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Computational models of decision making are becoming increasingly popular to interpret reac-
tion time and choice data in terms of decision and non-decision related processes. But current
evidence remains scarce as to whether parameters of a mathematical model such as the Drift
Diffusion Model can recover genuine latent psychological processes. In this study, we combine
an experimental approach using a decision making task with a physiological decomposition of
each reaction time into a motor and pre-motor time using electro-myography. The aim is to test
whether the non-decision time parameter of a DDM, assumed to contain encoding and motor
processes, varies according to both psychophysical predictions of stimulus encoding and the
physiological measurement of motor processes. Our results show that 1) the encoding time is
accounted by a DDM only in the case of instructions emphasizing speed over accuracy and 2)
that the onset of muscular activity does not sign the end of the accumulation of evidence. This
questions the ability of DDM to account for how participants achieve speed-accuracy tradeoff

as well as the interpretability of its parameters in terms of decision and non-decision processes.

Introduction

Making a decision takes time. In the paradigmatic exam-
ple of perceptual decisions, where a visual stimulus calls for
a motor response, this time is taken by the neural conduc-
tion delays from the retina to the brain and from the brain
to the muscles (von Helmholtz, 1850, cited by Schmidgen,
2002), and, in between, by the mental action of deciding be-
tween alternatives (Donders, 1868). The primary measure
used to explore how these decisions are made has been the
time elapsing between the stimulation and the participant’s
overt reaction, or “reaction time” (RT ). While RT measures
collapse conduction and mental action delays, quantitative
processing models have explored the possibility of breaking
down RT s into more elementary components.
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There is a general agreement that RT s can be broken down
into at least two parts: a “decision time” (TD) and a time out-
side the decision, or “non-decision time” (T0). The two time
periods TD and T0 are generally thought to reflect sequential
events with additive duration (Ratcliff, 1978; Ratcliff, Smith,
Brown, & McKoon, 2016).

In most decision making models, TD is defined within
the evidence accumulation framework, as the time elapsing
from the start of the accumulation of evidence to the time at
which the accumulated evidence reaches a decision thresh-
old (Brown & Heathcote, 2005; Heathcote & Love, 2012;
Ratcliff, 1978; Ratcliff & Rouder, 1998; Stone, 1960; Usher
& McClelland, 2001, see Stine, Zylberberg, Ditterich, &
Shadlen, 2020, for recent alternatives). TD is computed on
the basis of at least three parameters represented in Figure 1:
the boundaries (a), usually interpreted as the response cau-
tion of the participant, the drift (v), interpreted as the speed of
evidence accumulation, and the bias (z), reflecting the start-
ing point of the evidence accumulation process.

T0, in turn, is defined as the time needed to form an in-
ternal representation of the stimulus (Tencoding) summed to
the time needed to execute the response (Tresponse). T0 is
often referred to as the “residual” time, a term that reveals
the secondary importance given to these aspects of the RT in
decision making. Perhaps because of the diagnostic power
of T0 (e.g., see Smith & Lilburn, 2020), considerations of
this time are generally technical and focused around fitting
quality issues rather than functional interpretations. In this
paper, we focus on those so-called residual components and
show how they shape our understanding of decision making
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Figure 1. Processing account of a single decision in a diffu-
sion model implementing evidence accumulation.
The stochastic path represents the stimulus evidence being
accumulated over time through a noisy channel, modeled as
a diffusion process with a drift v (i.e., , rate of accumulation).
Accumulation starts at a given amount of evidence (referred
to as the bias, figure represents an unbiased decision) and
stops once a threshold boundary, a is reached, and the cor-
responding alternative is chosen. The time between the onset
of the accumulation to its termination is referred to as the
TD, the time before and after, in blue, the T0.

processes.

Formal quantitative models of decision making allow us-
ing RTs to test theoretically grounded predictions about cog-
nitive processes. So, in theory, manipulating the difficulty of
the decision should specifically modulate TD and be reflected
in a change of v, the drift parameter. This result is indeed ob-
served in several studies (Gomez, Ratcliff, & Childers, 2015;
Palmer, Huk, & Shadlen, 2005; Voss, Rothermund, & Voss,
2004). Another example is the manipulation of the speed-
accuracy trade-off (SAT), which has been hypothesized to
affect response caution, and thus, presumably, to lengthen se-
lectively TD through an adjustment of a, the decision thresh-
old. Such is indeed the case (Ratcliff & McKoon, 2008;
Ratcliff & Tuerlinckx, 2002a), but the SAT manipulation is
not always selective, it can also affect the estimation of T0
(Dutilh et al., 2016; Palmer et al., 2005; Ratcliff, 2006; Voss
et al., 2004). Finally, manipulating the brightness of a vi-
sual stimulus or the force needed to produce the response
should affect non-decisional input and output processes, re-
spectively. Both manipulations indeed result in a modula-
tion of T0 (Gomez et al., 2015; Ho, Brown, & Serences,
2009; Servant, White, Montagnini, & Burle, 2016; Voss et
al., 2004); however, they also impact the parameters deter-
mining TD: brightness manipulations affect v (Servant et al.,
2016), force manipulations affect z (Voss et al., 2004) and a

