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In order to take into account the effects of interface between matrix and inclusion, an interphase is generated. A numerical homogenization process is considerated, based on multiscale technique to estimate the effective properties of composite structures with the Lippmann-Schwinger equations. The algorithm is based on fast Fourier transform (FFT) which is more convenient and efficient. However, considering an interphase poses problems for FFT. As the interphase is very thin and due to inhomogeneities, the kernel (Green-kernel) must be also modified to get more accuracy in calculation. This approach is especially suitable for high and low contrasts, seeing that the number of pixel representing the same material is limited. This limit reduces the accuracy of FFT. In this framework, the paper studies different approaches to overcome the interphase problem. The effective material properties are estimated by using multilayer interphase as well as equivalent interphase in the homogenization procedure.

INTRODUCTION

Composite materials appear at almost every industry. This material possesses huge advantage as wide range of property and its ability to tailor the properties. Composite materials also have higher strength and modulus to weight ratios than traditional engineering materials. Since the discovery of carbon nanotubes more than thirty years by Iijima [START_REF] Iijima | Helical microtubules of graphitic carbon[END_REF], we observe a great interest of nanocomposite technology. In comparison with traditional composites, nanocomposites offer improved quality because of better contact between matrix and inclusion. Many researches have proved this capability of nanomaterials and nanosized structure. [START_REF] Sharma | Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies[END_REF][START_REF] Downing | Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation[END_REF][START_REF] Martinez-Ayuso | Homogenization of porous piezoelectric materials[END_REF][START_REF] Bach | Size effect in nanocomposites: XFEM/level set approach and interface element approach[END_REF] In terms of nanocomposite investigation, the scientists have worked on its properties through theoretical analyses, numerical computations, experimental studies and most recently artificial neural network. In [START_REF] Cuenot | Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy[END_REF], Cuenot et al. measure the elastic properties of silver nanowires of 20 to 140 nm outer diameter. In [START_REF] Blivi | Experimental evidence of size effect in nano-reinforced polymers: Case of silica reinforced PMMA[END_REF], Blivi et al. investigated the influence of particle size from 15nm to 500nm on mechanical and thermal properties. In [START_REF] Chen | An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles[END_REF], Chen et al. developpe an analytical model calculating the elastic modulus of SiC nanoparticle reinforced with the consideration of the size factor and aggregated state of the nanoparticles. In [START_REF] Karimzadeh | Assessment of Nano-Indentation Method in Mechanical Characterization of Heterogeneous Nanocomposite Materials Using Experimental and Computational Approaches[END_REF], Karimzadeh et al. study the ability of the nano-indentation method in the mechanical characterization of dental restorative nanocomposite (particle size from 50nm to 5 µm) using experimental and finite elements approaches. In [START_REF] Lee | An Investigation of Nanomechanical Properties of Materials using Nanoindentation and Artificial Neural Network[END_REF], Lee et al. proposes new approach determining the nanomechanical stressstrain parameters using the indentation force-displacement relationship. This approach utilizes the dimensional analysis and the Bayesian regularization training algorithm of the artificial neural networks.

For calculating the properties of nanocomposite materials, researches have employed numerical methods such as molecular dynamics [START_REF] Le | Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite[END_REF], finite elements method (FEM) [START_REF] Bashirvand | FEM analysis of metal matrix nanocomposites reinforced with off-line atomistically-informed equivalent nanofillers[END_REF], boundary element method (BEM) [START_REF] Liu | A boundary element method for the analysis of CNT/polymer composites with a cohesive interface model based on molecular dynamics[END_REF], FFT [START_REF] Tran | Computation of the size-dependent elastic moduli of nano-fibrous and nano-porous composites by FFT[END_REF]. In FFT, we consider numerical process based on multiscale technique to estimate the effective properties with the Lippmann-Schwinger equations. This approach has several advantages: this method does not need to solve a linear system, time computation is reduced compared to other methods, we can use directly the image obtained from the microstructure for analyzing [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF]. FFT can also deal with nonlinear behavior [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF]. In [START_REF] Lee | Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms[END_REF], Lee et al. use FFT algorithm to compute viscoplastic response under uniaxial tension of metal-metal composite. Recently, many scientists work on improving FFT algorithm. In [START_REF] Monchiet | A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast[END_REF], Monchiet et al. propose an iterative scheme based on polarization field to improve the convergence of FFT for composite with voids or rigid inclusions. In [START_REF] Willot | Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields[END_REF], Willot presents new Green operator for higher convergence rates and more accuracy. In [START_REF] Nguyen | Green's operator for a periodic medium with traction-free boundary conditions and computation of the effective properties of thin plates[END_REF], Nguyen et al. describe new Green operator for computing the effective elastic properties of periodic thin plates.

