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Abstract. When designing a static analysis, choosing between a flow-
insensitive or a flow-sensitive analysis often amounts to favor scalability
over precision. It is well known than specific program representations can
help to reconcile the two objectives at the same time. For example the
SSA representation is used in modern compilers to perform a constant
propagation analysis flow-insensitively without any loss of precision.
This paper proposes a provably correct program transformation that rec-
onciles them for any analysis. We formalize the notion of Flow-Insensitive-
Completeness with two collecting semantics and provide a program trans-
formation that permits to analyze a program in a flow insensitive manner
without sacrificing the precision we could obtain with a flow sensitive ap-
proach.

1 Introduction

Static analysis designers must face two main challenges. The first one is scal-
ability because the analysis should compute a sound approximation within a
reasonable amount of time. The second one is precision because the approxi-
mation should be accurate enough to prove the target properties on as many
programs as possible.

Abstract interpretation provides a rich methodology to guide the static anal-
ysis design but precision and scalability are often difficult to optimize at the same
time. At one side of the spectrum stand relational abstract interpreters [4, 13, 12]
that compute expressive symbolic relations on program variables at each pro-
gram point (flow sensitivity). At an other side of the spectrum, flow-insensitive
analyses [15] (such as Andersen’s pointer analysis [2]) compute one global in-
variant for the whole program, sparing time and memory.

Flow sensitivity allows to compute local invariants at each program point,
without polluting the inferred properties with too many infeasible paths. But
this technique generally requires to remember an invariant at several program
points of the program. This may have bad impact on performance, in particular
memory usage.

On very specific programs, flow-insensitive and flow-sensitive analyses have
the same precision. Figure 1 shows two examples. On the left, the global invari-
ant x = y = 0 is invalid after the last assignment x := 1. However, after a simple
renaming we obtain the program on the right where x0 = y0 = 0 is a valid global
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x := 0;

y := 0;

x := 1;

x0 := 0;

y0 := 0;

x1 := 1;

Fig. 1: Comparing flow insensitive analysis precision losses on two programs.

invariant. This renaming is a very simple case of Static Single Assignment trans-
formation (SSA) [5] where each variable is given a unique definition point. The
SSA intermediate representation is very popular in compiler frameworks because
many flow sensitive program optimizations can be performed with a flow insen-
sitive approach on a SSA representation without loss of precision. This has been
observed for constant propagation analysis [10] in an analysis named Sparse
conditional constant propagation [18].

But SSA transformation is not always enough. For example, a popular com-
piler optimization, Global Value Numbering [1] is performed flow insensitively on
SSA form in order to detect equivalence between program sub-expressions and
perform common sub-expressions elimination. But Gulwani and Necula show [6]
it is not precise enough and provide a provably more precise flow sensitive alter-
native version.

An alternative program representation to SSA, the Single Single Information
(SSI) form [17], extends the SSA form with extra-properties. In [17], Pereira and
Rastello consider non-relational analyses which bind information to i) each pro-
gram variable, and ii) each program point where the variable is live. They design
the SSI form in order to ensure that each variable will respect the same invariant
at any point where it is alive. Their work shows that for non-relational analyses,
the SSI transformation allows to compute, with a flow insensitive analysis of the
SSI program, the same amount of information than with a standard flow sensi-
tive analysis of the original program. But they also conclude with the remark
that this property does not hold for relational analyses that compute relations
between program variables. Part of this limitation is removed with [14] for what
is called semi-relational analyses.

This paper is the first to explore the problem without restrictions on the
relational nature of the analysis. We take a semantic approach and do not bind
our work to a specific numerical analysis or abstract domain. We make the
following contributions:

– We propose a new program transformation technique that inserts enough
move instructions (called σ copies in the SSI vocabulary and simply copies
in this paper) to turn a SSA program into an equivalent Flow Insensitive
Complete (FIC) program. The obtained program can be analyzed with a flow
insensitive approach without loss of precision compare to a flow sensitive
manner.

– We formalize the notion of Flow Insensitive Completeness with two collecting
semantics. The flow-sensitive collecting semantics characterizes the set of
reachable states in term of program paths while the flow-insensitive collecting
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semantics characterizes another set of states with respect to any permutation
of blocks of instructions.

– We prove that the two collecting semantics detect the same set of assert
failures for all Flow Insensitive Complete programs.

– We implement the transformation for Java bytecode in SSA form and observe
that the total number of variables remains reasonable compared to the size
of flow-sensitive analyses invariants.

2 Motivating example

We present in Figure 2 an example that explains why the SSI form does not
introduce enough variables to allow relational reasoning, and how our approach
handles the problem.

Figure 2 contains both the source program and its SSA form in a graph
representation. We iterate the loop 10 times (using the loop counter i). Since
j is initialized at 0, and is incremented by one or two at each iteration, it is
expected to be in the range [10, 20] at the end of the loop.

Note that, in our SSA representation, φ instructions are performed before
each junction points, rather than at the entrance. This inoffensive convention
makes our proof easier to expose.

We present in Figure 3a a SSI form of this program. According to the stan-
dard SSI transformation, copy instructions (σ copies of the form x

σ← y) have
been added to all branching points, for all the variables used in the correspond-
ing branching test (i1 for the loop test and x0 for the conditional test), and to
blocks containing assumes, for all the variables used in them (j1 in b5).

As expected, on this SSI program, a non-relational flow insensitive analysis
like an interval analysis will be as precise as a flow sensitive version. But such a
non-relational analysis will conclude that i4 = 10 and j1 ∈ [0,+∞] and it will
fail to verify the assertion because it fails to discover the relational invariant
between i and j.

A relational abstract domain, like the polyhedral one will not solve the pre-
cision problem either, if it is performed in a flow insensitive style. Indeed the
global polyhedral fixpoint should be closed by operations Ji1 ← 0|j1 ← 0K (par-

allel assignment of i1 and j1) and Jj4
σ← j1K so assertion at block b5 will raise an

alarm because j4 seems to be nullable.
The current paper proposes a FIC form displayed in Figure 3b to fix this

imprecision. It is build from the SSA form, by adding copies in strategic blocks.
In this new form, the assertion block b5 now uses j4, not j1, so it can only be
applied on a state where j4 has been defined by b4. This time, the previous
problem does not hold because the global polyhedral fixpoint should be closed
by the operation Jj4 ← j1K ◦ Ji1 ≥ 10K which prevents the case i1 = 0; j1 = 0 to
be spuriously propagated into j4.

Notice that we do not introduce copies for i1 in b4 before the assume, unlike
the SSI form. The FIC form only ensures completeness w.r.t the assertions, not
to any point of the program. Such consideration avoid the insertion of copies
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i = 0;

j = 0;

while (i < 10):

i += 1;

x = rand();

if (x = 0):

j += 1

else:

j += 2

(...)

assert(10 <= j <= 20)

(a) Source program

pen

i0 ← 0
j0 ← 0

i1
φ← i0

j1
φ← j0

p1

i1 < 10
i2 ← i1 + 1
x0 ← rand()

p2

x0 = 0
j2 ← j1+1

i1
φ← i2

j1
φ← j2

x0 6= 0
j3 ← j1+2

i1
φ← i2

j1
φ← j3

i1 ≥ 10

p3

assert (10 ≤ j1 ≤ 20)

pex

b0

b1

b2 b3

b4

b5

(b) Program in SSA form

Fig. 2: A program and its SSA form with relational information to infer

for every original variable (i, j and k) at each block. The number of variables
would be overwhelming for most abstract domains and one will lose the benefits
of flow-insensitivity on memory saving. Generally speaking, if the number of
variables in the FIC form is greater or equal to the number of blocks times the
number of variables in the original program, then a flow-insensitive analysis on
the FIC form is not an improvement compared to a flow-sensitive analysis on
the source program.