(Gomez et al., 2015; Ho et al., 2009).
In other words, experimental manipulations are not always

reflected in modulations of the parameters predicted by the
theory. This discrepancy may receive two alternative expla-
nations: either, the model does not appropriately implement
the theory, or the theory itself (i.e., the psychological inter-
pretation of the experimental manipulations) is incorrect. A
clarification of this issue is required to better ground the theo-
retical interpretation of the parameters, especially in the con-
text of an increasing reliance on the DDM to address both
basic and clinical research.

The present study

Our research on the links between parameters and pro-
cesses in decision making models focused on the “residual”
non-decision time T0 estimated in the Drift Diffusion Model
(DDM, Ratcliff & Tuerlinckx, 2002b). To test how faith-
fully T0 reflects the cognitive delays it is intended to capture
(i.e., Tencoding plus Tresponse), we used targeted experimental
manipulations coupled with empirical response time decom-
position in a perceptual decision task.

The RT s of every trial were decomposed into pre-motor
and motor times (PMT and MT ), based on muscle activ-
ity onsets revealed by the electromyogram (EMG) of the
responding hand (Burle, Possamaï, Vidal, Bonnet, & Has-
broucq, 2002). Following (Luce, 1986, p. 97) and our own
previous work (Weindel, Anders, Alario, & Burle, 2021), we
assumed that MT starts after accumulation has ended and
hence allows Tresponse to be measured rather than estimated.
As a result, the remainder PMT was thought to correspond
to the sum of Tencoding and Tdecision. The DDM could then be
fitted either to RT s, to estimate T0 as is usually done, or be
fitted to PMT s, to provide a reasonable estimate of Tencoding.

There were three experimental manipulations. The two
first ones were intended to primarily affect T0: a manip-
ulation based on stimulus contrast was predicted to affect
the process of encoding, and a manipulation of the response
force requirements was predicted to affect the process of re-
sponding. Finally, the participants’ strategy was manipulated
with a classic Speed-Accuracy trade-off, assumed to affect
the decision process. The details for these three manipula-
tions are as follows.

Affecting encoding processes. Participants had to
choose which of two sinusoidal gratings (Gabor patches) had
the highest contrast. We manipulated the mean contrast of
the gratings, while keeping their absolute difference constant.
It has been shown that stimuli become more accessible, and
are processed faster, when their contrast increases (e.g., Har-
werth & Levi, 1978, in a simple reaction time task). We thus
expected shorter Tencoding for higher contrasts. Conversely,
Weber-Fechner’s law (Stevens, 1961) states that the just no-
ticeable difference between a pair of stimulus increases lin-
early with stimulus intensity. We thus expected that discrim-
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inating between the two Gabor patches will be more difficult
for higher contrasts, thereby inducing longer TD through a
decrease in the drift parameter (for a detailed account on how
such manipulation can affect the TD see Ratcliff & McKoon,
2018). In sum, the contrast manipulation was expected to
have opposite effects on Tencoding and on TD.

Affecting motor processes. We manipulated the force
required to produce the responses, a manipulation known
to affect processes related to motor execution (Burle et al.,
2002). We expected that an increase in the required response
force will result in an increase of Tresponse. This would be
consistent with studies where similar response output ma-
nipulations resulted in changes in the estimated T0 parame-
ter of the drift diffusion model (Gomez et al., 2015; Ho et
al., 2009; Voss et al., 2004). Conversely, the T0 fitted on
PMT (i.e., putatively Tencoding) was not expected to be af-
fected by the Force manipulation. It has occasionally been
reported that force requirements can also influence the de-
cision related parameters bias and threshold (Gomez et al.,
2015; Voss et al., 2004), but no explicit interpretation has
been offered. Our EMG decomposition and the hypothesized
absence of decision-related latency variations in MT allows
the following subsidiary expectations. If the force manipula-
tion genuinely affect the decision processes, the effect should
be invariant whether the fit is performed on RT or on PMT.
Conversely, observing that the effects vary between both fits
would suggest an incorrect separation of TD and T0.

