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Grad’s method is used on the linearized Boltzmann collision operator to derive the most

general expressions for the collision coefficients for a multi-component, multi-temperature

plasma up to rank-2. In doing so, the collision coefficients then get expressed as series sum

of pure coefficients of temperature and mass ratios multiplied by the cross-section dependent

Chapman-Cowling integrals. These collisional coefficients are compared to previously ob-

tained coefficients by Zhdanov et al [Zhdanov V.M., Transport processes in multi-component

plasma, Taylor and Francis (2002)] for 13N -moment multi-temperature scheme. First, the

differences in coefficients are compared directly, and then the differences in first approxima-

tion to viscosity and friction force are compared. For the 13N -moment multi-temperature

coefficients, it is found that they behave reasonably similarly for small temperature differ-

ences, but display substantial differences in the coefficients when the temperature differences

are high, both for the coefficients and for viscosity and friction force values. Furthermore,

the obtained coefficients are compared to the 21N -moment single-temperature approxima-

tion provided by Zhdanov et al, and it is seen that the differences are higher than the

13N -moment multi-temperature coefficients, and have substantial differences even in the

vicinity of equal temperatures, especially for the viscosity and friction force calculations.
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Power exhaust is a key challenge in next step fusion devices. Reducing the peak heat fluxes

on the plasma facing components to tolerable levels, to a large extent, relies on impurity radia-

tion in the boundary layer of the tokamak. The impurity radiation pattern in turn depends on

plasma transport, both parallel and perpendicular to the magnetic field. This problem is generally

addressed by solving plasma fluid models coupled to kinetic neutrals (e.g. as with the fluid code

Soledge2d-EIRENE1). Generally, the collision terms for the fluid dynamical equations are obtained

by averaging over the kinetic equation with the constants of motion.

The moment-averaged collisional term can be determined by the use of different forms of ansatz

for the distribution functions entering the collision operator of the kinetic equation. The two major

ansatz used are namely, the Chapman-Enskog ansatz2 and Grad’s Hermite polynomial ansatz3. The

Chapman-Enskog method involves decomposing the distribution function in terms of a small pa-

rameter expansion, and forming a moment-averaged hierarchy of equations at each order each with

own collisional contribution. This method has been the most dominant so far, owing to its quick

convergence. Grad’s Hermite polynomial ansatz, on the other hand, involves decomposing the distri-

bution function in terms of a series orthogonal tensorial polynomials, leading to a hierarchy of fluid

equations for each order of the Hermite polynomial. These polynomials demonstrate mathematical

properties which are somewhat easier to manipulate algebraically, however they have no clear rule

for convergence. Often the convergence is either checked through brute force methods4, or by direct

comparison of terms relevant to the physics in consideration5,6. Depending on the complexity of

the collision operator, the treatment of the collision terms may get quite cumbersome.

Recently, in plasma physics oriented towards nuclear fusion, there has been a resurgence in

the use of Grad’s Hermite polynomial ansatz for use in calculating the collisional term, proba-

bly because of the improvement of algebraic techniques and availability of computer algebra sys-

tems. In recent plasma physics, it has been used to calculate the moments of the kinetic equation

and the Landau collision operator7 expressed in terms of Rosenbluth8 potentials both for the lin-

earized collision operator9 and fully non-linear collision operator10, and its extension to magnetized

plasmas11. Extension of moments of the Landau collision operator to strong flow cases has also been

done12, and some closed-form analytic expressions for the involved integrals in the operator were

also formulated13. The Hermite polynomial ansatz expressed in terms of the product of Laguerre

polynomials and irreducible monomial, has also been used to formulate and study drift-kinetic

models14 and gyrokinetic models15 for the scrape-off layer16, and also has been used to formulate a

linear theory of electron plasma waves17.

However, the Landau collision operator is only valid for warm plasmas where the weak coupling

conditions apply18. The generalization of these operators to different plasma regimes, for example
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in trying to account for shielding effects as in the Balescu-Lenard collision operator, leads to an

increase in mathematical sophistication and a corresponding difficulty in solving19. The alternative

is to use the much simpler Boltzmann collision operator. Given that the Landau operator can be

thought of the Boltzmann operator under weak coupling limits18, we can expect that the use of the

Boltzmann collision operator with the shielded Coulomb potential should provide quantitatively

similar effects to the Landau or Balescu-Lenard collision operator as long as the plasma is in local

thermodynamic equilibrium20 and does not exhibit large scale fluctuations21. The added advantage

of the Boltzmann collision operator is its use of explicit collision cross-sections. Any coefficients

derived in this manner would have the advantage of being applicable for a wide variety of gas and

plasma dynamics merely by using the relevant cross-section for the system in question22, for example

for ion-ion23–25, ion-neutral26, neutral-neutral2,27–31, and charge exchange collisions32,33.

In the scope of this article, we focus on the derivation of fluid collision coefficients from the

linearized Boltzmann collision operator. In the past, two sets of collisional terms, one for any tem-

perature range and the other for temperature range close to plasma common temperature, have

been derived and provided6,34,35. However, an explicit derivation process was not provided for the

values of the collision coefficients. Therefore, in order to verify the accuracy of the coefficients

provided, we firstly rederive the collision operator in terms of partial bracket integrals, and derive

the exact values of the partial bracket integrals2,36. We provide, for the first time, expressions for

calculating the general collisional terms up to rank-2, in a manner that can be implemented effi-

ciently in modern computer algebra systems. We also explicitly provide the range of validity of our

and the aforementioned coefficients, and clearly delineate the underlying assumptions. This would

be useful in clearly defining the simulation parameter range for a number of code packages which

have implemented certain versions of the previous collisional coefficients. For example, the previous

two sets of coefficients, taken from Ref.6, have been implemented in B2/SOLPS37–39, EDGE2D40,

and more recently in Soledge2d-EIRENE41, which solves an energy equation for each species (while

other codes mentioned solve only one total energy equation).

The article is organized as follows. We first provide a small introduction to the moment-averaged

Boltzmann kinetic equation and the corresponding Boltzmann collision operator in Sec.I. We demon-

strate its conservation properties in the process. Then, we introduce the Hermite polynomial ansatz

and Grad’s method, including the expression of the ansatz as a product of the Sonine polynomials

and the irreducible tensorial monomial in Sec.II. In Sec.III, we present the derivation of the most

general collision operator in terms of the partial bracket integrals. In Sec.IV, we provide the general

forms of the partial bracket integrals (with the full derivations in Appendix A), alongwith the for-

mulation of the cross-section integrals. Then we compare our obtained expressions for the collision
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coefficients with previously derived expressions in Sec.V for collisions of various species relevant to

fusion, ranging from a deuterium-tritium plasma collisions to heavy impurity collisions such as with

tungsten. Finally, in Sec.VI, we compare calculations of approximate values of physically intuitive

quantities such as viscosity and friction force, and provide recommendations on the range of validity

for the sets of coefficients.

I. THE BOLTZMANN EQUATION FOR MULTI-SPECIES PLASMA

The Boltzmann equation for the distribution function for species α, fα in the frame of the peculiar

velocity of species α, cα = vα − u, is given by

dfα
dt

+ cα.∇fα +
1

mα

F∗α.∇cαfα − cαs
∂fα
∂cαr

∂ur
∂xs

=
∑
β

Jαβ, (1)

where the common plasma flow velocity u is given by

ρu =
∑
α

ραuα, ρ =
∑
α

ρα, (2)

where ρ represents the mass density.The d/dt represents full time derivative given by d/dt = ∂/∂t+

u.∇, and where the force term Fα and du/dt are combined to write the relative force in the moving

frame given by F∗α = Fα −mαdu/dt.

The LHS is referred to as the “free-streaming term”, and the RHS is the collisional contribution

between species α and every other species of the system. The general “gain-loss” type Boltzmann

collisional RHS is given by,

Jαβ =

∫∫
(f ′αf

′
1β − fαf1β)gσαβ(g, χ)dΩdc1β,

where α, 1β refer to species of the two particles colliding, subscript ′ refers to properties after the

collision, g is the relative velocity between the colliding particles, σαβ is the collision cross section,

and Ω is the solid angle in which the collision occurs. For the specific case of multi-species system,

it takes the form

Jαβ =

∫∫
{fα(c′α)f1β(c′1β)− fα(cα)f1β(c1β)}gσαβ(g, χ)dΩdc1β,

where the distribution functions for each species are only dependent on the velocity of the species.

Such a form is valid for elastic collisions.

Now, for any quantity ψα depending purely on species α, one can average over Eq. 1 which
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attains the following form

d

dt
nα〈ψα〉+ nα〈ψα〉∇.u +∇.(nα〈ψαcα〉)

− nα
{〈

dψα
dt

〉
+ 〈cα.∇ψα〉+

1

mα

〈F∗α.∇cαψα〉

−
(〈

cαs
∂ψα
∂cαr

〉
∂ur
∂xs

)}
= Rα, (3)

where nα is the number density of the species α, and where,

Rα =
∑
β

∫
ψαJαβdvα

=
∑
β

∫∫∫
ψα(f ′αf

′
1β − fαf1β)gσαβ(g, χ)dΩdcαdc1β. (4)

For elastic collisions, the moment averaged collision operator can be transformed into

Rα =
∑
β

∫∫∫
(ψ′α − ψα)fα(cα)f1β(c1β)gσαβ(g, χ)dΩdcαdc1β, (5)

since the distribution functions for any given species are purely a function of the species peculiar

velocity.

By its form, the averaged Boltzmann operator is meant to conserve mass, and by the choice of

velocities, it is meant to conserve energy and momentum. One can notice in the averaged collision

operator of the form Eq. (5), choosing ψα = mα leads to a strict conservation of mass for Rαβ for the

averaged kinetic equation of each species. Hence, mass is strictly conserved. However, momentum

and energy conservation can only be demonstrated over the sum of the averaged right hand sides

of the kinetic equations for all species, i.e.
∑

α,β Rαβ = 0. In order to demonstrate this, it would be

sufficient to show that Rαβ +Rβα = 0. This is as follows

Rαβ +Rβα =

∫
ψαJαβdcα +

∫
ψβJβαdcβ

=

∫∫∫
(ψ′α + ψ′β − ψα − ψβ)fαfβgσαβ(g, χ)dΩdcαdc1β.

One can notice that for momentum and energy, the term ψ′α + ψ′β − ψα − ψβ vanishes as a result of

the elastic nature of the collisions. Therefore, we now see that the Boltzmann collision operator is

constructed to conserve mass, energy and momentum (and any linear combination of the three, for

that matter), for any arbitrary form of the distribution function f . This fact is also useful to check

the validity of the solutions obtained in the succeeding sections, acting as another check against

calculation errors. We now proceed to choosing an ansatz in order to expand the collisional term.
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II. SONINE-HERMITE POLYNOMIAL ANSATZ AND GRAD’S METHOD

In this section, we describe the modification of Grad’s method3 as used by Zhdanov6 in his

previous papers. In the ansatz for the solution of the Boltzmann equation, it is assumed that the

solution fα is already near thermodynamic equilibrium for species α, f
(0)
α as follows

f (0)
α (cα) = nα

(
mα

2πkTα

)3/2

exp

(
−mαc

2
α

2kTα

)
= nα

(γα
2π

)3/2

exp
(
−γα

2
c2
α

)
, (6)

where γα = mα/kTα. In order to solve the Boltzmann equation (1), Zhdanov and Yushmanov

choose an ansatz of the form

fα(cα) = f (0)
α (cα)

∑
m,n

22nm−2
α γ2n+m

α τmnb
mn
αr1...rm

Gmn
αr1...rm

, (7)

where

Gmn
α (cα, γα) = (−1)nn!mαγ

−(n+m/2)
α

× Snm+1/2

(γα
2

c2
α

)
P (m)(γ1/2

α cα). (8)

Here, Snm+1/2 are the Sonine polynomials, given by,

Snm+1/2

(γα
2

c2
α

)
=

n∑
p=0

(
−γα

2
c2
α

)p (m+ n+ 1/2)!

p!(n− p)!(m+ p+ 1/2)!
,

where the first few Snm+1/2 are

S0
m+1/2

(γα
2

c2
α

)
= 1, S1

m+1/2

(γα
2

c2
α

)
= m+

3

2
− γα

2
c2
α.

Further, P (m) are the irreducible projection of the tensorial monomial cmα = cαr1 . . . cαrm , derived

by the following recurrence relation

P (m+1)(γ1/2
α cα) = γ1/2

α cαP
(m) − γ1/2

α

c2
α

2m+ 1

∂P (m)

∂cα
,

with P (0) = 1. This expression is a sum of an outer product and the gradient with respect to the

first-rank tensorial monomial γ
1/2
α cα. The first few Pm+1(γ

1/2
α cα) are given by

P (0)(γ1/2
α cα) = 1, P (1)(γ1/2

α cα) = γ1/2
α cα,

P (2)(γ1/2
α cα) = γαcαcα −

1

3
γαUc

2
α.
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As one can observe, each P (m) is a rank-m irreducible tensor. We don’t need to calculate any

more than rank-2 for the scope of the current work. The constant τmn arises as a result of internal

contractions between bmnα and Gmn
α , and is given by

τmn =
(2m+ 1)!(m+ n)!

n!(m!)2(2m+ 2n+ 1)!
.

The forms mentioned in Refs.3 and6 are cosmetically different because of the choice to use full

factorial representations of functions and because of summing over full indices rather than over

half-indices, but they are exactly the same. The coefficients bmnα are calculated as

nαb
mn
α =

∫
Gmn
α fαdcα. (9)

Some values of Gmn
α are as follows

G00
α = mα, G

10
α = mαcα, G

01
α =

mα

2

(
c2
α −

3

γα

)
,

G11
α =

mα

2
cα

(
c2
α −

5

γα

)
, G20

α = mα

(
cαcα −

1

3
Uc2

α

)
G12
α =

mα

4
cα(c4

α − 14γ−1
α c2

α + 35γ−2
α ),

G21
α =

mα

2
(c2
α − 7γ−1

α )

(
cαcα −

1

3
Uc2

α

)
,

and the corresponding bmnα are given by

nαb
00
α = ρα, nαb

10
α = ραwα, nαb

01
α = 0,

nαb
11
α = hα, nαb

20
α = πα,

nαb
12
α = rα, nαb

21
α = σα.

Here, b00
α , b

01
α and b10

α represent the intuitive hydrodynamical moments density, diffusion velocity and

temperature ρα, wα = uα−u, and Tα. the higher moments b11
α and b20

α represent the thermodynam-

ically privileged moments (as per Balescu’s nomenclature42), the heat flux hα and the divergence

free pressure-stress tensor πα, which are privileged because they contribute to the entropy. The

higher-order moments b12
α and b21

α are non-privileged moments rα and σα, which do not have a clear

physical meaning, however which may contribute to the accuracy of moment equations in terms of

representing the Boltzmann equation. As one can notice, these are all moments of ranks less than 2.

Moments of rank-0 are scalar, like density ρα and temperature Tα, are constitute N variables each.

Moments rank-1 are vectorial moments, like momentum mαwα and heat-flux hα, and contribute

3N variables each. Moments of rank-2 are tensorial in nature, like the stress-tensor πα and σα, and

contribute 5N variables each (and not 9N , since they are symmetric and traceless). In principle,
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one can construct a 5N -moment system with just the hydrodynamical moments, a 13N -system with

including the thermodynamically privileged moments, and a 21N -system including rα and σα.

Furthermore, the Sonine-Hermite polynomials are chosen by Eq. (8) so as to form the moments

in the most physically intuitive manner possible. They are related to the regular Sonine-Hermite

polynomials in Ref. 3, as follows

Hmn
α (ξ ← γ1/2

α cα) =
1

mα

2nγn+m/2
α Gmn

α (cα, γα),

which then reduce to the Hermite polynomials defined in Refs. 43 and 44 by the following relation

Hm
α (ξ) =

[m/2]∑
n=0

H(m−2n)n
α (ξ).