3 Background definitions

This section introduces the definition of programs used in this paper. The sec-
tion ends with the definition of both the flow-sensitive and the flow-insensitive
semantics.

3.1 Program

A program P is defined as a graph connecting program points, and whose edges
are labeled with basic blocks. The program as a unique entry point pen and a
unique exit point pex. A basic block b is a tuple 〈body, c, φ〉. The body is composed
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pen

i0 ← 0
j0 ← 0

i1
φ← i0

j1
φ← j0

p1

i2
σ← i1

i2 < 10
i3 ← i2 + 1
x0 ← rand()

p2

x1
σ← x0

x1 = 0
j2 ← j1+1

i1
φ← i3

j1
φ← j2

x2
σ← x0

x2 6= 0
j3 ← j1+2

i1
φ← i3

j1
φ← j3

i4
σ← i1

i4 ≥ 10

j4
σ← j1

assert (10 ≤ j4 ≤ 20)

p3

pex

b0

b1

b2 b3

b4

b5

(a) Program in SSI form

pen

i0 ← 0
j0 ← 0

i1
φ← i0

j1
φ← j0

p1

i1 < 10
i2 ← i1 + 1
x0 ← rand()
j5 ← j1

p2

x0 = 0
j2 ← j5+1

i1
φ← i2

j1
φ← j2

x0 6= 0
j3 ← j5+2

i1
φ← i2

j1
φ← j3

i1 ≥ 10
j4 ← j1

p3

assert (10 ≤ j4 ≤ 20)

pex

b0

b1

b2 b3

b4

b5

(b) Program in flow-insensitive complete
form

Fig. 3: Comparison of the SSI form and the FIC form of the program from
Figure 2

of a sequence of atomic instructions which can be assignments, assumes or asser-
tions. The second element, c, is a set of (parallel) copies e.g. Jx1 ← x0|y1 ← y0K
assigns x1 and y1 in parallel. Similarly the last element φ is a set of (parallel)

φ-definitions e.g. Jx1
φ← x0| y1

φ← y0K. A more precise definition of their se-
mantics is developed in Section 3.3. A basic block labels an edge between two
program points and thus entry(b) and exit(b) respectively define the unique pro-
gram points from and to which the edge goes. For instance in Figure 2, b1 and
b4 have the same entry point p1 and b0, b2 and b3 share the same exit point p1.

All edges should be labeled with a non-empty block. We note p
b→ p′ the fact

that block b labels an edge from p to p′.

For each program point p we define its set of predecessors blocks pred(p) such
that b ∈ pred(p) ⇐⇒ exit(b) = p.
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Definition 1 (Program point path). A path from program point p to program

point p′ is a sequence of program points p, p1, . . . pn, p
′ such that p

b0→ p1
b1→

. . .
bn−1→ pn

bn→ p′.

Definition 2 (Dominance). p dominates p′ if all paths from pen to p′ must
go through p.

The dominance is strict if p 6= p′. The dominance relation is transitive, and
it is possible to organize all points in a dominance tree where the parents of a
node dominate it. For instance the dominance tree of Figure 2 is

pen

p1

p2 p3

pex

The direct dominator of a program point is its parent in the dominance tree.
We extend the notion of dominance to blocks.

Definition 3 (Block dominance). A program point p dominates a block b iff
it dominates its entry point.

3.2 Static information

Let V be the set of variables in the program p. We can define for each block the
set of variables it uses and defines: uses(b) and defs(b). These sets do not include
temporary variables, meaning that the set uses(b) does not include variables that
are defined before their usage in block b, and the set defs(b) does not include
variables that are not used outside of b. For instance in Figure 3b, the initial block
b0 is not considered to be defining nor using i0 and j0 because these variables
are defined by this block but never used outside of it. The initial block defines
i1 and j1 and uses no variables. The block b2 uses x0, j5 and i2 and defines i1
and j1.

Unlike textbook SSA form, our φ-definitions are parts of the predecessors of
the junction point. Because of this convention, a variable is not necessarily de-
fined in a unique block. Despite the unconventional choice, our notion of program
still enjoys the foundational property of definition dominance of SSA programs.

Invariant 1 (SSA dominance) Let x be a variable, and B be the set of blocks
defining them. Then the set of exit points of B is a singleton {p} and p dominates
all blocks b′ such that x ∈ uses(b′).

In textbook SSA form, all variables have a unique definition points. In our rep-

resentation, we split the φ-function x3
φ← (x1 : b1, x2 : b2) attached to a junction

point p, so that there is a φ-definition x3
φ← x1 in block b1 and x3

φ← x2 in b2.
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This definition is in the φ component of the block. All other definitions from the
textbook SSA form are found in the body component of the blocks. So, in the
property, B is not a singleton iff x is defined by φ-definitions.

Definition 4 (Program points definitions). The definitions of a program
point p is the set of variables defined by all its predecessors:

defs(p) =
⋂

∀b∈pred(p)

defs(b)

3.3 Block local semantics

States We note s ∈ S = V ⇀ Z a state of the variables. It is a partial function
from the variables to values and its domain dom(s) ⊆ V is the set of variables
for which it is defined. Partial functions are useful in a flow-insensitive analysis
to account for the variables never assigned. The initial state s∅ has an empty
domain reflecting the fact that no variable is initially assigned.

Definition 5 (State equivalence). Two states s and s′ are said equivalent
on a set of variables V , noted s ≈V s′, iff they both include this set in their
domains and if they are equal on these variables.

s ≈V s′ ⇐⇒ (V ⊆ dom(s) ∧ V ⊆ dom(s′) ∧ ∀v ∈ V, s(v) = s′(v))

The symbol Ω denotes an halting state obtained when an assert failed. As a
convention its domain is empty. SΩ = S ∪ {Ω} denotes the complete set of
states.

Semantics We use the notation JaK : S → P
(
SΩ
)

for the concrete semantics of
a list of instructions a. The output is a set of states since our semantics is non-
deterministic (for instance with the call to rand()). We extend the semantics to
any set of states S ⊆ SΩ , JaK(S) =

⋃
s∈S JaK(s) with JaK(Ω) = ∅.

The semantics of a block is the composition of its parts: JφK ◦ JcK ◦ JbodyK.
We only consider programs which manipulate variables, not memory. As-

sumes are supposed to block the execution for states not satisfying its condition,
while an assertion will result in a halting state Ω.

Jassume(false)K = ∅ Jassert(false)K = Ω

The exact definition of the semantics of blocks JbK is not important for the
proofs as long as it respects the following two characterization.

Invariant 2 (Semantic characterization of uses) The semantics of a block
only depends on the variables it uses.

∀b,∀s1, s2, s′1 ∈ SΩ ,
(
s1 ≈uses(b) s2 ∧ s′1 ∈ JbK(s1)

)
=⇒ ∃s′2 ∈ JbK(s2), s′1 ≈defs(b) s

′
2

With the special case for Ω:

∀b,∀s1, s2 ∈ SΩ , s1 ≈uses(b) s2 =⇒ (Ω ∈ JbK(s1) ⇐⇒ Ω ∈ JbK(s2))
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The non-determinism prevents the conclusion that any state out of JbK(s2) is
equivalent to s′1.

