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Abstract. The repetitive nature of cellular lattice structures brings various interesting
features among which fast assembly and repair time, reduced tooling, and manufacturing
costs are major advantages. Additionally, as the mechanical performances of the structure
are heavily influenced by the topology and materials of the cell, the designers can optimize
the cell to tailor the structure for various scenarios. In this paper, we discuss and compare
two relevant structural optimization methods for lattice structures: topology optimization
and layout optimization. In the first part of the article, we presented an innovative cellular
topology optimization formulation that minimizes the structural mass taking into account
the internal stresses. The cellular implementation is based on the full-scale method called
variable linking. In the second part, a qualitative comparison of topology and layout opti-
mization is carried out, analysing the strength and the weakness of the two methods when
applied to a lattice structure context.
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Constrained Optimization, Structural Optimization



1 INTRODUCTION

The reduction of weight and the minimization of environmental cost are some of the
major subjects on which every aerospace company is focusing at this moment. One of the
fields that could significantly contribute to achieving this goal is structural optimization.
The efficient use of the material in complex components helps to achieve enhanced me-
chanical performances, failure-safe behaviour, and minimum weight. The general aim of
our study is to develop an optimization methodology for cellular lattice structures. The
repetitive nature of such structures brings various interesting features among which fast
assembly and repair time, reduced tooling, and manufacturing costs are major advantages.
Additionally, as the mechanical performances of the structure are heavily influenced by
the topology and materials of the cell, the designers can optimize the cell to tailor the
structure for various scenarios. For instance, cellular lattice structures have been shown
to be interesting candidates for innovative wing structures [1–3].

In this paper, we discuss and compare two relevant structural optimization methods for
lattice structures: topology optimization [4, 5] and layout optimization [6, 7]. Topology
optimization considers the design domain as a continuum, in which each location may
or may not have a material assigned to it, while layout optimization is applied to a
ground structure, a discrete environment. The latter is an algorithm that identifies the
optimal section sizes and connectivity of the members of a truss. To benchmark the two
algorithms, a stress-constrained multi-scale optimization is set up, in which the objective is
to minimize the volume of the structure. The performances, shape, and manufacturability
of the optimized results are compared.

The literature of cellular structure optimization is mainly divided into full-scale and
multi-scale approaches [8]. This paper focuses on cellular structures for which there is no
clear scale separation between the repeating pattern and the full structure. Thus, we are
from now on only considering full-scale approaches. Compared to multi-scale approaches,
full-scale approaches are less covered in the literature.

While full-scale approaches have been already applied to compliance minimization [8]
and mechanism design [9] problems, there are, to the authors’ knowledge, no published
studies on stress-constrained volume minimization full-scale optimization.

This paper is structured in the following way: in Section 2 we present the stress-based
volume minimization topology optimization problem [10] and its extension to cellular
structures using the variable linking method [9, 11]. Cellular and non-cellular approaches
are compared. In Section 3, layout optimization is compared in a qualitative way to
topology optimization in the full-scale optimization framework. Concluding remarks are
given in Section 4.

2 STRESS-BASED CELLULAR TOPOLOGY OPTIMIZATION

2.1 Stress-based Topology Optimization

Let Ω be a rectangular domain of dimensions X and Y , containing respectively Nx and
Ny linear 4-nodes elements. Following the classic topology optimization theory, a density
variable ρ is linked to every element of the structure. The density variable can span
between zero and one and represents void or full material, respectively. The classic objec-
tive function for a topology optimization problem is the minimization of the compliance
[5]. Instead of finding the stiffest structure with a fixed volume fraction, we decided in



this paper to reformulate the compliance minimization problem and search for the lowest
volume structure with a local strength constraint.

Three main difficulties may arise in solving this problem:

1. The stress constraints are defined only for the elements where ρi > 0, thus the set
of constraints changes during the optimization. This class of problems are called
mathematical programs with vanishing constraints (MPVCs) [12] and are known for
being difficult to solve.

