among simulated patients with/without recalibration were 

noticed. These differences were larger when 𝐽 and 𝐽𝑅𝑆 were large. When 𝑀 = 4, the index 𝐼 

had lower performance: differences between the means of 𝐼 among simulated patients 

with/without RS were small or even nonexistent.  

This might be due to the difficulty parameters of the LPCM used to simulate data. Indeed, when 

𝑀 = 4, they were widely spaced, and shifts over time (among individuals with recalibration) 

did not impact the ordering of difficulty parameters. Thus, the difficulty order observed at 𝑡1 

still fitted the responses at 𝑡2 of patients with recalibration, resulting in a stable number of GEs 

over time. However, within scenarios with 𝑀 = 7 or 10, gaps between the difficulty parameters 

narrowed. Therefore, in these scenarios, shifts over time among individuals with recalibration 

did impact the ordering of the difficulty parameters (leading to an increase in the number of 

Guttman errors for these simulated patients). Size of UR used for the simulations might not be 

detectable with index 𝐼 when 𝑀 = 4. This issue is problematic and limiting since several 

domains within QoL questionnaires (SF-36, QLQ-C30…) are composed of items with four or 

fewer response categories [30, 31]. Additional UR sizes should hence be explored. 

When NUR was simulated, differences between the means of 𝐼 among simulated patients with 

and without recalibration RS were less marked than with UR. Trends noticed with UR were 

still observed but less pronounced. Several reasons might explain these results. First, when 𝑀 =

4, the argument evoked for UR concerning the widely spaced difficulty parameters also applies. 

In addition, we operationalized NUR by differentially shifting the difficulty parameters of the 

response categories above “1”. Thus, the response category “1” of items affected by 

recalibration kept the same difficulty parameter over time, and some of the shifts for categories 

above “1” were very small. It might also have hampered the generation of discrepancies at 𝑡2. 
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In addition, unfortunately, the random selection of items affected by recalibration led to shift 

response categories among the most difficult to make them even more difficult. Again, this has 

probably hampered the generation of discrepancies at 𝑡2. The effect of the position of the 

response categories affected by recalibration should hence be explored. 

Limitations and perspectives 

In the simulation study, we decided to focus on recalibration to determine whether index 𝐼 is 

sensitive to this RS manifestations. However, shifts in GEs could be the result of other types of 

RS (i.e. reprioritization and reconceptualization), thus further investigations are needed to 

determine if index 𝐼 is sensitive or insensitive to other RS manifestations. 

In addition, we assumed that changes over time in the number of GEs were due to RS, but 

phenomena other than RS can also interfere in the real world. For instance, a change in the 

individual latent variable level can impact the range of the possible values for the number of 

GEs and hence potentially interfere with index 𝐼. Within the simulation study, three 

configurations were considered regarding the mean change in the latent variable level over time 

(no change in the average latent variable level, an average decrease of 0.2 in the latent variable 

level and an average increase of 0.2). The results were very similar among these 3 conditions, 

but it would be worth investigating larger size of change. The normed number of GEs (i.e., the 

number of GEs divided by the maximum number of GEs that was achievable given the patient's 

score and the difficulty order considered) [18] could also be a path to follow to take into account 

changes in the latent variable at the individual level; the index would hence be the change in 

the normed number of GEs (denoted 𝐼𝑛𝑜𝑟𝑚). The results for this index within the scenarios 

emphasized in this article are given in Online Resource 2. It is important to note that we 

remained under the situation where the questionnaire was still adapted to the population at the 

second time point. If it turns out that the questionnaire is no longer adapted to the studied 

population at the second time point, this method would not be adequate (the same would be true 

for other RS detection methods). 

Moreover, phenomena other than RS, such as differential item functioning and violation of the 

local independence assumption, can also interfere with the index. Indeed, if some patients 

perceive items differently than the majority of the sample at 𝑡1 (interpreted as differential item 

functioning, DIF [32, 33]), their responses might result in numerous GEs from the very first 

measurement occasion. In this case, we may wonder if the changes in the number of GEs is due 

to RS, DIF, or another phenomenon. In addition, we assumed within the simulation study that 
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the assumption of local independence (at a time point and across time 𝑡1 and time 𝑡2) holds. 