For the modeling of the heterogeneities, it is necessary to adopt a stochastic approach considering spatial position. The orientation and the morphology of the heterogeneities are random variables following probability laws to design NSREV (numerical stochastic representative elementary volume) [START_REF] Salnikov | On efficient and reliable stochastic generation of RVEs for analysis of composites within the framework of homogenization[END_REF][START_REF] Salnikov | Measure of combined effects of morphological parameters of inclusions within composite materials via stochastic homogenization to determine effective mechanical properties[END_REF]. In addition to taking into account of the random aspect of the multiscale homogenization method, we must consider the interface effect in the continuum mechanics modelling of nanomaterials and nanostructures. Different from traditional composite, because of the high interface to volume ratio of nanocomposite, interface energy is comparable on bulk energy. To model this effect, researches consider the different properties in the interaction zone via an interface or interphase. In [START_REF] Miller | Size-dependent elastic properties of nanosized structural elements[END_REF], Miller et al. uses direct atomistic simulations of nanosized structures. In [START_REF] Hashin | Thin interphase/imperfect interface in elasticity with application to coated fiber composites[END_REF][START_REF] Kiritsi | Load carrying characteristics of short fiber composites containing a heterogeneous interphase region[END_REF], analytical models has been introduced considering interphase layer to evaluate elastic properties of nanocomposites. In [START_REF] Duan | Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress[END_REF], Duan et al. proposes new frameworks to compute effective moduli of nanostructure taking into account surface stress effect based on Mori Tanaka method and the generalized self-consistent method. In [START_REF] Dormieux | Equivalent Inclusion Approach for Micromechanics Estimates of Nanocomposite Elastic Properties[END_REF], Dormieux et al. introduces an equivalent inclusion combining the nanoparticle and surrounding interface. This approach can be directly implemented in Mori-Tanaka model. In [START_REF] Yvonnet | An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites[END_REF] Yvonnet et al. uses extended finite element method with the coherence interface model to investigate the size-dependent effective properties of nanocomposites.

This paper discusses the interface effect consideration in FFT. We utilise an interphase representing the contact between matrix and inclusions. In section 2. , we briefly introduce the basic of FFT based method. Acceleration scheme in [START_REF] Michel | A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast[END_REF] has been implemented to deal with the high contrast case. To get more accuracy, we use the modified Green operator proposed by Willot [START_REF] Willot | Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields[END_REF]. Next section demonstrates the efficient of the model in simple example. Using this approach, we evaluate the effective properties of REV containing only matrix with inclusion (perfect bonding). The results are compared with the analytical method an FEM. In section 4, we consider the inteface effect using this FFT based method. Firstly, multilayer approad has been introduced. Next, we propose an equivalent interphase replacing the multilayer. This approach can be more efficient for FFT. The size effect can also be discussed.

GENERAL FORMULATIONS

FFT based method

Cell problem

We consider a representative volume element (REV) V . The REV can be represented by an image containing N × N × N pixels. We consider the so-call cell problem with periodic boundary conditions. We express the local strain field ε(u(x)) into a periodic part ε(u per (x)) and an average strain E:

ε(u(x)) = ε(u per (x)) + E (1)
where u, u per , x represent the displacement, periodic displacement, local position respectively. < ε(u per (x)) > V = 0. Which equivalent to:

u(x) = u per (x) + Ex (2) 
The local problem:

σ(x) = C(x)ε(u(x)) = C(x)(ε(u per (x)) + E) ∀x ∈ V divσ(x) = 0 ∀x ∈ V, u per periodic (3)
where C(x) is the local stiffness tensor. Introduce a reference stiffness tensor C 0 and a polarisation field τ (x) = (C(x) -C 0 )ε(u(x)) = δC(x)ε(u(x)). The equation 3 becomes:

σ(x) = C 0 (ε(u(x))) + τ (x) ∀x ∈ V divσ(x) = 0 ∀x ∈ V (4) 
The equation satisfied by polarisation field ( [START_REF] Milton | The Theory of Composites[END_REF], p.251). Introduce periodic Green operator Γ 0 associated with C 0 :

ε(u(x)) = -Γ 0 * τ (x) + E ∀x ∈ V ( 5 
)
Where * is the convolution product. In Fourier spaces:

