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Method of asymptotic partial decomposition with discontinuous

junctions

Grigory Panasenko∗ and Marie-Claude Viallon †

Abstract

Method of asymptotic partial decomposition of a domain (MAPDD) proposed and justified earlier

for thin domains (rod structures, tube structures consisting of a set of thin cylinders) generates some

specific interface conditions between three-dimensional and one-dimensional parts. In the case of the

heat equation these conditions ensure the continuity of the solution and continuity in average of the

normal flux. However for some computational reasons the strong continuity condition for the solution

may be undesirable. It may be preferable to replace it by more flexible condition of continuity in

average over the interface cross section. In the present paper we introduce and justify this alternative

junction condition allowing such discontinuity of the solution of both stationary and non-stationary

problems. The closeness of solutions of these hybrid dimension problems to the solution of the fully

three-dimensional setting is proved. At the discrete level, finite volume schemes are considered, an

error estimate is established. The new version of the MAPDD is compared to the classical one via

numerical tests. It shows better stability of the new scheme.

Keywords: method of asymptotic partial decomposition of the domain, heat equation, interface,

asymptotic expansion, dimension reduction

AMS classification: 35B27, 35Q53, 35C20, 35J25, 65N12, 76M12

1 Introduction

For thin rod structures (domains depending on a small parameter ε, unions of “thin” cylinders having

ratio of the diameter of a cross-section and the height of order of ε) we consider a new version of the

method of asymptotic partial decomposition of the domain (MAPDD).

The MAPDD reduces the dimension in the main part of the domain keeping the full dimension for

small parts of the domain only. At the junctions of parts of full and reduced dimension the special

interface conditions are set. In the classical version proposed in [13] these conditions require the strong

pointwise continuity for the solution and weak continuity (i.e. continuity of the mean value) for the fluxes.

Althought the effectiveness of the classical version was confirmed by theoretical studies [17] and numerical

experiments [1], [16] and [7] it turns out that for some computational reasons the strong continuity of the

unknown function may be undesirable. Indeed, analysing the continuous and discontinuous versions of
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the Galerkin method, see for example [2], one can notice that the discontinuous version is more flexible

with respect to the regularity of the mesh and it is more accurate when the exact solution changes

fastly. That is why one can expect a similar comparison for the continuous and discontinuous versions

of the MAPDD, confirmed numerically in [19]. In particular, applying the partial asymptotic dimension

reduction we are interested to make the full dimension subdomains as small as possible. However, taking

them too small we risk to loose the accuracy, because the solution may have a big gradient there. In this

”shortest truncation” approach the discontinuous version seems to be more accurate than the continuous

version. It is confirmed by the numerical experiments [19]. That’s why in the present paper we discuss

a new version of the MAPDD allowing the discontinuity of the solution at the interface of models of

different dimensions. Namely this condition is the pointwise continuity of the flux and weak continuity

of the unknown function. This condition is an inverse with respect to the classical version.

As model problems we consider in Section 2 the stationary diffusion equation and the nonstationary

heat equation. In Section 3, we describe for each of them the reduced problem obtained by means of the

new version of the MAPDD. Then we prove existence and uniqueness of the solution of these reduced

problems, and a theorem on the error estimate is proved for both steady and nonsteady settings. Note

that the proof of the existence and uniqueness of a solution of the MAPDD-reduced problem requires

a generalization of the classical Poincaré - Friedrichs inequality for a Sobolev space which is wider than

H1. Namely the functions of this space may have discontinuities at several cross-sections of the cylinders

belonging to the domain, however keeping the continuity of the mean value over the cross-section. For

piecewise-H1 functions it was proved in [6], but we need to know how its constant depends on the small

parameter. So, the corresponding inequality is proved in the Appendix.

Let us recall briefly the definition of a rod structure (see [17], [16]). Let O1, O2, . . . , ON be N different

points in IRs, s = 2, 3, and e1, e2, . . . , eM be M closed segments each connecting two of these points

(i.e. each ej = OijOkj , where ij, kj ∈ {1, . . . , N}, ij 6= kj and ∀i ∈ {1, ..., N}, ∃j ∈ {1, ...,M} such that

Oi ∈ ej; ∀j, k ∈ {1, ...,M}, ej ∩ ek = ∅ or is a part of the set {O1, O2, . . . , ON} ). The segments ej are

called edges of the graph. A point Oi is called node if it is the common end of at least two edges and Oi

is called vertex if it is the end of the only one edge. Any two edges ej and ei can intersect only at the

common node.

Let B =
N
⋃

j=1

ej be the graph and assume that it is a connected set. For any x = (x1, ..., xs) denote

x′ = (x2, ..., xs).

Let e be some edge, e = OiOj . Consider two Cartesian coordinate systems in IRn. The first one has

the origin in Oi and the axis Oix
(e)
1 has the direction of the ray [OiOj); the second one has the origin in

Oj and the opposite direction, i.e. Ojx
(e)
1 is directed over the ray [OjOi).

With every edge ej we associate a bounded domain σj ⊂ IRs−1 having Lipschitz boundary ∂σj , j =

1, . . . ,M . For any edge ej = e and associated σj = σ(e) denote by B
(e)
ε the cylinder

B(e)
ε = {x(e) ∈ IRs : x

(e)
1 ∈ (0, |e|), x

(e)′

ε
∈ σ(e)},

where x(e)′ = (x
(e)
2 , . . . , x

(e)
s ), |e| is the length of the edge e and ε > 0 is a small parameter. Notice that

the edges ej and Cartesian coordinates of nodes and vertices Oj , as well as domains σj , do not depend

on ε.

Let O1, . . . , ON1 be nodes and ON1+1, . . . , ON be vertices; N > N1. Let ω1, . . . , ωN be bounded

independent of ε domains in IRs with Lipschitz boundaries ∂ωj ; introduce the nodal domains ωj
ε = {x ∈

IRs :
x−Oj

ε
∈ ωj}.
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By a rod structure we call the following domain

Bε =
( M
⋃

j=1

B
(ej)
ε

)

⋃

( N
⋃

j=1

ωj
ε

)

.

Assume that it is a connected set and that its boundary ∂Bε ∈ C2. Denote γi
ε = ∂Bε ∩ ∂ωi

ε, i =

N1 + 1, ..., N . Without loss of generality assume that

(

B(ej)
ε \

(

N1
⋃

i=1

ωi
ε

))

∩
(

B(ek)
ε \

(

N1
⋃

i=1

ωi
ε

))

= ∅

for j 6= k. Denote γε =
N
⋃

i=N1+1

γi
ε.

O1
O6

O5

O3
O2

O4

4

3

6

Graph B

Tube structure B

Figure 1: The graph and the tube structure.

Both model problems are set in Bε. The reduced problems obtained by using the MAPDD are set

in a geometrical multi-scale domain derived from Bε, where parts of the cylinders are replaced by one-

dimensional segments. Finite volume schemes for solving the reduced problems obtained from the new

version of the MAPDD are considered in Section 4 in the case s = 2. An estimate on the discrete solution

is proved in both cases. This estimate will be obtained by using a discrete Poincaré-Friedrichs inequality

in the geometrical multi-scale domain, when the discrete average of the function from both sides of the

cross sections is the same. This result is proved in the Appendix. An error estimate between the solution

of the original problem and its approximation is proved in Section 5 for the diffusion equation and the

heat equation. Then we provide in Section 6 numerical tests comparing this new version of the MAPDD

and the classical one. Note that there is a vast literature on the asymptotic analysis of partial derivative

equations in thin rod structures, see for example, [7],[10],[11],[12],[14],[17],[15].

2 Formulation of the steady diffusion equation and the heat

equation in a rod structure

In order to introduce a new version of the MAPDD let us consider two model problems set in Bε:

stationary and non-stationary. The stationary problem reads:

−∆uε = f(x), x ∈ Bε,

∂uε

∂n
= 0, x ∈ ∂Bε\γε,

uε = 0, x ∈ γε.

(2.1)
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The right hand side f is a function defined on Bε such that f(x) = fj(x
(e)
1 ), if x ∈ B

(ej)
ε , j = 1, ...,M ,

where fj are independent of ε CJ+4−smooth functions and they are constant with respect to x in some

neighborhood of the nodes and vertices. The values of f in the domains ωi
ε are equal to its value in the

node or vertex Oi.

The variational formulation of problem (2.1) is : find uε ∈ H1
γ,0(Bε) such that

∫

Bε

∇uε · ∇vdx =

∫

Bε

fvdx, v ∈ H1
γ,0(Bε), (2.2)

where

H1
γ,0(Bε) = {v ∈ H1(Bε)| v|γε = 0}.

The initial boundary value problem for the non-steady heat equation in the tube structure Bε has

the form
∂uε

∂t
−∆uε = f(x, t), x ∈ Bε, t ∈ (0, T ),

∂uε

∂n
= 0, x ∈ ∂Bε\γε, t ∈ (0, T ),

uε = 0, x ∈ γε, t ∈ (0, T ),

uε(x, 0) = 0, x ∈ Bε.

(2.3)

The right hand side f is a function defined on Bε × [0, T ] such that f(x, t) = fj(x
(e)
1 , t), if x ∈

B
(ej)
ε , j = 1, ...,M , where fj are independent of ε CJ+4−smooth functions and they are constant with

respect to x in some neighborhood of the nodes and vertices. The values of f in the domains ωi
ε are equal

to its value in the node or vertex Oi. We assume that fj(., t) = 0 for t ≤ t0, t0 > 0.

The variational formulation of problem (2.3) is : find uε ∈ H1
γ,0(Bε × (0, T )) such that for almost all

t ∈ (0, T ),

∫

Bε

(∂uε

∂t
v +∇uε · ∇v

)

dx =

∫

Bε

fvdx, v ∈ H1
γ,0(Bε), (2.4)

uε|t=0 = 0, (2.5)

where

H1
γ,0(Bε × (0, T )) = {v ∈ H1(Bε × (0, T ))| v|γε = 0}.