Speed accuracy trade-off (SAT). Finally, we manipu-
lated the SAT level required from participants through ver-
bal instructions. This manipulation is classicallydescribed
as an adjustment of the level of evidence needed before a
decision is made, therefore linked to a change in the bound-
ary parameter of the DDM. However, the manipulation of
SAT has also been shown to modulate the speed of encod-
ing processes (Steinemann, O’Connell, & Kelly, 2018) and
of motor execution (Spieser, Servant, Hasbroucq, & Burle,
2017; Steinemann et al., 2018; Weindel et al., 2021). There
is a debate between accounts of SAT, either in terms of pa-
rameter (i.e. process modulations) within DDM or in terms
of changes in the nature of the generative model (e.g. Cisek,
Puskas, & El-Murr, 2009; Dutilh, Wagenmakers, Visser, &
van der Maas, 2011; Ollman, 1966; Verdonck, Loossens, &
Philiastides, 2020)a. Here, decision instructions were ma-
nipulated to test whether the above derived predictions on
encoding and motor processes hold across all SAT spectrum.

Methods

Participants. Sixteen participants (6 men and 10
women, mean age = 24.5 years, 2 left-handed) that were
students at Aix-Marseille University, were recruited for this
experiment. All participants reported having normal or cor-
rected vision, and no neurological disorders. The experiment
was approved by the ethical experimental committee of Aix-

Marseille University, and by the “Comité de Protection des
Personnes Sud Méditerrannée 1” (Approval n◦ 1041). Partic-
ipants gave their informed written consent, according to the
declaration of Helsinki. They received a compensation at a
rate of e15 per hour.

Apparatus. Participants performed the experiment in a
dark and sound-shielded Faraday cage. They were seated in
a comfortable chair about 100 cm away from a 15 inch CRT
monitor that had a refresh rate of 75 Hz. The CRT monitor
was gamma corrected by a psychophysical procedure pro-
vided by the software PsychoPy (Peirce, 2007). Responses
were given by pressing either a left or a right button with the
corresponding thumb. The buttons were fixed on top of two
cylinders (3 cm in diameter, 7.5 cm in height). The cylinders
were fixed on a tablet and separated by a distance of 20 cm.
The buttons were mounted on force sensors that recorded a
continuous measure of the force produced at a sampling rate
of 2048 Hz. The behavioral response was recorded when a
force threshold was exceeded. The device allowed adjusting
the force threshold needed for a response to be received. The
threshold was manipulated across conditions, as described
below. Response signals were transmitted to the parallel port
of the recording computer. At button press, participants re-
ceived a 3ms sound feedback (1000 Hz pure tone).

The participants’ forearms and hypothenar muscles rested
comfortably on the table, to minimize muscle recruitment
during response execution. We measured the EMG activity
of the flexor pollicis brevis of both hands with two electrodes
placed 2 cm apart on the thenar eminences. This activity was
recorded using a BioSemi Active II system (BioSemi Instru-
mentation, Amsterdam, the Netherlands). The sampling rate
was 2048 Hz.

Stimuli. Stimulus presentation was controlled by the
software PsychoPy (Peirce, 2007). Each stimulus was com-
posed of two vertical oriented Gabor patches, on the left and
right of a fixation cross separated by 1.4 visual angle degrees.
The Gabor patches had a spatial frequency of 1.2 cycles per
visual angle degree and a size of 2.5 visual angle degrees
each. At each trial, the same amount of contrast (7%) was
subtracted to the randomly assigned incorrect Gabor patch
and added to the correct one, resulting in a 14% contrast dif-
ference. The task of the participant was to press the button
ipsilateral to the highest contrast.

Experimental manipulations.
Contrast. We choose to manipulate the mean contrast of

both Gabor patches while keeping a constant difference of
14% on a scale between 0 and 100% (where 0% is uniform
grey) between them. Six levels of mean contrast (23%, 37%,
51%, 65%, 79%, 83%) were selected based on a pilot study,
targeting a performance that would typically span from near-
perfect accuracy to near chance level. The mean contrast
across both patches was randomly chosen at each trial with a
fixed rate of occurrence (1/6) within every block.
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Force. The Force factor had two levels: strong and
weak. These levels were tailored to each participant before
the experiment started. Participants were asked to press twice
the right and then the left button, with the maximum force
they could apply. The maximum voluntary force was defined
as the maximum between the two trials from the weakest of
the two hands. Defining maximum voluntary force this way
was chosen to avoid muscular fatigue from the weakest hand.
The actual force levels for the strong and weak conditions
were then defined as, respectively, 2% and 20% of this max-
imum voluntary force level (generating force levels around
1.20 and 12N respectively).

SAT. The speed-accuracy trade-off (SAT) instruction
was manipulated between blocks. Participants were in-
structed that “Speed” instructions required a mean reaction
time near 400 ms and that “Accuracy” instructions required a
percentage of correct responses near 90% while maintaining
RTs below 800 ms. Each block started with the presentation
on the center of the screen of its corresponding instruction:
the French word for Speed (“Vitesse”) or Accuracy (“Pré-
cision”). The end of each block was followed by feedback
about mean reaction time and mean accuracy, along with oral
feedback from the experimenter, if the participant had not
satisfied the condition goals of the block.