Invariant 3 (Semantic characterization of definitions) The semantics of
a block only modifies the variables it defines.

∀b,∀s ∈ SΩ ,∀s′ ∈ JbK(s), s′ ≈V\defs(b) s

This two characterization consider that temporary variables of a block b are
not in the domain of a state s′ ∈ JbK(s) (for any s). They can be ignored or
remove from the domain of s′.

3.4 Flow-sensitive collecting semantics

The flow-sensitive collecting semantics of a program associates to each program
point a set of reachable states Local(p). The function is defined as the least
fixpoint of the following equations.

∀p,Local(p) =


{s∅} if p = pen⋃

p′
b→p

JbK ◦ Local(p′) otherwise

Lemma 1. For all program points p,

Local(p) =
⋃

pen
b1→...bn→p a path

JbnK ◦ · · · ◦ Jb1K(s∅)

The proof of this lemma is classical for least fixpoints and is available in
Appendix A.

3.5 Flow-insensitive collecting semantics

For the flow-insensitive collecting semantics, the information is not associated to
program points but to the whole program. States are collected from anywhere
in the program : Global ∈ P

(
SΩ
)
. The flow-insensitive semantics is the least

fixpoint satisfying the following equation.

Global = {s∅} ∪
⋃
b

JbK(Global)

In other word it is the smallest set of states containing the initial state s∅ closed
by JbK for any block b.

s∅ ∈ Global and ∀b, JbK(Global) ⊆ Global

In this settings, a block b can be applied to any state, any partial function. In
case the state s does not have a domain containing all variables used by b, then
the semantics of the block is an empty set: uses(b) 6⊆ dom(s) =⇒ JbK(s) = ∅.
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Lemma 2. Any elements of Global is actually the result of the application of
a sequence of blocks on the state s∅. There is no restriction on the order of these
blocks.

Global =
⋃

(b1,...,bn)

JbnK ◦ · · · ◦ Jb1K(s∅)

Thanks to this lemma, it is easy to see that the flow-insensitive semantics
always contains each local invariants.

Corollary 1. For all program points p,

Local(p) ⊆ Global

4 Flow-Insensitive Complete (FIC) programs

The example in Section 2 illustrates the need of a different representation of
program to ensures the equivalence to a flow-insensitive semantics. This section
presents the intrinsic properties expected of the FIC representation. We rely on
these properties to ensure the main theorem of precision in Section 5. Section 6.2
presents a transformation from an SSA program to a program in FIC form.

Incoherence from disjoint definition points in SSA form A first issue of the
SSA form to establish flow-insensitive invariants on variables is the potentially
different definition points of the variables used by a block. The flow-insensitive
semantics can collect states where it applies these definitions in any order, and
any number of times. In Figure 3a for instance, in block b3, both the variables i3
and j1 are used but they are defined in different blocks. i3 is defined in b1 and j1
in b0, b2 and b3. Let us consider a state s ∈ Jb3K◦Jb3K◦Jb1K◦Jb0K(s∅) ⊆ Global.
This state has the following evaluations:

s(i1) = 0 s(i3) = 1 s(j3) = 4 = s(j1) (since we applied b3 twice)

But with this state we already lost the invariant linking i3 and j3 at the end of
b3 : i3 ≤ j3 ≤ 2 × i3. To prevent this, if variables are used in a block b′, then
any block b defining some of them must actually redefine all of them, to ensure
coherence.

Intrinsic FIC property 1 (Comprehensive definition coverage) For any
blocks b and b′, if b defines some variables used by b′, then it defines all variables
used by b′. defs(b) ∩ uses(b′) 6= ∅ =⇒ uses(b′) ⊆ defs(b)

On the example in FIC form, the version j5 introduced in b1 ensures the
coherence between i and j.
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Invisible path from definition to use In the introduction we observed that the
assertion was violated because we could apply the block b0 first, defining j1, and
then the block b5, which uses j1 for the assertion, without taking into account
the assume in block b4. This block b4 dominates b5 and restricts its reachable
states. To account for this control, a new version of j is introduced in b4. This
new version will be defined only in states where the condition i1 ≥ 10 holds.

The minimal property we expect is that for any state reaching the exit of
a definition block b′, there exists a path from exit(b′) = p to entry(b) which is
non-altering for the variables used by b.

Definition 6 (Non-altering path). Let p be a program point, b a block, and

s ∈ Local(p), a non-altering path for s from p to b is a path p
b1→ . . .

bn→ entry(b)
such that

∃s′ ∈ JbnK ◦ · · · ◦ Jb1K(s), s′ ≈uses(b) s

Intrinsic FIC property 2 (Non-altering def-use path) If ∀p,Ω 6∈ Local(p)
then for any block b and any program point p,

defs(p) ∩ uses(b) 6= ∅ =⇒
(
∀s ∈ Local(p),
∃ a non-altering path from p to b for s

)
We also add a special case for any block which uses no variable. In that case

we only require the existence of some state s′ reaching the block.

uses(b) = ∅ =⇒ ∃s′ ∈ Local(entry(b))

As it is a strong property on the semantics, we define in the Section 6.1
syntactical conditions to ensure this property. However we use this property in
the proof of our central Theorem 2, in order to be as general as possible on the
shape of the program graph.

Definition 7 (FIC form). A Flow-Insensitive Complete program is a SSA
program that respects properties 1 and 2.

5 Main Theorem: Flow Insensitive Completeness

The completeness of the flow-insensitive semantics w.r.t the flow-sensitive one
is evaluated through the violation of assertions. The flow-insensitive semantics
must found an assertion violation (Ω ∈ Global) if and only if there exists a
block b which also violates an assertion in the flow-sensitive semantics (∃p,Ω ∈
Local(p)).

Theorem 1 (Semantics completeness). For any program p in FIC form,

(∃p,Ω ∈ Local(p)) ⇐⇒ Ω ∈ Global
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The implication ∃p,Ω ∈ Local(p)⇒ Ω ∈ Global trivially holds according
to Corollary 1.

The other implication is more challenging because Global contains more
states than the flow-sensitive semantics. The Theorem 2 below provides an equiv-
alence which is needed between these states and the states in the flow-sensitive
semantics. With this equivalence theorem we can prove Theorem 1. If there is a
violation of an assert in the flow-insensitive semantics, then it is raised by some
state s at block b, and there must be a flow-sensitive state at entry(b) which is
equivalent to s and will thus also lead to a violation.

Theorem 2 (Equivalence preservation). If ∀p,Ω 6∈ Local(p), then any
state s of Global respects the following property P (s).

P (s) : ∀b,uses(b) ⊆ dom(s) =⇒ (∃s′ ∈ Local(entry(b)), s ≈uses(b) s
′)

Proof. We suppose that Ω 6∈ Local(p) for any p. Any state s of Global is the
result of the application of a sequence b1, . . . , bn of blocks on s∅ as stated by
lemma 2. The proof is made by strong induction on the size n of the sequence.