One limitation to note, is that the choice of a zero function f
(0)
α , defined at the common flow

of the plasma, is valid for any difference of temperatures among different species, but limits the

solution to requiring flow velocities of all species being approximately the same when the number

of moments retained is finite. In principle, if one retained infinite moments, then the solution space

provided by Eq. (7) would be the same as one provided by choosing an f
(0)
α defined at the individual

species’ flow velocity45. However, since we truncate this series at a very low number of moments,

the solution spaces no longer overlap. However, the assumption of flows being close to each other is

valid for SOL/edge of tokamaks, since the exit velocities of all species are close to the sound speed

cs
46. In general, one must keep in mind the general ordering of the diffusion velocities as follows

|wα| �
(
kTα
mα

)1/2

. (10)

One can now introduce ψα = Gmn
α in the averaged Boltzmann equation (3), in order to compute

the moments, obtaining an infinite hierarchy of transport equations.

Generally, in the LHS of the hierarchy of balance equations for the moments obtained in this

manner, the kth moment equation contains both the (k − 1)th and (k + 1)th moments. Hence, one

has only k equations for k + 1 variables. In order to provide a closure, in Grad’s method, one

truncates at a moment k, such that moments higher than k are calculated using the expansion for

fα truncated at the kth term, which approximates the higher moments in terms of the lower ones.

This closes the set of equations obtained. Illustration of Grad’s closure and also Zhdanov closure

are out of the scope of the current article, and will be demonstrated in an upcoming article. In this

article, we illustrate the development and solution of the RHS of the equation, i.e. the moment

averaged Boltzmann collisional operator, and compare it to previously obtained values by Zhdanov

et al6,34,35.
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III. DERIVATION OF THE RIGHT HAND SIDE OF THE BOLTZMANN

EQUATION

In the Boltzmann collision integral Jαβ, it is possible to choose a distribution function which

takes the form

fα = f (0)
α (1 + Φα),

which essentially represents the ansatz as a perturbed Maxwellian. The moment-averaged collision

operator Eq. (5) can be written as

Rαβ =

∫
ψαJαβdcα

≈
∫∫∫

f (0)
α f

(0)
β (ψ′α − ψα)(1 + Φα + Φβ)gσαβ(g, χ)dΩdcαdc1β,

on neglecting the ΦΦ terms. This linearization of the collision operator makes it bilinear, i.e. they

satisfy the relations

J(fα, fβ + fγ) = J(fα, fβ) + J(fα, fγ),

J(fα + fγ, fβ) = J(fα, fβ) + J(fγ, fβ)

J(kfα, lfβ) = klJ(fα, fβ),

and correspondingly the moment-average R(ψ, fα, fβ) is trilinear.

R(ψ, fα, fβ + fγ) = R(ψ, fα, fβ) +R(ψ, fα, fγ),

R(ψ, fα + fγ, fβ) = R(ψ, fα, fβ) +R(ψ, fγ, fβ),

R(ψ + η, fα, fβ) = R(ψ, fα, fβ) +R(η, fα, fβ),

R(jψ, kfα, lfβ) = jklR(ψ, fα, fβ). (11)

This allows us to decompose the moment-average into sums of smaller terms, which is useful ana-

lytically. This also is similar to the properties exhibited by some other linearized operators such as

the linearized Landau operator42,47. On substituting the Sonine-Hermite polynomial ansatz from

Eq. (7) for the distribution functions f , and set the moment ψ = Gmn
α from Eq. (8), we obtain

Rmnkl
αβ =

∫∫∫
f (0)
α f

(0)
β {G

mn
α (c′α)−Gmn

α (cα)}

× {1 + 22lγ2l+k
α m−2

α τklG
kl
α (cα)bklα

+ 22lγ2l+k
β m−2

β τklG
kl
β (cβ)bklβ }

× gσαβ(g, χ)dΩdcαdc1β,

9



where Rmnkl
αβ represents the part of Rmn

αβ averaging over the kl term of the ansatz Eq. (7). Noting

that Gklbkl is an inner product, we now substitute the definition of Gmn, and use the following

integral identity9,48∫
P (m)(P (k) : W )G(v)dv

=
W

2m+ 1
δkm

∫
P (m) : P (m)G(v)dv, (12)

where W is symmetric and traceless tensor of rank k not a function of v. Furthermore, we define a

“bracket” integrals of the following form

nαnβ[F,G] =

∫∫∫
f (0)
α f

(0)
β G(F ′ − F )gσαβ(g, χ)dΩdcαdc1β, (13)

through which we can contract over index k in Rmnkl
αβ and write it as Rmnl

αβ , such that

Rmnl
αβ = (1− δm0δl0)(Amnlαβ b

ml
α +Bmnl

αβ bmlβ ) + δm0δl0C
mnl
αβ , (14)

where Amnlαβ , Bmnl
αβ and Cmnl

αβ are given by

Amnlαβ = Qmnl
αβ γ

l−n
α ×[

Snm+1/2

(
W 2
α

)
P (m)(Wα), Slm+1/2(W 2

α)P (m)(Wα)
]

Bmnl
αβ = Qmnl

αβ

γ
l+m/2
β

γ
n+m/2
α

mα

mβ

×[
Snm+1/2(W 2

α)P (m)(Wα), Slm+1/2(W 2
β )P (m)(Wβ)

]
Cmnl
αβ = (−1)nn!γ−(n+m/2)

α mαnαnβ
[
Sn1/2(W 2

α), 1
]
, (15)

where

Qmnl
αβ = (−1)n+l22l+m (2m)!(m+ l)!n!

(m!)2(2m+ 2l + 1)!
nαnβ. (16)

This moment-averaged collision operator is valid for any difference of masses or temperatures of the

colliding species.

Having now derived our expressions for the moment-averaged collision operator, we now illus-

trate a slightly different expression derived originally in the appendix of Ref. 6 by Zhdanov, which

brings with it some additional assumptions. The collision operator is linearized by choosing a dis-

tribution function defined at the common temperature of the plasma T =
∑

α nαTα/
∑

α nα, such

that f
′(0)
α f

′(0)
β = f

(0)
α f

(0)
β , leading to

Jαβ =

∫∫
f (0)
α f

(0)
β (Φ′α + Φ′β − Φα − Φβ)gσαβ(g, χ)dΩdc1β.

on neglecting the squared ΦΦ terms. However, in such a form of the collision operator, Zhdanov et al

assume that the temperatures of each species is close to the common temperature, i.e. |T−Tα| � T .
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One could term this as the linearized Boltzmann collision integral under quasi thermodynamic

equilibrium conditions. Such a scheme is well-suited when the masses of the colliding species are

of the same order, thus both species possessing a collisional relaxation timescale of the same order

as well, leading to their distribution functions being close enough to a Maxwellian defined at the

common temperature T . However, one needs to be careful when the masses of the species are at

different orders, leading to different relaxation timescales, such as in the case of heavy impurities

colliding with the plasma fuel species, where relaxation timescales may be different.

On integrating over a moment ψα = Gmn
α to obtain the moment averaged collision integral using

the ansatz Eqs. (7) for the distribution function, and on noting that b′klα = bklα for a given species α

by construction since the form of fα remains the same, we can obtain

Rmnl
αβ = Amnlαβ b

ml
α +Bmnl

αβ bmlβ , (17)

where Amnlαβ and Bmnl
αβ are given by

Amnlαβ = Qmnl
αβ γ

l−n
α ×[

Slm+1/2(W 2
α)P (m)(Wα), Snm+1/2

(
W 2
α

)
P (m)(Wα)

]
Bmnl
αβ = Qmnl

αβ

γ
l+m/2
β

γ
n+m/2
α

mα

mβ

×[
Slm+1/2(W 2

β )P (m)(Wβ), Snm+1/2(W 2
α)P (m)(Wα)

]
(18)

where Qmnl
αβ has the same expression as Eq. (16). This is also the collision operator employed for

deriving the 21N -moment single-temperature collision coefficients in Ref. 35. Note, however, that

the Amnlαβ , B
mnl
αβ here correspond to the Amlnαβ , B

mln
αβ of Eq. (15).

The limit of the moment averaged collision operator (17) is that it is only valid for quasi thermo-

dynamic equilibrium conditions with the species temperatures being close to the plasma common

temperature. However, the one in Eq. (14) has no such assumption. Therefore, each individual

moment averaged term of Eq. (17) will be less accurate than Eq. (14) for increasing difference in the

temperatures of the colliding species.

It is worth discussing what the assumption of b′kl = bkl means. Since bkl enter the distribution

functions, this assumption essentially implies no change in the physical quantity in the pre-collision

and post-collision distribution functions. For example b01
α = ραwα is the diffusion velocity of the

species α, and assuming that b01
α = b′01

α implies that the diffusion velocities of the pre-collision and

post-collision distributions remain the same for the same species α, not changing in the timescale of

the collision. This would also ensure that the distribution function f has the same form for a given

species α for all four pre-collision and post-collision distributions, as necessitated by the Boltzmann
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equation. This is a reasonable assumption when the duration of the collision is very small as in

the case of short-range forces, e.g. in case of rigid-sphere collisions where the collision only lasts an

instant, or for weakly-coupled long-range forces such as Coulomb potential, where again the small-

angle collision duration is very small. However, for long-range interaction potentials with strong

coupling, one has to be careful that the collision duration is much smaller than the timescale of the

system evolution, and in general for such an interaction potential the Boltzmann collision operator

is anyhow not appropriate.

To use either expression of the moment-averaged collision operator, we need to calculate these

bracket integrals for the required (m,n) values in order to derive the desired forces. Because of

Eq. (12), the only brackets that survive in the moment-averaged linearized collision operator are the

ones possessing the same rank, which significantly reduces the number of terms one must calculate.

Certain methods for deriving these bracket integrals are provided in Refs.2,5 and36 for m = 1, 2, as

they are well suited enough within the scope of the 21N -moment scheme. In the next section we

indicate the general expressions for the bracket integrals obtained by following these methods for a

case of species α, β possessing different masses and different temperatures.

IV. GENERAL EXPRESSIONS FOR THE BRACKET INTEGRALS

The general expressions for the rank-m bracket integrals take the following general forms[
Sp3/2(W 2

α)P (m)(Wα), Sq3/2(W 2
β )P (m)(Wβ)

]
∼
∑
rl

Apqrl,mαβ

k
r+3/2
αβ

Ωlr
αβ,

and[
Sp3/2(W 2

α)P (m)(Wα), Sq3/2(W 2
α)P (m)(Wα)

]
∼
∑
rl

Apqrl,mαα

k
r+3/2
αβ

Ωlr
αβ.

The coefficients Apqrl,mαβ , Apqrl,mαα are functions of mass and temperature ratios of the species α and β.

The terms Ωlr
αβ are the effective cross-section moment integrals of Chapman and Cowling (henceforth

referred to as the “Chapman-Cowling integrals”) which are dependent on the potential of interaction

between species α and β. The factor kαβ is an arbitrary function of the masses and temperatures

of the colliding species, which can be chosen freely as long as kαβ > 0. The choice also affects

the forms of Apqrl,mαβ ,Apqrl,mαα and Ωlr
αβ which depend on kαβ individually, such that, in principle,

the overall bracket integral values do not depend on kαβ. The exact derivations the generalized

12



coefficients Apqrl,mαβ and Apqrl,mαα for different bracket integrals up to rank-2, with all steps supplied

for verification purposes, are provided in Appendix A. For the purpose of our work, up to rank-2

suffices, as in the context of the Boltzmann collision operator, only the moments up to rank-2 have

been considered in previous works. The solution for higher-order bracket integrals is out of the

scope of the current article, and will be reserved for a future manuscript.

The “reversed” bracket integrals
[
Sp3/2(W 2

β )P (m)(Wβ), Sq3/2(W 2
α)P (m)(Wα)

]
required for the sec-

ond form of the collision operator, and
[
Sp3/2(W 2

β )P (m)(Wβ), Sq3/2(W 2
β )P (m)(Wβ),

]
required for ver-

ifying conservation properties, can be obtained by transforming α
 β in the above expressions pro-

vided. Since the two types bracket integrals are calculated independently of each other, any mistake

in calculating them would lead to non-conservation of momentum or energy. Hence, demonstrating

conservation of momentum and energy with the obtained quantities is an adequate testament to

their accuracy (see Appendix B). Furthermore, the expressions for the bracket integrals are very

amenable to being implemented in computer algebra systems, as they are just composed of sums

and products which any computer algebra system should be able to perform. We implement the

expressions for the bracket integrals and the moment-averaged collision term in Mathematica49.

The Chapman-Cowling integral is written in the following form for our case

Ωlr
αβ =

(
π

dαβ

)1/2 ∫ ∞
0

exp(−ζ2)ζ2r+3φ
(l)
αβdζ, (19)

φ
(l)
αβ =

∫ ∞
0

(1− cosl χ)σαβ(g, χ) sinχdχ, (20)

where ζ = d
1/2
αβ g and where the factor dαβ is related to kαβ by the following relation

dαβ = kαβ

{
µ2
αβ

(
γα

2m2
α

+
γβ

2m2
β

)}
.

Choosing kαβ fixes dαβ and vice versa, and note therefore that Ωlr
αβ is a functional of dαβ and the

effective cross-section φ
(l)
αβ. Essentially we are now left with calculating the effective cross sections

φ
(l)
αβ, which in turn depend on the physics of the particle-potential interaction. Therefore, the

choice of potential is crucial to calculating these effective cross sections accurately. We essentially

have a choice between pure Coulomb potential or the shielded Coulomb potential, as these are the

only ones that apply to fully ionized plasmas in the fusion domain. However, there are always

integrability and convergence issues with the potentials used in these calculations. For example, the

pure Coulomb potential diverges at the limit of low collision angles with high impact parameters

which constitute the majority of collisions in a hot plasma. This is usually mitigated by choosing

a cutoff for the integral at the Debye length radius, which then leads to a converged integral. For

the shielded Coulomb potential, for high energy and low angle interactions, it may lead to an issue

13



where some forms of the integrals obtained do not converge at high impact parameter limits. Some

physical approximations, such as ignoring large angle collisions for the shielded Coulomb potential

part of the integration, are used to express the integral approximately in forms that converge.

From a modelling point of view, it is worth keeping in mind that these two potentials will offer

slightly different collisional coefficients, which can provide a range of values which could be useful

for comparison with experiments.

In general, the integration of the effective cross-sections with the shielded Coulomb potential is

not so simple, and often has to be manually done for different values of l, with unique approximations

applied at each value. However, it is possible to find the asymptotic values of the cross-sections

through a perturbation method23. For our case, the asymptotic form of Ω-integral for the shielded

Coulomb potential looks like

Ωlr
αβ,sh(dαβ) = lΓ(r)

(
π

dαβ

)1/2 ∆2
αβ

4

(
2kTdαβ
µαβ

)2

×
{

ln

(
4λD
∆αβ

µαβ
2kTdαβ

)
+ Ar − Cl − 2 ln γ

}
, (21)

where

Cl =

 (1 + 1
3

+ 1
5

+ . . .+ 1
l
)− 1

2l
, for odd l

(1 + 1
3

+ 1
5

+ . . .+ 1
l−1

), for even l

Ar = 1 +
1

2
+

1

3
+ . . .+

1

r − 1
, A1 = 0,

where T is the plasma common temperature given by T = (1/n)
∑

α nαTα, where ∆αβ is the mean

distance of closest approach (also called the “particle diameter”), λD is the Debye length given by

λ−2
D =

∑
α

nαZ
2
αe

2

ε0kTα
,

and γ is the Euler-Mascheroni constant. This formula has the advantage of being easily imple-

mentable in computer algebra softwares. However, it is worth noting that this expression leads

to the Chapman-Cowling integral for the shielded Coulomb potential (and hence also the bracket

integrals) evaluating to different values depending on the chosen value of dαβ. This arises from two

assumptions in the calculation of the cross-section from the shielded Coulomb potential in Refs. 23

and 24. The first being the non-dimensionalizing of the impact parameter with respect to the par-

ticle diameter and the Debye length, which then vanishes under the asymptotic lower limit of the

collision integral, leaving the final result the same for any choice of the Debye length or the particle

diameter. The second is that the model of collisions is essentially a collision model of one particle

being deflected by one potential. The cross section integrals φ(l), found in this manner depend only
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on the relative velocity g other than the potential of interaction. However, the relative velocity g

in the Chapman-Cowling is scaled by a factor d
1/2
αβ , and hence the value of φ(l) will also need to be

transformed to the scaled value of ζ = d
1/2
αβ γ, leading to the additional factors of 2kTdαβ/µαβ seen in

Eq. (21). For our coefficients, we choose dαβ in such a manner that dαβ = µαβ/2kT , in order to agree

with the two aforementioned calculations of the cross-sections for the shielded Coulomb potential

in Refs. 23 and 24. Having dαβ in such a manner also allows us to immediately use cross-section

values from numerical and empirical databases such as AMJUEL50, LXCat51 and ADAS52, because

the cross-sections in these databases are often expressed as a polynomial of µαβg
2/2kT .