Procedure. All participants performed a single experi-
mental session with 24 blocks of 100 trials each. Session
duration was around 1h30 including a training session of 15
minutes and self-paced breaks between each block. Partic-
ipants were asked to keep their gaze on the central fixation
cross throughout each block, and to respond to the visual
stimuli according to the corresponding SAT instruction.

The training session started with 40 trials without specific
SAT instructions, followed by 2 blocks of 10 trials in the
Speed condition, followed by 2 blocks in Accuracy condi-
tion, and ended with 2 blocks of 10 trials with alternating
instructions. During the experimental session, SAT instruc-
tions alternated every three consecutive blocks. The force
settings varied every six blocks, with an on-screen message
to inform the participant beforehand. The order of the SAT
instructions and the force requirement was counterbalanced
across participants so that every possible order combination
was presented to 4 participants. Within each block, the 6
levels of mean contrast value were fully randomized across
trials. No response deadline was applied, and the inter-trial
interval was fixed to 1000 ms from button press to next stim-
ulus onset.

EMG processing. The EMG recordings were read in
Python using the MNE module (Gramfort et al., 2013).
The signal was filtered using a Butterworth 3rd order high
pass filter at 10Hz from the scipy Python module (Oliphant,
2007), then segmented by-trial in windows between 150 ms
before and 1500 ms after stimulus onset. We used a variance-
based method to detect whether EMG activity was signifi-

cantly above threshold in either hands’ channels. The precise
burst onset was then identified with an algorithm based on the
"Integrated Profile" of the EMG burst (see Liu & Liu, 2016;
Santello & Mcdonagh, 1998, for details). If the algorithm
failed to locate or detect the EMG burst onset, the experi-
menter corrected or added them manually. At this stage of
signal processing, the experimenter was unaware of the trial
type he was annotating to avoid any bias. Every muscular
event (above-threshold change in the signal followed by a
return to the baseline) in the trial was marked, even when
the activation was not immediately followed by an overt re-
sponse.

In trials where a single EMG burst was detected, motor
time (MT ) was defined as the time between the onset of EMG
burst and the force threshold crossing recorded. Pre-motor
time (PMT ) was defined as the time between stimulus onset
and the EMG burst onset. Multiple EMGs were observed in
21% of trials. Such observations are not new (e.g. Weindel et
al., 2021, and others), but a precise account of these multiple
activities is still lacking (although see Servant, Logan, Gaj-
dos, & Evans, 2021, for a tentative account of such trials).
Minimally, they show that participants where not always en-
gaged in a pure sequential encoding-decision-execution pro-
cess. Therefore, we removed these trials from all the analysis
in the study.

Statistical procedure

Bayesian Statistics. All analysis were performed in a
Bayesian framework. Bayesian methods try to estimate an
unknown parameter (or set of parameters) and the uncer-
tainty around it. More explicitly, Bayesian methods combine
prior information and Bayes’ rule to quantify the likelihood
of the parameters by generating a posterior distribution for
each of them. This posterior distribution can be naturally
interpreted as the probability of any given parameter value
given the priors, the data, and the tested model. In our study
we summarize the posterior distribution using the mean and
the Credible Interval (CrI), the 95% Highest Probability Den-
sity interval (HPD; Kruschke, 2010).

Hierarchical Modelling. All models, including linear
models, were constrained to follow a hierarchical structure
with parameters from each participant as units assumed to be
drawn from a population distribution. This parametrization
allows to estimate population parameters (e.g., the slope of
the effect of stimulus contrast on RT s) along with individ-
ual parameters (e.g., the inter-individual differences in the
slope of contrast with RT), often referred to respectively as
fixed and random effects in the case of linear models. Hier-
archical modelling remains Bayesian thus preserving the un-
certainties associated with parameter values. Such approach
allowed directly testing our hypotheses, by comparing the
posterior distributions for the population effects across con-
ditions.
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Linear Mixed Models. We used linear mixed models
(LMM) on the log transformed RT , PMT , and MT , and
generalized linear mixed models (gLMM) for the proportion
of correct responses. Formally, LMM model the dependent
variable as drawn from a normal distribution who’s param-
eters are constrained by the experimental design (e.g. the
mean of the normal distribution changes with SAT instruc-
tions).

Given our analysis plan, we derived generic LMMs for
RT , PMT and MT where all fixed effects and all random
effects were estimated. The effects of the experimental fac-
tors were modeled on the mean parameter for normally dis-
tributed dependent variables (DV), assuming equal variance
across conditions.

y ji ∼ N(µ j, σ
2) (1)

µ j = α j + β1 j S AT + β2 j FC + β3 j Con.

+ β12 jS AT × FC + β23 j S AT ×Con.