2. Is it known in the literature [13, 14] that MPVCs often suffer from singular minima:
firstly observed on truss structure optimization [15], they are inaccessible to standard
gradient-based optimizer, and they represent the minima of the optimization. This
problem is often solved using a technique called relaxation.

3. The stress is a local measure, and thus a large set of constraints is generated when
a reasonably fine mesh is used (one element, one constraint). This problem is often
solved using a technique called aggregation.

The implementation of this paper is based on the use of a lower bound Kreisselmeier-
Steinhauser (KS) function [16] to apply relaxation and aggregation at the same time [10].
One could formulate the normalized local stress constraint as:

gj =
σVM,j

σl
− 1 ≤ 0, ∀j ∈ Ωmat(ρ), (1)

where Ωmat(ρ) represents the design-dependent set of elements with a non-zero density,
σVM,i represents the equivalent von Mises stress for the element i, and σl is the maximum
allowable equivalent von Mises stress. In this formulation all the stresses are evaluated
using the microscopic stress formulation and assuming that there is no direct correlation
between stress and density [17]. Indeed, the use of the macroscopic stress in volume mini-
mization optimization problems creates all-void design [18]. The original set of constraints
is reformulated into an equivalent design-independent set of constraints [19]:

ḡi = ρ̃igi = ρ̃i

(
σVM,i

σl
− 1

)
≤ 0, ∀i ∈ Ω. (2)

Following the work developed by Verbart [10], the lower bound Kreisselmeier-Steinhauser
function is used to approximate the local relaxed stress constraint maximum:

Gl
KS =

1

P
ln

(
1

Ne

∑
eP ḡi

)
with Ne = number of elements e ∈ Ω. (3)

Its main advantage over other different formulations is that it uses a single hyperparameter
P to control the aggregation and the relaxation of the constraints.

The optimization problem is then written as:

(P1) : min
ρ

V =
1

V0

∑

i∈Ω

ρ̃ivi

s.t. Gl
KS =

1

P
ln

(
1

Ne

∑

i∈Ω

eP ḡi

)
≤ 0

KU = F

0 ≤ ρi ≤ 1,

(4)



where vi represents the volume of the i-th element and the objective function V is the
volume fraction occupied in the volume V0 =

∑
vi. ρ = [ρ1, ρ2, . . . , ρNe]

T represents the
design variable of the optimization, while ρ̃ = [ρ̃1, ρ̃2, . . . , ρ̃Ne]

T represents the physical
density, obtained after filtering and projection of ρ. KU = F is the state equation of
the problem and define the elastic response of the structure to an external load F =
[f1, f2, . . . , fNe]

T . The global stiffness matrix K is assembled from the element stiffness
matrix K =

∑
i∈ΩKe,i and Ke,i = EiKe,0 where Ke,0 represents the stiffness matrix

relative to the chosen type of element and Ei(ρ̃i) the Young’s modulus of the element. In
this paper, we use the Solid Isotropic Material Interpolation with Penalization (SIMP)
[20] approach to calculate Ei(ρ̃i). It is governed by the equation:

Ei = Emin + ρ̃
p

i (E0 − Emin), (5)

where the parameter p penalizes the intermediate densities and pushes the result to a
black and white result. E0 is the young’s modulus of the full material and Emin is a small
value that avoid the global stiffness matrix K from being singular when ρ̃i = 0. In this
paper we set E0 = 1, Emin = 10−9 and p = 3.