However, several forms of violation can occur in the real world. For instance, at one time point, 

two types of violations can occur. First, the targeted latent variable alone may not be sufficient 

for explaining the correlations among some subsets of items. This violation is referred to as 

trait dependence and is a type of dimensionality issue [34] because additional unmodeled latent 

variables are involved. Second, the response to one item may depend on the response given to 

another item. Such an issue is a violation of statistical independence and is referred to as 

response dependence [34]. Both phenomena might impact the number of GEs but in opposite 

directions. Response dependence, by increasing the similarity of the individuals’ responses, 

might induce a decrease in the number of GEs. In contrast, trait dependence, as an additional 

source of variation, might induce an increase in the number of GEs [35]. However, these 

violations of local independence are likely to occur at both time points, limiting the impact on 

the index. Several diagnosis and detection methods for local dependence exist within Rasch 

measurement theory (see for instance [35–37]), item response theory ([38–44]) and the 

nonparametric item response theory framework ([45]). In addition, across measurement 

occasions, the correlations among an individual’s responses might be more important than what 

the latent variable can explain. For instance, it can be easier to endorse an item when it has 

already been endorsed before. This phenomenon is also a violation of local independence 

(response dependence across time points). Olsbjerg and Christensen argued that such a violation 

could lead to spurious evidence of recalibration and reprioritization (designated by the term 

“item parameter drift” in their work) [46]. Local dependence across time points has been 

operationalized as changes in item difficulty parameters over time, depending on the responses 

given at the first time point [46, 47]. Following this operationalization, violation of local 

independence could also lead to changes in the number of GEs, resulting in the same 

manifestation as that for RS. SAS macros, which are available to test the assumption of local 

independence across time points and item parameter invariance over time within IRT and RMT 

models at the sample level (based on likelihood ratio tests) [48, 49], can be used to test these 

assumptions. 

Intermittent missing data (MD) were left out of this simulation study as the number of GEs 

cannot be determined for patients who did not respond to all items. Intermittent MDs are, 

however, commonly encountered in clinical research and psychometrics. In this case, the 

normed number of GEs could be computed on the subset of nonmissing items for each patient. 
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Finally, we simulated samples that were partly affected by only one type of recalibration at a 

time (UR or NUR) with the same size of RS for all affected patients. The individual nature of 

this phenomenon was neglected. Simulations with subgroups of patients affected by different 

sizes and types of recalibration should be explored. 

Alone, the change in the number of GEs has a low discriminating ability. However, it could be 

used as a preliminary analysis (when RS occurrence is suspected) to identify covariates 

associated with RS or possibly a subgroup of patients more likely to present RS. Therefore, 

index 𝐼 may guide the choice of the adequate method for identifying RS and estimate its size 

(by introducing a covariate or conducting the analysis at the subgroup level). However, the 

methodology for defining the threshold to classify individuals must still be developed. Indeed, 

we have shown in our simulation study that patients without RS had a value of 𝐼 that fluctuated 

on average around approximately 0, yet some variability was observed, notably when 𝐽 and 𝑀 

increased. This variability generated an overlap in the distributions of index 𝐼 for patients with 

and without RS. This phenomenon makes it difficult to define a threshold for the index (which 

would likely be a function of 𝐽 and 𝑀). To overcome the effect of the questionnaire structure 

on the threshold, the normed number of GEs could be used instead of the number of GEs since 

it takes into account the maximum number of GEs reachable for each individual given the 

questionnaire structure. 

Conclusion 

Some evidence of the link between RS and the change in GEs was found in this study. GEs 

could be a valuable nonparametric tool for RS detection at a more individual level, but further 

investigation is needed.  
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Appendix 1:  Simulation Implementation  

Longitudinal Partial Credit Model  

 

The longitudinal Partial Credit Model (LPCM) was chosen to generate data since it allowed 

modelling response categories probabilities of polytomous items forming a unidimensional 

scale across time, and provided a possibility to simulate RS for a changing proportion of 

patients. The probability of patient 𝑛 to answer 𝑚 (= 0,… ,𝑀 − 1) on item 𝑗 at time 𝑡 under 

the LPCM is given by: 

𝑃(𝑋𝑛𝑗
(𝑡)
= 𝑚|𝜃𝑛

(𝑡)
, 𝛿𝑗1
(𝑡)
, … , 𝛿𝑗𝑀−1

(𝑡) ) =
exp(𝑚. 𝜃𝑛

(𝑡) − ∑ 𝛿𝑗𝑝
(𝑡)𝑚

𝑝=1 )

∑ exp (𝑙. 𝜃𝑛
(𝑡) − ∑ 𝛿𝑗𝑝

(𝑡)𝑙
𝑝=1 )𝑀−1

𝑙=0

 

Where: 

𝑋𝑛𝑗
(𝑡)

 denotes the response to the item 𝑗 = 1,… , 𝐽 of the individual 𝑛 at time 𝑡 

𝜃𝑛
(𝑡)

 stands for the latent variable level of the individual 𝑛 at 𝑡 (realization of the random variable 

Θ). 