Some attention also needs to be paid to the chosen value of ∆αβ. Following Liboff24, Kihara et

al23 and Hahn et al25, one may choose it as follows

∆αβ =
|ZαZβ|e2

4πε0kT
, (22)

where T is the common temperature of the plasma. Such a value of ∆αβ is also termed the “particle

diameter” in the literature (where π∆2
αβ would be the collision cross-section for the rigid-sphere

collision case2). Following Zhdanov6, one could choose it as the average inverse impact parameter

〈1/b0〉−1 over the distributions as follows

∆αβ =
|ZαZβ|e2γαβ

12πε0µαβ
, (23)

where γαβ is given by γαβ = γαγβ/(γα + γβ). (which for equal temperatures makes the logarithmic

term in the expression equal to the Coulomb logarithm ln Λαβ). Whichever is chosen has to be

used consistently. In Ref. 6 by Zhdanov, the cross-section has been treated by using Eq. (23) for the

Coulomb logarithm, but Eq. (22) for the mean distance of closest approach outside the logarithm.

This is essentially the same approximation as in Rosenbluth et al8, but which has non-negligible

effect on the Ωlr
αβ for high values of (l, r) (since neither An nor Cn converge for large n, and can

become larger than the log term for a large enough value of n). This still remains a reasonable

approximation however, because we are only concerned with a small number of lower-order moments.

One can also, following the interpolated formula provided above, extrapolate results obtained

by following Liboff’s procedure24 for results provided by Bonnefoi53, and one will find the same

expression as Eq. (21), but with −2γ in place of the −2 ln γ. The cause of this is that, in Liboff’s

procedure, the general angle of deflection of the collision takes the form of the first-order modified

Bessel function of the second kind K1, and one must use approximations on the order of the energy

of the interaction to express the integral at any order as the square of K1, as every other power of

K1 is non-integrable in the given limits. This leads to the integral having a correction of Ar − γ

instead of that in Eq. (21).
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One feature to note of these shielded Coulomb potential cross-sections is that they ignore any

difference in shielding for the attractive and repulsive potential cases, because the particle diameter

is assumed to be positive for both attractive and repulsive cases. Depending on the kind of plasma,

this may be relevant22,54. However, for the case of fusion plasmas, this may safely be neglected,

given that the logarithmic term is dominant for hot plasmas.

We also mention for the sake of completeness that the original formula for the Chapman-Cowling

integrals used by Zhdanov for the values of Ωlr
αβ in Ref. 6 found using the Coulomb potential with

the Debye length cutoff is given by

Ωlr
αβ =

√
πl(r − 1)!

(
ZαZβe

2

4πε0

)2
ln Λαβ

µ
1/2
αβ (2kT )3/2

, (24)

where the plasma common temperature T refers to T = (1/n)
∑

α nαTα. This follows from Zhdanov’s

forms of the Ω-integrals, when the temperatures of the components are close to each other and when

the Debye length λD is much smaller than the inverse of the average inversed impact parameter, i.e.

λD �
¯( 1

b0

)−1

,

and where Λαβ is the Coulomb logarithm given by

Λαβ =
12πε0kT

ZαZβe2
λD.

This follows the general result in Eq. (21) to the order of the logarithmic term.

We will calculate our cross-sections with Eq. (21) with Eq. (22) and with dαβ = µαβ/(2kT ). With

expressions for the coefficients Apqrlαβ/αα and the cross-sections Ωlr
αβ,sh, we can now proceed to calculate

the collisional coefficients and compare them to the ones found in existing literature.

V. RANGE OF VALIDITY OF ZHDANOV’S VALUES

Zhdanov et al have previously derived two sets of coefficients for the values of the collisional

coefficients. The first set was derived for a multi-temperature, multi-component plasma without

any explicit assumptions on the temperatures of the species (see Appendix C). These 13N -moments

multi-temperature coefficients were also calculated using the linearized Boltzmann operator. The

derivation method for a few lower order moments is given in Refs. 6 and 55. However, to the best

of our knowledge, no explicit general derivation scheme method was provided, making it difficult to

verify some of the cumbersome higher-order moments, and generate higher-order ones, in case we

need larger number of moments. These coefficients generally take the form

Ampqαβ , B
mpq
αβ ∼

2∑
k=0

Θk
αβ

∑
rl

Km,pqrl
αβ,α Ωrl

αβ, (25)
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where Km,pqrl
αβ,α is a term depending solely on the masses, temperatures and densities of the species,

Ωrl
αβ is the Chapman-Cowling effective cross-section moment defined by Eq. (C28), and Θαβ is given

by

Θαβ =

(
1− Tβ

Tα

)/(
1 +

mβ

mα

)
.

We can verify that on choosing dαβ = γαβ/2, our coefficients equal the ones provided by Zhdanov

(see Appendix C), thus verifying the coefficients provided in known literature for the chosen value

of dαβ. We can now also generate higher-order moments of this multi-temperature form if required.

The second set of collision coefficients, provided by Zhdanov in Refs. 6 and 35, are derived using

the form of the collision operator given by Eq. (17), for 21N -moments (see Appendix D). They take

the general form

Ampqαβ , B
mpq
αβ ∼

∑
rl

Lm,pqrlαβ,α Ωrl
αβ, (26)

where Lm,pqrlαβ,α is a term depending on the masses, temperatures and densities of the species. The

bracket integrals are evaluated at the plasma common temperature T =
∑

α nαTα/
∑

α nα, how-

ever. There still remains, however, an individual species temperature dependence from the terms

multiplying the bracket integral (See Exs. (18)). The values of Ωrl
αβ, however, are proportional to

the approximate formula Eq. (D1), which is accurate to the order of the Coulomb logarithm.

When comparing our expressions derived with dαβ = µαβ/(2kT ) with the expressions Eqs. (25)

and Eqs. (26), we can expect the 13N -moment multi-temperature coefficients to agree in the case of

equal temperatures and the 21N -moment coefficients to modestly agree, and for both have a range

of reasonable agreement in the vicinity of equal temperatures. To understand where the coefficients

begin to diverge, we consider some physical situations relevant to SOL/edge physics, i.e. 1. a three

component plasma intended to be the fusion fuel, with electrons, deuterium (D) and tritium (T),

the three being at comparable densities, as D-T fusion is planned to be used in current and future

high-Q campaigns, 2. a three component plasma with light impurities at significant fraction (10%)

of the main fuel species, i.e. electrons, hydrogen (H) and carbon (C), with the carbon in the plasma

originating from facing plasma components made of graphite, 3. a three component plasma with

injected mid-weight impurities with densities at a small fraction (1%) of the fuel species density,

electrons at a small fraction, hydrogen and argon (Ar), often used for controlled experimentation

with impurities or for other purposes, and finally 4. a three component plasma with a heavy impurity

at trace levels (0.001%), i.e. electrons, ions and tungsten (W), where the tungsten usually originates

from the walls and divertors made of tungsten. Such a choice of scenarios will help us scan over

operationally relevant mass ratios and density ratios, allowing us to focus on the effect of the

temperature ratio. The values of masses, charges, densities and temperatures we choose can be
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α− β → T-D C-H Ar-H W-H

nα 1019 1018 1017 1014

Zα +1 +6 +7 +7

mα 3 amu 12 amu 40 amu 184 amu

Tα 100 eV 100 eV 100 eV 100 eV

nβ 1019 1019 1019 1019

Zβ +1 +1 +1 +1

mβ 2 amu 1 amu 1 amu 1 amu

Tβ 10− 200 eV 10− 200 eV 10− 200 eV 10− 200 eV

TABLE I. Values of constants used for the different operational cases chosen. At 100eV, the maximum

excitation state for higher-Z impurities is around +7, which is why we chose to limit Argon and Tungsten

charge state to +7.

found in Table (I). The temperatures are chosen so as to provide a range of temperature ratio

spanning 0.1− 2.

Firstly, we begin by looking at coefficients for the D-T case with a physical significance that can

be intuitively understood, e.g. the friction force, governed by A100
ij , B

100
ij , the thermal gradient force,

which is governed by A110
ij , B

110
ij , the energy exchange term given by C010

ij . We can immediately

notice in Fig. (1), that generally in the vicinity of equal temperatures TD/TT = 1, the curves for all

coefficients tend to follow each other quite closely. In particular, the curves for the 13N -moment

multi-temperature coefficients follow our obtained values much closer than the 21N -moment single-

temperature ones. However, they deviate quite significantly going away from equal temperatures.

Based on these observations, we state that the 13N -moment multi-temperature coefficients agree

more with ours in the vicinity of equal temperature than the 21N -moment single-temperature ones.

However, to better recommend a range of validity and quantitatively characterize the deviations, we

proceed to plot the percentage differences in the coefficients, defined as the absolute value percentage

difference of Zhdanov’s two sets of coefficients with respect to our coefficients Eqs. (14).

The percentage differences in the 13N -moment multi-temperature coefficients are plotted in

Fig. (2). We can notice exact agreement at equal temperatures, and that the differences in the

coefficients are very low in the vicinity of equal temperatures. However, they seem to deviate

rapidly as the temperature ratio decreases below 0.5. In particular, the coefficients related to the

heat flux transmission A110
αβ , B

110
αβ seem to deviate very quickly. This would indicate that at significant

temperature differences, the representation of heat flux gains more importance. In Table (II), we
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FIG. 1. Comparison of physically relevant moments, i.e., from top to bottom, friction force, the thermal

gradient force, and the energy exchange, between the two species D and T. The plots are of the coefficient

values plotted against the temperature ratio TD/TT . In the legends for the plots, first Amnlαβ /Bmnl
αβ refer

to our coefficients, the “13N” indicates Zhdanov’s multi-temperature collisional coefficients and similarly

the “21N” refers to Zhdanov’s single-temperature collisional coefficients.
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FIG. 2. Plots of percentage differences in multi-temperature coefficients calculated by Eqs. (25) and ours

calculated from Eq. 14. The top plot showcases the difference for the rank-0 coefficient, the two middle

plots shows the differences for the rank-1 coefficients, and the bottom plot shows the differences for the

rank-2 coefficients.
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Coefficient D-T C-H Ar-H W-H

C010 5.29 6.19 5.32 5.20

A100 5.29 6.19 5.32 5.20

B100 5.29 6.19 5.32 5.20

A101 14.50 26.06 23.28 23.39

B101 14.50 26.06 23.28 23.39

A110 12.51 19.77 18.27 18.37

B110 42.95 14.89 2.18 2.48

A111 5.73 6.92 6.19 6.11

B111 6.77 13.36 12.15 12.20

A200 6.65 8.60 7.50 7.39

B200 3.24 3.25 2.75 2.65

TABLE II. Table of maximum percentage differences in the 13N -moment multi-temperature coefficients

in the range Tα/Tβ = 0.8 − 1.2. It can be noticed that the differences remain reasonably low for small

temperature differences.

showcase the maximum differences in the temperature ratio range of 0.8 − 1.2. We can see that

all differences for all four physical cases are less than 22%, with most coefficients having differences

less than 6%. Furthermore, we can notice that the heavier the impurity becomes, the lower the

differences are. This indicates that the 13N -moment multi-temperature coefficients may be more

suitable for simulation the heavier the impurity species being simulated.

We show the differences in the single-temperature 21N -moment single-temperature coefficients

for the D-T case in Figs. (3), ((4)) and (5). One can notice in these figures that the differences

in the coefficients are significantly higher than those of the 13N -moment multi-temperature case.

Furthermore, the percentage differences in higher order moments, e.g. A/B11n
αβ , A/B12n

αβ and A/B21n
αβ

are significantly higher than those of the lower order moment ones. The same trends are observed in

the cases of carbon, argon and tungsten as well. In order to compare the differences, in Table (III),

we show the maximum difference in the temperature ratio range of 0.8 − 1.2. We notice the same

trend as earlier for the lower order coefficients, in the decrease in the percentage differences the

heavier the impurity species gets. However, we also notice that the difference for the higher-order

A/B11n
αβ , A/B12n

αβ and A/B21n
αβ moments can be up to three orders of magnitude higher than the

lower order ones. Thus, the 21N -moment single-temperature coefficients cannot be recommended

for simulation purposes with significant temperature differences, compared to the 13N -moment
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FIG. 3. Plots of percentage differences in multi-temperature coefficient C210
TD calculated by Eqs. (26) and

ours calculated from Eq. 14. The spike near unity temperature ratio is because of our collision coefficient

changing signs, but the error being the absolute value of the relative difference.

multi-temperature ones.

VI. EFFECT OF COEFFICIENTS ON VISCOSITY AND FRICTION FORCE

CALCULATIONS

We have up until now clearly noted the difference in coefficients numerically. However, it may

also be instructive to study some intuitive physical quantities such as viscosity and heat flux. The

process of obtaining values of viscosity and heat-flux would essentially close the 13N -moment system

of equations given by (3), by eliminating the higher-order moments, h and π in this case, in terms

of lower order ones.

In order to obtain the closed set of equations, we neglect any electric and magnetic fields, and fol-

low the procedure in Ref. 56, restricting the collisional terms to the 13N -moment multi-temperature

approximation. Clearly, this approximation will yield viscosity and heat-flux purely inertial in ori-

gin. In addition to neglecting the fields, we also assume that the higher order moments evolve much
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FIG. 4. Plots of percentage differences in multi-temperature coefficient AmnlTD calculated by Eqs. (26) and

ours calculated from Eq. 14. The top and the middle plots showcase the differences for the rank-1

coefficients, and the bottom plot shows the differences for the rank-2 coefficients.
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FIG. 5. Plots of percentage differences in multi-temperature coefficients Bmnl
TD calculated by Eqs. (26)

and ours calculated from Eq. 14. The top and the middle plots showcase the differences for the rank-1

coefficients, and the bottom plot shows the differences for the rank-2 coefficients.
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Coefficient D-T C-H Ar-H W-H

C010 16.44 18.62 12.46 10.57

A100 16.44 18.62 12.46 10.57

B100 16.44 18.62 12.46 10.57

A101 14.08 12.93 8.22 10.51

B101 14.08 12.93 8.22 10.51

A102 28.40 39.39 34.35 36.97

B102 28.40 39.39 34.35 36.97

A110 38.98 81.66 106.88 115.30

B110 176.17 452.64 191.55 99.35

A111 27.77 47.18 62.00 67.48

B111 11.53 16.38 14.66 15.20

A112 25.76 42.10 55.27 60.30

B112 10.34 25.43 23.92 27.69

A120 197.05 1004.96 1491.43 1790.87

B120 336.60 282.77 98.32 99.65

A121 40.53 102.39 134.03 144.63

B121 24.87 207734.00 752.74 98.05

A122 45.89 110.41 137.11 146.93

B122 13.20 14.10 14.06 14.76

A200 16.27 27.66 25.55 29.26

B200 19.07 25.95 22.54 22.50

A201 41.50 1180.76 4493.82 21616.10

B201 10.41 14.15 16.71 19.93

A210 41.79 1953.74 8207.40 40552.00

B210 54.69 3883.28 192.60 98.86

A211 234.01 4226.10 18208.20 189903.00

B211 11.93 15.65 14.30 15.18

TABLE III. Table of maximum percentage differences in the 21N -moment single-temperature coefficients

in the range Tα/Tβ = 0.8− 1.2.
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slower in time and have much smaller gradients than the lower order plasma dynamical moments.