To solve the problems linked to the mesh discretization, such as the mesh dependence
or the chequerboard problem, a standard linear spatial filter based on the 2D convolution
operator [21] is used. The weight function w(d) is defined as:

w(dj) = R− dj, j ∈ Ni,R, (6)

where Ni,R represent the set of elements lying within a circle of radius R centred on the
i-th element. di is the distance of the j-th element to the centre of the filter. The filtered
values of the design variable calculated as:

ρ̃i =

∑
j∈Ni,R

w(dj)vjρj∑
j∈Ni,R

w(dj)vj
. (7)

The derivative of the filtered densities ρ̃ with respect to the design variables ρ is:

∂ρ̃i
∂ρj

=
w(dj)vj∑

j∈Ni,R
w(dj)vj

. (8)

As the filtering phase usually produces a large quantity of grey element, a smooth
projection technique based on the tanh function is implemented [22]:

ρ̃j =
tanh(βη) + tanh(β(ρ̃j − η))

tanh(βη) + tanh(β(1− η))
, (9)

where β is a parameter that define the slope of this approximation function and η is
the threshold value. It is important to note that this type of projection is not volume
conservative for all values of η. In order to stay conservative we decided to have a volume-
increasing filter, and a value of η = 0.4 is chosen in this work [23]. The sensitivity of the
physical densities ρ̃ with respect to the filtered ρ̃ can be written as:

∂ρ̃j
∂ρ̃j

= β
1− tanh2(β(ρ̃j − η))

tanh(βη) + tanh(β(1− η))
. (10)



Using the chain rule is possible to write:

∂f

∂ρi
=
∑

j∈Ni,R

∂f

∂ρ̃j

∂ρ̃j
∂ρ̃j

∂ρ̃j
∂ρi

, (11)

where f represent a generic function.
Using the adjoint method the sensitivity analysis of P1 with respect to the physical

densities ρ̃ become:

∂V

∂ρ̃i
=
vi
V0

, (12)

Gl
KS = g(ρ̃,U(ρ̃)) ⇐⇒ dg

dρ̃i
=

∂g

∂ρ̃i
+

∂g

∂U

T dU

dρ̃i
(13)

∂g

∂U
=

ρi
σlσi

eP ḡi
∑

i e
P ḡi
|Si|gU (14)

dg

dρ̃i
=

(
σVM,j

σl
− 1

)
eP ḡj∑
k e

P ḡk
− λ

(
−P ρ̃P−1

i Ke,i

)
U , (15)

where λ is the adjoint vector that solves the adjoint system Kλ = ∂g/∂U and |Si|g
represents the matrix that links local to global coordinates (in the same way we linked
Ke,i to K).

2.2 Cellular approach — Variable linking scheme

The cellular approach is implemented using a variable linking scheme on a structured
grid [11]. The design variables κ = [κ1, κ2, . . . , κne ]

T where ne = nx × ny is the number
of elements are defined in a design cell Ωc. κ is defined on every finite element of Ωc and
linked to the density ρ over the entire structure Ω (see Figure 1). Following the nomen-
clature of Wu [8], this method can be described as a full-scale approach with repeated
pattern.

F

Nx

Ny

nx

nyΩc Ω

F

Nx

Ny
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ny
c

Figure 1: Design domain and boundary condition for a cantilever beam using a variable
linking scheme. The design variables κ inside the domain Ωc are linked to the structure
Ω to evaluate the state equation.



A common way to implement this approach is by defining a mapping matrix G [9]
and retrieving the optimization densities by using the following relation ρ = Gκ. G is
a sparse Ne × ne matrix where, if the design variable κj is linked to the optimization
variable ρi, then G(i, j) = 1. Problem P1 is then reformulated as follows:

(P∗1) : min
κ

V =
1

V0

∑

k∈Ωc

κkvk

s.t. Gl
KS =

1

P
ln

(
1

N

∑

i∈Ω

eP ḡi

)
≤ 0

KU = F

0 ≤ κk ≤ 1

ρ = Gκ.

(16)

where Ωc represents the design cell (see Figure 1).
The sensitivity of the objective function and the constraints with respect to the design

variables are calculated as [9]:
∂f

∂κk
= GT ∂f

∂ρ̃i
. (17)

The full sensitivities can then be calculated combining Equation 11, 12, 15 and 17. Deriva-
tives are smooth and then suitable for gradient descent optimization algorithms.