3 Asymptotic partial decomposition of the domain for the dif-

fusion equation and for the heat equation

In this section we apply the method of partial asymptotic decomposition of the domain assuming that

fj are CJ+4−smooth functions, defined in Section 2.

Let us describe the algorithm of the MAPDD for the heat equation set in a tube structure Bε. Let

δ be a small positive number much greater than ε (it will be chosen of order O(ε|lnε|)). For any edge

e = OiOj connecting two points of the graph of the structure introduce two hyperplanes orthogonal to

this edge and crossing it at the distance δ from its ends. Denote the cross-sections of the cylinder B
(e)
ε

containing e by these two hyperplanes respectively, Si,j (at the distance δ from Oi), and Sj,i (at the

distance δ from Oj), and denote the part of the cylinder B
(e)
ε between these two cross-sections by Bdec,ε

ij .

Denote Bε,δ
i the connected truncated by the cross sections Si,j , part of Bε containing the vertex or the

node Oi. Denote edec,δij the part of the edge OiOj concluded between the cross-sections Si,j and Sj,i.

Define some spaces. Let H be a subspace of functions from L2(Bε) such that for each subdomain

Bdec,ε
ij or Bε,δ

i they belong to H1(Bdec,ε
ij ) and H1(Bε,δ

i ) respectively, and at each cross section Si,j the
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average of functions from both sides of it is the same. Let Hγ,0 be a subspace of H such that its

functions vanish at γε. So these spaces are Sobolev spaces of functions having discontinuities at Si,j

preserving their average at the cross section. Let us define an inner product of two functions (f, g) in

such spaces as the sum of inner products in H1(Bdec,ε
ij ) and H1(Bε,δ

i ) for all Bdec,ε
ij and Bε,δ

i , so that

‖ · ‖H =
√

∑

ij ‖ · ‖2H1(Bdec,ε
ij )

+
∑

i ‖ · ‖2H1(Bε,δ
i )

LetH1(Bε, δ) andH1
γ,0(Bε, δ) be subspaces of spacesH andHγ,0 respectively such that their functions

have vanishing transversal derivatives ∇′
x(e) on every truncated cylinder Bdec,ε

ij .

The method of asymptotic partial domain decomposition (MAPDD) replaces the stationary diffusion

problem by the following reduced problem (called partially decomposed) : find uε ∈ H1
γ,0(Bε, δ) such

that

∫

Bε

∇uε · ∇vdx =

∫

Bε

fvdx, v ∈ H1
γ,0(Bε, δ). (3.6)

Denote ‖ · ‖HT =
√

∑

ij ‖ · ‖2H1(Bdec,ε
ij ×(0,T ))

+
∑

i ‖ · ‖2H1(Bε,δ
i ×(0,T ))

Let H1
γ,0(Bε × (0, T ), δ) be a space of functions from L2(Bε × (0, T )) such that for any Bdec,ε

ij or Bε,δ
i

they belong to H1(Bdec,ε
ij ×(0, T )) and H1(Bε,δ

i ×(0, T )) respectively, at each cross section Si,j the average

of functions from both sides of it is the same, functions have vanishing transversal derivatives ∇′
x(e) on

every truncated cylinder Bdec,ε
ij and the functions vanish at the part γε of the boundary. Let us define an

inner product of two functions (f, g) in such spaces as the sum of inner products in H1(Bdec,ε
ij × (0, T ))

and H1(Bε,δ
i × (0, T )) for all Bdec,ε

ij and Bε,δ
i .

In the case of the heat equation the MAPDD replaces the problem (2.3) by its setting on H1
γ,0(Bε ×

(0, T ), δ) : find uε,δ,dec ∈ H1
γ,0(Bε × (0, T ), δ) such that for almost all t ∈ (0, T ),

∫

Bε

(∂uε,δ,dec

∂t
v +∇uε,δ,dec · ∇v

)

dx =

∫

Bε

fvdx, v ∈ H1
γ,0(Bε, δ), (3.7)

and satisfying

uε,δ,dec|t=0 = 0, (3.8)

which implies:

∫

Bε×(0,T )

(∂uε,δ,dec

∂t
v +∇uε,δ,dec · ∇v

)

dxdt =

∫

Bε×(0,T )

fvdxdt, v ∈ H1
γ,0(Bε × (0, T ), δ), (3.9)

uε,δ,dec|t=0 = 0. (3.10)

Theorem 3.1. There exists a unique solution of both partially decomposed problems. The estimates hold:

for the diffusion problem

‖uε,δ,dec‖H1(Bε,δ) ≤ CPF ‖f‖L2(Bε) (3.11)

and for the heat equation

‖uε,δ,dec‖H1(Bε×(0,T ),δ) ≤ CPF ‖f‖L2(Bε×(0,T )) (3.12)

where the constant CPF is independent of ε and δ.

The proof of this theorem repeats the proof of the existence and uniqueness of a solution to the

diffusion equation (Lax-Milgram argument, see the Poincaré-Friedrichs inequality in the Appendix), and

respectively to the heat equation where the Galerkin base is constructed in the space H1
γ,0(Bε, δ) instead

of H1
γ,0(Bε). Such base exists due to separability of spaces H1(Bdec,ε

ij × (0, T )) and H1(Bε,δ
i × (0, T )).
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However, as far as we know, the Poincaré-Friedrichs inequality in the space H1
γ,0(Bε, δ) is not known.

That is why its proof is given in the Appendix. Let us give a sketch of the proof for the non-stationary

problem. Let φ1, ..., φm, ... be an orthogonal with respect to the inner product
∫

Bε

(

∇u · ∇v
)

dx base of

H1
γ,0(Bε, δ). Consider the span HN of N first functions of the base and consider the projection of problem

(2.3) on this subspace. Its solution uN is saught in the form of a sum
∑N

l=1 cl(t)φl with cl ∈ H1(0, T ), so

that for the unknown functions cl satisfy the system of ordinary differential equations with homogeneous

initial conditions. Multiplying its equations by cl and adding them, we get an estimate for uN in the

V 2 norm (‖u‖V 2 = supt∈[0,T ] ‖u(., t)‖L2(Bε) + ‖∇u‖L2(Bε×(0,T ))). Multiplying then the equations by dcl
dt

and adding them, we get an estimate for uN in the H1(Bε × (0, T )) norm. Then we apply the standard

argument of the weak compactness of a ball in the Hilbert space and find that a weak limit of some

subsequence is a solution of (3.7). The uniqueness follows from the identity (3.7) written for v = uε,δ,dec.

The estimates for uN hold still for the weak limit uε,δ,dec.

Remark 3.2. Estimate (3.12) holds in the case if the right hand side is any function of L2(Bε × (0, T ))

free of the above regularity restrictions (and so it can depend on all components of x).

Theorem 3.3. There exists a constant C0 independent of ε such that for any given integer J and for δ

satisfying the inequality

δ ≥ C0Jε|ln(ε)| (3.13)

the following estimates hold for the difference uε − uε,δ,dec:

for the steady diffusion equation:

‖uε − uε,δ,dec‖H ≤ CεJ , (3.14)

for the non-stationary heat equation

‖uε − uε,δ,dec‖HT ≤ CεJ , (3.15)

where constant C is independent of ε.

Notice that the integration by parts in the variational formulation (3.7) gives the differential version

of the partially decomposed problem. Namely, denoting û the restriction of u on the part edec,δij of the

edge e we have

for the diffusion equation

−∆uε,δ,dec = f(x), x ∈ Bε,δ
i , i = 1, ..., N, t ∈ (0, T ),

−∂2ûε,δ,dec

∂x
(e)2
1

= f̂(x
(e)
1 ), x ∈ edec,δij , ∀e;

∂uε,δ,dec

∂n
= 0, x ∈ (∂Bε,δ

i ∩ ∂Bε)\γε, i = 1, ..., N,

uε,δ,dec = 0, x ∈ γε;

(3.16)

for the heat equation :

∂uε,δ,dec

∂t
−∆uε,δ,dec = f(x, t), x ∈ Bε,δ

i , i = 1, ..., N, t ∈ (0, T ),

∂ûε,δ,dec

∂t
− ∂2ûε,δ,dec

∂x
(e)2
1

= f̂(x
(e)
1 , t), x ∈ edec,δij , ∀e; t ∈ (0, T ),

∂uε,δ,dec

∂n
= 0, x ∈ (∂Bε,δ

i ∩ ∂Bε)\γε, i = 1, ..., N, t ∈ (0, T ),

uε,δ,dec = 0, x ∈ γε, t ∈ (0, T ),

uε,δ,dec(x, 0) = 0, x ∈ Bε.

(3.17)
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with the junction condition at the sections Si,j corresponding to the value x
(e)
1 = δ for the local variable:

1

|Si,j |

∫

Si,j

uε,δ,dec|x(e)
1 =δ

dx(e)′ = ûε,δ,dec|x(e)
1 =δ

,

∂uε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

=
∂ûε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

.
(3.18)

Here, f̂(x
(e)
1 (x)) = f(x), for x ∈ edec,δij (respectively, f̂(x

(e)
1 (x), t) = f(x, t), for x ∈ edec,δij in the non-

stationary case), where x
(e)
1 (x) is the relation between the local variable x

(e)
1 and the global variablex.

It means that we keep the n-dimensional in space setting (3.16)1 for the diffusion equation ((3.17)1

for the heat equation) within small pieces Bε,δ
i , i = 1, ..., N, (their diameters are of order ε|ln(ε)|), reduce

the dimension to one and consider the one-dimensional diffusion or heat equation (3.16)2 or (3.17)2 on

the pieces edec,δij of edges e and add the junction conditions (3.18) between the n-dimensional and one

dimensional parts. This reduction allows us to reduce the mesh
1

ε|ln(ε)| times and to keep an exponential

precision of the computations.

Estimates (3.14), (3.15) justifiy the method of asymptotic partial decomposition of domain for the

heat equation. The proof of the theorem is similar to [16]. Namely, we use the asymptotic expansion

constructed there and check directly that it satisfies relations (3.18) exactly and relations (3.16) or (3.17)

with residuals of order O(εJ ) in corresponding L2−norms (for more details see [16]).