ε(ξ) = -Γ0 (ξ) : τ (ξ) ∀ξ = 0 ε(0) = E (6) 2.1.2 Algorithm based on FFT Algorithm 1: Acceleration scheme in elastic Result: ε(x) initialization: ε 0 (x) = E, comp = 1., eq = 1., acc = 1e -6 ; while comp > acc & eq > acc do Compute: σ(x) = C(x)ε(x); if comp < acc then σ(ξ) = F F T (σ(x)); Compute eq ; else eq = 1.; end τ (x) = (C(x) -C 0 )ε(x) ; τ (ξ) = F F T (τ (x)); ε(ξ) = -Γ0 (ξ) : τ (ξ) ; ε(0) = E ; ε comp (x) = F F T -1 ( ε(ξ)) ; comp = √ <||ε(x)-εcomp(x)|| 2 > ||E|| ; ε(x) = ε(x) -2(C(x) + C 0 ) -1 C 0 (ε comp (x) -ε(x)) ; end
where the error eq can be determined by:

eq = < ||divσ|| 2 > || < σ > || = < ||ξ. σ(ξ)|| 2 > || σ(0)|| (7) 
2.2 Discrete algorithm

Traditional method

We discretize the unit cell into a grid of N 1 × N 2 pixels in 2D and N 1 × N 2 × N 3 voxels in 3D. The data and the unknowns are stored in each pixel/voxel on this grid. As example in 2D, the coordinates of the pixel (i 1 , i 2 ) are:

x(i 1 , i 2 ) = ( i 1 -1 N 1 , i 2 -1 N 2 ), i 1 = 1, ..., N 1 i 2 = 1, ..., N 2
In the Fourier space, the discrete frequencies are:

ξ j = 0, 1, 2, ..., N j 2 , (- N j 2 + 1), (- N j 2 + 2), ..., -2, - 1 

Modified Green operator

In this study, we try with the modified Green operator [START_REF] Willot | Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields[END_REF]. The strain field is defined on Fourier spaces as:

ε ij (ξ) = 1 2 [k i (ξ)u j (ξ) + k j (ξ)u i (ξ)] (8) 
where k represent discrete gradient operator.

k i (ξ) = i 4 tan(πξ i )(1 + e 2πiξ 1 )(1 + e 2πiξ 2 )(1 + e 2πiξ 3 ) (9) 
The Green operator:

G ijkl (ξ) = (λ 0 + 2µ 0 )(r i r * l δ jk ) sym + λ 0 [(r i r * l δ jk ) sym -Re(r i r * j ) Re(r k r * l )] -µ 0 r i r j r * k r * l µ 0 [2(λ 0 + µ 0 ) -λ 0 [|r 2 1 + r 2 2 + r 2 3 | 2 ] (10 
) where r i = k i /|k| and s is the symmetric second-order tensor:

s jj = 4 Im(r i r * k ) 2 , s jk = -4 Im(r k r * j ) Im(r j r * k ), i = j = k (11) 
with a * is the complex conjugate of a, Re, Im are respectively real part, imaginary part of the enclosed complex quantity.

VALIDATION

At first, in order to valide our approach, we compare the model with the analytical Mori-Tanaka method [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF]. In figure 1a, we evaluate a spherical void inclusion, which mean c = 0, where c is the contrast. Three resolutions are applied: 128 × 128 × 128, 256 × 256 × 256, 512 × 512 × 512. In this example, we compute the effective bulk modulus of porous aluminium. The material parameters of the matrix are E = 70 MPa and ν = 0.32. The estimation of effective properties has been provided by FEM [START_REF] Bach | Size effect in nanocomposites: XFEM/level set approach and interface element approach[END_REF][START_REF] Yvonnet | An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites[END_REF]. We consider perfect connection between the matrix and the inclusion. The reference normalized effective bulk modulus k ef f /k M is computed, k M is the matrix bulk modulus. Normalising the parameter, we utilise the material parameters k M = 1, µ M = 0.4.