In terms of the Knudsen number Kn ∼ λ/L ∼ τ/T where λ refers to the mean free path and L

the scale length of the system in question, and equivalently τ is the collision frequency and T the

timescale of the evolution of the system, we see, therefore that the plasma dynamical moments are

of the order of the Kn, and ignore every term that is of a higher order than Kn. This implies that

we neglect all time and space gradients of higher order moments in the LHS of the moment-averaged

Boltzmann equation (3). Hence, the only terms that survive are the ones proportional to 〈dGmn
α /dt〉

(through the Tα dependence of γα) for rank-1 quantities, and the ones proportional to ∂ur/∂xs for

the rank-2 quantities (as the cαs derivative reduces the order of the moment).

Thus, the reduced evolution equation, now the steady-state equation, for the stress tensor πα for

the species α becomes

2pαε =
∑
β 6=α

(
A200
αβ

nα
πα +

B200
αβ

nβ
πβ

)
, (27)

where ε is given by

εrs =

{
∂ur
∂xs

}
=

1

2

(
∂ur
∂xs

+
∂us
∂xr

)
− 1

3
δrs
∂ul
∂xl

.

This is the usual form by which one represents viscous forces as the viscosity η multiplied to a

traceless strain rate tensor ε57. We can re-write this equation in the following form

∑
γ

B∗200
αγ

nγ
πγ = 2pαε, (28)

where the sum γ is over all species including α, and where

B∗200
αγ =


∑

β 6=αA
200
αβ , α = γ

B200
αγ , α 6= γ

. (29)

For N species in the plasma, the set of N equations corresponding to Eq. (27) for all species can

then be compactly written in a matricial form

B∗200Π = Pε, (30)

where the B∗200 is an N ×N matrix whose elements are given by

B∗200 =



∑
β 6=α A

200
αβ

nα

B200
αγ

nγ
. . . B200

αω

nω
B200
γα

nα

. . .
...

...
. . .

...

B200
ωα

nα
. . . . . .

∑
β 6=ω A

200
ωβ

nω

 , (31)
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where ω is an arbitrarily chosen nth species, and where Π and P is the column matrix with all the

values of πγ and 2pγ respectively. On inverting the equation, and comparing it to the classical form

of stress tensor πγ = −2ηγε, we can find the column matrix of the viscosity E given by

E = −1

2
(B∗200)−1P, (32)

where the elements of E are the partial viscosity of each species ηγ. One can find the total viscosity

η =
∑

γ ηγ by the formula η = Tr(ETU).

Similarly, the reduced heat-flux hα equation is given by

5

2

1

γα

pα
Tα
∇Tα =

∑
β 6=α

(
A111
αβ

nα
hα +

B111
αβ

nβ
hβ

)
+
∑
β 6=α

(
A110
αβmαwα +B110

αβ mβwβ

)
, (33)

which can then be written in a matrix form as

B∗111H +B∗110W = T, (34)

where B∗111 has the same form as B∗200 with the 200-index coefficients replaced with 111-index

coefficients in Eq. (31). B∗110 also has a similar form as Eq. (31), with the 200-index coefficients

replaced by 110-index coefficients, and which multiply by m instead of (1/n). The column matrices

H, W and T are matrices containing hγ, wγ, and 5
2

1
γγ

pγ
Tγ
∇Tγ respectively. The heat-flux for all

species can then be similarly written as

H = (B∗111)−1T − (B∗111)−1B∗110W. (35)

One can notice that approximating the heat-fluxes in this manner, reduces them to a linear com-

bination of temperature gradients and flows. On substituting this value of the heat flux, the RHS

of the momentum balance equation will depend solely on only two terms, one proportional to the

flows and the other proportional to the temperature gradients, hence recovering the familiar form of

the collision term, one with friction force dependent on the flow difference and the other a thermal

gradient force, dependent on the difference of temperature gradients46,58. The heat-flux term then

adds to the existing friction force term and augments it in the following manner

R1
αβ,fric =

[(
A100
αβmαwα −

A101
αβ

nα
[(B∗111)−1B∗110W ]α)

)
+

(
B100
αβ mβwβ −

B101
αβ

nβ
[(B∗111)−1B∗110W ]β

)]
(36)

and the thermal gradient force remains

R1
αβ,therm =

[
A101
αβ

nα
[(B∗111)−1T ]α +

B101
αβ

nβ
[(B∗111)−1T ]β

]
, (37)
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where [. . . ]γ indicates the element of the column matrix corresponding to the species γ. To estimate

the augmentation of the friction force, we need to compare the additional term to the original

coefficients A100
αβmα and B100

αβ mβ. One can notice, however, that the friction force term R1
αβ,fric

now becomes quite complex, with friction among any two pairs of species depending on the flow

velocity of all species. This makes any straightforward comparisons of the coefficients of the friction

force cumbersome and prone to overinformation. Therefore, we only choose the coefficient of wα

and wβ from the heat-flux contribution hα and hβ and compare them to the original coefficients

corresponding to the original friction force.

Furthermore, one can repeat the same procedure with a higher-order number of moments as

has been done in Ref. 35, often referred to as the “Zhdanov closure” when applied to close a 21N -

moment set of equations with the moments of the collision operator given by Eq. (17). It must be

mentioned that the higher approximations to the viscosity, which would depend on the electric field

and the magnetic field, can be decomposed into a form which is a linear combination of different

viscosity contributions34,58,59. Comparison of such approximations with more nuanced field effects

and higher number of moments is out of the scope of the current article, since a larger number of

moments would imply needing the use of block matrices instead of regular matrices used here, and

will be a part of our planned future work.

For the particular case of a Deuterium-Tritium plasma, one can notice the total viscosity η

in Fig. (6) in cases of all three coefficients follow each other quite closely in the vicinity of equal

temperatures, with the 13N -moment multi-temperature ones practically overlapping with our exact

values. One can see in Tables (IV) and (V) that the differences in viscosity for the 13N -moment

multi-temperature case are significantly lower than those of the 21N -moment single-temperature

case, and also that differences in viscosity generally seem to decrease with increasing mass ratio.

Furthermore, we can compare the viscosity values obtained with the prescription for parallel viscosity

given by Braginskii (Ref. 58, page 229), where Braginskii provides the magnitude of viscosity by the

expression η ∼ nkTταβ, where ταβ is the mean time between collisions between species α and β,

and where n =
∑

i ni. Values of ταβ are provided by Braginskii for ions and electrons, but not for

impurities. However, since Braginskii follows the Chapman-Enskog solution, we can use the original

formula provided by Chapman and Cowling (Ref. 2, Sec. 9.81) and Zhdanov (Ref. 6, Sec. 3.1), for

estimating the mean time between collisions ταβ

ταβ =
nµαβ[Dαβ]1
nβkT

, (38)

where the first approximation to the diffusion coefficient [Dαβ]1 is given by

[Dαβ]1 =
3kT

16nµαβΩ11
αβ

. (39)
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FIG. 6. Plot of total viscosities for the Deuterium-Tritium plasma calculated using our coefficients, and Zh-

danov’s 13N -moment multi-temperature and 21N -moment single-temperature coefficients, plotted against

the temperature ratio TD/TT . Notice the virtual overlap between the viscosities calculated from Zh-

danov’s 13N -moment coefficients and ours in the vicinity of equal temperature. In the legends for the plots,

first η refers to our coefficients, the subscript “13N” indicates the viscosity calculated Zhdanov’s multi-

temperature collisional coefficients and similarly the subscript “21N” for Zhdanov’s single-temperature

collisional coefficients.

On substituting the physical values from Table I, and the value of Ω11
αβ from Eq. (21), one can find

that the viscosity prescribed by Braginskii, η ∼ nkTταβ, falls within the same range of values as

found in Fig. (6).

A similar trend can be partly observed in the augmentation of the friction force coefficients. In

Fig. (7), the increase in friction force is indicated as a percentage of the original value. In general,

with increasing mass ratio and decreasing densities, the augmentation in the term proportional to

wα decreases and increases in the term proportional to wβ. This is expected, as the dominant part

of the heat-flux contribution to the friction force is bound to arise from the species with the larger

density. In case of the 21N -moment single-temperature cases for the friction force augmentation for

the term proportional to the background flow contribution, the differences seem to rise again for high

mass ratios, as evidenced by the W-H case. The percentage differences on these computed physical

quantities seem to have a minimum in between the Argon and Tungsten cases, which indicates that
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FIG. 7. The augmentation of the friction force between Deuterium and Tritium by the contribution of the

heat fluxes (in %), for ours and Zhdanov’s coefficients, plotted against the temperature ratio TD/TT . In

the legends for the plots, the “13N” indicates the value of the friction force augmentation for Zhdanov’s

multi-temperature collisional coefficients and similarly the “21N” refers to the friction force augmentation

Zhdanov’s single-temperature collisional coefficients.
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D-T C-H Ar-H W-H

Viscosity η 1.84 1.12 0.86 2.49

Friction, wα 163.03 69.21 3.88 4.34

Friction, wβ 19.06 23.27 22.27 15.24

TABLE IV. Table of percentage differences in viscosity, friction force augmentations in wα and wβ in the

13N -moment multi-temperature coefficients in the 0.8− 1.2 temperature ratio range.

D-T C-H Ar-H W-H

Viscosity η 16.94 15.14 6.14 36.99

Friction, wα 1509.65 336.12 245.95 119.45

Friction, wβ 11.20 10.13 3.80 231.76

TABLE V. Table of percentage differences in viscosity, friction force augmentations in wα and wβ in the

21N -moment single temperature coefficients in the 0.8− 1.2 temperature ratio range.

even the relatively smaller differences in the 21N -moment single-temperature case may contribute

to significant difference in physical quantities of interest. On the basis of this, we recommend

caution in using the 21N -moment single-temperature coefficients even for heavy impurities when

temperature differences may be significant.

Thus, from these numerical results we can conclude 1. that the coefficients calculated by our

coefficients, Zhdanov’s 13N -moment multi-temperature and 21N -moment single-temperature ex-

pressions tend to follow each other quite closely in the vicinity of equal temperatures, 2. that the

differences for the 21N -moment single-temperature coefficients are higher than those of the 13N -

moment multi-temperature coefficients, 3. that the differences in coefficients become quite significant

outside the vicinity of equal temperatures, however, that in general again, the differences in 13N -

moment multi-temperature coefficients are less than those of the 21N -moment single-temperature

case, 4. that the differences in higher-order moments become quite significant in case of the 21N -

moment single-temperature coefficients, 5. that the differences in coefficients in general decrease

with increasing mass ratio, and 6. that despite the agreement and trends being similar in physical

quantities such as viscosity and augmentation in friction force, computed from the coefficients in the

vicinity of equal temperatures, the values computed from the 21N -moment single-temperature coef-

ficients may present significant differences as the mass ratio increases, especially in the augmentation

of the friction force term.
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VII. SUMMARY, CONCLUSIONS AND FUTURE WORK

In this article, we have generalized the calculation of moment averaged collisional coefficients for

a multi-component, multi-temperature plasma without making any assumptions on the masses or

temperatures of the colliding species with the linearized Boltzmann collision operator for up to rank-

2 tensorial moments. We started by taking an ansatz for the distribution function in terms of the

Sonine polynomials and the irreducible tensorial Hermite monomials Eq. (7), and then expressing the

moment in terms of these polynomials of different orders Eq. (8). On taking moments defined in this

manner, and then averaging over the Boltzmann collision operator, we obtain a generalized moment-

averaged collision term, which expresses itself in terms of partial bracket integrals in Eq. (14). We

evaluate these partial bracket integrals analytically and derive general expressions up to rank-2.

The collision operator found in this manner is valid for any range of masses and temperatures, but

is restricted to the flow differences being much smaller than the order of the thermal velocities of

the plasma. Furthermore, the collision term automatically preserves energy and momentum due

to symmetry properties of the Boltzmann collision operator. These expressions for the collisional

coefficients were found to be very amenable to being implemented in computer algebra systems,

and in our case were implemented in Mathematica49, and were found to conserve mass, energy and

momentum.

The collision coefficients are found to essentially be linear combinations of product of a term

Apqrlαβ/αα depending purely on masses and temperatures, and another purely depending on the colli-

sional cross-section Ωlr
αβ, which in turn purely depends on the potential of interaction between the

two colliding species and a factor dαβ. For the cross-sections, we chose a formula for the cross-section

derived from asymptotic values of the form of the cross-section integral for the shielded Coulomb

potential from Eq. (21). We calculated our set of coefficients choosing dαβ = µαβ/(2kT ), as choosing

this factor agrees with the calculations of effective cross-section integral for the shielded Coulomb

potential from previous literature.

Previously, Zhdanov et al had derived two sets of expressions for the collision coefficients and

cross-sections, the first being derived for a multi-temperature plasma with terms provided up to 13N -

moments, and the second being derived at the plasma common temperature, with terms provided

up to 21N -moments. The procedure of derivation for the former is not explicitly provided for all

moments, and no expressions for the coefficients were provided for higher-order collisional moments.

However, with our calculation procedure for the bracket integrals, with the suitable factor dαβ =

γαβ/2, the provided moments were found to be accurately derived. The procedure for the latter

21N -moment single-temperature set of coefficients was explicitly provided, but comes at the cost
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of temperature differences being much smaller than the order of the plasma common temperature.

We then compared our expressions to the ones provided by Zhdanov for multiple cases of colliding

species relevant to fusion. We find that in the vicinity of the temperatures being equal, all sets of

coefficients agree very well, but they diverge away from equal temperatures. We further find that the

differences in the 13N -moment multi-temperature coefficients are much smaller than those of the

21N -moment single-temperature ones (See Appendices C and D). We also find that the differences

in the coefficients decrease as the mass-ratio of the species increases. Furthermore, we use certain

approximations in Knudsen number to obtain reduced equations for the stress-tensor and heat-flux,

and use it to calculate the first inertial approximation to total viscosity and the augmentation

of the friction force as contributed by the heat-flux. We find that while the differences mostly

follow the same patterns as the coefficients, for high mass ratio and low density, as in the case of

tungsten impurity in tokamak plasmas, the differences in these physical quantities become significant

for the 21N -moment single-temperature case. On the basis of this, we caution against using the

21N -moment single-temperature coefficients where the temperature difference between species is

significant. In the same vein, we find the 13N -moment multi-temperature coefficients are agree

better than the 21N -moment single-temperature ones for small temperature differences, especially

for modelling heavy-impurity transport, as for tungsten. For any significant temperature differences

between species, we recommend using multi-temperature coefficients.

In the future, we plan to generalize the expressions for the linearized collision operator up to

arbitrary rank-m tensorial moments. We also plan to study in detail linear parallel closure schemes

associated with fluid equations derived from the moments under the low Knudsen number approxi-

mation, particularly the Zhdanov closure. Furthermore, the study of the closure can help prescribe

the appropriate choice of the factor dαβ through studying its effect on the transport coefficients

calculated by the Zhdanov closure scheme. The ones with the aforementioned 21N -moment single-

temperature scheme, derived by Zhdanov et al, often termed the Zhdanov closure, is one such

scheme of closure particularly of interest to us, since it has already been implemented in many fluid

codes of interest to the fusion community.
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Appendix A: Derivation of the bracket integrals

We follow the method illustrated in Refs. 2 and 36 in order to derive these bracket integrals in

their most general form. Certain transforms in Ref. 36 are taken from R.S. Devoto’s thesis60. We

proceed in a detailed manner to show all the calculations necessary to calculate the brackets.

There are several transforms one must make to render terms in the bracket integral tractable.