(n = 0) No block is applied and s = s∅. For any block b such that uses(b) =
∅, property 2 requires that b is reachable and that there exists a state s′ ∈
Local(entry(b)). Since the set of variables used by b is empty, s ≈uses(b) s

′.
(n+1) We suppose that we have s1 ∈ JbnK◦ · · · ◦ Jb1K(s∅) and that P (s) holds

for any intermediate state s of this sequence. Let us take s2 ∈ Jbn+1K(s1), we
want to prove P (s2).

s∅ . . . s1 s2
Jb1K JbnK Jbn+1K

Let b such that uses(b) ⊆ dom(s2). We do a case study on defs(bn+1)∩uses(b) =
∅.

? Case defs(bn+1) ∩ uses(b) = ∅, the block bn+1 does not define variables
used by b. It implies that all variables used by b are already in dom(s1) since
uses(b) ⊆ dom(s2) = dom(s1) ∪ defs(bn+1). By P (s1), there exists a state s′1 ∈
Local(entry(b)) such that s′1 ≈uses(b) s1 ≈uses(b) s2 since the application of bn+1

on s1 cannot change the valuation of uses(b). We found s′1 as a candidate for
P (s2).

? Case defs(bn+1) ∩ uses(b) 6= ∅, bn+1 defines some variables used by b. By
intrinsic FIC property 1 it defines all of them. The existence of s2 ∈ Jbn+1K(s1)
implies that uses(bn+1) ⊆ dom(s1). By induction P (s1) holds so there exists
s′1 ∈ Local(entry(bn+1)) such that s′1 ≈uses(bn+1) s1.

Let us note p the entry of block bn+1, p′ its exit. Proving the existence of the
intermediate state s′3 in the figure below will help find the state s′2 associated to
s2 in P (s2).

s1 s2

s′1 ∈ Local(p) s′3 ∈ Local(p′) s′2 ∈ Local(entry(b))

Jbn+1K

≈uses(bn+1) ≈uses(b)

Jbn+1K
JdkK ◦ · · · ◦ Jd1K

≈uses(b)
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The semantic characterization of definitions (Invariant 2) ensures that there
is a state s′3 ∈ Jbn+1K(s′1) ⊆ Local(p′) such that s′3 ≈defs(bn+1) s2 ∈ Jbn+1K(s1).
Since uses(b) ⊆ defs(bn+1) by hypothesis, we can restrict the equivalence: s′3 ≈uses(b)

s2.

Since bn+1 defines the variables used by b, and since ∀p,Ω 6∈ Local(p),

the intrinsic FIC property 2 implies the existence of a non-altering path p′
d1→

. . .
dk→ entry(b) associated to s′3. The property ensures the existence of s′2 ∈

JdkK ◦ . . . Jd1K(s′3) such that s′2 ≈uses(b) s
′
3. Also, s′2 ∈ Local(entry(b)) because

exit(dk) = entry(b). By transitivity s′2 ≈uses(b) s2 and we found s′2 with the good
properties so that P (s2) holds.

By induction, P (s) holds for any s resulting from a sequence of blocks and
thus it holds for any state of the flow-insensitive collecting semantics.

We can now make the complete proof of our central Theorem 1.

Proof. (⇒) Trivially holds by Corollary 1.

(⇐) Let us suppose that there is no program point p such that Ω ∈ Local(p)
but that Ω ∈ Global. Then there exists a (potentially infinite) sequence of
blocks b1, . . . , bn such that Ω ∈ JbnK ◦ · · · ◦ Jb1K(s∅). Let us consider the state
s 6= Ω such that s ∈ Jbn−1K ◦ · · · ◦ Jb1K and Ω ∈ JbnK(s). To have such output
state from applying bn, we necessarily have that uses(bn) ⊆ dom(s). Since P (s)
by Theorem 2, and since ∀p,Ω 6∈ Local(p), there exists a flow-sensitive state
s′ ∈ Local(entry(bn)) such that s′ ≈uses(bn) s. Since the behavior of a block can
only depend on its used variables by property 2, if there is an assert violated by
s in bn it is also violated by s′. So Ω ∈ JbnK(s) ⊆ Local(exit(bn)) and we found
a contradiction. The hypothesis that ∀p,Ω 6∈ Local(p) is false and we proved
that Ω ∈ Global =⇒ ∃p,Ω ∈ Local(p).

6 Transformation to Flow Insensitive Complete form

This section of the paper makes the simplifying assumptions that the program
is well-structured and terminating and presents an algorithm to transform an
SSA program into a FIC one.

A well-structured program comes from a structured language such as a While
language. A more precise definition is available in Appendix.

A terminating program is either one that has a failed assertion, or one where
for all reachable states s in p we can find a non-blocking path from p to the exit
pex.

Definition 8 (Terminating program). A program is terminating iff(
∀p, ∀s ∈ Local(p),∃p b1→ . . .

bn→ pex, JbnK . . . Jb1K(s) 6= ∅
)
∨ ∃p,Ω ∈ Local(p)
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b = false;

if (true) {

while (true) {}

}

assert(b)

b = false;

if (true) {

while (true) {};

end = true

}

assert(end) ; assert(b)

Fig. 4: Infinite loops need a variable to assess their termination

Issues with infinite executions Infinite executions are problematic to ensure the
existence of a path from dominator to dominated. For instance consider the
program on the left of Figure 4.

Let us consider the block containing the assignment b = false. Any state
out of this block will go into the infinite loop and cannot reach the assertion.
Thus this program does not satisfy FIC property 2. To satisfy the property, we
would need to artificially introduce a variable that can only be assigned after
the loop and we would need to add a use of such a variable in the block of the
assertion, as we did on the right program of Figure 4.

6.1 Sufficient conditions for FIC form

The intrinsic property 2 we expect from the FIC form is difficult to ensure in the
general case as it relies on the semantics of paths. The main idea of our algorithm
is to look at the paths in the dominance tree from definitions to uses and ensure
that they are constant. This is simpler than checking the existence of a non-
altering path. If the program is well-structured and terminating, constanteness
in the dominance tree ensures the existence of a non-altering path.

Constant def-use path A definition point p of a variable x always dominates its
usage in a block b: it dominates entry(b). We must ensure that the path from p
to entry(b) is constant for the set of variables uses(b).

Definition 9 (Constant path). Let V be a set of variables and let p and p′

be two program points such that p dominates p′ and such that p → p1 → · · · →
pn → p′ is the path in the dominance tree from p to p′. The path is constant
for V if for all the points pi in {p1, . . . , pn, p′}, pi is either a joining point or its
unique predecessor block b does not contain an assume nor definitions of V .

For instance p0 dominates p3 but the path p0 → p1 → p3 is not constant for
any set V because p3 has exactly one predecessor block, b4 and it contains an
assume.

Definition 10 (Constant paths completeness). A program is constant paths
complete if and only if for any blocks b and b′, if defs(b) ∩ uses(b′) 6= ∅, then
there is a constant path from exit(b) to entry(b′) for uses(b′).
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Such property on the program is both easy to ensure and to check since we only
have to look at the dominance tree and add copies to split the def-use path of a
variable into two constant paths. The transformation of next section 6.2 directly
enforces this property.

Theorem 3. A well-structured, terminating and constant paths complete pro-
gram satisfies the intrinsic FIC property 2.

To prove this theorem we rely on a lemma: the constant paths imply the ex-
istence of a non-blocking path if the program is well-structured and terminating.

Lemma 3 (Existence of a non-blocking path). In a well-structured termi-
nating program, either there exists a point p such that Ω ∈ Local(p) or for
any points p and p′, if there is a constant path from p to p′ then for any state s
reaching p, there exists a non-blocking path from p to p′ such that p only appears
as the first point of the path.