Figure 1 introduces the results for effective bulk modulus and the error of new approach. Compare to the classical Green, the new Green approach converges more rapidly. We observe a good agreement with analytical results. At contrast c = 0.1, higher value of effective bulk modulus is obtained. For example, at f = 0.1 the normalized effective modulus k ef f = 0.74 for void inclusion and k ef f = 0.8 for c = 0.1. Higher resolution is used, more accurate result is obtained. In the next section, using the modified Green operator, we investigate the influence of interface effect to the performance of composite. Considering the interphase between the matrix and the inclusion, the material properties change following exponential rule [START_REF] Kakavas | The effect of interfacial imperfections on the micromechanical stress and strain distribution in fibre reinforced composites[END_REF][START_REF] Wang | Effect of heterogeneous interphase on the mechanical properties of unidirectional fiber composites studied by fft-based method[END_REF][START_REF] Kiritsi | Load carrying characteristics of short fiber composites containing a heterogeneous interphase region[END_REF] as in the figure 2. For simplicity, with an isotropic medium, we can determine the bulk modulus of interphase by following rule:

k(r) = k m (1 + (c -1)(1 -re 1-r )) ( 12 
)
where r is the variable. r = 0 is the inclusion; r = 1 is the matrix.

Analytic result and FFT

Firstly, we consider the model of cylindrical inclusion. Describing the variation of elastic properties in the interphase, we discrete it into N layers. Within each layers as in figure 2b, the elastic properties k n , µ n are proposed to be constant. These properties are determined by the equation 12. For two adjacent layers, we apply perfect bonding assumption. The contrast c = 0.01 is examined; this configuration give good rate of convergence and a gap between inclusion and matrix properties. Different numbers of layer have been evaluated N = 1 → 8. The numerical calculation is compared with the Mori-Tanaka method. The error is determined as following: 

Error = |k F F T -k M T | k M T (13) 
Figure 3 shows the results of effective bulk modulus and the error of FFT taking Mori-Tanaka as reference. We observe a very good agreement of FFT method for N > 2. The maximum error is less than 1.5 %

Equivalent interphase

It is more convenient to represent the interphase by one homogeneous layer. From the equation 12, we describe the equivalent elastic properties of the interphase by following equation:

k eq = k(r)dr (14) 
From the configuration of previous example, with c = 0.01, k M = 1 we get k eq = 0.7211. The calculation is performed as in the case of three phase material. The result will be compared with the previous Mori-Tanaka result.

Figure 4 shows the result of estimated effective bulk modulus and the error of equivalent model. We observe a very good agreement between the reference and the numerical calculation. The error is always less than 1.5 %. In this example, we consider the case of spherical void in aluminium. This case has been investigated by FEM [START_REF] Yvonnet | An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites[END_REF] and molecular dynamic [START_REF] Miller | Size-dependent elastic properties of nanosized structural elements[END_REF]. The material parameters of the matrix are E = 70 MPa and ν = 0.32. The surface parameter obtained through the molecular dynamics: λ s = 6.842 N/m, µ s = -0.375 N/m. So the surface bulk modulus k s = λ s + 2µ s = 6.091 N/m. At this configuration, the equivalent elastic properties of interphase can be determined by:

k eq = k s tk M ( 15 
)
where t is the thickness of the interphase. At first, we choose arbitrarily t = 0.1R. The FFT result is validate with the analytical approach [START_REF] Duan | Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress[END_REF]. This analytical approach is dedicated for spherical void with a coherent surface. Figure 5 shows the result of effective bulk modulus and the error of equivalent model. The model describe expected effect of interface between matrix and inclusion. The results shows good agreement with the reference when f < 0.3. The gap when f > 0.3 is caused by the infinite contrast and the shape of REV as explained in [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF].

Size effect

We can also use this approach for size-dependent problem. Two example have been examined. For a constant volume fraction f = 0.2, we vary the void radius and compute for each size the effective bulk modulus. The materials properties are the same as in section 3 for cylindrical inclusion in figure 6a. In figure 6b, we change the contrast c = 0.1 for better convergence rate.

The figure 6 shows the expected size effect as presented in [START_REF] Yvonnet | An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites[END_REF]. The effective properties depend clearly on nanovoid radius for small sizes of nanovoids, but these values are not sensitive 

CONCLUSIONS

In this work, interface effect has been investigated by the FFT based method. In order to reduce time computation and to obtain more accuracy results, we implemented in the FFT the acceleration scheme and modified Green operator. Firstly, new approach has been validated for perfect bonding case. Next, we use an interphase representation to investigate interface effect. For multilayer approach, good agreement can be achieved for the appropriate number layer. To reduce complexity of the problem, we introduce an equivalent interphase. We compared the result with the analytical approach and FEM. The equivalent approach has been proved to be efficient and reliable. Note that this approach can also be extended to plasticity. It should be interesting to apply the present method for the case of stochastic representative elementary volume.
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