+ β13 j FC ×Con. + β123 j FC × S AT ×Con.
(2)

Where y ji represents the modeled DV (RT , PMT or MT )
on the ith trial for the jth participant and is assumed to be nor-
mally distributed with mean µ j and standard deviationσ2. As
seen in Equation 2, µ is dependent of the experimental factors
(Con. for mean contrast, FC for Force Condition and SAT for
speed accuracy trade-off instructions). The LMM where only
fitted on correct responses as Weindel et al. (2021) already
reported the effect on these variables on errors and, for the
sake of simplicity, to limit the analysis to three factors.

Response correctness was modelled with a gLMM,
whereby proportion of correct responses is hypothesized to
follow a Bernoulli distribution, modulated by the same fac-
tors than in Equation 2:

p(responsei j = 1) ∼ Bernoulli(logit(µ j)) (3)

To reiterate, in the LMMs and the gLMM, the intercept
and all factors and interactions are modeled as random ef-
fects :

α j ∼ N(µα, σ2
α) (4)

βx j ∼ N(µβx , σ
2
βx

) (5)

where µα and µβx are the population estimated intercept and
regression coefficient and σ2

α and σ2
βx

the estimated random
effect of the population sampling.

Fitting procedure for the g/LMMs. For each LMM and
gLMM, six Markov Chain Monte Carlo (MCMC) sampling
processes were run in parallel, each composed of 2000 itera-
tions among which the first 1000 samples were discarded as
warm-up samples. We assessed convergence of the MCMC
chains both by computing the potential scale reduction fac-
tor (R̂, see Gelman, Rubin, et al., 1992) and by means of

visual inspection of the MCMC chains. We visually checked
the assumptions of the linear regression by inspecting the
normality of the residuals through QQ-plots and assessment
of homeoscedasticity. The LMM and generalized LMM
were fitted with a custom Stan code, available in the on-
line repository, inspired from the code provided by Nicen-
boim, Vasishth, Engelmann, and Suckow (2018) and using
the pystan package (Stan Development Team, n.d.). The
summary statistics and plots of the parameters were created
using arviz python package (version 0.4.1, Kumar, Carroll,
Hartikainen, & Martin, 2019).

Priors for the g/LMMs. The priors for the LMM and
gLMM are intended to ease the fitting procedure, we chose
to use the relatively broad informative priors described as de-
scribed in Weindel et al. (2021).

Estimated difference between condition levels d̂. In
order to estimate the magnitude of the difference (d̂) be-
tween the levels of the experimental factors Contrast, Force
and SAT, we chose to use the predictions of the fitted linear
models. For each dependent variable, we first computed the
predicted difference between both SAT level with all other
predictors set at 0 (see Appendix A). We then computed the
predicted differences between the lowest and highest contrast
level as well as the weak and high force condition for each
SAT instruction separately. The results are thus composed
of the effect of SAT, the effects of force and contrast in each
SAT condition and the difference of these effects across SAT
conditions. Due to the Bayesian nature of the analysis, the
uncertainties associated with the regression parameters are
preserved in these estimated differences. Thanks to the hier-
archical nature of the regression models, we directly estimate
a population difference. Both the Bayesian and hierarchical
nature of the method therefore allow to directly infer the pop-
ulation level effect size with its uncertainty using the poste-
rior distribution of the predicted difference. The strength of
evidence for the presence or absence of an effect was de-
termined based on the credible values of the differences as
provided by the mean and the 95% CrI of the posterior dis-
tribution.

Drift Diffusion Modelling.
Model fitting procedure. We used the implementation

of a hierarchical Bayesian DDM provided in the HDDM
python package (T. V. Wiecki, Sofer, & Frank, 2013). Note
that HDDM uses the diffusion coefficient (See Ratcliff &
McKoon, 2008, for a review of the DDM parameters) as
a scaling parameter by fixing it to a value of 1 (contrary
to a value of 0.1 in some applications of the DDM). For
each model on RT and on PMT , both in the “Model selec-
tion” section below and for the model including co-variates,
we ran 32500 burn-in samples and 2500 actual recorded
samples across four Markov chains Monte-Carlo (MCMC).
We inspected each parameter of each chain visually to as-
sess whether they reached their stationary distribution, and
whether the R̂ (Gelman et al., 1992) was under the con-
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ventional threshold of 1.01. Additionally, we examined the
autocorrelation of each chain to ensure that samples were
drawn independently. For the priors, because our design is
canonical and in order to ease convergence, we used the de-
fault informative priors used in HDDM based on the work
of Matzke and Wagenmakers (2009). Almost all parame-
ters were estimated individually with the constrain of being
drawn from a common normal distribution (or half-normal
depending on the boundaries, e.g., variability parameters
cannot have a negative value). Only the inter-trial variabil-
ity parameters of the drift rate, of the bias, and of the non-
decision time were estimated at the group-level because they
are notoriously difficult to estimate (Boehm, Annis, et al.,
2018; T. Wiecki, Sofer, & Frank, 2016). The informative
piors used for the fit of the Hierarchical drift diffusion model
are given by T. V. Wiecki et al. (2013) based on the analysis
of range of plausible values done by Matzke and Wagenmak-
ers (2009).