The first transform is to move to the center-of-mass frame, where the center-of-mass velocity relative

to the common flow U and relative velocity g are defined as

U = G− u =
mαc

(′)
α +mβc

(′)
β

mα +mβ

,

g(′) = c
(′)
β − c(′)

α , (A1)

where the superscript (′) represents the same corresponding expression for the primed variables,

and consequently

c(′)
α = U− µαβ

mα

g(′), c
(′)
β = U +

µαβ
mβ

g(′), (A2)

where µαβ is the reduced mass given by µαβ = mαmβ/(mα +mβ). Now we define variable changes

X and ḡ

X =
(γα

2
+
γβ
2

)1/2

U,

ḡ(′) = µαβ

(
γα

2m2
α

+
γβ

2m2
β

)1/2

g(′) (A3)

such that

W(′)
α = M

1/2
α1 X−M1/2

α2 ḡ(′),

W
(′)
β = M

1/2
β1 X +M

1/2
β2 ḡ(′), (A4)

where

Mα1 =
γα

γα + γβ
, Mα2 =

m2
βγα

m2
βγα +m2

αγβ
,

Mβ1 =
γβ

γα + γβ
, Mβ2 =

m2
αγβ

m2
βγα +m2

αγβ
. (A5)

The Jacobian of the transform is given by

J =
∂(cα, cβ)

∂(X, ḡ)
=
∂(U,g)

∂(X, ḡ)
.
∂(cα, cβ)

∂(U,g)

=

[
µ2
αβ

(
γα + γβ

2

)(
γα

2m2
α

+
γβ

2m2
β

)]−3/2

. (A6)
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These transforms will help transform the velocities into quantities that are easier to integrate.

In order to deal with the Sonine polynomials, it is worth noting that the Sonine polynomial

Snm(x) is defined to be coefficient of sn in the expansion of

(1− s)−m−1 exp

(
− sx

1− s

)
=
∑
n

snSnm(x). (A7)

With this relation in mind, we now proceed to derive some bracket integrals. We describe the deriva-

tion of
[
Sp3/2(W 2

β )Wβ, S
q
3/2(W 2

α)Wα

]
in full detail, after which we provide condensed derivations for

the other brackets with only the differing steps.

1. Derivation of
[
Sp3/2(W 2

β )Wβ, S
q
3/2(W 2

α)Wα

]
We have the bracket integral defined as follows[
Sp3/2(W 2

β )Wβ, S
q
3/2(W 2

α)Wα

]
=

1

nαnβ

∫
f (0)
α f

(0)
β

× (Sp3/2(W ′2
β )W′

β − S
p
3/2(W 2

β )Wβ) · Sq3/2(W 2
α)Wα

× gσαβ(g, χ)dΩdcαdc1β. (A8)

In order to recover collision coefficients out of this form of a bracket integrals, the general strategy

will be to use the property (A7) and absorb the Sonine polynomial terms into the exponential,

creating a generating function Παβ which contains the values of the bracket integrals for all (p, q).

Then, the term left outside of the exponential would just be the term corresponding to the full

contraction of the irreducible Hermite polynomials. Certain transformations will be performed to

integrate this full contraction term over the exponential. However, since the Sonine polynomials

were absorbed into the exponential, the remaining exponential after the integral will have to be

expanded into a series to isolate the (p, q) coefficients. Once the integral is performed, the terms

left can be expressed as linear combination of moments of the relative velocity g over the cross

section σαβ and a gaussian, Ωlr
αβ .

The generating function Παβ in found to be in the following form with the help of Eq. (A7),

Παβ =
1

nαnβ
(1− s)−5/2(1− t)−5/2

∫
f (0)
α f

(0)
β

× (W′
βe
−SW ′2

β −Wβe
−SW 2

β ) ·Wαe
−TW 2

α

× gσαβ(g, χ)dΩdcαdc1β, (A9)

where S = s/(1−s) and T = t/(1−t), and where the bracket integral of order (p, q) is the coefficient

of sptq in the expansion of Παβ. Now we substitute in the expressions for the zero functions f
(0)
α
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and f
(0)
β ,

f (0)
α = nα

(γα
2π

)3/2

exp
(
−W2

α

)
, (A10)

f
(0)
β = nβ

(γβ
2π

)3/2

exp
(
−W2

β

)
, (A11)

and make the coordinate transform (cα, cβ)→ (X, ḡ), and we get

Παβ = (1− s)−5/2(1− t)−5/2π−3Kαβ

×
∫

exp
(
−W 2

α −W 2
β

)
× (W′

βe
−SW ′2

β −Wβe
−SW 2

β ) ·Wαe
−TW 2

α

× gσαβ(g, χ)dΩdXdḡ. (A12)

where

Kαβ =

[
µ2
αβ

(
γα + γβ
γαγβ

)(
γα
m2
α

+
γβ
m2
β

)]−3/2

. (A13)

Following Ref. 2, define a Hαβ(χ) such that

Hαβ(ḡ, χ) =

∫
exp

{
−W 2

α −W 2
β − SW ′2

β − TW 2
α

}
×W′

β.WαdX, (A14)

which in the limit of a “no-collision event” becomes (ḡ, χ = 0) such that

Hαβ(ḡ, 0) =

∫
exp

{
−W 2

α −W 2
β − SW 2

β − TW 2
α

}
×Wβ.WαdX. (A15)

This helps us split the generating function first as an integral over X leaving Hαβ purely a function

of (ḡ, χ). Thus, Παβ as

Παβ = (1− s)−5/2(1− t)−5/2π−3Kαβ

×
∫
{Hαβ(ḡ, χ)−Hαβ(ḡ, 0)}gσαβ(g, χ)dΩdḡ. (A16)

Now defining

aαβ = 1 + SMβ1 + TMα1

= (1− s)−1(1− t)−1(1− sMα1 − tMβ1),

aβα = 1 + SMβ2 + TMα2

= (1− s)−1(1− t)−1(1− sMα2 − tMβ2), (A17)
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and

T ∗ =

(
Mβ1Mβ2

Mα1Mα2

)1/2

− 1− T = θαβ − 1− T,

S∗ =

(
Mβ1Mβ2

Mα1Mα2

)1/2

S = θαβS, (A18)

where θαβ = Tα/Tβ. Then Hαβ(ḡ, χ) can be transformed to

Hαβ(ḡ, χ) =

∫
exp

{
−aαβX2 − aβαḡ2

−2(Mα1Mα2)1/2X.(S∗ḡ′ + T ∗ḡ)
}

W′
β.WαdX. (A19)

We now make another variable transformation as follows, so as to write the exponential term purely

in terms of the squares of quantities X̄ and ḡ,

X̄ = X +
(Mα1Mα2)1/2

aαβ
(S∗ḡ′ + T ∗ḡ), (A20)

such that the Jacobian of this transform, (X, ḡ)→ (X̄, ḡ), is 1, and further defining

bαβ = aβα −
Mα1Mα2

aαβ
(S∗2 + T ∗2 + 2S∗T ∗ cosχ), (A21)

we can write Hαβ(ḡ, χ) as

Hαβ(ḡ, χ) =

∫
exp

{
−aαβX̄2 − bαβ ḡ2

}
W′

β.WαdX̄. (A22)

At this point, it now remains to derive and expression for W′
β.Wα. In order to do so, we introduce

Vα and Vβ and their primed counterparts

V(′)
α =

Mα1

aαβ
(S∗ḡ′ + T ∗ḡ) + ḡ(′),

V
(′)
β =

(
Mβ1

Mβ2

Mα1Mα2

a2
αβ

)1/2

(S∗ḡ′ + T ∗ḡ)− ḡ(′), (A23)

such that Wα and W′
β can be expressed in terms of X̄ and ḡ(′)

W(′)
α = M

1/2
α1 X̄−M1/2

α2 V(′)
α , W

(′)
β = M

1/2
β1 X̄−M1/2

β2 V
(′)
β . (A24)

These relations are be obtained by substituting Eqs. (A20) in Eqs. (A3). Therefore, the dot product

W′
β.Wα becomes

W′
β ·Wα = (Mα1Mβ1)1/2X̄2 + (Mα2Mβ2)1/2V′β ·Vα

− X̄ ·
{

(Mα1Mβ2)1/2V′β + (Mα2Mβ1)1/2Vα

}
. (A25)
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Now, odd powers of X̄ will vanish in the integral for Hαβ(ḡ, χ), so we only need to concern ourselves

with expressing V′β.Vα back in terms of ḡ. This calculates to

V′β.Vα =

[(
Mα1Mβ1

Mα2Mβ2

)1/2

(1− bαβ +Mα2(θαβ − 1))

+ (Mα1(1− θαβ)− 1) cosχ
] ḡ2

aαβ
, (A26)

which on substituting back into W′
β.Wα, and defining

Aαβ =

(
Mα2Mβ2

Mα1Mβ1

)1/2

(Mα1(1− θαβ)− 1),

Bαβ = Mα2(θαβ − 1), (A27)

so as to simplify W′
β.Wα as

W′
β.Wα = (Mα1Mβ1)1/2

{
X̄2

+
ḡ2

aαβ
(1− bαβ +Bαβ + Aαβ cosχ)

}
+ odd terms of X̄. (A28)

Therefore, now Hαβ(ḡ, χ), on substituting W′
β.Wα and integrating over X̄, becomes

Hαβ(ḡ, χ) = π3/2 exp(−bαβ ḡ2)a
−5/2
αβ (Mα1Mβ1)1/2

×
{

3

2
+ ḡ2(1− bαβ +Bαβ + Aαβ cosχ)

}
. (A29)

Now that Hαβ(ḡ, χ) has been evaluated, it remains to express Παβ in terms of s and t, so that

the bracket integral can manifest itself as the coefficient of sptq. For this purpose, a number of series

expansions need to be performed. We begin by performing a Taylor expansion of exp(−bαβ ḡ2)

in the following form, by separating out an arbitrary factor of exp(−kαβ ḡ2) pre-emptively so that

quantities in the integral can be expressed later as moments of a gaussian,

exp(−bαβ ḡ2) = exp(−kαβ ḡ2) exp((kαβ − bαβ)ḡ2)

= exp(−kαβ ḡ2)
∞∑
r=0

(kαβ − bαβ)r

r!
ḡ2r, (A30)

and therefore

Hαβ(ḡ, χ) = π3/2 exp(−ḡ2)a
−5/2
αβ (Mα1Mβ1)1/2

×
∞∑
r=0

{
r +

3

2
+ ḡ2(1− kαβ +Bαβ + Aαβ cosχ)

}
(kαβ − bαβ)r

r!
ḡ2r. (A31)
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Now, on substituting the expression for bαβ, expanding aαβ, aβα, S∗ and T ∗ from their definitions,

and setting S = s/(1− s) and T = t/(1− t), Hαβ(ḡ, χ) can be written as follows

Hαβ(ḡ, χ) = (1− s)5/2(1− t)5/2π3/2 exp(−kαβ ḡ2)

× (Mα1Mβ1)1/2

∞∑
r=0

ḡ2r

r!

{
r +

3

2
+ ḡ2(1− kαβ +Bαβ + Aαβ cosχ)

}
× (Nss+Ntt+Nstst+N1)r

(1 +Dss+Dtt)r+5/2
, (A32)

where the N ’s and D’s are known coefficients of the form

Ns =(1− kαβ)Mα1 −Mα1Mα2(θαβ − 1)2

+ 2Mα1Mα2θαβ(θαβ − 1) cosχ−Mβ2

Nt =(1− kαβ)Mβ1 −Mα1Mα2(θαβ − 1)2

− 2Mα1Mα2(θαβ − 1)−Mα2 = −kαβMβ1

Nst =Mα1Mα2(θ2
αβ − 1) + 1

−Mα1Mβ2 −Mα2Mβ1 − 2Mα1Mα2θ
2
αβ cosχ

N1 =(kαβ − 1)Mα1Mα2(θαβ − 1)2

Ds =−Mα1, Dt = −Mβ1. (A33)

Now, we need to express the numerator and denominator as series expansions in order explicitly

obtain and group together the powers of s and t. We proceed to expand the denominator term as

follows

(1 +Dss+Dtt)
−(r+5/2) =

∞∑
l=0

(r + 3
2

+ l)l

l!
(−Dss−Dtt)

l, (A34)

where (a)b is the falling factorial (a)b = a(a−1)(a−2) . . . (a−b+1). This expression can be further

broken down by the binomial expansion of the term in the brackets into

(1 +Dss+Dtt)
−(r+5/2) =

∞∑
l=0

l∑
l2=0

(r + 3
2

+ l)l

(l − l2)!l2!
(−Dss)

l2(−Dtt)
l−l2 . (A35)

Similarly, the term in the numerator can be binomially expanded to

(Nss+Ntt+Nstst+N1)r =

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

r!

(r − r2 − r3 − r4)!r2!r3!r4!

(Nss)
r−r2−r3−r4(Ntt)

r2(Nstst)
r3(N1)r4 . (A36)
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Substituting the expressions for the numerator and the denominator in the expression for Hαβ(ḡ, χ)

gives

Hαβ(ḡ, χ) = (1− s)5/2(1− t)5/2π3/2 exp(−kαβ ḡ2)

× (Mα1Mβ1)1/2

∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

∞∑
l=0

l∑
l2=0

ḡ2r

{
r +

3

2
+ ḡ2(1− kαβ +Bαβ + Aαβ cosχ)

}
×

(r + 3
2

+ l)l

(r − r2 − r3 − r4)!r2!r3!r4!(l − l2)!l2!
(Nss)

r−r2−r3−r4×

(Ntt)
r2(Nstst)

r3(N1)r4(−Dss)
l2(−Dtt)

l−l2 , (A37)

One can now notice that (1−s)−5/2(1−t)−5/2π−3/2(Mα1Mβ1)−1/2Hαβ(ḡ, χ) would just be a function

of (ḡ, χ, s, t) and we can choose to represent it as

(1− s)−5/2(1− t)−5/2π−3/2(Mα1Mβ1)−1/2Hαβ(ḡ, χ)

= exp(−kαβ ḡ2)
∑
pqr̄l̄

Apqr̄l̄,1αβ sptqḡ2r̄ cosl̄ χ, (A38)

where Apqr̄l̄,1αβ is a factor that is only purely a function of the masses and temperatures of the species.