2.3 Numerical results and discussion

The cantilever beam, together with the L-shape domain, represents one of the standard
load cases used to assess the performance of a stress-constrained topology optimization
[10]. The mesh used to discretize the full structure is made up by 400×200 linear 4-nodes

F
2L

L

Figure 2: Cantilever beam load case. The domain is discretized into 400×200 linear
quadratic elements.

elements (see Figure 2). The punctual load is distributed over 10 elements to avoid stress
concentrations.

Problem 16 is solved for four different numbers of design cells (1×1, 2×1, 4×2, and
8×4 cells). It is important to note that the full structure mesh is the same for all the
cases, while the design space Ωc shrinks down as more and more cells are added.

The optimizing algorithm chosen is the Method of Moving Asymptotes (MMA) [24].
The parameter called movelimit is set to 0.1. The other algorithm’s parameters are
set to their default value. More information on the implementation of the movelimit
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Figure 3: Topology optimization results. The first column presents the volume minimiza-
tion density results. The central subfigures present the equivalent von Mises stress of
the four load cases for the elements with a physical density ρ̃ > 0.5. The last column
presents the density of the results of the compliance minimization. The volume used as a
constraint is the same found by the volume minimization.



parameter can be found on the original paper by Verbart [10]. A continuation scheme
for the aggressiveness of the projection parameter β is set to increase by one every 200
iterations, the number of max iteration is set to 3000, the stopping criteria is calculated
as ‖rk‖2/

√
Ne on the physical densities ρ̃ [23], and it is set to 10−4. The aggregation

parameter P is set to 32.
The isotropic material used for the optimization has been modelled with E = 1, ν = 0.3

and the maximum allowable stress is set to σL = 0.3.
To evaluate the quality of the solutions, we evaluate the Measure of Non-Discreteness

[25], where results near-zero mean a completely black and white design.

Mnd =

∑
e 4ρ̃e(1− ρ̃e)

n
× 100%. (18)

Our optimization take into account only the linear behaviour of the structure.

Mesh size Cells Design Space Volume Max stress Mnd

400x200

1x1 400x200 10.52% 0.350 4.45%
2x1 200x200 14.41% 0.383 5.56%
4x2 100x100 24.25% 0.379 10.22%
8x4 50x50 27.57% 0.396 10.24%

Table 1: Numeric results of the variable linking approach applied to a topology optimiza-
tion problem with stress constraints for increasing number of cells.

Looking at Table 1 and at Figure 3, we can summarize the results as:

• A first important remark is that the constraint function Gl
KS is always lower than

the actual ḡ. As a consequence, the maximal von Mises stress is always greater than
the actual allowable of 0.3. This is a known problem of this formulation [10].

• The optimized volume fraction increases with the number of cells, for a fixed max-
imal allowable stress (see Figure 4a). As the structure is divided into additional
cells, the design space shrinks, constraining de facto our problem even more. This
is a known drawback of cellular structures [8, 9].

• Classic volume minimization with stress constraints formulations tends to create
full-stressed structures (see Figures 3a and b). When the linking variable approach
is used, cells become less stressed, with the presence of elements that do not par-
ticipate in the structural integrity of the cantilever. However, cellular structures
are naturally more robust as they show structural redundancies and multiples stress
paths. This opens up to the design of damage-tolerant structures [9].

• It is interesting to note that if the cells are stacked all one over the others, and we
calculate the maximum stresses, one would find a full-stressed cell (see Figure 4b).

To assess the advantages of the volume minimization formulation, we compare the
obtained results with those of compliance minimization. The compliance problem is for-
mulated to accept a maximum volume fraction constraint, and we set that to the very
same value found by the volume minimization. By doing so, it is possible to compare



maximum stresses and the compliance of the two linked formulations. Stress and com-
pliance columns of Table 2 show the differences between the volume and the compliance
minimization formulations. Figure 4a presents the general trend of the two different
optimizations.