Let fj ∈ C∞ be a compact support function vanishing in some independent of ε neighborhood of

the nodes. There exists a constant C1 independent of ε such that if δ satisfies the following inequality

δ ≥ C1ε| ln ε| then

‖∇uε,δ,dec‖L∞(Bε×(0,T )) ≤ C, ‖∇2uε,δ,dec‖L∞(Bε×(0,T )) ≤ Cε−1, (3.19)

where constant C is independent of ε. The proof of these estimates is similar to the proof of Theorem 6.3

in [16]. Namely, we consider the difference between uε,δ,dec and the asymptotic expansion uJ
aε of order

J constructed in [16]. This asymptotic expansion is obtained from the expansion uJ
aε by multiplication

of the boundary layer correctors in the standard expansion by smooth cut-off functions vanishing at the

distance δ from the nodes. 1 It can be proved exactly as in [16] that both solutions are J + 5 times

differentiable in time and one obtains the similar to (6.3) in [16] estimates for the time derivatives of

their difference w = uε,δ,dec − uJ
aε. Out of some neighborhoods of cross sections Si,j one can prove the

regularity and estimates via the ADN theory as it is done in [16]. As in [16] in the neighborhood of the

cross-sections Si,j the regularity and estimates for w should be proved via its extension through Si,j .

However, this extension should be constructed in a different way (in [16] this extension was odd with

respect to Si,j).

Consider a part Bp of a nodal domain Bε,δ
i which is a ”short” cylinder between Si,j and a parallel

cross-section S′ at the distance δ/3 from Si,j . Both the asymptotic solution uJ
aε and the solution of the

problem of hybrid dimension (3.7) uε,δ,dec satisfy the homogeneous heat equation within Bp with the

homogeneous Neumann boundary condition at the lateral boundary. At Si,j both solutions depend on t

only. So, the difference w = uε,δ,dec − uJ
aε also has these properties, in particular, it is equal to c(t) at

Si,j , where c is a smooth function of time vanishing in some neighborhood of t = 0 and the L2 norm of

its derivatives is estimated as O(εJ ). Consider a solution to the following problem:

1There is a missprint in the definition of uJ
aε in [16]: the ratio

| ln ε||x−Oi|
emin

should be read as
|x−Oi|

δ
.
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Oi

Sij S'

δ/3

Bp

Bp

Bi
,δ

Figure 2: Extension through Si,j .

∂U
∂t −∆U = 0, x ∈ Bp,

∂U

∂n
= 0, x ∈ ∂Bp\(Si,j ∪ S′),

∂U

∂n
= c(t), x ∈ Si,j ,

∂U

∂n
= −c(t), x ∈ S′.

(3.20)

It depends only on t and londitudinal component of x and is a smooth function with a standard

estimate for its derivatives. Let us subtract it from w and consider the difference W = w − U . This

function W satisfies conditions

∂W

∂t
−∆W = 0, x ∈ Bp,

∂W

∂n
= 0, x ∈ ∂Bp\S′,

and so, function W can be extended through Si,j as an even function with respect to the variable x
(e)
1 −δ.

Let B̃p be the union of Bp and its symmetric (with respect to Si,j) mapping and denote W̃ the even

extension of W . It satisfies the homogeneous heat equation within B̃p and so it is a regular function.

Applying now the ADN theory to this extension we complete the proof of the estimates (3.19).

4 Numerical scheme and error estimate

Finite volume schemes are used to solve the model problems. The method is known as a robust and

cheap method for the discretization of conservation laws, and is well suited to approach a solution that

is just continuous in average over the interface cross sections. The finite volume method is sometimes

called a discontinuous finite element method, because the characteristic functions of the grid cells may

be seen as shape functions. However, this choice of shape functions can not be used in the finite element

framework (see [8]). The numerical schemes that are used in the paper are of order one. Discontinuous

Galerkin high-order methods could also be used here (see [2]). Nevertheless, in this latter case, there are

two values of the solution at the interface between each pair of neighboring cells (a value to the right of

the interface and a value to the left), and the computational cost is higher. Moreover, this kind of scheme

usually needs to be stabilized or requires a reconstruction of the solution.

From now on, we consider the steady diffusion equation and the non-stationary heat equation set in

a two-dimensional (s = 2) rod structure. For every edge ej = e, σ(e) = (− |σ(e)|
2 , |σ(e)|

2 ), and |σ(e)| is the

width of the rectangle B
(e)
ε .
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Let us consider the differential version of the partially decomposed problem (3.16) or (3.17) with the

junction conditions (3.18). The numerical scheme used to approach uε,δ,dec is a finite volume method ob-

tained by generalizing the scheme described in [19] for the heat equation. This is because the domain has

only one node in [19]. The discretisation in time (where required) is unchanged, whereas some notations

need to be adapted to describe the discretisation in space. In this paper, Ti stands for an admissible (see

the definition in [8]) mesh of Bε,δ
i (either Bε,δ

i is assumed to be polygonal or, as in Section 5, the problem is

set in a polygonal domain Bε,poly included in Bε), i = 1, ..., N , and E i
int = {σ ∈ E i, σ 6⊂ ∂Bε,δ

i } where E i is

the family of edges of Ti. Then, the mesh of edec,δlj consists of N (e) intervals (xe
i−1/2, x

e
i+1/2), i = 1, ..., N (e),

for all edges e = OlOj , l < j, with increasing values in the direction of [Ol, Oj), such that xe
1/2 = δ and

xe
N(e)+1/2

= |e| − δ; and of N (e) associated points xe
i , i = 1, ..., N (e), within. Let he

i = xe
i+1/2 − xe

i−1/2

and he
i+1/2 = xe

i+1 − xe
i . A mesh of Bdec,ε

lj contains the rectangular cells of height equal to |Sl,j |. The

global mesh of Bε is referred to as T . We denote by h the size of the mesh and by k the time step. Let

Nk = max{n ∈ IN, nk < T }.

Let us begin by describing the scheme solving (3.17-3.18), that is the heat equation, in a rod structure.

We have for n = 0, ..., Nk,



































he
i

vn+1
e,i − vne,i

k
+ F e,n+1

i+1/2 − F e,n+1
i−1/2 = he

i f
e,n
i , i = 1, ..., N (e), ∀e,

F e,n+1
i+1/2 = −

vn+1
e,i+1 − vn+1

e,i

he
i+1/2

, i = 0, . . . , N (e), ∀e,

fe,n
i =

1

he
i

∫ xe
i+1/2

xe
i−1/2

f̂(x
(e)
1 , tn+1)dx

(e)
1 , i = 1, ..., N (e), ∀e,

(4.21)



























































|K|u
n+1
K − un

K

k
+
∑

σ∈EK

Fn+1
K,σ = |K|fn

K , ∀K ∈ Ti, i = 1, ..., N,

Fn+1
K,σ = −|σ|

dσ
(un+1

L − un+1
K ), ∀σ ∈ E i

int , i = 1, ..., N, if σ = σK/L,

Fn+1
K,σ =

|σ|
dσ

un+1
K , ∀σ ⊂ γε, σ ∈ EK ,

Fn+1
K,σ = 0, ∀σ ⊂ (∂Bε,δ

i ∩ ∂Bε)\γε, i = 1, ..., N,

fn
K =

1

|K|

∫

K

f(x, tn+1)dx, ∀K ∈ Ti, i = 1, ..., N,

(4.22)

The value of the solution is not assumed to be constant on the interfaces, and the approximate value

of the solution on the edge σ if σ ⊂ Si,j at time tn is denoted un
σ. Let us complete the definition of the

approximated flux Fn
K,σ :

Fn
K,σ = −|σ|

dσ
(un

σ − un
K), ∀σ ⊂ Si,j , σ ∈ EK , (4.23)

1

|σ(e)|ε
∑

σ⊂Si,j ,σ∈EK

|σ|un
σ =

{

vne,0, if i < j, e = OiOj ,

vn
e,N(e)+1

, if i > j, e = OjOi,
(4.24)

un
σ − un

K

dσ
=



















vne,1 − vne,0
he
1/2

, ∀σ ⊂ Si,j , σ ∈ EK , if i < j, e = OiOj ,

vn
e,N(e) − vn

e,N(e)+1

he
N(e)+1/2

, ∀σ ⊂ Si,j , σ ∈ EK , if i > j, e = OjOi,
(4.25)
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that gives for all edges e, e = OiOj , i < j,

vne,0=



(
∑

σ⊂Si,j

|σ|dσ)vne,1 + he
1/2

∑

σ⊂Si,j ,σ∈EK

|σ|un
K









∑

σ⊂Si,j

|σ|dσ + |σ(e)|εhe
1/2





−1

vn
e,N(e)+1

=



(
∑

σ⊂Sj,i

|σ|dσ)vne,N(e) + he
N(e)+1/2

∑

σ⊂Sj,i,σ∈EK

|σ|un
K









∑

σ⊂Sj,i

|σ|dσ + |σ(e)|εhe
N(e)+1/2





−1 (4.26)

which are convex combinations of the approximated values of the solution on each side of the interface.

Let us add the initial condition
{

u0
K = 0, ∀K ∈ Ti, i = 1, ..., N,

v0e,i = 0, i = 1, ..., N (e), ∀e.
The monolithic scheme that is used to solve (3.17-3.18) results from the equations (4.21-4.22-4.23-

4.24-4.25), which is referred to as ”dsa” (discontinuous selected alternative) as in [19].

The approximate solution is the piecewise constant function defined on Bε × (0, (Nk + 1)k) by

uε,δ,dec,T ,k(x, t) = un+1
ε,δ,dec,T (x), x ∈ Bε, t ∈ [nk, (n+ 1)k), n ∈ {0, ..., Nk}

where un
ε,δ,dec,T for n ∈ {0, ..., Nk + 1} is given by

un
ε,δ,dec,T (x) =

{

un
K , x ∈ K,K ∈ Ti, i = 1, ..., N,

vne,i, x ∈ Bdec,ε
lj , x

(e)
1 ∈ (xe

i−1/2, x
e
i+1/2), i = 1, ..., N (e), e = OlOj .