Model selection. We designed a base model and added
parameters according to our hypotheses. The base model
was chosen based on previous studies. For this base model,
the boundary parameter was free to vary with SAT instruc-
tions. The drift rate was free to vary with the contrast1, as
this parameter has been shown to be associated with stim-
ulus strength. The T0 was free to vary with SAT, as it has
been observed that this parameter also varies with SAT con-
ditions (Palmer et al., 2005; Ratcliff, 2006; Voss et al., 2004),
with the Force Condition and with the contrast factor, as all
three are the factors of interest in the study of T0

2. The
accumulation bias was free to vary for each participant. We
also added inter-trial variability of the drift rate and the non-
decision time, because of their ability to reduce the influence
of contaminant fast-trials (Lerche, Voss, & Nagler, 2017). Fi-
nally, we added the inter-trial variability of the starting point
parameter which was free to vary with SAT instructions, be-
cause it is often reported that the latency contrast between er-
rors and correct response does change according to the SAT
condition and that this pattern is captured by a different bias
variability.

In addition to the base model, we tested the following hy-
pothesis, and combinations thereof: whether the drift rate
also varies with SAT (Rae, Heathcote, Donkin, Averell, &
Brown, 2014), or with the Force Condition (Voss et al.,
2004); and whether the bias and the boundaries are variable
between Force conditions (respectively Voss et al., 2004 and
Gomez et al., 2015; Ho et al., 2009). The 16 possible combi-
nations of hypotheses are summarized in Table B1.

We used the deviance information criterion (DIC) to se-
lect among competing models. The DIC is an analog to the
Akaiake information criterion (AIC) generalized to the hier-
archical Bayesian estimation method, in which the improve-
ment of the log-likelihood is weighted against the cost of ad-
ditional parameters. But because DIC tends to select over-

fitted models (Ando, 2007)we also report for each model
the Bayesian predictive information criterion (Ando, 2007,
BPIC). BPIC is intended to correct DIC’s bias in favor of
over-fitted models by increasing the penalty term for the
number of parameters. For all these measures, a lower value
of DIC or BPIC indicates a preferred model.

DDM regression analysis. Once the best-fitting model
was identified and selected, the effects of the experimen-
tal factors on the parameters were assessed by further em-
bedding a hierarchical regression in the model fitting pro-
cedure (Boehm, Marsman, Matzke, & Wagenmakers, 2018).
The three experimental factors and their interactions were in-
cluded as predictors in the regression, on the condition that
had been left free to vary across conditions in the model se-
lection procedure. Each parameter that is free to vary with
one or more factors was estimated with one intercept and
one slope for each factor and interactions. This allowed to
use the posterior distribution of intercept and slopes to test
directly for the presence and the direction of an effect by in-
specting whether 0 is included in the posterior distribution.
We compared the results of joint DDM-regression fits on the
PMT and RT .

The hierarchical nature of the data is preserved in these
models because each intercept and slope parameters is es-
timated as being drawn from a population distribution.
The parameters that do not vary with experimental fac-
tors (i.e., inter-trial variability of the drift rate and the non-
decision time) are estimated as described in the model selec-
tion section. The inter-trial variability of the bias was free to
vary between SAT instructions but the corresponding effect
size was not estimated with a regression. This is because,
first, we only have one estimate for the population due to the
difficulty to estimate it and, second, we do not have specific
hypothesis about this parameter. As in the model selection
procedure, the models were fitted using the HDDM python
package (T. V. Wiecki et al., 2013).

Fast-guess detection and removal. Fast guess trials can
be problematic when studying decision making in the con-
text of evidence accumulation models. Before performing
any statistical analysis, we applied an exponentially weighted
moving average filter (EWMA; Vandekerckhove & Tuer-
linckx, 2007). This method iteratively computes a weighted
accuracy measure (amount of correct responses relative to
errors) from the fastest to the slowest response time. The

1As boundaries were coded as right and left responses (respec-
tively upper and lower threshold), and in order to avoid estimating
one drift for each combination of stimulus side and contrast, the
model was coded to take negative drift value when the correct stim-
ulus was on the left

2We started by including models that do not allow the parameter
T0 to take different values for the different contrast levels but these
models failed to converge probably because of the effects reported
in the behavioral results section
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method is usually performed on the sorted RT distribution,
but was applied here to the sorted PMT distribution. Par-
ticipants are considered to be in a fast guess state until
the weighted accuracy is higher than a defined threshold.
The PMT at which this change of state occurs is identi-
fied, and faster trials are censored. EWMA involves the
following user-defined parameters: the initial starting point
of the weighted accuracy, the amount of preceding trials
(weight) retained in the accuracy computation, and the ac-
curacy threshold for defining non-guess trials. The starting
point was defined at 0.50 based on the assumption that a
guessing strategy yields a 50% chance of correct response.
The weight (bounded from 0 to 1, with 0 being all preced-
ing trials used) was fixed at 0.01 as in the description of
the method by Vandekerckhove and Tuerlinckx (2007). The
threshold was fixed at 0.55 based on a reasonable assumption
that participants could not reach an accuracy superior to 0.55
on the basis of guessing.