On comparing the exponents of ḡ2 and cosχ on both the sides of this expression with these limits,

one can also find the summation limits on the the maximum value of r, l in the LHS summation,

r ≤ p + q + 1 and l ≤ p + q + 1. Now, on substituting the value of Hαβ(ḡ, χ) and Hαβ(ḡ, χ = 0)

becomes

Παβ = −π−3/2Kαβ(Mα1Mβ1)1/2
∑
pqr̄l̄

Apqr̄l̄,1αβ sptq

×
∫

exp(−kαβ ḡ2)ḡ2r̄(1− cosl̄ χ)gσαβ(g, χ)dΩdḡ. (A39)

Now transforming ḡ into spherical coordinates and integrate over the angles. We also write dΩ =

sinχ cosφ and integrate over φ. We also define the Chapman-Cowling cross-section moment integral,

in a generalized form, as follows

Ωl̄r̄
αβ =

(
π

dαβ

)1/2 ∫ ∞
0

exp(−ζ2)ζ2r̄+3φ
(l̄)
αβdζ, (A40)

φ
(l̄)
αβ =

∫ ∞
0

(1− cosl̄ χ)σαβ(g, χ) sinχdχ, (A41)

where ζ = k
1/2
αβ ḡ = d

1/2
αβ g, where

dαβ = kαβ

{
µ2
αβ

(
γα

2m2
α

+
γβ

2m2
β

)}
, (A42)
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The quantity dαβ is an arbitrarily chosen factor that enters the Chapman-Cowling integral, and

in general is purely a function of the masses and temperatures of the colliding species, such that

dαβ > 0. The coefficients in Zhdanov et al presented in Appendix C are calculated by choosing dαβ =

(1/2)γαγβ/(γα + γβ) = γαβ/2 (and consequently kαβ = 1 −Mα1Mα2(1 − θαβ)2). A straightforward

extension of Chapman and Cowling’s original integrals can be performed just by choosing dαβ =

µαβ/(2kT ), where T is the plasma common temperature. One can also choose to follow the original

calculation by Rat et al by retaining kαβ = 1. It must be noted that in principle, the evaluation of

the Chapman-Cowling integral and the bracket integrals should not depend on the choice of kαβ,

however the choice of dαβ may lead to slightly different evaluations once the potential of interaction

is chosen. The term φ
(l)
αβ represents the effective cross-section, and we obtain

Παβ = −8Kαβ(Mα1Mβ1)1/2
∑
pqr̄l̄

sptq
Apqr̄l̄,1αβ

k
r̄+3/2
αβ

Ωl̄r̄
αβ. (A43)

Now, the coefficient of sptq in Παβ is the bracket integral, given by

[
Sp3/2(W 2

β )Wβ, S
q
3/2(W 2

α)Wα

]
= −8

[
µ2
αβ

(
γα + γβ
γαγβ

)(
γα
m2
α

+
γβ
m2
β

)]−3/2

× (Mα1Mβ1)1/2
∑
r̄l̄

Apqr̄l̄,1αβ

k
r̄+3/2
αβ

Ωl̄r̄
αβ. (A44)

The coefficients Apqrl,1αβ can be obtained by comparing the binomial decomposition of Hαβ(ḡ, χ)

with the one solely expressed as a function of (ḡ, χ, s, t), and we obtain

∑
pqr̄l̄

Apqr̄l̄,1αβ sptqḡ2r̄ cosl̄ χ =
∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

∞∑
l=0

l∑
l2=0

ḡ2r

{
r +

3

2
+ ḡ2(1− kαβ +Bαβ + Aαβ cosχ)

}

×
(r + 3

2
+ l)l

(r − r2 − r3 − r4)!r2!r3!r4!(l − l2)!l2!
sr−r2−r4+l2tr2+r3+l−l2

× (Ns)
r−r2−r3−r4 × (Nt)

r2(Nst)
r3(N1)r4(−Dss)

l2(−Dtt)
l−l2 , (A45)

where we have used r̄ and l̄ to indicate that the (r, l) summation on the LHS is different from that

in the RHS. Now setting p = r − r2 − r4 + l2 and q = r2 + r3 + l − l2, and in doing so selecting the

sptq term which fixes l = p+ q + r4 − r3 − r and l2 = p+ r2 + r4 − r, we can write
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∑
r̄l̄

Apqr̄l̄,1αβ ḡ2r̄ cosl̄ χ =
∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

ḡ2r

{
r +

3

2
+ ḡ2(1− kαβ +Bαβ + Aαβ cosχ)

}

×
(p+ q + r4 − r3 + 3

2
)p+q+r4−r3−r

(r − r2 − r3 − r4)!r2!r3!r4!(q − r2 − r3)!(p+ r2 + r4 − r)!

× (Ns)
r−r2−r3−r4(Nt)

r2(Nst)
r3(N1)r4(−Ds)

p+r2+r4−r(−Dt)
q−r2−r3 . (A46)

Comparing the limits on both sides, one can show that instead of infinite sum over r, one only needs

to sum until r ≤ p+ q.

2. Derivation of
[
Sp3/2(W 2

α)Wα, S
q
3/2(W 2

α)Wα

]
We have[
Sp3/2(W 2

α)Wα, S
q
3/2(W 2

α)Wα

]
=

1

nαnβ

∫
f (0)
α f

(0)
β

× (Sp3/2(W ′2
α )W′

α − S
p
3/2(W 2

α)Wα) · Sq3/2(W 2
α)Wα

× gσαβ(g, χ)dΩdcαdc1β. (A47)

Having calculated
[
Sp3/2(W 2

β )Wβ, S
q
3/2(W 2

α)Wα

]
in the previous section, it becomes much easier to

perform the calculation for
[
Sl3/2(W 2

α)Wα, S
n
3/2(W 2

α)Wα

]
. Following the previous calculations, we

have the bracket integral being the coefficient of sptq in the generating function Παα which can then

be expressed as

Παα = (1− s)−5/2(1− t)−5/2π−3Kαβ ∫
{Hαα(ḡ, χ)−Hαα(ḡ, 0)}gσαβ(g, χ)dΩdḡ, (A48)

where Hαα(χ) is

Hαα(ḡ, χ) =

∫
exp

{
−W 2

α −W 2
β − SW ′2

α − TW 2
α

}
W′

α.WαdX. (A49)

Now, we again define aαβ and aβα in the following form

aαβ = 1 + (S + T )Mα1

= (1− s)−1(1− t)−1(1− (s+ t)Mβ1 + st(Mβ1 −Mα1)),

aβα = 1 + (S + T )Mα2

= (1− s)−1(1− t)−1(1− (s+ t)Mβ2 + st(Mβ2 −Mα2)),

T ∗ = −(1− θαβ + T ), S∗ = −S, (A50)
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such that Hαα(ḡ, χ), with the help of the Eqs. (A20) and (A21), becomes

Hαα(ḡ, χ) =

∫
exp

{
−aαβX̄2 − bαβ ḡ2

}
W′

α.WαdX̄, (A51)

which leaves us with needing to derive an expression for W′
α.Wα. In order to do so, we again

transform into the variables Vα and V′α such that

W′
α.Wα = Mα1X̄

2 +Mα2V
′
α.Vα − (Mα1Mα2)1/2X̄.(V′α + Vα) (A52)

where the odd powers of X̄ will integrate out in Hαα. Calculating V′α.Vα, we get

V′α.Vα =

[
Mα1

Mα2

(1− bαβ) +Mα1(θαβ − 1)

+(Mα1(θαβ − 1) + 1) cosχ
] ḡ2

aαβ
, (A53)

which on substituting back into W′
α.Wα and defining

Aαβ =
Mα2

Mα1

(Mα1(θαβ − 1) + 1), Bαβ = Mα2(θαβ − 1), (A54)

and on integrating over X̄, we find

Hαα(ḡ, χ) = π3/2 exp(−bαβ ḡ2)a
−5/2
αβ Mα1× {

3

2
+ ḡ2(1− bαβ +Bαβ + Aαβ cosχ)

}
. (A55)

So far, this expression agrees with that of Chapman and Cowling. The remaining steps are very

similar to the previous derivation, and hence one can find, similar to Eq. (A32)

Hαα(ḡ, χ) = (1− s)5/2(1− t)5/2π3/2 exp(−kαβ ḡ2)Mα1

×
∞∑
r=0

{
r +

3

2
+ ḡ2(1− kαβ +Bαβ + Aαβ cosχ)

}
× (Nss+Ntt+Nstst+N1)r

(1 +Dss+Dtt+Dstst)r+5/2

ḡ2r

r!
, (A56)

where the N ’s and D’s are of the form

Ns =(1− kαβ)Mβ1 −Mα2 − 2Mα1Mα2(θαβ − 1) cosχ

−Mα1Mα2(θαβ − 1)2

Nt =(1− kαβ)Mβ1 −Mα2 −Mα1Mα2(θ2
αβ − 1) = −kMβ1

Nst =(1− kαβ)(1− 2Mα1) + 2Mα2 + 2Mα1Mα2θαβ cosχ

+Mα1Mα2(θ2
αβ − 3)

N1 =(kαβ − 1) +Mα1Mα2(θαβ − 1)2

Ds =−Mβ1, Dt = −Mβ1, Dst = Mβ1 −Mα1. (A57)
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Now, following the binomial expansion for the denominator as in the previous section, one would

obtain

(1 +Dss+Dtt+Dstst)
−(r+5/2)

=
∞∑
l=0

l∑
l2=0

l−l2∑
l3=0

(r + 3
2

+ l)l

(l − l2 − l3)!l2!l3!

× (−Dss)
l−l2−l3(−Dtt)

l2(−Dstst)
l3 . (A58)

The binomial expansion for the numerator term remains the same. Combining them, we find the

form for Hαα(ḡ, χ),

Hαα(ḡ, χ) = (1− s)5/2(1− t)5/2π3/2 exp(−kαβ ḡ2)Mα1×
∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

∞∑
l=0

l∑
l2=0

l−l2∑
l3=0

ḡ2r×{
r +

3

2
+ ḡ2(1− kαβ +Bαβ + Aαβ cosχ)

}
×

(r + 3
2

+ l)l

(r − r2 − r3 − r4)!r2!r3!r4!(l − l2 − l3)!l2!l3!
×

(Nss)
r−r2−r3−r4(Ntt)

r2(Nstst)
r3(N1)r4×

(−Dss)
l−l2−l3(−Dtt)

l2(−Dstst)
l3 , (A59)

Looking at this equation, again it can be expressed as a function in terms of ḡ2 and cosχ. Therefore,

the most general form of Παα is going to be of the form

Παα = −8

[
µ2
αβ

(
γα + γβ
γαγβ

)(
γα
m2
α

+
γβ
m2
β

)]−3/2

Mα1×

∑
pqr̄l̄

sptq
Apqr̄l̄,1αα

k
r̄+3/2
αβ

Ωl̄r̄
αβ, (A60)

and on comparing the powers of s and t in both these expressions and selecting the sptq term, we

find that p = r − r2 − r4 + l − l2 and q = r2 + r3 + l2 + l3, and in doing so, we inadvertently set

l = p+ q− r− r3 + r4− l3 and l2 = q− r2− r3− l3, because of which the expression for calculating

Apqrl,1αα becomes

∑
r̄l̄

Apqr̄l̄,1αα ḡ2r̄ cosl̄ χ =
∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

p−r+r2+r4∑
l3=0

ḡ2r

{
r +

3

2
+ ḡ2(1− kαβ +Bαβ + Aαβ cosχ)

}
×

×
(p+ q + r4 − r3 − l3 + 3

2
)p+q+r4−r3−r−l3

(r − r2 − r3 − r4)!r2!r3!r4!(p− r + r2 + r4 − l3)!(q − r2 − r3 − l3)!l3!
×

× (Ns)
r−r2−r3−r4(Nt)

r2(Nst)
r3(N1)r4(−Ds)

p−r+r2+r4−l3(−Dt)
q−r2−r3−l3(−Dst)

l3 , (A61)
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where the sum over r need only be computed such that r ≤ p + q, and correspondingly 0 ≤ r̄ ≤

p+ q + 1 and 0 ≤ l̄ ≤ p+ q + 1. The general solution is given by[
Sp3/2(W 2

α)Wα, S
q
3/2(W 2

α)Wα

]
= −8

[
µ2
αβ

(
γα + γβ
γαγβ

)(
γα
m2
α

+
γβ
m2
β

)]−3/2

Mα1×

∑
r̄l̄

Apqr̄l̄,1αα

k
r̄+3/2
αβ

Ωl̄r̄
αβ (A62)

This completes the derivation of the second rank-1 bracket integral.

3. Derivation of
[
Sp5/2(W 2

β )
(
WβWβ − 1

3
UW 2

β

)
, Sq5/2(W 2

α)
(
WαWα − 1

3
UW 2

α

)]
In order to calculate a higher-rank bracket integral, we first notice that fundamentally, only the

terms in the curly brackets in Eq. (A37), and in the falling factorial change. Every other term

remains the same. Therefore, in the definition of Lαβ(ḡ, χ) (defined analogously to Hαβ(ḡ, χ), we

have

Lαβ(ḡ, χ) =

∫
exp

{
−aαβX̄2 − bαβ ḡ2

}
×

(W′
βW

′
β −

1

3
UW ′2

β ) : (WαWα −
1

3
UW 2

α)dX̄. (A63)

Therefore, we need to calculate only the inner product (W′
βW

′
β − 1

3
UW ′2

β ) : (WαWα − 1
3
UW 2

α),

which can be expressed as(
W′

βW
′
β −

1

3
UW ′2

β

)
:

(
WαWα −

1

3
UW 2

α

)
= (W′

β.Wα)2 − 1

3
W ′2
β W

2
α. (A64)

Now, W′
β.Wα is given by Eq. (A25), the square of which would be given by

(W′
β.Wα)2 = Mα1Mβ1X̄

4 +Mα2Mβ2(V′β.Vα)2

+
[
X̄.
{

(Mα1Mβ2)1/2V′β + (Mα2Mβ1)1/2Vα

}]2
+

+ 2(Mα1Mβ1Mα2Mβ2)1/2X̄2(V′β.Vα) + odd terms of X̄. (A65)

And we write down the expression for the product of W ′2
β and W 2

α

W ′2
β W

2
α = (Mα1X̄

2 +Mα2V
2
α )(Mβ1X̄

2 +Mβ2V
′2
β )

+ 4(Mα1Mα2Mβ1Mβ2)1/2(X̄.V′β)(X̄.Vα) + odd terms of X̄. (A66)
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Both the terms involving product of dot products of the form (X̄.A)(X̄.B) can be written as

AB : X̄X̄. This is useful, because in the expression for Lαβ(ḡ, χ), we can take the term AB out of

the integral with the symmetry rule∫
(AB : X̄X̄)G(X̄)dX̄ =

1

3
(A.B)

∫
X̄2G(X̄)dX̄. (A67)

Lαβ(ḡ, χ), on integrating over X̄, therefore becomes

Lαβ(ḡ, χ) = π3/2 exp
{
−bαβ ḡ2

}
a
−7/2
αβ

(
5

2
Mα1Mβ1

+
10

3
aαβ(Mα1Mα2Mβ1Mβ2)1/2(V′β.Vα)+

+a2
αβMα2Mβ2(V′β.Vα)2 − 1

3
a2
αβMα2Mβ2V

′2
β V

2
α

)
(A68)

Following Chapman and Cowling, we can see that (V′β × Vα)2 = V ′2β V
2
α − (V′β.Vα)2, which

therefore is

V′β ×Vα = {Mα1(1− θαβ)− 1} ḡ
′ × ḡ

aαβ
(A69)

=⇒ (V′β ×Vα)2 = {Mα1(1− θαβ)− 1}2(1− cos2 χ)
ḡ4

a2
αβ

, (A70)

and therefore

(V′β.Vα)2 − 1

3
V ′2β V

2
α

=
2

3

[
Mα1Mβ1

Mα2Mβ2

(1− bαβ)2 + 2
Mβ1

Mβ2

[Mα1(θαβ − 1)

+ηαβ{Mα1(1− θαβ)− 1} cosχ] (1− bαβ)+

+Mα1Mα2
Mβ1

Mβ2

(θαβ − 1)2 + {Mα1(1− θαβ)− 1}2 cos2 χ

+ 2Mα2

(
Mα1Mβ1

Mα2Mβ2

)1/2

(θαβ − 1){Mα1(1− θαβ)− 1} cosχ

−1

2
{Mα1(1− θαβ)− 1}2(1− cos2 χ)

]
ḡ4

a2
αβ

, (A71)

where ηαβ = mα/mβ. We now take a factor of exp (kαβ − bαβ)ḡ2 in Lαβ(ḡ, χ), expand it, shift

forward the sum wherever there is are factors of exp (1− bαβ)ḡ2, to obtain the following expression

Lαβ(ḡ, χ) = π3/2 exp
{
−kαβ ḡ2

}
a
−7/2
αβ (Mα1Mβ1)×
∞∑
r=0

[
5

2
+ rAαβ + r(r − 1)Dαβ+

[(Bαβ + rEαβ) + (Cαβ + rNαβ) cosχ]ḡ2+

+
{
Oαβ + Pαβ cos2 χ+Qαβ cosχ

}
ḡ4
] (kαβ − bαβ)r

r!
ḡ2r, (A72)
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where the coefficients are given as follows

Aαβ =
10

3
, Bαβ =

10

3
[1− kαβ +Mα2(θαβ − 1)],

Cαβ =
10

3

(
Mα2Mβ2

Mα1Mβ1

)1/2

{Mα1(1− θαβ)− 1},

Dαβ =
2

3
, Eαβ =

4

3
[1− kαβ +Mα2(θαβ − 1)],

Nαβ =
4

3

Mα2

Mα1

ηαβ{Mα1(1− θαβ)− 1},

Oαβ =
2

3
[1− kαβ +Mα2(θαβ − 1)]2 − 1

3

Mα2Mβ2

Mα1Mβ1

{Mα1(1− θαβ)− 1}2,

Pαβ =
Mα2Mβ2

Mα1Mβ1

{Mα1(1− θαβ)− 1}2,

Qαβ =
4

3

Mα2

Mα1

ηαβ{Mα1(1− θαβ)− 1}(1− kαβ)