(4.27)

The corresponding scheme to solve the diffusion equation that is (3.16-3.18) is similar to (4.21-4.22-

4.23-4.24-4.25). The scheme is simply obtained by removing the terms related to the time derivative and

by omitting the index n in the other terms.

The approximate solution is defined on Bε by

uε,δ,dec,T (x) =

{

uK , x ∈ K,K ∈ Ti, i = 1, ..., N,

ve,i, x ∈ Bdec,ε
lj , x

(e)
1 ∈ (xe

i−1/2, x
e
i+1/2), i = 1, ..., N (e), e = OlOj .

(4.28)

For the heat equation, the unknown of the scheme is Un with

(Un)T =
(

{{vne,i, i = 1, ..., N (e)}, e edge}, {{un
K,K ∈ Ti}, i = 1, ..., N (e)}

)

.

In the case N1 = 1 and for a similar tube structure, it is proved in [19] that there is a unique solution

(Un+1) to equations (4.21-4.22-4.23-4.24-4.25), (Un) being given. The generalization of this result below

is straightforward.

For the diffusion equation, the unknown of the scheme is U , simply obtained by omitting the index n

of Un above.

Lemma 4.1. There is a unique solution U to the linear system that corresponds to the monolithic scheme

solving (3.16-3.18).

There is a unique solution Un+1 to the linear system that corresponds to the monolithic scheme solving

(3.17-3.18), Un being given.

Before proving the existence and uniqueness of the approximate solution in both cases and establish-

ing an estimate of these solutions, let us generalize from [19] the definition of the discrete L2 and H1

10



norms for functions on Bε such that the average from both sides of the cross sections Si,j is the same.

We will then continue with the discrete L2 and H1 norms for functions on Bε × (0, T ).

Definition 4.2. We define X(T ) the set of the functions from Bε to IR which are constant over each

control volume of T . Let W ∈ X(T ) such that,

W (x) =

{

WK , x ∈ K,K ∈ Ti, i = 1, ..., N,

We,i, x ∈ Bdec,δ
lj , x

(e)
1 ∈ (xe

i−1/2, x
e
i+1/2), i = 1, ..., N (e), e = OlOj .

We define

‖W‖L2(Bε) =





N
∑

i=1

∑

K∈Ti

|K|W 2
K +

M
∑

j=1,e=ej

|σ(e)|ε
N(e)
∑

l=1

he
lW

2
e,l





1
2

and | W |1,T =





N
∑

i=1

∑

σ∈Ei
int,σ⊂∪jSi,j ,σ⊂γi

ε

|σ|dσ
(

DσW

dσ

)2

+

M
∑

j=1,e=ej

|σ(e)|ε
N(e)
∑

l=0

(We,l+1 −We,l)
2

he
l+1/2





1/2

with
DσW

dσ
=















































| WK −WL |
dσ

, σ ∈ E i
int, i = 1, ..., N, σ = σK|L,

| WK |
dσ

, σ ⊂ γε, σ ∈ EK ,

| We,1 −We,0 |
he
1/2

, σ ⊂ Si,j , i < j, e = OiOj ,

| We,N(e) −We,N(e)+1 |
he
N(e)+1/2

, σ ⊂ Si,j , j < i, e = OjOi,

where We,0 and We,N(e)+1 are defined according to a formula similar to (4.26), and γi
ε is assumed to be

empty if i ≤ N1.

And finally, ‖W‖21,T = ‖W‖2L2(Bε)
+ | W |21,T , which is a discrete H1(Bε) norm.

Remark 4.3. At the discrete level, we have also the property that an inner product in H can be defined

as the sum of inner products in H1(Bdec,ε
ij ) and H1(Bε,δ

i ) for all Bdec,ε
ij and Bε,δ

i , so that

|W |H =
√

∑

ij |W |2
H1(Bdec,ε

ij )
+
∑

i |W |2
H1(Bε,δ

i )
for W ∈ X(T ) with

|W |2
H1(Bε,δ

i )
=

∑

σ∈Ei
int,σ⊂∪jSi,j,σ⊂γi

ε

|σ|dσ
(

DσW

dσ

)2

and |W |2
H1(Bdec,ε

ij )
= |σ(e)|ε

N(e)
∑

l=0

(We,l+1 −We,l)
2

he
l+1/2

if e = OiOj ,

with the same notations as above.

Definition 4.4. We define X(T , k) the set of the functions from Bε × (0, (Nk + 1)k) to IR which are

constant over each control volume of T and over each time interval [nk, (n + 1)k), n = 0, ..., Nk. Let

W ∈ X(T , k) defined by,

W (x, t) = Wn(x), t ∈ [nk, (n+ 1)k), n = 0, ..., Nk,

where

Wn(x) =

{

Wn
K , x ∈ K,K ∈ Ti, i = 1, ..., N,

Wn
e,i, x ∈ Bdec,δ

lj , x
(e)
1 ∈ (xe

i−1/2, x
e
i+1/2), i = 1, ..., N (e), e = OlOj .

We define

‖W‖22,T ,k = ‖W‖2L2(Bε×(0,(Nk+1)k)) =

Nk
∑

n=0

k‖Wn‖2L2(Bε)

and
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| W |21,T ,k=

Nk
∑

n=0

k | Wn |21,T .

And finally, ‖W‖21,T ,k = ‖W‖22,T ,k+ | W |21,T ,k, which is a discrete H1(Bε × (0, (Nk + 1)k)) norm.

Remark 4.5. As long as Nkk < T ≤ (Nk +1)k, we assume that the function f is defined a little beyond

T, and for instance for t ∈ (0, 2T ).

Theorem 4.6. Under the assumptions of Theorem 3.3, the following estimates hold:

for the diffusion equation

‖uε,δ,dec,T ‖1,T ≤ C‖fT ‖L2(Bε) (4.29)

for the heat equation

‖uε,δ,dec,T ,k‖1,T ,k ≤ C‖fT ,k‖2,T ,k (4.30)

where the constant C does not depend on ε.

Proof. The proof is detailed only for the heat equation. The proof for the diffusion equation can be

deduced easily in a similar way. Let fT ,k ∈ X(T , k), with

fT ,k(x, t) = fn
T (x), t ∈ [nk, (n+ 1)k), n = 0, ..., Nk,

where

fn
T (x) =

{

fn
K , x ∈ K,K ∈ Ti, i = 1, ..., N,

fe,n
i , x ∈ Bdec,δ

lj , x
(e)
1 ∈ (xe

i−1/2, x
e
i+1/2), i = 1, ..., N (e), e = OlOj .

The proof is classical. We multiply (4.21)1 by vn+1
e,i , sum over i, multiply by | σ(e) | ε, and sum over

e. Then we multiply (4.22)1 by un+1
K and sum over K. Reordering the summations and applying the

Cauchy-Schwarz-Buniakowski inequality gives

1

k
‖un+1

ε,δ,dec,T ‖2L2(Bε)
+ |un+1

ε,δ,dec,T |21,T
≤ 1

k
‖un

ε,δ,dec,T ‖L2(Bε)‖un+1
ε,δ,dec,T ‖L2(Bε) + ‖fn

T ‖L2(Bε)‖un+1
ε,δ,dec,T ‖L2(Bε).

At this stage, we need a Poincaré-Friedrichs inequality to be able to write that there exists a constant C

such that

‖un+1
ε,δ,dec,T ‖L2(Bε) ≤ C |un+1

ε,δ,dec,T |1,T .
This result is new in this context, and it is stated in Theorem A2, proved in Appendix 2. Then
1

k
‖un+1

ε,δ,dec,T ‖2L2(Bε)
+ |un+1

ε,δ,dec,T |21,T ≤ 1

k
‖un

ε,δ,dec,T ‖2L2(Bε)
+ C ‖fn

T ‖2L2(Bε)
.

Finally, multiplying by k and summing over n from 0 to Nk gives
Nk
∑

n=0

‖un+1
ε,δ,dec,T ‖2L2(Bε)

+

Nk
∑

n=0

k|un+1
ε,δ,dec,T |21,T ≤

Nk
∑

n=0

‖un
ε,δ,dec,T ‖2L2(Bε)

+ C

Nk
∑

n=0

k ‖fn
T ‖2L2(Bε)

.

Almost all the terms of the first sum in the left hand side are simplified with those of the first sum in the

right hand side. It follows that

‖uNk+1
ε,δ,dec,T ‖2L2(Bε)

+ |uε,δ,dec,T ,k|21,T ,k ≤ ‖u0
ε,δ,dec,T ‖2L2(Bε)

+ C ‖fT ,k‖22,T ,k.

Since ‖u0
ε,δ,dec,T ‖L2(Bε) = 0, using the Poincaré-Friedrichs inequality again allows us to complete the

proof for the heat equation.

To adapt the proof to the case of the diffusion equation, all that remains is to give the definition of

fT (x) =

{

fK , x ∈ K,K ∈ Ti, i = 1, ..., N,

fe
i , x ∈ Bdec,δ

lj , x
(e)
1 ∈ (xe

i−1/2, x
e
i+1/2), i = 1, ..., N (e), e = OlOj .
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Remark 4.7. The proof of Lemma 4.1 can easily be deduced from the above by taking f = 0, or

un
ε,δ,dec,T = 0 if necessary.

5 Error estimate

As in [16], we can assume here that there exist N polygonal nodal domains ωi
ε,poly, i = 1, ..., N, included

in ωi
ε. Consider Bε,poly =

(

∪M
j=1B

(ej)
ε

)

∪
(

∪N
i=1ω

i
ε,poly

)

as the polygonal domain where the problem

is actually set. It is assumed that ∂ω1
ε,poly and ∂ω1

ε are so close that, at this part of the boundary,
∂uε,δ,dec

∂n
(x, t) = O(h).