The EWMA filter was applied for each participant’s PMT
distribution, separately in the speed and accuracy conditions;
fast-guesses can have different latencies across both condi-
tions. PMT s rather that RT s were used for the EWMA, first
because Weindel et al. (2021) showed a high reliability when
the method was applied separately to PMT and RT , and sec-
ond because trials that do not appear very fast on RT can
sometimes be fast on the PMT and therefore be problematic
when fitting a DDM on the PMT as done here. The fig-
ures illustrating these rejection procedures can be found in
the online repository. We thank Michael Nunez for kindly
providing the code used for this method3.

Results

The method implemented for detecting EMG onsets im-
posed an RT upper limit of 1500 ms, whereby 1% of the
trials were excluded. Trials with low signal-to-noise ratio or
with high spontaneous tonic activity that resulted in uncer-
tain EMG onset detection were excluded (7%). Trials that
presented more than one EMG activity (see Method section
on EMG analysis) were also excluded (21%)4. Finally, the
trim criterion derived from the fast-guess detection method
lead to the exclusion of 8% of the data. Thus, the combined
EMG and statistical criteria resulted in the exclusion of 37%
of the trials. Censoring errors, for the LMM analysis of RT,
PMT, and MT, removed 13% of the remaining data. On av-
erage, 1513 trials (SD = 310) were available per participant.
All estimated differences (d̂) are presented on the data scale,
milliseconds for chronometric variables and proportion cor-
rect for accuracy.

Behavioral results (RT and error rates)

Linear mixed models. The following observations are
illustrated in Figure 2 and in Figure 3 (two left columns).
When speed is emphasized, RT decreases, d̂S AT = −165,

CrI = [−197,−134], and so does the accuracy rate, d̂S AT =

−0.10, CrI = [−0.13,−0.07]. The effect of contrast
on RT proved to be different between SAT instructions
d̂Contrast:S peed−Acc. = −55, CrI = [−70,−39]. When par-
ticipants are asked the emphasize accuracy, an increase in
contrast lengthens RT s, d̂Contrast:Acc. = 60, CrI = [35, 83],
and reduces response accuracy, d̂Contrast:Acc. = −0.22, CrI =

[−0.27,−0.18]. The contrast effect is essentially can-
celed when participants are asked to speed their responses,
d̂Contrast:S peed = 5, CrI = [−13, 22]. The proportion of cor-
rect responses however displayed similar effects of Contrast
in both the Speed and Accuracy conditions, d̂Contrast:S peed =

−0.22, CrI = [−0.27,−0.16], d̂Contrast:S peed−Acc. = 0.02,
CrI = [−0.01,−0.04].

When force requirements are higher, RT increases both in
the Accuracy, d̂Force:Acc. = 48, CrI = [22, 75] and the Speed
conditions, d̂Force:S peed = 35, CrI = [16, 53]. The proportion
of correct response is not affected by the Force factor neither
in accuracy d̂Force:Acc = 0.01, CrI = [−0.01, 0.02] nor in
the speed condition d̂Force:S peed = 0.03, CrI = [0.00, 0.05]
although the CrI barely included 0.

Unexpectedly, the interaction between Force and Contrast
had an effect on RT selectively in the Accuracy condition,
d̂Force×Contrast:Acc. = −47, CrI = [−68,−27] but not in the
Speed condition d̂Force×Contrast:S peed = 7, CrI = [−11, 23].
The proportion of correct responses was not sensitive to
the interaction between force and contrast neither in Accu-
racy d̂Force×Contrast:Acc = −0.03, CrI = [−0.09, 0.03]) nor in
Speed, d̂Force×Contrast:S peed = −0.04, CrI = [−0.08, 0.07].

Drift Diffusion Model selection on RT. The model se-
lection procedure is fully described in Appendix B, with
DIC and BPIC estimates summarized in Table B1. In the
model that was ultimately selected, one boundary parameter
was estimated for each combination of SAT and force con-
dition levels, one drift for each level of contrast, one starting
point for each force level, and one non-decision time for each
experimental cell of the three factors SAT × Force × Con-
trast (see Table B1). The effects of the experimental factors
on these model parameters are summarized in Table 1 and
spelled out below.