Volume minimization Compliance minimization
Volume Cells Compliance Max stress Compliance Max stress
10.52% 1x1 430.23 (1.19) 0.350 (1.0) 361.57 (1.0) 0.769 (2.19)
14.41% 2x1 412.52 (1.28) 0.383 (1.0) 320.89 (1.0) 0.783 (2.04)
24.25% 4x2 376.18 (1.34) 0.379 (1.0) 280.57 (1.0) 0.601 (1.58)
27.57% 8x4 369.50 (1.18) 0.396 (1.0) 312.52 (1.0) 1.470 (3.71)

Table 2: Comparison of the results obtained with the volume and the compliance min-
imization formulations. In the parenthesis, the results are normalized with respect to
the maximum stress of the volume formulation and the compliance of the compliance
formulation for a fixed volume fraction.
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Figure 4: Figure 4a shows the trends of the optimization for the volume minimization
formulation. The objective function is increasing with the number of cells. Figure 4b
shows the 50×50 full-stressed cell, obtained superposing the maximum stress of all the
cells inside Ω.

3 COMPARISON BETWEEN TOPOLOGY AND LAYOUT OPTIMIZA-
TION

3.1 Cellular Layout Optimization

Layout optimization is a structural optimization algorithm that finds a near-optimal
truss structure with respect to a given load case. Instead of working with a continuous
domain as topology optimization does, layout optimization optimizes the sections and the
connectivity of the members of a discrete ground structure [6]. The ground structure is
defined as the full set of members that connect a grid of M points. For each member, we
define a section a and a length l. As all the joints in the ground structure are treated as
pin-joints, all the straight members face only tension or compression load.



Compared to the SIMP-based topology optimization described in Section 2, layout
optimization seems appealing for the following reasons:

1. Looking at the pioneering works of Cramer [2] on ultralight structures as an example,
we observe that the volume fraction of the cells is very low. The Ultem 100 and
200, the materials used by the authors to manufacture the cells, have a density of
1.42 g cm−3. As the density of the cell structure is 5.566 · 10−3 g cm−3, we find a
volume fraction of about 0.438%. It is known that such a low volume fraction on a
regular, or even adaptive [26], mesh increases exponentially the number of elements
required to correctly discretize the members in a topology optimization framework.

2. Even if the freedom of the design space offered by the continuum meshes used by
topology optimization is higher, it is known that at these volume fractions and,
especially if buckling constraints and manufacturing consideration are taken into
account, the optimal topology is a truss structure [27]. Thus, for manufacturing
easiness, one would prefer to directly work on a discrete ground structure. In ad-
dition to that, truss structures design naturally relies on constraints on maximum
allowable stress, buckling, and maximum slenderness, which are all known for being
difficult to implement on topology optimization.

3. Topology optimization needs massive computational resources to operate on large
scale optimization [28], while layout optimization has been proven to work efficiently
and fast for large aerospace applications [3].

The layout optimization problem is formulated as:

(P2) : min
a

V = lTa

s.t. Bq = f

−σ−a ≤ q ≤ σ+a

a ≥ 0,

(19)

where V represent the structural volume evaluated as the product of the member lengths
l = [l1, l2, . . . , lN ]T and the design variables of the problem, the member sections a =
[a1, a2, . . . , aN ]T . B is a 2M ×N matrix containing the direction cosines of j-th member
with respect to the i-th degree of freedom to calculate the nodal force equilibrium. M is
the number of nodes and N = M(M − 1)/2 the number of members of a fully connected
ground structure. q = [q1, q2, . . . , qN ]T is a vector containing the internal member forces
caused by the external load f = [f1, f2, . . . , fM ]T . σ− and σ+ are the compressive and
tensile maximum allowable stress of the material, respectively. The resolution of Problem
19 produces complex structures made up of a multitude of small members that tends to
the shapes of Michell structures [7, 29]. While it is known that these structures are nearly
optimal, one would want to limit the complexity of the structure. Substituting l with
l̃ = [l1 + s, l2 + s, . . . , lN + s]T , one would penalize the appearance of small members [30].
l̃ is called augmented member length and s is the joint cost. This approach mimics the
mesh-independency regularization filter of topology optimization [5].