Under this assumption, for the diffusion equation with continuous junctions, it is proved that

‖uε − uε,δ,dec,T ‖L2(Bε,poly) = O

(

h√
ε

)

+O(εJ ).

Also, under this assumption, for the heat equation with continuous junctions, Theorem 8.1 [16] states

that

‖uε − uε,δ,dec,T ,k‖L2(Bε,poly×(0,T )) = O

(

h√
ε
+ k

)

+O(εJ ).

In the present case, the junction conditions are no longer continuous since they are given by (3.18),

consequently the estimate must now depend on the jump of discontinuity of uε,δ,dec at the junctions.

Fortunately, under the assumptions of Theorem 5.3, it is proved that this jump is small. Theoretically,

for finite ε the convergence of the schemes towards the solution of the diffusion or the heat equation

when the size of the mesh tends to zero can not be proved, but actually, since ε is a small parameter, the

impact of the jump of discontinuity is limited.

Theorem 5.1. Under the assumptions of Theorem 3.3, the following estimates hold:

for the diffusion equation

‖uε − uε,δ,dec,T ‖L2(Bε,poly) = O

(

h√
ε
+

√

ε

h
[uε,δ,dec]

)

+O(εJ ) (5.31)

for the heat equation

‖uε − uε,δ,dec,T ,k‖L2(Bε,poly×(0,T )) = O

(

h√
ε
+

√

ε

h
[uε,δ,dec] + k

)

+O(εJ ) (5.32)

where [uε,δ,dec] is the maximum of the jumps of discontinuity in space of uε,δ,dec at the junctions Si,j.

The order of magnitude of [uε,δ,dec] is O(εJ ).

Proof. The proof is given only for the heat equation. The proof for the diffusion equation can be deduced

easily from the previous one.

Let En
T ∈ X(T ), n ∈ {0, ..., Nk + 1},

En
T (x) =

{

En
K = uε,δ,dec(xK , tn)− un

K , x ∈ K,K ∈ Ti, i = 1, ..., N,

En
e,i = ûε,δ,dec(x

e
i , t

n)− vne,i, x ∈ Bdec,ε
lj , x

(e)
1 ∈ (xe

i−1/2, x
e
i+1/2), i = 1, ..., N (e), e = OlOj .

Let En
e,0 and En

e,N(e)+1
be defined as Wn

e,0 and Wn
e,N(e)+1

in Definition 4.2. The proof of the estimate

(5.32) follows the proof of Theorem 8.1 [16]. The latter is produced in the case of one single node and

for a simpler rod structure. However it may be easily transfered to the case of the general rod structure

at hand. That is why we opt for the study of a junction. We intend to prove that ‖En
T ‖L2(Bε,poly) =

O

(

h√
ε
+

√

ε

h
[uε,δ,dec] + k

)

by analysing the new term O

(
√

ε

h
[uε,δ,dec]

)

coming from the consistency
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error in space on the diffusion flux at the junctions. All other terms are already obtained and explained

in [16].

Let us consider for instance the section Si,j , i < j, at the distance δ from Oi on the edge e = OiOj .

Let us define

F
e,n

1/2 = −∂ûε,δ,dec

∂x
(e)
1

(δ, tn),

and

F
n

K,σ = −
∫

σ

∂uε,δ,dec

∂n
(., tn), ∀σ ∈ EK .

We have

F
n

K,σ = |σ|F e,n

1/2, ∀σ ⊂ Si,j , σ ∈ EK .

Let us define

F ∗,e,n
1/2 = − ûε,δ,dec(x

e
1, tn)− u∗

e(δ, n)

he
1/2

with

u∗
e(δ, n)=



(
∑

σ⊂Si,j

|σ|dσ)ûε,δ,dec(x
e
1, tn) + he

1/2

∑

σ⊂Si,j ,σ∈EK

|σ|uε,δ,dec(xK , tn)









∑

σ⊂Si,j

|σ|dσ + |σ(e)|εhe
1/2





−1

,

and

F ∗,n
K,σ = |σ|F ∗,e,n

1/2 .

The left and right consistency errors (space variable) at the junction Si,j are Re,n
1/2 = F ∗,e,n

1/2 − F
e,n

1/2 and

Rn
K,σ = 1

|σ| (F
∗,n
K,σ − F

n

K,σ) = Re,n
1/2, ∀σ ⊂ Si,j , σ ∈ EK .

Let us define the following quantities :















R∗,e,n
1/2 = − ûε,δ,dec(δ, tn)− u∗

e(δ, n)

he
1/2

R∇,e,n
1/2 = − ûε,δ,dec(x

e
1, tn)− ûε,δ,dec(δ, tn)

he
1/2

+
∂ûε,δ,dec

∂x
(e)
1

(δ, tn)

such that

Re,n
1/2 = R∗,e,n

1/2 +R∇,e,n
1/2 .

The estimate

R∇,e,n
1/2 = O

(

h

∥

∥

∥

∥

∂2ûε,δ,dec

∂x
(e)2
1

∥

∥

∥

∥

∞

)

(5.33)

holds but R∗,e,n
1/2 do not tend to zero when h tends to zero.

Let us consider the proof for the continuous junctions from there :

−|σ(e)|εRe,n+1
1/2 (En+1

e,1 − En+1
e,0 ) +

∑

σ⊂Si,j ,σ∈EK

|σ|Rn+1
K,σ (E

n+1
K − En+1

e,0 ).

This quantity can be found in [16], and can be grouped with the terms that are not related to the in-

terface, to give at the end O

(

h√
ε

)

, with (3.19), because the term R∗,e,n
1/2 vanishes in the final overall

estimate. Let us continue the proof assuming now (3.18). While the interior terms are unchanged from

those described in [16], the quantity above reads instead

−Re,n+1
1/2

En+1
e,1 − En+1

e,0

he
1/2



|σ(e)|εhe
1/2 +

∑

σ⊂Si,j

|σ|dσ



 .
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At this stage, the Cauchy-Schwarz-Buniakowski inequality is used. The part of the previous term:
En+1

e,1 −En+1
e,0

he
1/2

(

|σ(e)|εhe
1/2 +

∑

σ⊂Si,j
|σ|dσ

)
1
2

is used in |En+1
T |1,T , the term

(

|σ(e)|εhe
1/2 +

∑

σ⊂Si,j
|σ|dσ

)
1
2

represents O(
√
εh), and Re,n+1

1/2 = O

(

[uε,δ,dec]

h

)

. It explains how the new term O

(
√

ε

h
[uε,δ,dec]

)

=

O
(√

εh
[uε,δ,dec]

h

)

appears in the final result.

6 Numerical results

We consider model problems set in a domain with a single node O1 (N1 = 1) and two edges (e1 =

O1O2, e2 = O1O3, N = 3), without nodal domain at the vertices and with only one hyperplan crossing

each edge at the distance δ from the node. The domain is illustrated in Figure 3. The problem corre-

sponding to the diffusion equation has already been described in [15], and with the heat equation in [16]

and [19]. Each time, the right hand side is such that the exact solution is continuous.

The numerical experiments compare the approximate solutions of the partially decomposed problems

of hybrid dimension (generated by the MAPDD) obtained either directly (monolithic schemes described

in Section 4) or by subdomain iteration (domain decomposition methods). Indeed domain decomposition

methods are frequently used to approach the solution of geometrical multi-scale problems like the partially

decomposed problems. Specifically, they are methods where subdomains do not overlap. In our case, the

subdomains are delimited by interfaces at the junction between the 2D and the 1D problems. The domain

decomposition methods that we use are generalizations of the Steklov-Poincaré problem. They reduce

to interface systems with a small number of unknowns, which ensure that the transmission conditions

are satisfied. Following for instance the methods proposed in [4, 5, 9], we obtain reduced systems of four

equations and four unknowns (double trace formulation : two unknowns per interface, two interfaces).

They are solved by using the matrix-free GMRES method (see [18]), and it takes four iterations to

achieve convergence. When a direct solver is used to solve the reduced systems, the L2 error between

the solution of the monolithic scheme and the solution obtained from the reduced system, is in the

order of 10−14. For comparative purposes, the numerical experiments are carried out with two kinds

of transmission conditions : pointwise continuity or continuity in average over the junctions, which

correspond respectively to the classical and new version of the MAPDD. Questions are being asked about

whether the milestone of 10−14 might be reached with the GMRES algorithm in either case, in order to

see if the new transmission conditions allow more stability.

Regarding the domain decomposition strategy, the transmission conditions (3.18) are transformed

into two equations on each interface. Another option is to enforce one of them through the discretization

to obtain a reduced system with just one equation per interface, that ensures the other one. Such an

option leads to reduced systems with just one unknown per interface (single-trace formulation). However,

no differentiation can be made from the latter between the continuous and the alternative transmission

conditions regarding the milestone of 10−14. On the contrary, a significant difference can be seen by

solving reduced systems with two equations per interface, at least in the case of the heat equation.

The methodology used to solve the diffusion equation is now described. In order to define the separated

1D and 2D problems, let us consider the equations below taken from (3.16):











−∂2ûε,δ,dec

∂x
(e)2
1

(x) = f̂(x
(e)
1 ), x ∈ edec,δ1l , l = j + 1, j ∈ {1, 2},

ûε,δ,dec|x(e)
1 =|e|

= 0, e = ej , j ∈ {1, 2},
(6.34)
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Figure 3: The domain Bε.











−△uε,δ,dec(x) = f(x), x ∈ Bε,δ
1 ,

∂uε,δ,dec

∂n
(x) = 0, x ∈ ∂Bε,δ

1 ∩ ∂Bε.
(6.35)

The junction condition (3.18) may be written











ûε,δ,dec|x(e)
1 =δ

= αj , e = ej , j ∈ {1, 2},
∂ûε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

= βj , e = ej, j ∈ {1, 2}, (6.36)















1

|S1,l|

∫

S1,l

uε,δ,dec|x(e)
1 =δ

dx(e)′ = αj , e = ej , l = j + 1, j ∈ {1, 2},
∂uε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

= βj , e = ej , j ∈ {1, 2}.
(6.37)

Boundary conditions must be added to (6.34) and (6.35) so that the problems are well posed. First, we

define the operator SDN
1D,j from IR to IR, j ∈ {1, 2}, by

SDN
1D,j(αj) =

∂ûε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

, e = ej ,

where ûε,δ,dec is solution of (6.34) with (6.36)1.