+
4

3
Mα2

(
Mα2Mβ2

Mα1Mβ1

)1/2

(θαβ − 1){Mα1(1− θαβ)− 1}. (A73)

The term in the square brackets is fundamentally what we require; it will replace the one in the

curly bracket in the expansion. Additionally, the falling factorial has a 5/2 instead of a 3/2 because

we expand a
−(r+7/2)
αβ from the denominator instead of a

−(r+5/2)
αβ , with the final expression for the

bracket integral given by

[
Spm+1/2(W 2

β )(WβWβ −
1

3
UW 2

β ), Sqm+1/2(W 2
α)(WαWα −

1

3
UW 2

α)

]
=

− 8

[
µ2
αβ

(
γα + γβ
γαγβ

)(
γα
m2
α

+
γβ
m2
β

)]−3/2

(Mα1Mβ1)
∑
r̄l̄

Apqr̄l̄,2αβ

k
r̄+3/2
αβ

Ωl̄r̄
αβ. (A74)

∑
r̄l̄

Apqr̄l̄,2αβ ḡ2r̄ cosl̄ χ =
∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

ḡ2r

{
5

2
+ rAαβ + r(r − 1)Dαβ+

[(Bαβ + rEαβ) + (Cαβ + rNαβ) cosχ]ḡ2 + +(Oαβ + Pαβ cos2 χ+Qαβ cosχ)ḡ4

}
×

×
(p+ q + r4 − r3 + 5

2
)p+q+r4−r3−r

(r − r2 − r3 − r4)!r2!r3!r4!(q − r2 − r3)!(p+ r2 + r4 − r)!
(Ns)

r−r2−r3−r4(Nt)
r2(Nst)

r3(N1)r4(−Ds)
p+r2+r4−r(−Dt)

q−r2−r3 ,

(A75)

where the sum over r needs to be only computed till r ≤ p+q, and correspondingly 0 ≤ r̄ ≤ p+q+2

and 0 ≤ l̄ ≤ p+ q + 2.
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4. Derivation of
[
Sp5/2(W 2

α)(WαWα − 1
3
UW 2

α), Sq5/2(W 2
α)(WαWα − 1

3
UW 2

α)
]

Again, as in the previous section, we notice that fundamentally, only the terms in the curly

brackets in Eq. (A61) and the index in the falling factorial change. Every other term remains the

same. Therefore, in the definition of Lαα(ḡ, χ) (defined analogously to Lαβ(χ), we have

Lαα(ḡ, χ) =

∫
exp

{
−aαβX̄2 − bαβ ḡ2

}
×

(W′
αW

′
α −

1

3
UW ′2

α ) : (WαWα −
1

3
UW 2

α)dX̄, (A76)

where the inner product (W′
αW

′
α − 1

3
UW ′2

α ) : (WαWα − 1
3
UW 2

α) can be expressed as

(
W′

αW
′
α −

1

3
UW ′2

α

)
:

(
WαWα −

1

3
UW 2

α

)
= (W′

α.Wα)2 − 1

3
W ′2
αW

2
α. (A77)

The product (W′
α.Wα)2

(W′
α.Wα)2 = M2

α1X̄
4 +M2

α2(V′α.Vα)2

+Mα1Mα2

[
X̄. {V′α + Vα}

]2
+ 2Mα1Mα2X̄

2(V′α.Vα)

+ odd terms of X̄. (A78)

And we write down the expression for W ′2
αW

2
α

W ′2
αW

2
α = (Mα1X̄

2 +Mα2V
2
α )(Mα1X̄

2 +Mα2V
′2
α )

+ 4Mα1Mα2(X̄.V′α)(X̄.Vα)

+ odd terms of X̄. (A79)

Using identity Eq. (A67), we have Therefore, on integrating over X̄, Lαα(ḡ, χ) becomes

Lαα(ḡ, χ) = π3/2 exp
{
−bαβ ḡ2

}
a
−7/2
αβ

(
5

2
M2

α1

+
10

3
aαβMα1Mα2(V′α.Vα) + a2

αβM
2
α2(V′α.Vα)2

−1

3
a2
αβM

2
α2V

′2
α V

2
α

)
. (A80)
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Following the same procedure as in the previous section, we find

(V′α.Vα)2 − 1

3
V ′2α V

2
α =

2

3

[
M2

α1

M2
α2

(1− bαβ)2+

2
Mα1

Mα2

[Mα1(θαβ − 1) + {Mα1(θαβ − 1) + 1} cosχ] (1− bαβ)

+M2
α1(θαβ − 1)2 + {Mα1(θαβ − 1) + 1}2 cos2 χ

+ 2Mα1(θαβ − 1){Mα1(θαβ − 1) + 1} cosχ

−1

2
{Mα1(θαβ − 1) + 1}2(1− cos2 χ)

]
ḡ4

a2
αβ

. (A81)

Substituting the values of V′α.Vα and (V′α.Vα)2− (1/3)V ′2α V
2
α in the expression for Lαα(ḡ, χ), then

expanding exp (kαβ − bαβ)ḡ2 term and shifting the sum for the factors of (kαβ − bαβ)ḡ2, we get

Lαα(ḡ, χ) = π3/2 exp
{
−kαβ ḡ2

}
a
−7/2
αβ (M2

α1)
∞∑
r=0

[
5

2
+ rAαα + r(r − 1)Dαα+

[(Bαα + rEαα) + (Cαα + rNαα) cosχ]ḡ2+

+
{
Oαα + Pαα cos2 χ+Qαα cosχ

}
ḡ4
] (kαβ − bαβ)r

r!
ḡ2r, (A82)

where the coefficients are given by

Aαβ =
10

3
, Bαβ =

10

3
[(1− kαβ) +Mα2(θαβ − 1)],

Cαβ =
10

3

Mα2

Mα1

{Mα1(θαβ − 1) + 1},

Dαβ =
2

3
, Eαβ =

4

3
[(1− kαβ) +Mα2(θαβ − 1)],

Nαβ =
4

3

Mα2

Mα1

{Mα1(θαβ − 1) + 1},

Oαβ =
2

3
[1− kαβ +Mα2(θαβ − 1)]2 − 1

3

M2
α2

M2
α1

{Mα1(θαβ − 1) + 1}2,

Pαβ =
M2

α2

M2
α1

{Mα1(θαβ − 1) + 1}2,

Qαβ =
4

3

Mα2

Mα1

{Mα1(θαβ − 1) + 1}(1− kαβ)

+
4

3

M2
α2

Mα1

(θαβ − 1){Mα1(θαβ − 1) + 1}. (A83)

The term in the square brackets will replace the one in the curly bracket in the expansion for

computing Apqrl,2αα , accompanied by the falling factorial term having a 5/2 instead of a 3/2 because

we expand a
−(r+7/2)
αβ from the denominator instead of a

−(r+5/2)
αβ . Thus, the general form of the bracket

integral and the coefficients Apqrl,2αα are now given by
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[
Sp5/2(W 2

α)(WαWα −
1

3
UW 2

α), Sq5/2(W 2
α)(WαWα −

1

3
UW 2

α)

]
=

− 8

[
µ2
αβ

(
γα + γβ
γαγβ

)(
γα
m2
α

+
γβ
m2
β

)]−3/2

M2
α1

∑
r̄l̄

Apqr̄l̄,2αα

k
r̄+3/2
αβ

Ωl̄r̄
αβ. (A84)

∑
r̄l̄

Apqr̄l̄,2αα ḡ2r̄ cosl̄ χ =
∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

ḡ2r

{
5

2
+ rAαβ + r(r − 1)Dαβ+

[(Bαβ + rEαβ) + (Cαβ + rNαβ) cosχ]ḡ2 + +(Oαβ + Pαβ cos2 χ+Qαβ cosχ)ḡ4

}
×

×
(p+ q + r4 − r3 − l3 + 5

2
)p+q+r4−r3−r−l3

(r − r2 − r3 − r4)!r2!r3!r4!(p− r + r2 + r4 − l3)!(q − r2 − r3 − l3)!l3!
×

× (Ns)
r−r2−r3−r4(Nt)

r2(Nst)
r3(N1)r4(−Ds)

p−r+r2+r4−l3(−Dt)
q−r2−r3−l3(−Dst)

l3 , (A85)

where the sum over r needs to be computed for r ≤ p + q, and correspondingly 0 ≤ r̄ ≤ p + q + 2

and 0 ≤ l̄ ≤ p+ q + 2.

5. Derivation of
[
Sp1/2(W 2

β ), Sq1/2(W 2
α)
]

and
[
Sp1/2(W 2

α), Sq1/2(W 2
α)
]

Following the previous sections, we notice that, in order to derive the brackets
[
Sp1/2(W 2

β ), Sq1/2(W 2
α)
]

and
[
Sp1/2(W 2

α), Sq1/2(W 2
α)
]
, we just need to drop the term that arises from the curly brackets in

Eq. (A37)and Eq. (A61) respectively, and and change the index in the falling factorial to 1/2. Thus,

the general solutions for the brackets and and the coefficients Apqrl,0αβ , Apqrl,0αα are given by

[
Sp3/2(W 2

β ), Sq3/2(W 2
α)
]

= −8

[
µ2
αβ

(
γα + γβ
γαγβ

)(
γα
m2
α

+
γβ
m2
β

)]−3/2∑
r̄l̄

Apqr̄l̄,0αβ

kr̄+3/2
Ωl̄r̄
αβ, (A86)

∑
r̄l̄

Apqr̄l̄,0αβ ḡ2r̄ cosl̄ χ =
∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

ḡ2r (p+ q + r4 − r3 + 1
2
)p+q+r4−r3−r

(r − r2 − r3 − r4)!r2!r3!r4!(q − r2 − r3)!(p+ r2 + r4 − r)!
×

× (Ns)
r2(Nt)

r3(Nst)
r4(N1)r−r2−r3−r4(−Ds)

q−r2−r3(−Dt)
p+r2+r4−r. (A87)

[
Sp3/2(W 2

α), Sq3/2(W 2
α)
]

= −8

[
µ2
αβ

(
γα + γβ
γαγβ

)(
γα
m2
α

+
γβ
m2
β

)]−3/2∑
r̄l̄

Apqr̄l̄,0αα

kr̄+3/2
Ωl̄r̄
αβ, (A88)
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and

∑
r̄l̄

Apqr̄l̄,0αα ḡ2r̄ cosl̄ χ =
∞∑
r=0

r∑
r2=0

r−r2∑
r3=0

r−r2−r3∑
r4=0

p−r+r2+r4∑
l3=0

ḡ2r×

(p+ q + r4 − r3 − l3 + 1
2
)p+q+r4−r3−r−l3

(r − r2 − r3 − r4)!r2!r3!r4!(p− r + r2 + r4 − l3)!(q − r2 − r3 − l3)!l3!
×

× (Ns)
r2(Nt)

r3(Nst)
r4(N1)r−r2−r3−r4(−Ds)

p−r+r2+r4−l3(−Dt)
q−r2−r3−l3(−Dst)

l3 . (A89)

where the sum over r goes till r ≤ p+ q, and correspondingly 0 ≤ r̄ ≤ p+ q and 0 ≤ l̄ ≤ p+ q.

Appendix B: Bracket integral values for verifying conservation properties

In this section, ηαβ = mα/mβ and θαβ = Tα/Tβ and vice versa. One can use Eq. (14) for

m = 1, p = 0 and m = 0, p = 1 to verify the momentum and energy conservation respectively with

the tables below for q = 0, 1, 2.

1.
[
Sp3/2(W 2

β )Wβ, S
q
3/2(W 2

α)Wα

]

p = 0, q = 0 : A0011,1
αβ Ω11

αβ

A0011,1
αβ =

8
√
ηαβ (ηαβ + 1) 4θ2

αβ

(kαβ (ηαβ + θαβ) (ηαβθαβ + 1)) 5/2
(B1)

p = 0, q = 1 : A0111,1
αβ Ω11

αβ + A0121,1
αβ Ω12

αβ

A0111,1
αβ =

20η
3/2
αβ (ηαβ + 1) 4θ2

αβ

(ηαβ + θαβ) 7/2 (kαβ (ηαβθαβ + 1)) 5/2

A0121,1
αβ =

4η
3/2
αβ (ηαβ + 1) 4θ2

αβ

(ηαβ + θαβ) 9/2 (kαβ (ηαβθαβ + 1)) 7/2

×
(
5kαβ

(
η2
αβθαβ + ηαβ

(
θ2
αβ + 1

)
+ θαβ

)
− 7 (ηαβ + 1) 2θαβ

)
(B2)
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p = 0, q = 2 : A0211,1
αβ Ω11

αβ + A0221,1
αβ Ω12

αβ + A0231,1
αβ Ω13

αβ

A0211,1
αβ =

35 (ηαβ + 1) 4θ2
αβ

(ηαβ + θαβ) 9/2
(
kαβ

(
1
ηαβ

+ θαβ

))
5/2

A0221,1
αβ =

7η
5/2
αβ (ηαβ + 1) 4θ2

αβ

(ηαβ + θαβ) 11/2 (kαβ (ηαβθαβ + 1)) 7/2

×
(
5kαβ (ηαβ + θαβ) (ηαβθαβ + 1)− 9 (ηαβ + 1) 2θαβ

)
A0231,1
αβ =

η
5/2
αβ (ηαβ + 1) 4θ

3/2
αβ

2
√

ηαβ
θαβ

+ 1 (ηαβ + θαβ) 6 (kαβ (ηαβθαβ + 1)) 9/2

×
(
99 (ηαβ + 1) 4θ2

αβ

− 126 (ηαβ + 1) 2θαβkαβ (ηαβ + θαβ) (ηαβθαβ + 1)

+35k2
αβ (ηαβ + θαβ) 2 (ηαβθαβ + 1) 2

)
(B3)

2.
[
Sp3/2(W 2

α)Wα, S
q
3/2(W 2

α)Wα

]

p = 0, q = 0 : A0011,1
αα Ω11

αβ

A0011,1
αα = − 8 (ηαβ + 1) 4θαβ

5/2

(kαβ (ηαβ + θαβ) (ηαβθαβ + 1)) 5/2
(B4)

p = 0, q = 1 : A0111,1
αα Ω11

αβ + A0121,1
αα Ω12

αβ

A0111,1
αα = −

20 (ηαβ + 1) 4
(

θαβ
ηαβ+θαβ

)
7/2

(kαβ (ηαβθαβ + 1)) 5/2

A0121,1
αα = − 4 (ηαβ + 1) 4

(ηαβ + θαβ) 9/2
(
kαβ

(
ηαβ + 1

θαβ

))
7/2

×
(
5kαβ (ηαβ + θαβ) (ηαβθαβ + 1)− 7 (ηαβ + 1) 2θαβ

)
(B5)
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p = 0, q = 2 : A0211,1
αα Ω11

αβ + A0221,1
αα Ω12

αβ + A0231,1
αα Ω13

αβ

A0211,1
αα = −

35 (ηαβ + 1) 4
(

θαβ
ηαβ+θαβ

)
9/2

(kαβ (ηαβθαβ + 1)) 5/2

A0221,1
αα = −

7 (ηαβ + 1) 4θ
9/2
αβ

(ηαβ + θαβ) 11/2 (kαβ (ηαβθαβ + 1)) 7/2

×
(
5kαβ (ηαβ + θαβ) (ηαβθαβ + 1)− 9 (ηαβ + 1) 2θαβ

)
A0231,1
αα = −

(ηαβ + 1) 4θ4
αβ

2
√

ηαβ
θαβ

+ 1 (ηαβ + θαβ) 6 (kαβ (ηαβθαβ + 1)) 9/2

×
(
99 (ηαβ + 1) 4θ2

αβ

− 126 (ηαβ + 1) 2θαβkαβ (ηαβ + θαβ) (ηαβθαβ + 1)

+35k2
αβ (ηαβ + θαβ) 2 (ηαβθαβ + 1) 2

)
(B6)