 (Θ
(𝑡1)

Θ(𝑡2)
)~𝑁 ([

𝜇1
𝜇2
] , Σ = [

𝜎1
2 𝜎1,2

𝜎1,2 𝜎2
2 ]) 

𝛿𝑗𝑚
(𝑡)

is the difficulty of the response category 𝑚 = 1,… ,𝑀 − 1  from item 𝑗 at the time point 𝑡.   

If 𝛿𝑗𝑚
(𝑡)

 is low, the proportion of patients scoring 𝑚 or more to item 𝑗 will be high: 𝑚 is hence 

an easy response category (vice versa for difficult response categories). Null response 

categories do not have a difficulty parameter. 

 

At the first measurement occasion, difficulty parameters were chosen to be spaced along the 

latent variable continuum (assumed normally distributed, with a zero mean and a standard 

deviation equaled to 1).  For each item 𝑗, the difficulty parameter of the first positive response 

category (denoted 𝛿𝑗1
(𝑡1)

) equaled the 
𝑗

𝐽+1
𝑡ℎ quantile from a 𝑁(0,1). Difficulty parameters of 

the following response categories were then regularly shifted from the first one: 𝛿𝑗𝑚
(𝑡1) = 𝛿𝑗1

(𝑡1) +

(𝑚 − 1) ×
2

𝑀−2
 .  Finally, difficulty parameters of all items were centered on the mean δ̅ =

∑ 𝛿𝑗𝑚
(𝑡1)

𝑗,𝑚

𝐽(𝑀−1)
 so that difficulty parameters were centered on the mean of the latent variable 

distribution (i.e. 0). It hence corresponded to the situation where the questionnaire is suitable 
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for a population with a latent variable following a standard normal distribution. At the first 

measurement occasion, the model is a rating scale model. 

Recalibration operationalization  

To simulate the responses of patients affected by UR at 𝑡2, we choose to shift by -1 all the 

difficulty parameters of the item(s) affected by recalibration, making all response categories 

easier. For patients affected by NUR, difficulty parameters were differentially shifted by values 

ranging 0 to 2𝜂,with 𝜂 = 1.8: the first positive response category kept the same difficulty 

parameter over time, while other categories became more difficult. Finally, we kept the 

difficulty parameters constant over time to simulate the responses of patients not affected by 

RS.  

for all 𝑚 in {1, … ,𝑀 − 1},  𝛿𝑗𝑚
(𝑡2) = {

𝛿𝑗𝑚
(𝑡1) + 𝜂𝑚 for individuals affected by RS

      𝛿𝑗𝑚
(𝑡1)             for individuals not affected by RS

   

For UR, 𝜂𝑚
𝑈𝑅 = −1 for all 𝑚 in {1, … ,𝑀 − 1} 

For NUR, 𝜂𝑚
𝑁𝑈𝑅 = 

{
 
 

 
 

(𝑚−1)𝜂

𝑚
       if     1 ≤ 𝑚 <

𝑀

2

𝜂             if      𝑚 =
𝑀

2
(𝑀−𝑚+1)𝜂

𝑀−𝑚
       if     

𝑀

2
<  𝑚 ≤ M-1

 where 𝜂 = 1.8
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Fig. 1 Percent stacked barchart showing the proportion of patients choosing each response 

category (0, 1, 2, 3) for each item (item 1, item 2, item 3, item 4) at 𝑡1 (fictitious example)
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Fig. 2 Boxplots of the 500 mean values of index 𝐼 obtained for each scenario among simulated patients affected by response shift (in white) and 

among simulated patients not affected by response shift (in grey). Each pair of boxplots corresponds to one scenario. Subset of scenarios considered: 

𝑁 = 200 (sample size), 𝑝 =25% (proportion of patients affected by response shift), Δ = −0.2 (average change in the latent variable over time); 

uniform recalibration (UR).  

RS: Response shift; 𝐽: number of items; 𝑀: number of response categories per item. 
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Fig. 3 Boxplots of the 500 mean values of index 𝐼 obtained for each scenario among simulated patients affected by response shift (in white) and 

among simulated patients not affected by response shift (in grey). Each pair of boxplots corresponds to one scenario. Subset of scenarios considered: 

𝑁 = 200 (sample size), 𝑝 =25% (proportion of patients affected by response shift), Δ = −0.2 (average change in the latent variable over time); 

nonuniform recalibration (NUR).  

RS: Response shift; 𝐽: number of items; 𝑀: number of response categories per item. 
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Fig. 4 Boxplots of the 500 AUROCs associated with 𝐼 obtained for each scenario. Subset of scenarios considered: 𝑁 = 200 (sample size), 𝑝 = 25% 

(proportion of patients affected by response shift), Δ = −0.2 (average change in the latent variable over time), uniform recalibration (UR). 