It is underlined that (6.35) is well posed neither with the boundary conditions (6.37)1 nor (6.37)2.

Then we cannot consider continuity in average of uε,δ,dec on both interfaces. Though, this makes it

possible to test the alternative transmission condition at only one interface (j = 1), the solution being

continuous on the other junction (j = 2). Then, the junction condition actually used is not (3.18) as

such but rather (6.36) and (6.37) if (only) j = 1 to which is added











1

|S1,l|

∫

S1,l

∂uε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

dx(e)′ = βj , e = ej , l = j + 1, j ∈ {1, 2},

uε,δ,dec|x(e)
1 =δ

= αj , e = ej , j ∈ {1, 2},
(6.38)

if (only) j = 2.

As a result, we are able to define the operator SND
2D from IR2 to IR2, by

SND
2D (β1, α2) =

(

1

|S1,2|

∫

S1,2

uε,δ,dec|x(e)
1 =δ

dx(e)′ ;
1

|S1,3|

∫

S1,3

∂uε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

dx(e)′

)

where uε,δ,dec is solution of (6.35) with (6.37)2 with j = 1 and (6.38)2 with j = 2.
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Let αj , j ∈ {1, 2}, denote the unknown (average) values and βj , j ∈ {1, 2}, the unknown (average)

values of the normal derivative, then ûε,δ,dec and uε,δ,dec are the solution of (6.34-6.35-6.36) and (6.37)

with j = 1 and (6.38) with j = 2 if (only)
{

βj − SDN
1D,j(αj) = 0, j ∈ {1, 2},

(α1, β2)− SND
2D (β1, α2) = 0,

(6.39)

which is the reduced system that reflects (6.36)2, (6.37)1 with j = 1 and (6.38)1 with j = 2 (see [19]

where a similar approach is used for the heat equation).

The scheme above will be referred to as NmDDN. The capital letters ”D” and ”N” represent the

interface conditions ”Dirichlet” and ”Neumann”, writing firstly the input (on S1,2) and the output (on

S1,2) values of the 2D problem, and secondly those of the 1D problems. The letter ”m” in front of ”D”

stands for ”mean value”, that is to say the output value on S1,2 of the 2D problem is the mean value of

the solution (this name does not reflect the input/output values on S1,3).

Other schemes can be defined by using in turn αj and βj as input values for the separated problems.

The same naming is used for all schemes (for both the diffusion and heat equations). Each scheme is

denominated by the four corresponding letters, preceded by ”m” where appropriate. The scheme NmDND

uses the operator SND
1D,j , which can easily be deduced from SDN

1D,j , j ∈ {1, 2}. In what follows, for the

sake of simplicity, unlike the previous schemes, as long as the 2D problem is well posed, there is the same

boundary condition on both interfaces (for both the diffusion and heat equations). For the purpose of

comparison, results from the schemes DmNND and DmNDN (continuous junctions on both interfaces)

are also reported. These schemes are defined by the means of the operator SDN
2D ,

SDN
2D (α1, α2) =

(

1

|S1,2|

∫

S1,2

∂uε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

dx(e)′ ;
1

|S1,3|

∫

S1,3

∂uε,δ,dec

∂x
(e)
1

|
x
(e)
1 =δ

dx(e)′

)

where uε,δ,dec is solution of (6.35) and (6.38)2. The outcomes can be seen on Table 1.

- DmNND DmNDN NmDND NmDDN

preconditioning continous continuous discontinuous discontinuous

α−β 5.3 10−15 1.9 10−14 1.1 10−14 2.0 10−14

α−α 5.3 10−15 1.8 10−14 1.1 10−14 2.3 10−14

β−α 4.3 10−15 1.9 10−14 1.1 10−14 2.4 10−14

β−β 5.2 10−15 1.9 10−14 1.1 10−14 2.4 10−14

Table 1: Diffusion equation. The L2 error between the solution of the monolithic scheme and the solution

obtained by using the domain decomposition method.

Several diagonal preconditioners of the reduced systems are considered (even if we are not seeing the

positive effect in the case of the diffusion equation), by selecting the coefficients of the variables equal to

1 when one acts as if the solution of the separated problems are nil. The variables in question can be read

in the first column of Table 1 : they are the variables having the coefficient equal to 1 in the equations

describing the 1D side and the 2D side respectively. The four versions of the schemes, whether continuity

is enforced or is not on the junctions, give great accuracy. The GMRES algorithm gives results in the

order of 10−14 in either case, as if a direct solver has been used to solve the interface system. Regarding

the diffusion equation, the experiments do not allow us to distinguish between the two kinds of interface

conditions with regard to stability properties.
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Rather, in the case of the heat equation, the results differ significantly. We will not recall the domain

decomposition strategy used for the heat equation (for details see [19]). Indeed, after performing an

Euler’s implicite time-discretization, it is very similar to that described previously. There is, however, an

essential difference between the diffusion equation and the heat equation. The separated 2D problem for

the heat equation is well posed even with alternative junctions on both interfaces. The schemes NmDND

and NmDDN involve the solution of the 2D separated problem with the boundary conditions (6.37)2.

Some interesting outcomes are resumed in Table 2 below, a part of them comes from [19]. The schemes

DmNND and DmNDN correspond to continuous junctions as above.

- DmNND DmNDN NmDND NmDDN

preconditioning continous continuous discontinuous discontinuous

α−β 4.8 10−10 9.2 10−7 1.0 10−11 4.0 10−7

α−α 2.4 10−11 1.7 10−13 2.1 10−10 2.5 10−6

β−α 0.017 2.0 10−7 4.2 10−6 4.2 10−6

β−β 1.9 10−5 2.4 10−9 3.5 10−14 8.1 10−14

Table 2: Heat equation. The L2 error between the solution of the monolithic scheme and the solution

obtained by using the domain decomposition method.

For the heat equation, the α−α version of the scheme DmNDN gives accuracy of the order of 10−13,

it is an appropriate scheme for continuous junctions. The β−β version of the schemes NmDDN and

NmDND gives a greater accuracy in the case of alternative junctions. These latter schemes give a result

in the order of 10−14 as if a direct solver has been used to solve the interface system. The GMRES

algorithm can not achieve comparable accuracy for the schemes that correspond to continuous junctions.

It can be concluded that the schemes that make use of alternative junctions have better properties of

stability, even if we are only able to achieve this result by using a preconditioner.

7 Conclusion

We introduce a new version of the MAPDD allowing the discontinuity of the solution at the interface

of models of different dimensions. At the junctions the pointwise continuity of the flux and continuity

of the mean value of the unknown function are required. These conditions are inverse with respect to

the classical version of the MAPDD : the pointwise continuity of the unknown function and continuity

of the mean value of the flux. This new version of the MAPDD is applied to the stationary diffusion

equation and to the non-stationary heat equation set in a rod structure with Neumann’s condition at

the lateral boundary. Thus, the original problem is reduced to a partially decomposed problem of hybrid

dimension. We prove that the partially decomposed problem admits a unique solution. These problems

are non-standard because their solutions are discontinuous at the interface. The proof of the theorem of

existence of solution uses a specific Poincaré - Friedrichs inequality for functions having discontinuities at

the junction interface but keeping the continuous mean value. A theorem on the error estimate is proved.

Then the hybrid dimension problem is solved numerically by a special finite volume scheme. For this

scheme the convergence result is proved and the error is estimated. This estimate depends on the small

parameter and on the steps of the scheme. The jumps of discontinuity in space of the unknown function

at the junctions are involved in the error estimate, but the order of magnitude of this term is small.

Numerical experiments compare the approximate solutions of the hybrid dimensional partially de-

composed problem (generated by the MAPDD) obtained either directly or by subdomain iteration. In
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the latter case, the interfaces are located at the junctions and the interface systems are solved using

the GMRES method. The numerical results show that the L2 error between the approximate solutions

cannot be as small as 10−14 with the classical transmission conditions in the case of the heat equation,

while this milestone is reached with the new transmission conditions.

This new version of the MAPDD allows the discontinuity of the solution at the junctions. Only the

weak continuity of the unknown function is required. In the same way, specific Robin interface conditions

in relation to the mean value of the unknown function and pointwise value of the flux could just as well

be considered.

8 Appendix: The Poincaré and the Poincaré - Friedrichs in-

equalities for a finite rod structure with discontinuities con-

serving the average at the cross-section

A1 Appendix 1: The Poincaré and the Friedrichs inequalities for a finite rod structure with

discontinuities conserving the average at the cross-section

The goal of this appendix is to prove the Poincaré - Friedrichs inequality for a function u ∈ H1
γ,0(Bε).

Below we consider domains called L−domains which are connected and bounded open sets in IRs or IRs−1

with a Lipschitz boundary. We suppose also that ε is sufficiently small. For the reader’s convenience let

us recall several lemmata from [17].

G1

G2
d2

(0, d1 )	

0
β(0,	d2)	

Figure 4: (a) Domains of lemma A1. G1 ⊂ G2. (b) Domains of lemma A3.

Lemma A1. Let G1, G2 be L−domains, G1 ⊂ G2. Then for each function u ∈ H1(G2) the estimate

holds true

({u}1 − {u}2)2 ≤ c

∫

G2

(∇u)2dx,

where c is a constant depending on G1, G2, and {u}i = 1
|Gi|

∫

Gi
u dx. Lemma is proved in [17] Chapter

4 Appendix A2.

Lemma A2. Let Gε
i = {x ∈ IRs | x

ε ∈ Gi}, where G1, G2 are L−domains, G1 ⊂ G2. Then for each

u ∈ H1(Gε
2) the estimate holds

({u}ε1 − {u}ε2)2 ≤ cε2−s

∫

Gε
2

(∇u)2dx,

where c is independent of ε, but depends on G1 and G2,

{u}εi = 1
|Gε

i |

∫

Gε
i
u dx, i = 1, 2. Lemma is proved in [17].