3.
[
Sp3/2(W 2

β ), Sq3/2(W 2
α)
]

p = 1, q = 0 : A1011,0
αβ Ω11

αβ

A1011,0
αβ =

16ηαβ (ηαβ + 1) 3 (θαβ − 1) θαβ
3/2

(kαβ (ηαβ + θαβ) (ηαβθαβ + 1)) 5/2
(B7)

p = 1, q = 1 : A1111,0
αβ Ω11

αβ + A1121,0
αβ Ω12

αβ

A1111,0
αβ =

8ηαβ (ηαβ + 1) 3θ
3/2
αβ (ηαβ (5θαβ − 3) + 2θαβ)

(ηαβ + θαβ) 7/2 (kαβ (ηαβθαβ + 1)) 5/2

A1121,0
αβ =

8ηαβ (ηαβ + 1) 3θ
3/2
αβ

(ηαβ + θαβ) 9/2 (kαβ (ηαβθαβ + 1)) 7/2

×
(
(ηαβ + 1) 2θαβ (ηαβ (5− 7θαβ)− 2θαβ)

+kαβ (ηαβ + θαβ) (ηαβθαβ + 1) (ηαβ (5θαβ − 3) + 2θαβ)) (B8)
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p = 1, q = 2 : A1211,0
αβ Ω11

αβ + A1221,0
αβ Ω12

αβ + A1231,0
αβ Ω13

αβ

A1211,0
αβ =

10η2
αβ (ηαβ + 1) 3θ

3/2
αβ (ηαβ (7θαβ − 3) + 4θαβ)

(ηαβ + θαβ) 9/2 (kαβ (ηαβθαβ + 1)) 5/2

A1221,0
αβ =

2η2
αβ (ηαβ + 1) 3θ

3/2
αβ

(ηαβ + θαβ) 11/2 (kαβ (ηαβθαβ + 1)) 7/2

× (5kαβ (ηαβ + θαβ) (ηαβθαβ + 1) (ηαβ (7θαβ − 3) + 4θαβ)

−7 (ηαβ + 1) 2θαβ (ηαβ (9θαβ − 5) + 4θαβ)
)

A1231,0
αβ =

η2
αβ (ηαβ + 1) 3θαβ√

ηαβ
θαβ

+ 1 (ηαβ + θαβ) 6 (kαβ (ηαβθαβ + 1)) 9/2

×
(
9 (ηαβ + 1) 4θ2

αβ (ηαβ (11θαβ − 7) + 4θαβ)

−14 (ηαβ + 1) 2θαβkαβ (ηαβ + θαβ) (ηαβθαβ + 1)

× (ηαβ (9θαβ − 5) + 4θαβ)

+5k2
αβ (ηαβ + θαβ) 2 (ηαβθαβ + 1) 2 (ηαβ (7θαβ − 3) + 4θαβ)

)
(B9)

4.
[
Sp3/2(W 2

α), Sq3/2(W 2
α)
]

p = 1, q = 0 : A1011,0
αα Ω11

αβ

A1011,0
αα =

16ηαβ (ηαβ + 1) 3 (θαβ − 1) θαβ
3/2

(kαβ (ηαβ + θαβ) (ηαβθαβ + 1)) 5/2
(B10)

p = 1, q = 1 : A1111,0
αα Ω11

αβ + A1121,0
αα Ω12

αβ

A1111,0
αα = − 8ηαβ (ηαβ + 1) 3 (2ηαβ − 3θαβ + 5)

(ηαβ + θαβ) 7/2
(
kαβ

(
ηαβ + 1

θαβ

))
5/2

A1121,0
αα =

8ηαβ (ηαβ + 1) 3θ
5/2
αβ

(ηαβ + θαβ) 9/2 (kαβ (ηαβθαβ + 1)) 7/2

×
(
(ηαβ + 1) 2θαβ (2ηαβ − 5θαβ + 7)

−kαβ (2ηαβ − 3θαβ + 5) (ηαβ + θαβ) (ηαβθαβ + 1)) (B11)
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p = 1, q = 2 : A1211,0
αα Ω11

αβ + A1221,0
αα Ω12

αβ + A1231,0
αα Ω13

αβ

A1211,0
αα = −

10ηαβ (ηαβ + 1) 3θ
7/2
αβ (4ηαβ − 3θαβ + 7)

(ηαβ + θαβ) 9/2 (kαβ (ηαβθαβ + 1)) 5/2

A1221,0
αα =

2ηαβ (ηαβ + 1) 3θ3
αβ

k
7/2
αβ

√
ηαβ + 1

θαβ
(ηαβ + θαβ) 11/2 (ηαβθαβ + 1) 3

×
(
7 (ηαβ + 1) 2θαβ (4ηαβ − 5θαβ + 9)

−5kαβ (4ηαβ − 3θαβ + 7) (ηαβ + θαβ) (ηαβθαβ + 1))

A1231,0
αα = −

ηαβ (ηαβ + 1) 3θ3
αβ√

ηαβ
θαβ

+ 1 (ηαβ + θαβ) 6 (kαβ (ηαβθαβ + 1)) 9/2

×
(
9 (ηαβ + 1) 4θ2

αβ (4ηαβ − 7θαβ + 11)

−14 (ηαβ + 1) 2θαβkαβ

× (4ηαβ − 5θαβ + 9) (ηαβ + θαβ) (ηαβθαβ + 1)

+5k2
αβ (4ηαβ − 3θαβ + 7) (ηαβ + θαβ) 2 (ηαβθαβ + 1) 2

)
(B12)

Appendix C: 13N-moment equations and collisional coefficients under Zhdanov’s

approximations

We provide here the 13N -moment multi-temperature coefficients given in Chapter 4 of Ref. 6,

originally in Ref. 34, where there are the three primary plasmadynamical quantities (ρα, Tα,wα) and

in addition, the pressure-stress tensor πα and the heat flux hα.

The collisional moments are given by Rmn. They are generally the form of sum of terms, each

being coefficients multiplied to the moments. There is no explicit derivation provided in previous

literature by Zhdanov et al for the provided coefficients. We reproduce them below for the sake of

comparison.
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R10
α =

∑
β

G
(1)
αβ(wα −wβ) +

∑
β

γαβG
(2)
αβ

(
hα
γαpα

− hβ
γβpβ

)
(C1)

R01
α =

∑
β

G
(1)
αβ

3k

mα +mβ

(Tα − Tβ) (C2)

R20
α =

∑
β

1

γα + γβ

(
G

(3)
αβ

πα
pα

+G
(4)
αβ

πβ
pβ

)
(C3)

R11
α =

1

γα

∑
β

(
G

(5)
αβ

hα
pα

+G
(6)
αβ

hβ
pβ

+
5

2

γαβ
γα

G
(7)
αβ(wα −wβ) + 5ΘαβG

(1)
αβwα

)
. (C4)

Here, Θαβ = (1− Tβ/Tα)/(1 +mβ/mα). The G-coefficients are given by

G
(1)
αβ = B

(1)
αβ (C5)

G
(2)
αβ = B

(1)
αβ (C6)

G
(3)
αβ = B

(3)
αβ −

γβ
γα

ΘαβC
(1)
αβ (C7)

G
(4)
αβ = B

(4)
αβ −ΘαβC

(1)
αβ (C8)

and

G
(5)
αβ = B

(5)
αβ +

1

2

γβ
γα

Θαβ

(
C

(2)
αβ − C

(3)
αβ − 2

γα
γβ
C

(4)
αβ

)
(C9)

− γβ
γα

Θ2
αβ

(
C

(2)
αβ −

1

2
C

(3)
αβ

)
(C10)

G
(6)
αβ = B

(6)
αβ −

1

2
Θαβ

(
C

(2)
αβ − C

(3)
αβ + 2C

(4)
αβ

)
(C11)

+ Θ2
αβ

(
C

(2)
αβ −

1

2
C

(3)
αβ

)
(C12)

G
(7)
αβ = B

(2)
αβ + ΘαβC

(5)
αβ −Θ2

αβC
(6)
αβ . (C13)

In this representation, the B-coefficients refer to the terms that remain in the equal-temperature

case, and the C-coefficients refer to terms that come into play in the case of non-equal temperatures.
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The B-coefficients are given as follows

B
(1)
αβ = −16

3
µαβnαnβΩ11

αβ (C14)

B
(2)
αβ = −16

3
µαβnαnβ

(
2

5
Ω12
αβ − Ω11

αβ

)
(C15)

B
(3)
αβ = −16

5
µαβnαnβ

(
γβ
γα

Ω22
αβ +

10

3
Ω11
αβ

)
(C16)

B
(4)
αβ = −16

5
µαβnαnβ

(
Ω22
αβ −

10

3
Ω11
αβ

)
(C17)

B
(5)
αβ = −64

15
καβµαβnαnβ

{
Ω22
αβ +

(
15

4

γα
γβ

+ (C18)

25

8

γβ
γα

)
Ω11
αβ −

1

2

γβ
γα

(5Ω12
αβ − Ω13

αβ)

}
(C19)

B
(6)
αβ = −64

15
καβµαβnαnβ

{
Ω22
αβ −

55

8
Ω11
αβ (C20)

+
1

2
(5Ω12

αβ − Ω13
αβ)

}
, (C21)

and the C-coefficients are given as follows

C
(1)
αβ = −16

5
µαβnαnβ

(
Ω22
αβ −

4

3
Ω12
αβ

)
(C22)

C
(2)
αβ = −64

15
καβµαβnαnβ

(
5Ω12

αβ − 2Ω13
αβ

)
(C23)

C
(3)
αβ = −64

15
καβµαβnαnβ

(
5Ω22

αβ − 2Ω23
αβ

)
(C24)

C
(4)
αβ = −64

15
καβµαβnαnβ

(
Ω22
αβ −

11

2
Ω12
αβ +

25

4
Ω11
αβ

)
(C25)

C
(5)
αβ = −64

15
µαβnαnβ

(
Ω22
αβ − Ω12

αβ −
5

2
Ω11
αβ

)
(C26)

C
(6)
αβ = −64

15
µαβnαnβ

(
Ω22
αβ − 2Ω12

αβ

)
, (C27)

where καβ = γαβ/(γα + γβ). The form of the Chapman-Cowling integral is given by

Ωlr
αβ =

(
2π

γαβ

)1/2 ∫ ∞
0

∫ π

0

ζ2r+3 exp (−ζ2)×

× (1− cosl χ) sinχσαβ(ζ, χ)dχdζ, (C28)

where ζ = (γαβ/2)1/2g. One can obtain the same coefficients, and even higher-order ones, as above

by choosing dαβ = γαβ/2 in Appendix A.

Appendix D: 21N-moment approximate coefficients provided by Zhdanov

In this section, we provide the approximated collisional coefficients used by Zhdanov in Chapter

8 of Ref. 6, and originally in Ref. 35. They are provided for the case of a fully ionized plasma with
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multiple species, each species having sub-components at different charge states. Fundamentally,

this approximation involves two components. The first is to choose the approximation for the

Chapman-Cowling integral Ωlr
αβ, in a fashion similar to the one suggested by Preuss61,

Ωlr
αβ =

√
πl(r − 1)!

(
ZαZβe

2

4πε0

)2
ln Λαβ

µ
1/2
αβ (2kT )3/2

, (D1)

which approximates the Chapman-Cowling integrals for Coulomb potential up to the order of the

logarithmic term. The Coulomb logarithm, ln Λαβ is given by

ln Λαβ =
12πε

3/2
0 kT

Zeffe2

{
kT

nee2(1 + Zeff )

}
, (D2)

where the effective charge Zeff is given by

Zeff =

∑
i niZ

2
i∑

i niZi
, (D3)

where i refers to ions of similar kind but at different charge states. One can notice that these

expressions contain a common T instead of the exact species (or component) temperature. The

general requirement for this to hold seems to be that |Tα − Tβ| � Tα, i.e. that the temperatures

of all species are close to each other, in case of which one can use the following expression for the

common temperature

nT =
∑
α

nαTα, n =
∑
α

nα. (D4)

In case of such an approximation, the only terms that remain in calculation of the collision co-

efficients are the equal-temperature bracket integral terms, equivalent to the B-coefficients of the

previous section. However, the LHS is treated as if it operates at different temperatures for dif-

ferent species and their sub-components. This would be a reasonable assumption if the masses of

the species were similar, thus making the relaxation timescales similar, under which both species

would have temperatures very close to the plasma common temperature. However, it may diverge

with species of masses at different orders, such as with heavy impurities in the plasma.

The collision coefficients for the rank-0, rank-1 and rank-2 quantities are as follows
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R01
α =

∑
β

G
(1)
αβ

3k

mα +mβ

(Tα − Tβ) (D5)

R10
α =

∑
β

G
(1)
αβ(wα −wβ) +

∑
β

µαβ
kT

G
(2)
αβ

(
hα
ρα
− hβ
ρβ

)
+
∑
β

(µαβ
kT

)2

G
(8)
αβ

(
rα
ρα
− rβ
ρβ

)
(D6)

R11
α =

kT

mα

∑
β

{
5

2

µαβ
mα

G
(2)
αβ(wα −wβ) +G

(5)
αβ

hα
pα

+G
(6)
αβ

hβ
pβ

+
µαβ
kT

(
G

(9)
αβ

rα
pα

+G
(10)
αβ

rβ
pβ

)}
(D7)

R12
α =

(
kT

mα

)2∑
β

{
35

2

(
µαβ
mα

)2

G
(8)
αβ(wα −wβ) + 7

µαβ
mα

(
G

(9)
αβ

hα
pα

+G
(10)
αβ

hβ
pβ

)
+

1

kT

(
mαG

(11)
αβ

rα
pα

+mβG
(12)
αβ

rβ
pβ

)}
,

(D8)

R20
α =

∑
β

kT

mα +mβ

{
G

(3)
αβ

πα
pα

+G
(4)
αβ

πβ
pβ

+
µαβ
kT

(
G

(13)
αβ

σα
pα

+G
(14)
αβ

σβ
pβ

)}
(D9)

R21
α =

∑
β

(
kT

mα +mβ

)2{
7

2

µαβ
mα

(
G

(13)
αβ

πα
pα

+G
(14)
αβ

πβ
pβ

)
+
µαβ
kT

(
G

(15)
αβ

σα
pα

+G
(16)
αβ

σβ
pβ

)}
. (D10)

After applying the approximations for the Chapman-Cowling integral and equal-temperature as-

sumption, the G-coefficients are as follows

G
(1)
αβ = −λαβ (D11)

G
(2)
αβ =

3

5
λαβ (D12)

G
(3)
αβ = −2

(
1 +

3

5

mβ

mα

)
λαβ (D13)

G
(4)
αβ =

4

5
λαβ (D14)

G
(5)
αβ = −

(
13

10

mβ

mα

+
8

5
+ 3

mα

mβ

)
καβλαβ (D15)

G
(6)
αβ =

27

10
καβλαβ (D16)

G
(8)
αβ = − 3

14
λαβ (D17)

G
(9)
αβ =

3

5

(
23

28

mβ

mα

+
8

7
+ 3

mα

mβ

)
καβλαβ (D18)

G
(10)
αβ = −45

28
καβλαβ (D19)
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G
(11)
αβ = −

[
433

280

(
mβ

mα

)2

+
136

35

mβ

mα

+
459

35
+

32

5

mα

mβ

(D20)

+5

(
mα

mβ

)2
]
κ2
αβλαβ (D21)

G
(12)
αβ =

75

8
κ2
αβλαβ (D22)

G
(13)
αβ =

(
18

35

mβ

mα

+
6

5

)
λαβ (D23)

G
(14)
αβ = −24

35
λαβ (D24)

G
(15)
αβ = −

{
51

35

(
mβ

mα

)2

+
37

7

mβ

mα

+
22

5
+ 4

mα

mβ

}
καβλαβ (D25)

G
(16)
αβ =

24

7

mβ

mα

καβλαβ, (D26)

where here καβ = mαmβ/(mα +mβ)2, and λαβ is given by

λαβ =
1

3
(2π)−3/2nαnβe

4Z2
αZ

2
βµ

1/2
αβ

ln Λαβ

(kT )3/2ε20
, (D27)

which is obtained from Eq. (D1). Notice the difference in the coefficients for R20 and R21 from

Ref. 6.
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