Proof. The proof is available in Appendix C. It proceeds by recurrence on the
length of the constant path, and for each pair pi, pi+1 it reasons by induction on
the syntax of the program. Most cases of pairs where pi dominates a point pi+1

in the program show an obvious path for any s ∈ Local(p), or the direct domi-
nation is not a constant path. One case is to consider with care: the conditional.
Indeed the entry of the conditional dominates its exit, a joining point and the
path between the two is constant. However, to ensure that a state reaching the
entry will reach the exit requires the termination of the program. Otherwise, the
state may start an infinite loop in a branch, never to leave it to reach the exit,
as shown on Figure 4.

The proof of the Theorem 3 is the following.

Proof. If there exists p such that Ω ∈ Local(p) then the intrinsic FIC prop-
erty 2 trivially holds. Let us suppose that it is not the case. Let us take b
and b′ such that defs(b) ∩ uses(b′) 6= ∅. Then by constant paths completeness
there exists a constant path from exit(b) to entry(b′) for uses(b′). Let us take
s ∈ Local(exit(b)). By lemma 3, and since the program is terminating, there is

a non-blocking path exit(b)
b1→ . . .

bn→ entry(b′) such that JbnK ◦ · · · ◦ Jb1K(s) 6= ∅.
We only need to show that this path is non-altering for the variables of uses(b′).
All definitions of uses(b′) must dominate their use in b′. Thus if some bi mod-
ifies uses(b′) then exit(bi) is a dominator of b′. It can strictly dominate or be
dominated by exit(b). If exit(bi) is strictly dominated by exit(b) we found a pro-
gram point in the dominance path from exit(b) to entry(b′) which violates the
constanteness. This case is thus impossible. In the other case, exit(bi) strictly
dominates exit(b) but defines some variables used by b′ and thus we are violat-
ing constant paths completeness since exit(b) is in the way of the constant path
from definitions in bi to use in b′. So bi cannot exist, no definition of uses(b′) can
be encountered on the path and thus it respects the intrinsic FIC property 2:
∃s′ ∈ JbnK ◦ · · · ◦ Jb1K(s) such that s ≈uses(b′) s

′.
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6.2 Transformation of a SSA program form to FIC form

Our transformation algorithm is developed in Algorithm 1. It proceeds as such:
for any block b′ whose uses has not been checked, we explore the dominance tree
of the program points from its entry to the top of the dominance tree. During this
exploration, the path from the current program point p to entry(b′) is constant
for uses(b′). When the path is no longer constant, we introduce copies at the
current program point p to ensure the intrinsic FIC property 1. The introduction
of copies changes the uses of the predecessors blocks of p, which must be checked
again and is placed in the workset W . It is thus more efficient to check the blocks
whose entry point are the lowest in the dominance tree first (line 45).

6.3 Correction of the transformation

The algorithm preserves the invariants of the SSA form (unique definition point
and dominance of the definitions over the uses). These properties are available
as lemmas in Appendix D and rely on the following invariant on the call context
of procedure Check point.

Lemma 4 (Program point invariant). The procedure Check point is al-
ways called with a program point p which dominates the entry point of b′. Let
p→ · · · → entry(b′) be the path in the dominance tree from p to the entry of b′.
This path is constant for uses(b′).

Proof. The proof is made by recurrence on the recursive calls of Check point.
If the invariant on the path does not hold we do not make another call. The
complete proof is in Appendix D.

A direct consequence of this lemma is that p and b′ preserve this relation in
the call to procedure Add missing variables.

To prove that the algorithm ensures constant path completeness on the final
program, we rely on the following lemma. When the algorithm terminates no
block is left in W ensuring the completeness.

Lemma 5 (Constant paths enforcement). At each iteration of the loop,
line 44, if a block b′ is not in W then for any other block b, if defs(b)∩uses(b′) 6= ∅
then there is a constant path from exit(b) to entry(b′) for uses(b′).

Proof. The complete proof is in Appendix D. At the loop entry the invariant
holds since all blocks are in W . It is then preserved through the iteration. For
the preservation, we need to check the newly marked block b′, selected in the
loop iteration, and we need to check that the invariant still holds for the blocks
that were and still are out of the workset W .

For b′, the invariant on the program point is given by lemma 4.
As for the other blocks still out of W , we did not change their uses (or they

would have been added to W ). But we did not change the definition points either:
we only add definitions, never remove them. Thus for all blocks b′′ in W before



16 S. Mirliaz and D. Pichardie

Algorithm 1 Transformation

1: function Get copy(u, p) . u is a source variable
2: if p is a joining point then

3: if ∃u′, ∀b′′ ∈ pred(p), ∃u′′ such that source[u′′] = u ∧ u′ φ← u′′ ∈ b′′ then
4: return u′

5: else
6: Let u′ be a fresh version of u
7: source[u′] ← u
8: for ∀b′′ ∈ pred(p) do
9: Let u′′ be a fresh version of u

10: Add u′′ ← u in component c of b′′.

11: Add u′ φ← u′′ in component φ b′′.
12: b′′ is added to W
13: return u′

14: else
15: b← pred(p)
16: if ∃u′ such that source[u′] = u ∧ u′ ∈ defs(b) then
17: return u′

18: else
19: Let u′ be a fresh version of u
20: source[u′] ← u
21: Add u′ ← u in component c of b
22: b′′ is added to W
23: return u′

24: procedure Add Missing Variables(p, b′)
25: for m ∈ uses(b′) \ defs(p) do
26: u← source[m]
27: u′ ← Get Copy(u, p)
28: Replace every use of m in b′ by a use of u′

29: procedure Check point(p, b′) . p dominates b′

30: if p is a joining point then
31: if ∃b′′ ∈ pred(p), defs(b′′) ∩ uses(b′) 6= ∅ then
32: Add Missing Variables(p, b′)
33: else
34: Check point(Direct dominator of p, b′)

35: else
36: b← pred(p)
37: if defs(b) ∩ uses(b′) 6= ∅ or b contains an assume then
38: Add Missing Variables(p, b′)
39: else
40: Check point(Direct dominator of p, b′)

41: procedure Transform( )
42: W ← all blocks
43: For all variables v, source[v] = v
44: while W 6= ∅ do
45: Let b′ be one of the lowest blocks of W (in the dominance tree)
46: Mark b′ as unmodified
47: Check point(entry(b′), b′)
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and after the loop iterations, the uses have not changed and the definitions of
these uses neither, the set of blocks b such that uses(b′′) ∩ defs(b) 6= ∅ remains
the same. The paths are still constant as we did not add assumes nor did we add
definitions for existing variables, which include uses(b′′) and defs(b).

The loop invariant of line 44 thus holds.

A similar lemma can be proved to ensure comprehensive definition coverage.

Lemma 6 (Comprehensive definitions enforcement). At each iteration
of the loop, line 44, if a block b′ is not in W then for any other block b, if
defs(b) ∩ uses(b′) 6= ∅ then uses(b′) ⊆ defs(b).

Proof. The proof is made on a similar fashion than the previous lemma.

Theorem 4 (Termination). The procedure Transform terminates.