Lemma A3. Let β be an (s− 1) dimensional L−domain, β(a,b) be a cylinder (a, b)× β; denote

βε
(a,b) = {x ∈ IRs | (x2

ε
, ...,

xs

ε
) ∈ β, x1 ∈ (a, b)}.

Let d1, d2 be constants independent of ε. Then

19



({u}ε(0,d1ε)
− {u}ε(0,d2)

)2 ≤ d2
|β| ε1−s

∫

βε
(0,d2)

(
∂u

∂x1
)2 dx,

where

u ∈ H1(β(0,d2)), {u}ε(a,b) =
1

|βε
(a,b)|

∫

βε
(a,b)

u dx.

Lemma is proved in [17].

d1

ε

β(0, )

0
β(0, d1)

ε

β1(0,	h1ε)	 ( ,	d1)	

β1(0,	d1)	

β3
ε

ε
β1
ε

εβ2(0,	h2ε)	
ε

(0,	 )	β2
ε

( ,	d2)	
β2
ε

β2(0,	d2)	
ε

Figure 5: (a) Domains of lemma A4. (b) Domains of lemma A5.

Lemma A4 If u ∈ H1(βε
(0,δ)) ∩ H1(βε

(δ,d1)
), where δ > 0, δ < d1 and if the integral of the trace

∫

S u(δ, x′)dx′ is the same from both sides of the cross section S = {x1 = δ, x′/ε ∈ β} then

({u}ε(0,δ) − {u}ε(δ,d1)
)2 ≤ d1

|β| ε1−s

∫

βε
(0,δ)

∪βε
(δ,d1)

(
∂u

∂x1
)2 dx.

Here and below an intersection H1(A)∩H1(B) denotes the space of functions defined on A∪B with

restrictions belonging to both spaces H1(A) and H1(B) .

Proof

As usual, we prove first the inequality for C1-smooth functions and then passing to the limit we

generalize it for the Sobolev spaces.

Consider t1 ∈ (0, δ) and x1 ∈ (δ, d1), applying the Newton -Leibnitz formula, we get:

u(x1, x
′)− u(t1, x

′)− u(δ + 0, x′) + u(δ − 0, x′) =

∫ δ

t1

∂u

∂x1
(θ, x′)dθ +

∫ x1

δ

∂u

∂x1
(θ, x′)dθ,

integrate it for t1 ∈ (0, δ), x1 ∈ (δ, d2) and x′ ∈ βε, βε = {x′ : x′/ε ∈ β}. Taking into account that
∫

βε
(−u(δ + 0, x′) + u(δ − 0, x′))dx′ = 0, we obtain

δ

∫

βε
(δ,d1)

u(x)dx−(d1−δ)

∫

βε
(0,δ)

u(x)dx =

∫

βε

(

(d1−δ)

∫ δ

0

∫ δ

t1

∂u

∂x1
(θ, x′)dθdt1+δ

∫ d1

δ

∫ x1

δ

∂u

∂x1
(θ, x′)dθdx1

)

dx′,

so

{u}ε(0,δ)−{u}ε(δ,d1)
=

1

δ(d1 − δ)|β|εs−1

∫

βε

(

(d1−δ)

∫ δ

0

∫ δ

t1

∂u

∂x1
(θ, x′)dθdt1+δ

∫ d1

δ

∫ x1

δ

∂u

∂x1
(θ, x′)dθdx1

)

dx′,

and so, applying the Cauchy-Schwarz-Buniakowski inequality, we get

|{u}ε(0,d1)
− {u}ε(0,d1ε)

| ≤ 1

εs−1|β| ||
∂u

∂x1
||L1(βε

(0,d1)
) ≤

√
d1

√

εs−1|β|
|| ∂u
∂x1

||L2(βε
(0,d1)

).
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Lemma is proved. It generalizes Lemma3.

Lemma A5 Let δ be a positive number greater than hiε, β1 and β2 be two L−domains in IRs−1, β3

be an L−domain in IRs. Denote

βε
i = {x ∈ IRs−1 | x

ε
∈ βi} (i = 1, 2), βε

3 = {x ∈ IRs | x
ε
∈ β3},

and let β̃ε
i(a,b) be a cylinder obtained from the cylinder (a, b) × βε

i by some rotations and translations.

Let β̃ε
i(0,di)

∩ βε
3 = β̃ε

i(0,hiε)
, where di, hi do not depend on ε. Let u be function defined in Bε such that

u ∈ H1(BU ) ∩ ∩2
i=1H

1(β̃ε
i(δ,di)

), where BU = (
⋃2

i=1 β̃ε
i(0,δ))

⋃

βε
3 and the average of u at the cross

sections of the cylinders β̃ε
i(0,di)

corresponding to x1 = δ (in local variables with respect to (0, di) × βε
i )

has the same value from both sides of the cross section.

Then
1

|β̃ε
1(δ,d1)

|
(

∫

β̃ε
(δ,d1)

udx)2,
1

|β̃ε
1(0,δ)|

(

∫

β̃ε
(0,δ)

udx)2,
1

|βε
3 |
(

∫

βε
3

udx)2 ≤

c1

|β̃ε
(δ,d2)

|
(

∫

β̃ε
2(0,d2)

udx)2 + c2

(

∫

BU

(∇u)2dx+

2
∑

i=1

∫

β̃ε
i(δ,di)

(∇u)2dx
)

,

where c1, c2 do not depend on ε and δ.

Proof.

Denote
1

|β̃ε
i(a,b)

|
(
∫

β̃ε
i(a,b)

udx) as {u}(a,b)i,ε , i = 1, 2, and {u}3,ε = 1
|βε

3|

∫

βε
3
udx, then applying the Young’s inequal-

ity, Lemma A4, and then Lemma A3 we get:

|β̃ε
1(δ,d1)

|({u}(δ,d1)
1,ε )2 ≤ 2d1ε

s−1|β1|(({u}(0,δ)1,ε )2 + ({u}(δ,d1)
1,ε − {u}(0,δ)1,ε )2)

≤ 2d1ε
s−1|β1|({u}(0,δ)1,ε )2 + 2d21(

∫

β̃ε
1(0,δ)

(∇u)2dx+

∫

β̃ε
1(δ,d1)

(∇u)2dx)

≤ 4d1ε
s−1|β1|(({u}(0,h1ε)

1,ε )2 + ({u}(0,δ)1,ε − {u}(0,εh1)
1,ε )2) + 2d21

(

∫

β̃ε
1(0,δ)

(∇u)2dx+

∫

β̃ε
1(δ,d1)

(∇u)2dx
)

≤ 4d1ε
s−1|β1|(({u}(0,h1ε)

1,ε )2 + 6d21(

∫

β̃ε
1(0,δ)

(∇u)2dx+

∫

β̃ε
1(δ,d1)

(∇u)2dx).

According to the Young’s inequality and Lemma A2 we get:

4d1ε
s−1|β1|(({u}(0,h1ε)

1,ε )2 ≤ 8d1ε
s−1|β1|

(

({u}3,ε)2 + ({u}(0,h1ε)
1,ε − {u}3,ε)2

)

≤ 8d1ε
s−1|β1|

(

({u}3,ε)2 + cε2−s

∫

βε
3

(∇u)2dx
)

.

Similar considerations for β̃ε
2(0,h2ε)

, β̃ε
2(0,δ), β̃

ε
2(δ,d2)

finalize the proof of the estimate for 1
|β̃ε

1(δ,d1)
|
(
∫

β̃ε
(δ,d1)

udx)2.

Lemma A6. Let G be an L−domain in IRs, Gε = {x ∈ IRs|xε ∈ G}, and let u be a function,

u ∈ H1(Gε). Then the estimate takes place

||u||2L2(Gε) ≤ 1

|Gε| (
∫

Gε

udx)2 + ε2c||∇u||2L2(Gε).

Here constant c depends on G. This assertion is a standard scaling of the classical Poincaré - Friedrichs

inequality.
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Lemma A7. Let u ∈ H1(βε
(0,d)) then

||u||2L2(βε
(0,d)

) ≤
4

|βε
(0,d)|

(

∫

βε
(0,d)

u(x)dx)2 + 8d2
∫

βε
(0,d)

(∇u)2dx

for all sufficiently small ε.

Proof see [17].

Lemma A7 admits the following generalization:

Lemma A8. Let the domain β̃ε
(a,b) be obtained from βε

(a,b) by means of rotation and translation, then

the estimate holds

‖u‖2
L2(β̃ε

(0,d)
)

≤ 4

|β̃ε
(0,d)|

(

∫

β̃ε
(0,d)

udx)2 + c3

∫

β̃ε
(0,d)

(∇u)2dx,

where c3 is independent of d and ε, ε is sufficiently small.

Bi
ε,

Bij
dec,ε

Bpk
dec,ε

Bk
ε,δ k

u=0

Figure 6: A chain of the proof of Theorem A1.

Theorem A1. (Poincaré-Friedrichs inequality for the rod structure) Let u be a function of

space H1
γ,0(Bε, δ), then

‖u‖2L2(Bε)
≤ CPF (

∑

i,j

‖∇u‖2
L2(Bdec,ε

ij )
+
∑

i

‖∇u‖2
L2(Bε,δ

i )
),

where CPF is a constant independent of ε and δ.

Proof Let a cylinder Bdec,ε
ij or a domain Bε,δ

j be connected with the part of the boundary γk
ε ⊂ Bε,δ

k

by a chain of cylinders Bdec,ε
αr and domains Bε,δ

q . Using the same scheme as in Theorem 4.A2.1 Appendix

4.A2 [17], we apply successfully Lemma A5 to the connected triplets Bdec,ε
αr ∪ Bε,δ

r ∪Bdec,ε
rm of this chain

and we get the estimate

‖u‖2
L2(Bdec,ε

ij )
, ‖u‖2

L2(Bε,δ
i )

≤ C1(
∑

i,j

‖∇u‖2
L2(Bdec,ε

ij )
+
∑

i

‖∇u‖2
L2(Bε,δ

i )
+

1

|Bdec,ε
pk |

(

∫

Bdec,ε
pk

udx)2).