AUROC: area under the receiver operating characteristic curve;  𝐽: number of items; 𝑀: number of response categories per item.  
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Fig. 5 Boxplots of the 500 AUROCs associated with 𝐼 obtained for each scenario. Subset of scenarios considered: 𝑁 = 200 (sample size), 𝑝 = 25% 

(proportion of patients affected by response shift), Δ = −0.2 (average change in the latent variable over time), nonuniform recalibration (NUR). 

 AUROC: area under the receiver operating characteristic curve;  𝐽: number of items; 𝑀: number of response categories per item.  
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Table 1 Simulation parameters 

Sample and questionnaire  

Sample size (𝑁) 𝑁 = 100; 200; 300 

Proportion of patients affected by recalibration (𝑝) 𝑝 = 0.25; 0.5; 0.75 

Number of items (𝐽) 𝐽 = 4; 7 

Number of response categories/item (𝑀) 𝑀 =  4; 7; 10 

Latent variable (𝜽)  

Mean at time 𝑡1 (𝜇1) 𝜇1 = 0 

Mean change (Δ =  𝜇2 − 𝜇1) Δ = −0.2; 0; 0.2 

Variance (𝜎1
2, 𝜎2

2) 𝜎1
2 = 𝜎2

2 =  1 

Covariance between the two measurement 

occasions (𝜎1,2) 

𝜎1,2 =  0.6 

Recalibration response shift size (𝜂) 

UR 𝜂 = −1 

NUR 𝜂 = 1.8 

Items selected to show recalibration  

  𝐽 = 4  

     1 item affected Item 3 

     2 items affected Items 3 and 4 

  𝐽 = 7  

     1 item affected Item 5 

     2 items affected Items 6 and 7 

     3 items affected Items 4, 6 and 7 
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Table 2 Association between index 𝐼 (the change in the number of Guttman errors) and baseline 

characteristics (𝑁 = 209)  

 Index 𝑰   

 Categorical variable: median (Q1 ; Q3) 

Quantitative variable: Spearman’s 𝑟 

NA  p-value 

Socio-demographic:     

Gender   0  0.770 

Female (𝑛 = 195) 1.2 (-11.0 ; 17.0)    

Male (𝑛 = 14) 2.0 (-28.0 ; 19.5)    

Age (years)  -0.01 0  0.865 

     

Eating disorder characteristics:     

Type   0  0.930 

AN-R (𝑛 = 65) 0.0 (-14.0 ; 20.0)    

AN-BP (𝑛 = 27) 2.0 (-8.0 ; 17.0)    

BN (𝑛 = 53) 5.0 (-11.0 ; 15.0)    

BED (𝑛 = 13) -7.0 (-8.0 ; 16.0)    

EDNOS (𝑛 = 51) 2.0 (-12.5 ; 16.5)    

Duration (years) -0.06 0  0.368 

Lowest BMI (kg/m²) -0.05 0  0.439 

Ideal BMI (kg/m²) -0.17 8  0.017 

Current BMI (kg/m²) -0.04 1  0.554 

Drive for thinness score a  0.28   <0.001 

Body shape concerns b   0  0.070 

No to moderate body shape concern (𝑛 = 122) -4.0 (-15.5 ; 16.5)    

Marked body shape concerns (𝑛 = 87) 5.0 (-5.5 ; 18.0)    

     

Psychiatric comorbidities:     

Current anxiety disorder   0  0.914 

No (𝑛 = 137) 0.0 (-13.5 ; 20.5)    

Yes (𝑛 = 72) 2.0 (-11.0 ; 15.0)    

Current mood disorder  0  0.036 

No (𝑛 = 86) 0.0 (-12.0 ; 17.0)    

Yes (𝑛 = 123) 1.5 (-11.5 ; 17.5)    

     

Self-reported character trait c:     

Cooperativeness  0.01 0  0.869 

Self-transcendence 0.03 0  0.671 

Self-Directedness  0.03 0  0.710 

NA: number of missing observations, Q1: first quartile, Q3: third quartile, n: number of patients 

AN-R: anorexia nervosa restricting subtype, AN-BP: anorexia nervosa binge eating or purging subtype,  

BN: bulimia nervosa, BED: binge eating disorder, EDNOS: eating disorders not otherwise specified 

BMI: body mass index  

 
a A high score indicates a strong search for thinness 
b Evaluated by the BSQ: Body Shape Questionnaire [28, 29] 
c Measured by the Temperament and Character Inventory, a high score indicates a more pronounced 

character trait 
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