Proof. The procedure terminates if each block can be added to W only a limited
amount of time. To prove it, we show that the number of copies created is limited.
In all the copies · · · ← u inserted by Get Copy, u is a variable from the source
program (in SSA form). The function will not add a copy for the source variable
u in block b if it already contains one. Even in the case where p is a joining
point we will not add copies twice. Indeed if p is a junction point, then the first
time Get copy will be called, all the direct predecessors of p will receive a
copy of u, and therefore the condition line 3 will be satisfied at the next call.
Since the variables of the source program and the program points are limited,
the procedure will add blocks to W a limited amount of time.

Complexity We propose an asymptotic estimation of the time complexity of
our transformation. The transformation maintains a workset of modified blocks.
Each time a block is picked from this workset, it runs a number of operations
that is proportional to the height of the dominance tree. We call H this height. It
remains to over-approximate the size of the workset. Initially each block belongs
to it. We call B the number of blocks. But a block b may be put again in the
workset by function Get Copy after adding new variable copies to b. This
operation can not occur more than the number of variables in the original SSA
program. We call V this number. At worst, the number of operations is then
proportional to H · V ·B.

7 Experiments

For our experiments, we did not exercise a complete analysis because we don’t
have abstract domains that are well suited to our notion of flow-insensitive anal-
ysis. Instead, we measure the number of variables generated by our FIC transfor-
mation and compare the number of variables in a FIC program with the number
in the original program.

We implemented the transformation described in Section 6.2 in OCaml on
top of the Sawja library [9] which parses Java bytecode programs. The input of
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Fig. 5: Comparison of the number of variables introduced by the FIC transfor-
mation with the number of variables in a flow-insensitive analysis

our transformation is the JBirSSA intermediate representation which is already
in SSA form. The benchmark used is composed of soot-2.5.0, an optimization
framework, jtopas-0.8, a parsing java library, and finally ivy-2.5.0, a dependency
manager and sub-project of the Apache Ant Project. The whole represents more
than 40K functions. For graphs readability we remove 7 functions from this
benchmark as the size of the invariants were important. We comment these
missing points below.

In term of execution time the FIC transformation rarely dominates the time
of the SSA transformation.

For the first experiment, we compare the number of variables in a FIC pro-
gram with the expected size of invariants in a textbook flow-sensitive analysis
(on the original program). This estimation is computed as the product:

|number of variables| × |number of program points|

Figure 5 displays this comparison. A reference line of equation y = x confirms
that the textbook analysis globally requires to track more versions of variables
than the FIC form. In this figure, for the removed functions, the number of FIC
variables was greatly inferior to the product for all but one.

But some state of the art work try to keep their analysis as sparse as possi-
ble [8]. They keep the invariant only at junction points where the information
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Fig. 6: Comparison of the number of variables introduced by the FIC transfor-
mation with the number of variables in a sparse flow-insensitive analysis

must be accumulated, while for other points it can be recomputed on demand.
In a second experiment, we thus compare our number of variables to the num-
ber of joining points times the number of original variables. This corresponds to
Figure 6 which also have a reference line of equation y = x. This figure shows
that our number of variables is comparable to the number of versions required
by sparse analyses. In this figure, the functions omitted had less FIC variables
than the result of the product for all but three functions.

These results show that we can expect a flow-insensitive invariant whose size
is in the same order of magnitude than flow-sensitive ones in state-of-the-art
sparse analyses.

8 Related work

Flow-insensitive analyses have often been considered because of their efficiency,
but few of them are able to provide relational invariants.

ABCD [3] is an analysis that check that array accesses are safe (that is within
the bound of the array). Such analysis is used to remove the check around the
accesses, hence speed up the program. To perform an efficient flow-insensitive
analysis while keeping precision, ABCD uses the extended SSA form which is an
intermediate form that closely resemble the SSI form. It uses the φ-functions at
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junction point, but instead of σ-functions before the branching, it insert π-copies
to the beginning of each branch. With its specific goal of ensuring inequalities,
ABCD represents its invariant as a graph where an edge v →c w denotes the
constraint w − v ≤ c between the variables v and w and the constant c. This
method cannot be applied to any relational abstract domain.

The idea to use an extended SSA form for relational analyses has been im-
plemented to validate memory accesses [14] in a compiler setting. The analysis
is based on abstract interpretation but not fully relational: it targets a semi-
relational abstract domain of symbolic intervals. They do not provide semantic
evidences of completeness.

Oh et al. present in [16] a general method for sparse analysis. Sparse analy-
ses try to avoid unnecessary propagations in abstract fixpoint resolution. Their
goal is then similar to us but they directly reason in term of abstract domain
shape. We follow a more theoretical approach and directly reason on collecting
semantics. We leave for further work the design of an abstract relational domain
that would particularly fit our theoretical framework. Experiments in [16] are
rather reassuring because they show a clear performance benefit when using flow
insensitive analyses.

Hardekopf and Lin also demonstrate the benefit of sparse analysis for scal-
ability of pointer analysis on large code bases [7]. They perform a first flow-
insensitive analysis that generate conservative def-use information, and then use
this information to perform a sparse flow-sensitive pointer analysis.

9 Conclusion

We provide a theoretical contribution to the quest for a fast but precise rela-
tional static analysis. We propose a variation of SSI program representation that
permits to analyze a program in a flow insensitive manner without sacrificing
the precision we could obtain with a flow sensitive approach.

The current work is a preliminary theoretical step before building a static
analysis tool that would benefit from this idea. Our main theorem expresses
a completeness property in term of collecting semantics but we do not pro-
vide guarantees about completeness of abstraction. The flow sensitive and flow
insensitive semantics have different forms and their abstraction may behave dif-
ferently. We believe the flow insensitive semantics has a promising potential for
in-place abstraction algorithms. In particular, an abstract domain would greatly
benefit from this semantics if it is equipped with an in-place abstract operator
that over-approximates the operation X 7→ X ∪ F (X). We believe a relational
domain as Octogon could be enhanced with such features. This is left as future
work.

An other requirement on the abstract domain is the capacity to track partial
states. The global fixpoint represents properties on states with different domains
and the analysis should not blur the information about one variable when it is
potentially undefined on some paths. This problem has already been tackled by
Liu and Rival [11] with relational domains.
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Once we have equipped the FIC form with such analysis, we would like
to perform experiments to measure efficiency gain and compare the abstract
precision with a flow sensitive version.
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14. Nazaré, H., Maffra, I., Santos, W., Barbosa, L., Gonnord, L., Quintão Pereira,
F.M.: Validation of memory accesses through symbolic analyses. ACM SIGPLAN
Notices 49(10), 791–809 (2014)

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Berlin Heidelberg (2004), https://books.google.fr/books?id=RLjt0xSj8DcC

16. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for c-like languages. In: Proc. of PLDI’12. ACM Press

17. Pereira, F., Rastello, F.: Static Single Information form (2018),
http://ssabook.gforge.inria.fr/latest/book.pdf, chapter 11 in the SSA-book

18. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
In: Proc. of POPL’85. pp. 291–299. ACM Press



22 S. Mirliaz and D. Pichardie

A Collecting semantics

The proof of Lemma 1 is classical.

Proof. We prove both inclusions. Let us note Local′(p) the right-hand of the
equality.