Using Lemmata A2-A4 we majorate the last term as

c
( 1

|ωk
ε |
(

∫

ωk
ε

u(x)dx
)2

+ ‖∇u‖2
L2(Bdec,ε

pk ∪Bε,δ
k )

)

,

where c is a constant independent of small parameters.

Applying now the Cauchy-Schwarz-Bunyakowskii inequality and then the standard Poincaré- Friedrichs

inequality
1

|ωk
ε |
(

∫

ωk
ε

u(x)dx
)2

≤ ‖u‖2L2(ωk
ε )

≤ c‖∇u‖2L2(ωk
ε )

we get the assertion of the theorem.
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Theorem is proved.

Remark A1. (Poincaré inequality for the rod structure) Let u be a function from L2(Bε) belonging

to H1(Bdec,ε
ij ) ∩H1(Bε,δ

i ), then

‖u‖2L2(Bε)
≤ 1

|Bε|
(

∫

Bε

udx)2 + CP (
∑

i,j

‖∇u‖2
L2(Bdec,ε

ij )
+
∑

i

‖∇u‖2
L2(Bε,δ

i )
),

where CP is a constant independent of ε and δ.

The Proof follows the scheme of the proof of Theorem 4.A2.1 of Appendix 4.A2 [17] using Lemma

A5.

A2 Appendix 2: The discrete mean Poincaré and the Poincaré-Friedrichs inequalities for

a finite rod structure with discontinuities conserving the average at the cross-section

The continuity of the mean value of the unknown function at the interfaces plays a key role in the

proof. First, a Poincaré-Wirtinger type inequality (mean Poincaré) is established. We rely in particular

on [8],[21] and [3]. Further references can be found in [20] where a Poincaré inequality is proved for the

classical version of the MAPDD whith continuity at the cross-sections. Then the Poincaré - Friedrichs

inequality follows in the functional space we are interested in, where functions vanish at γε.

The proof follows the scheme of the proof of the lemma 10.2 [8]. However the justification of the

MAPDD needs the estimates with an explicite expression of the dependence of the constants on ε.

Lemma A9. Let Ω be an open bounded polygonal connected subset of IRs, s = 2, which is a thin

domain. Let ω be an open convex subset of Ω. Then, there exists C ≥ 0, such that for all admissible

meshes T , and for any piecewise constant function u defined on the control volumes of T , the following

inequality holds

‖u−mω‖2L2(ω) ≤ C | u |21,T

with mω the mean value of u on ω, and | u |21,T =
∑

σ∈Eint

|σ|dσ
(

Dσu

dσ

)2

, Dσu = | uK − uL |, σ ∈ Eint, the

set of interior edges, σ = σK|L. The constant C does not depend on the thickness of the domain.

Proof It is proved in the lemma 10.2 [8] that

‖u−mω‖2L2(ω) ≤
diam(Ω)

|ω| | u |21,T
(∫

ω′

|z|dz
)

with ω′ = {z ∈ IR2 : ∃x ∈ ω, ∃y ∈ ω, z = y − x}. Then

‖u−mω‖2L2(ω) ≤ (diam(Ω))2
|ω′|
|ω| | u |21,T ≤ C | u |21,T

Indeed, if ω is a thin domain, then this is also the case for ω′. Consequently, |ω′| and |ω| are in the same

order of magnitude, and the constant C only depends on diam(Ω). Lemma A9 is proved.

Lemma A10. Let Ω be an open bounded polygonal connected subset of IR2. Let ω be an open convex

subset of Ω. Let I ⊂ ∂ω, |I| > 0. Then, there exists C ≥ 0, such that for all admissible meshes T , and

for any piecewise constant function u defined on the control volumes of T , the following inequality holds

‖u−mI‖2L2(ω) ≤ C | u |21,T
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with mI the mean value of u on I, and | u |21,T =
∑

σ∈Eint,σ⊂I

|σ|dσ
(

Dσu

dσ

)2

, Dσu = | uK − uL |, σ ∈ Eint,

the set of interior edges, σ = σK|L. Let u(x) = uσ, x ∈ σ, σ ⊂ I, then Dσu = | uK − uσ |, σ ⊂ I, σ ∈ EK .

If Ω is a thin domain, the constant C does not depend on the thickness of the domain, C only depends

on the diameter of Ω.

Theorem A2. (Poincaré-Friedrichs inequality for the rod structure) Let u be a piecewise

constant function from X(T ) such that u vanishes at γε, and at each cross section Si,j the discrete average

of u from both sides of it is the same, then

‖u‖2L2(Bε)
≤ C | u |21,T ,

where C is a constant independent of ε, and | . |1,T is defined in Definition 4.2.

The result is true with any arbitrary (admissible) mesh of Bdec,ε
ij (modulo an adaptation of Definition

4.2 if the mesh is no more rectangular).

Proof

The proof follows the scheme of the proof of lemma 10.2 [8]. The proof requires the domain to be

polygonal. As in [16], we can assume that there exists a polygonal domain Bε,poly included in Bε, and

prove the discrete inequality above in Bε,poly instead of Bε. Here, for the sake of simplicity, Bε is assumed

to be polygonal, just as each Bε,δ
i .

Since Bε,δ
i is polygonal, there exist ni disjoint convex polygonal sets, denoted by Ωp

i , p = 1, ..., ni, such

that Bε,δ
i =

ni
⋃

p=1
Ωp

i , and Bε =
( N
⋃

i=1

ni
⋃

p=1
Ωp

i

)

⋃

(

⋃

ij

Bdec,ε
ij

)

is the union of disjoint convex polygonal sets.

We assume there are two constants a and b, independent of ε, such that ∀i, p, aε ≤ |Ωp
i | ≤ bε.

Let u ∈ X(T ). Let mε,m
p
i ,mij be the mean value of u over Bε,Ω

p
i , B

dec,ε
ij respectively.

First,

‖u‖2L2(Bε)
≤ ‖u−mε‖2L2(Bε)

+ |Bε|m2
ε

≤
N
∑

i=1

ni
∑

p=1

‖u−mε‖2L2(Ωp
i )

+
∑

ij

‖u−mε‖2L2(Bdec,ε
ij )

+ |Bε|m2
ε

We have

‖u−mε‖2L2(Ωp
i )

≤ ‖u−mp
i ‖2L2(Ωp

i )

+ |Ωp
i |





N
∑

l=1

nl
∑

q=1

|Ωq
l |

|Bε|
(mp

i −mq
l ) +

∑

lj

|Bdec,ε
lj |
|Bε|

(mp
i −mlj)





2

‖u−mε‖2L2(Bdec,ε
ij )

≤ ‖u−mij‖2L2(Bdec,δ
ij )

+ |Bdec,δ
ij |

(

N
∑

l=1

nl
∑

q=1

|Ωq
l |

|Bε|
(mij −mq

l ) +
∑

lr

|Bdec,ε
lr |
|Bε|

(mij −mlr)

)2

In order to obtain a bound of the quantitiesmp
i −mq

l , m
p
i −mlj and mij−mlr, a chain must be constructed

for connecting all the sets Ωp
i and Bdec,ε

lj , in pairs by using the mean value of u on the intersection. Let

us illustrate the process to connect for instance Ωp
i and Bdec,ε

ij when Ωp
i ∩ Bdec,ε

ij = I, with I = Si,j . Let

mI be the mean value of u on I, we deduce from Lemmas A9 and A10 that there exist constants Ci and

Cij such that

|mp
i −mij |≤ |mp

i −mI |+ |mI −mij | ≤





Ci
√

|Ωp
i |

+
Cij

√

|Bdec,ε
ij |



 | u |1,T .
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Since the domain is thin, each |Ωp
i | and each |Bdec,ε

ij | are in the same order of magnitude that is O(ε).

We can conclude that

|mp
i −mq

l |, |m
p
i −mlj |, |mij −mlr| ≤ D | u |1,T with D = O

(

1√
ε

)

.

At this stage of the proof, it can be said that

‖u‖2L2(Bε)
≤ |Bε|m2

ε + C | u |21,T ,

where C is a constant independent of ε. Since we have

mε =
N
∑

l=1

nl
∑

q=1

|Ωq
l |

|Bε|
mq

l +
∑

lj

|Bdec,ε
lj |
|Bε|

mlj

therefore

|Bε|m2
ε ≤

N
∑

l=1

nl
∑

q=1

|Ωq
l |(m

q
l )

2 +
∑

lj

|Bdec,ε
lj |(mlj)

2

by applying the Cauchy-Schwarz-Bunyakowskii inequality.

As in the proof of Theorem A1, let Ωr
k be a part of Bε,δ

k which has a part of its boundary that is

common with γk
ε . Since u|γk

ε
= 0, the standard Poincaré- Friedrichs inequality gives

|Ωr
k|(mr

k)
2 ≤ ‖u‖2L2(Ωr

k)
≤ C | u |21,T ,

where C is a constant independent of ε. It is then easy to bound each |Ωq
l |(m

q
l )

2 and |Bdec,ε
lj |(mlj)

2, by

connecting it to Ωr
k by a chain of domains Ωp

i and cylinders, knowing that, as stated above, |mq
l −mr

k|,
|mlj −mr

k| ≤ D | u |1,T with D = O

(

1√
ε

)

. We obtain

|Bε|m2
ε ≤ C1 | u |21,T +C2|Ωr

k|(mr
k)

2 ≤ C3 | u |21,T ,

where C1, C2, C3 are constants independent of ε. The theorem is proved.
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[21] M. Vohralik. On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of

the sobolev space H1. Numerical Functional Analysis and Optimization, 26(7-8):925-952, 2005.

26