As formulated, Problem 19 represents a linear programming (LP) problem that can be
efficiently solved by modern algorithms. In this work, we used the python library CVXPY
[31].



The cellular approach of layout optimization is formulated following the same steps used
for the topology optimization. The only implementation difference is that one should note
that two contiguous cells share multiples members. So we added to the formulation an
equality constraint between the upper and lower, and the right and left members of the
cells (see Figure 5a). The problem is still linear after that reformulation.

(a) (b)

Figure 5: Figure 5a shows a 3-nodes cell of a ground structure made by the set of the
36 members that connect the nine points. Figure 5b present the 17×9 nodes ground
structure made by 8×4 linked 3×3 cells.

3.2 Numerical results and topology optimization comparison

The python implementation of Problem 19 is based on the 98-lines code provided by
He [32]. The code has been extended by the authors to perform variable linking. The
cantilever beam load case is used once again to assess the performance of the optimization
algorithm. The analysis is performed on a fixed ground structure made up by 17×9 points,
with a total of 11628 candidate members for the 1×1 case, 6444 for the 2×1 case, 2300 for
the 4×2 case, and 996 for the 8×4 case (see Figure 5a and 5b). The maximum allowable
stress is set to σL = 0.3 for tension and compression. The results of the optimization are
presented in Figure 6. We can summarize them as:

• Layout optimization presents the same trends of topology optimization concerning
mechanical properties with respect to the number of cells. This is due to the restric-
tion of the design space of the optimizer with the increase in the number of cells.
It’s interesting to note that changing the number of cells and thus the connectivity
of the initial ground structure, not only the number of design variable, but the total
number of members decrease as well.

• We find once again a full-stress design for the non-cellular case (see Figure 6b). The
same considerations made for the full-stressed cell found in topology optimization
hold for layout optimization as well.

• A direct comparison of the two formulations is non-trivial. In its most simple and
diffused formulation, the mechanics of the material used for layout optimization
follows the plastic design formulation. This means that the strain in the elastic
region is considered negligible, and constant stress σy is therefore assumed for all
non-zero strains. It is known that in stress-based topology optimization modifying
Young’s modulus E influences the solution found. Layout optimization and the
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Figure 6: Layout optimization results. The colour of the member represents the load
state, with red used for compression and blue for tension. The optimal section of the
members is proportional to the thickness of the segments.



plastic material formulation, instead, aren’t influenced by this parameter at all. It
is thus difficult to compare the two formulations from a quantitative point of view.

• The topology of the optimal lattice structure could be constrained by the initial
ground structure if the latter is too coarse.

• Compared to topology optimization, the computational time of layout optimization
for a comparable number of design variables is between three and four orders of
magnitude inferior. The lack of FEA and the simpler problem formulation reduce
the iteration cost and the iteration number.

4 CONCLUDING REMARKS

In the first part of the article, we presented an innovative cellular topology optimization
formulation that minimizes the structural mass of a 2D structure taking into account the
internal stresses. The cellular implementation is based on the full-scale method called
variable linking. The optimized structures are easier to manufacture and assemble and
naturally damage tolerant, at the cost of a higher structural volume and compliance. In
the second part, a qualitative comparison of topology and layout optimization applied to
a cellular structure is carried out, analysing the strength and the weakness of the two
methods.

The results obtained by the two methods exhibit the same general trends. The cal-
culation cost of layout optimization is significantly lower than for topology optimization.
Nonetheless, the plastic formulation in the layout optimization problem does not account
for the material stiffness. With pin-jointed trusses and no material elastic behaviour, the
obtained result is questionable from a mechanical point of view.

To do a proper quantitative comparison there is the need to add the material elastic
behaviour to the layout optimization. A promising way to do that is to add what is known
in the literature as a stress-strain compatibility [3]. Formulated in that way, the problem
becomes non-linear, but the resulting structures will have a more meaningful mechanical
behaviour.
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