Local′(p) =
⋃

pen
b1→...bn→p a path

JbnK ◦ · · · ◦ Jb1K(s∅)

First, let us prove that

Local(p) ⊇ Local′(p)

We show by recurrence on n that for any path pen
b1→ . . .

bn→ p, JbnK ◦ · · · ◦
Jb1K(s∅) is included in Local(p). If n = 0, the path is simply the program point
pen and we check that {s∅} ⊆ Local(pen). For n fixed, let us suppose that for any

path pen
b1→ . . .

bn→ p, JbnK◦· · ·◦Jb1K(s∅) is included in Local(p). Let us take a path

pen
b1→ . . .

bn→ p′
bn+1→ p. Then Jbn+1K ◦ JbnK ◦ · · · ◦ Jb1K(s∅) ⊆ Jbn+1K(Local(p′)) ⊆

Local(p) by recurrence, monotony of Jbn+1K and by definition of Local (since

p′
bn+1→ p). So the property holds for n+ 1 and thus by recurrence, for any n ≥ 0.

Second, let us prove that for any p

Local(p) ⊆ Local′(p)

Local(p) is defined as the least fixpoint of the equation, it is enough to prove
that Local′(p) is a fixpoint. First, s∅ ∈ Local′(pen) since the path of null
length pen can be considered. Then, let us take any p′.⋃

p′
b→p

JbKLocal′(p′) =
⋃
p′

b→p

JbK
⋃

pen
b1→...bn→p′ a path

JbnK ◦ · · · ◦ Jb1K(s∅)

=
⋃
p′

b→p

⋃
pen

b1→...bn→p′ a path

JbK ◦ JbnK ◦ · · · ◦ Jb1K(s∅)

=
⋃

pen
b1→...bn→p′ b→p a path

JbK ◦ JbnK ◦ · · · ◦ Jb1K(s∅)

⊆ Local′(p)

We can go from line 2 to 3 since the JbK is a join-morphism. So Local′ is
a fixpoint of the equation, and since Local is the least fixpoint it must be
included in Local′.

Both terms are thus equal.

The proof of Lemma 2

Proof. The proof is made on the same principle than Lemma 1.
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B Well-structured program

Let us consider structured programs from a While language: they are composed
inductively of blocks b of atomic instructions (without assumes), sequence of
sub-programs P1;P2, conditionals if c then P1 else P2 or finally of while-loop
while c do P1. These programs are transformed into a graph and then into the
SSA form. By extension we call the SSA form obtained a structured graph.

The graph is build inductively on the syntax of the program. We suppose that
sequence of atomic instructions are already packed into blocks. A statement in
the program (block, sequence, conditional or loop) is transformed into a graph
with a unique entry point and exit point.

Block The sequence of atomic instructions body is transformed into the simple
node 〈body, ∅, φ〉 in the graph, its entry and exit points are those of the
graph.

Sequence Let P1;P2 be the program, and G1 and G2 the associated graphs for
P1 and P2. Then we merge the exit of G1 with the entry of G2. The entry
of the final graph is the entry of G1 and the exit is the one of G2.

Conditional Let if c then P1 else P2 be the program, and G1 and G2

the associated graphs for P1 and P2. We create two nodes, the affirmative
〈assume(c), ∅, ∅〉 and the negative 〈assume(¬c), ∅, ∅〉. The entry of both new
nodes are merged to be the entry of the final graph. Their exit are merged
with the entry of G1 and G2 respectively. The exits of G1 and G2 are merged
to be the exit of the whole graph.

Loop Let while c then P be the program, and G the associated graph for P .
Again we create two nodes, an affirmative and a negative one for condition
c. Their entries are merged to be the entry of the final graph. The exit of
the affirmative node is merged with the entry of G. The exit of P is merged
with the entry of the final graph. The exit of the negative node is the exit
of the whole graph.

In case two nodes b1 and b2 are such that exit(b1) = entry(b2) and exit(b1)
has no other successors than b2, and entry(b2) has no other predecessor than b1,
then the two nodes can be merged.

Definition 11 (Well-structured program). A program as a graph is well-
structured if it is the result of the transformation of a While-language program.

We can make an inductive reasoning on the structure of such program., we
suppose that the SSA transformation preserves the structure.

C Sufficient condition proof

The proof of lemma 3 require an induction on the structure of the program.

Proof. Let us suppose that there is no halting execution, i.e. no p such that
Ω ∈ Local(p). By termination, for all p, for all states s reaching p, we will find
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a path to the exit pex. Let us take any such p and s and let p′ be a program
point dominated by p such that there is a constant path from p to p′. We make a
recurrence on the length of this path in the dominance tree. If the length of the
path is null the invariant trivially holds. Otherwise, we suppose that we found
a path up to point pi of the dominance path, and we show that we can extend
it to reach pi+1. pi strictly dominates pi+1, and since the path is constant, pi+1

is either a joining point or its unique predecessor block b does not contain an
assume. Let us prove by induction on the structure of the program that for any
such pair of point (pi, pi+1) there is a non-blocking path not going through pi
twice. Let us take any s ∈ Local(pi) (s 6= Ω by hypothesis).

If the program is a block b of instructions, then in its SSA form there will
be a unique block, without assume, such that the entry dominates the exit. The

unique pair (pi, pi+1) possible is (entry(b), exit(b)). The path entry(b)
b→ exit(b)

is non-blocking so we found an adequate path for all pairs (pi, pi+1).

If the program is a sequence P1;P2, we suppose by induction that for all
constant paths p → p′ in P1 or P2, for all states s reaching p there is a non-
blocking path to p′ for s. Let us name p1 the entry point of s1, p2 its exit which
is also the entry of s2 and finally p3 the exit of s2. For any pair (pi, pi+1) of
direct dominance, either the pair is in P1 or it is in P2 (with p2 being in both
P1 and P2). The induction is enough to guarantee the existence of a path.

If the program is a conditional if c then P1 else P2, such that the invariant
holds on P1 and P2, we suppose by induction that the invariant holds for any
pair in P1 and in P1. Let b1 and b2 be the affirmative and negative blocks, and let
p0 be their common entry. p1 and p2 are the entry points of P1 and P2, and pex is
their common exit point. We need to consider the following direct dominances:
p0 → pi, the ones inside Pi (including pi but excluding pex) and p0 → pex.

p0

p1 p2 pex

P1 P2

The dominances p0 → pi are not control-free since pi has a unique predecessor
block containing an assume. For all direct dominances inside Pi we can use
the induction. Finally we need to consider p0 → pex. Let s ∈ Local(p0). The
state satisfy either c or its negation. So there is a branch i such that JbiK(s) =
{s} ⊆ Local(pi). The execution must terminate and there is no fail state so

there exist a path pi
b′1→ . . .

b′n→ pex for s ∈ Local(pi). So we found a path

p0
bi→ pi

b′1→ . . .
b′n→ pex for s such that Jb′nK ◦ · · · ◦ Jb′1K ◦ JbiK(s) 6= ∅.

Finally, if the program is a while loop while c do P then we assume that
any pair of program points in P satisfies the invariant. Let b1 and b2 be the
affirmative and negative blocks respectively, let p0 be their common entry point.
Let pex be the exit of the negative block, p the exit of the affirmative one and
entry of P .
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p0

p pex

P

We need to consider the following direct dominances: p0 → p, p0 → pex and
finally the ones inside P1. The first two are not constant since there is a unique
predecessor block to p and to pex which contains an assume. As for the ones in
P1 we simply use the induction.

Additionally, in all those inductive cases for the program, the path goes from
pi to pi+1 without going twice through pi or a point dominating it.

So by induction on the syntax, for any pair (pi, pi+1) in the program such
that there is a constant path from pi to pi+1, for any s ∈ Local(p), there is a
non-blocking path from pi to pi+1 for s. This path does not go twice through pi
nor a point dominating it. By recurrence the path exists for any pair p, p′ with
a constant path between them and the path does not go twice through p.

D Algorithm proofs

The following lemmas 7 and 8 ensure that the transformed program has preserved
its SSA invariant 1.

Lemma 7 (Uniqueness of definitions). In the transformed program, for all
variables v, v has a unique definition point.

Proof. This property holds in SSA form and the algorithm preserves it. Indeed,
new definitions are only added for fresh variables in function Get Copy and
they are added for a unique program point p.

The dominance is proved through an invariant on call context of procedure
Check point stated by Lemma 4 whose proof is developed below.

Proof. The proof is made by recurrence on the recursive calls. The first call is
made by procedure Transform with p = entry(b′). The dominance is obvious
and the path is only composed of point p. Such an empty path is necessarily
constant. Now, let us suppose that we made a call of Check point with a
point p and block b′ which satisfies the invariant. The procedure Check point
is called recursively on a direct dominator of p, let us ensure the invariant from
this dominator p′. p′ dominates p which dominates entry(b′) so p′ obviously
dominates entry(b′). Let us consider the path is the dominance tree from p′ to
entry(b′): p′ → p→ · · · → entry(b′), the subpath from p to entry(b′) is constant
for uses(b′) by hypothesis. If p has a unique predecessor b, the recursive call is
made only if b does not contains an assume nor definitions for uses(b′). Thus
the path from p′ to entry(b′) is constant. In the other hand, if p is a joining
point, then the recursive call is made only if p is not a definition point for some
variables of uses(b′). In this case, the path from p′ to entry(b′) remains constant
for uses(b′).

Thus the invariant on the call context of Check point holds.
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Lemma 8 (Definition dominance preservation). For any variable v in the
transformed program, the definition point of v is unique and dominates all its
uses.

Proof. The entry program, in SSA form, is supposed to respect this lemma by
Invariant 1. The algorithm changes the usage of the blocks but also introduces
new variables. However, no definition is moved or removed.

First, we check that when definitions are added, they are unique and domi-
nate their uses. Then, we check that when the uses are modified in a block, they
are still dominated by the definition.

First, let us show that the new variables have a unique definition point domi-
nating all its uses. New variables are introduced by the function Get copy with
two cases: the new variable is either the one u′ returned or it is a local variable
u′′. The local variable u′′ is defined in the copies c of block b′′ and directly used
in its φ-definitions φ. The definition is unique and dominates the use in block
b′′. As it is a variable internal to the block, it is not included in uses(b′′) nor
defs(b′′), it cannot be used by another block. As for u′, the definitions are only
added in the predecessor blocks of p, which is thus the unique definition point
for u′. For the dominance, u′ will be used in b′ after Add missing variable,
and entry(b′) is dominated by the definition point p by lemma 4.

Now, let us check that the other uses, of the variable u, added by Get copy
in the predecessors of p, are dominated by the definition point of u, noted pu.
First, if we are adding uses of u in the predecessors of p, then pu 6= p. Next, let
us prove that pu strictly dominates p in the call of Get copy. By hypothesis, pu
dominates entry(b′) because b′ uses u. By lemma 4, the path from p to entry(b′)
in the dominance tree is constant for uses(b′) and thus does not contain definition
points for uses(b′). In particular, it cannot contain pu. So pu and p dominates
entry(b′), pu 6= p and p does not dominate pu. The only solution is that pu
strictly dominates p. The uses added by Get copy fall in two cases: either p is
a joining point in which case for all its predecessor b′′ we add a use of u, or there
is a unique predecessor b for p for which we add a use of u. In the first case, let
us prove that pu dominates all predecessors b′′ of program point p. If they were
not dominated by pu, there would exist a path from the entry to p which goes
through b′′ but not through pu. This contradicts the dominance of pu over p,
and thus pu dominates all usages of u added in the direct predecessors of p. As
for the second case, we add a use for u in the unique predecessor block b of p.
The definition point of u strictly dominates p = exit(b) and thus it dominates
non-strictly entry(b) and the use of u in b.

In all the cases the uniqueness and the dominance of the definition points
are preserved.

The algorithm ensures the constant path completeness, as stated by Lemma 5.

Proof. Initially, all blocks are in W so the invariant holds. Let us suppose that
the invariant holds at the beginning of a loop iteration and that we selected
some block b′ to be marked unmodified. In the procedure some blocks may be
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marked modified but those left untouched and marked unmodified should still
satisfy the property.

First, let us check the property on b′. Let us prove that, after executing
Check point, if defs(b)∩ uses(b′), then exit(b) dominates entry(b′). The recur-
sive calls of Check point will end with a call to Add missing variables. Let
p be the point on which Add missing variables is called. By lemma 4, there
is a constant path from p to entry(b′) for uses(b′). If we can prove that p is the
only program point such that defs(p) ∩ uses(b′) 6= ∅, then the invariant holds.

Before the procedure, we can split the variables used by b′ in two sets, the
ones already defined by program point p, which is named C, and the ones missing
M . p is the unique definition point of C. For all the missing variables M we call
Get Copy to get a version u′ defined by p (and only by p). This version replaces
the uses of u in b′. b′ now only uses variables whose definition point is p. Thus
p is the only program point such that defs(p) ∩ uses(b′) 6= ∅ and the invariant
holds.

Now let us check that the property was preserved for the other blocks that
were marked unmodified at the loop entry. Whenever we change the use of a
block in the procedures (except for b′) we mark it as modified. Whenever we
change the definitions of a block, we only add definitions, never remove them,
and the new variables are not used by any other block than b′ which we cover.
Thus for all blocks b′′ marked unmodified before and after the loop iterations,
the uses have not changed and the definitions of these uses neither, the set of
blocks b such that uses(b′′) ∩ defs(b) 6= ∅ remains the same. For each of these
blocks we can still find a path from b to b′′ for any state s out of b. We did not
add assume that may block the execution. We did not modify the definitions
of variables used by blocks b′′ left unmodified and thus the effect of the blocks
remains equivalent on uses(b′′). So this path is still constant after an iteration.

The loop invariant of line 44 thus holds.

The other property the transformation enforces is the comprehensive defini-
tions coverage. The proof of Lemma 6 is below.

Proof. The proof is also made by recurrence on the loop iteration. The invariant
holds at the loop entrance since no block is marked unmodified. We then suppose
that it holds at the beginning of the loop and ensure that one iteration preserves
it.

First, let us consider the block b′ which has been selected. From the proof of
the previous lemma we get that, after procedure Check point, all the blocks b
such that uses(b′)∩defs(b) 6= ∅ have the same exit point that we note p. For any
variable x in uses(b′) either it was in the set C of the variables defined by all the
blocks b before the procedure (then x ∈ defs(p) ⊆ defs(b)), or it is a new version
added by Get Copy. In this second case, the new version is defined by all blocks
b preceding p. Thus, for all blocks b such that exit(b) = p, uses(b′) ⊆ defs(b).

Then let us consider the blocks b′ that were and still are marked unmodified.
By hypothesis, before the loop iteration, all the blocks b which defines some of
uses(b′) defines all of these variables. After the loop iteration, if b′ has not been
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marked modified then its uses have not changed. The blocks b containing the
definitions are also the same since we did not remove any definition and the ones
we added are for new variables, that cannot be used by b′. So the invariant is
preserved.