Effects on T0 when fitted on RT. Estimated T0 was
longer when accuracy was emphasizedon T0. SAT and force
interacted: increasing force had a strong effect on T0 in
the accuracy condition, and the interaction term indicated

3https://github.com/mdnunez/bayesutils/blob/master/
wienerutils.py

4Those trials display a longer mean RT. While usual behavioral
experiments would analyse these data, EMG allows to filter them
out as they could represent alternative response modes (e.g. mind
wandering) or trials in which decision threshold were crossed mul-
tiple times (Servant et al., 2021), thus departing from decision mak-
ing as implemented by a DDM
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Figure 2. Average values for proportion correct, RT , MT , and PMT (columns from left to right) plotted for each SAT condition
(accuracy on the top row and speed on the bottom row), broken down by contrast levels and by force condition. The lines
represent 1000 random draws from the joint posteriors of the combined MCMC chains of the corresponding G/LMM fits. The
thick line represent the predicted regression line with all parameters set at their maximum a posteriori value.

Figure 3. Estimated differences between condition levels (d̂) for SAT, Force (FC), Contrast and their interactions on the
millisecond scale of the data in the Accuracy condition (blue), the Speed condition (chocolate), and the difference between
both conditions (i.e. interaction; grey). Dots represent the maximum a posteriori, and bars the 2.5% and 97.5 % HPD of the
corresponding marginal posterior distributions.

a smaller yet reliable effect in the speed condition (see left
column of Figure 4). SAT and Contrast also interacted (see
left column, middle and bottom panels, of Figure 5): there
was no evidence for an effect of contrast on T0 in the accu-
racy condition, but the interaction term indicated a negative
effect when speed was emphasized.. Finally, there was no
evidence for an interaction between Force and Contrast, nor

for the three way interaction (although in this latter case the
CrI barely included 0). These estimates are summarized in
Table 1.

Effects on decision related parameters when fitted on
RT. The model selection procedure revealed that the drift
rate was affected by Contrast (see left column top panel of
Figure 5 and Table 1), but not by SAT nor Force (for de-
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Figure 4. Effect of Force on the parameter T0 estimated on RTs (left panel) vs. on PMTs (right panel).
Upper row: estimated mean values and one SD as shaded lines (barely visible).
Bottom row: posterior distribution of the DDM parameter for the effect of Force on T0 at each level of SAT, and of its
interaction with SAT (see T0 SAT × FC in Table 1).

tails, see model selection results in Table B1). The boundary
parameter was affected by SAT, being smaller for the speed
condition, and it was not reliably affected by Force in either
SAT condition (see left panel in Figure 6). The starting point
parameter revealed no evidence for an effect of Force (with
the provision that the corresponding CrI barely included 0;
Table 1).

Summary and discussion of behavioral observations
and the DDM fit on RT. Regarding the targeted encoding
processes, performance decreased with increasing contrast.
This variation was captured by the model as the predicted
negative relation between contrast and T0, as well as the pre-
dicted negative relation between contrast and drift – the lat-
ter resulting in a positive relation between contrast and TD.
However, the effect of Contrast on T0 was only present when
participants were asked to emphasize speed over accuracy.
Because T0 aggregates Tencoding and Tresponse, which cannot
be estimated separately, a post-hoc account of the unexpected
absence of Contrast effect in the Accuracy condition would
be to hypothesize opposite effects on the two components of

T0. We show in the next sections on MT and PMT measures
that this account is very unlikely.

Regarding the targeted motor processes, RT increased
with higher Force demands, while the rate of correct re-
sponses was not affected by Force. The variation in RT s was
captured by the DDM as a rather selective increase in T0 that
left all other parameters unaffected (with the possible excep-
tion of bias). However, there was a discrepancy between the
effects of Force estimated on RT vs. on the T0 fitted val-
ues. In the RT analysis, the effect size of Force was 48 ms
in the accuracy condition and 35 ms in the speed condition,
and Force did not interact with SAT; in the T0 fitted values,
Force interacted with SAT and its values for the Accuracy
and Speed conditions were 71 ms and 46 ms, respectively.
In the next section, we quantify factor effects on MT and
we build on our assumption linking MT to Tresponse to assess
whether the more faithful capture of motor processes comes
from linear regression on RT or from DDM fitting.

Regarding the parameters affecting the decision time TD,
the observed effects were exactly as predicted: the drift was
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Figure 5. Effect of Contrast on the parameters drift rate (V) and T0 estimated with DDM on RT (right column) and PMT (left
column) in the speed and accuracy conditions.
Panels in the top row show the estimated drift rate (V) mean values and one SD as shaded lines along with the contrast levels.
Panels in the middle show the estimated T0 mean values and one SD as shaded lines. In the General Discussion section we
describe external data whose fit is represented by the plain line and compared to the mean T0 of each condition represented
by the dashed lines. The best fit, as assessed using an R2, between both lines is colored according to the color code of the
condition.
Panels in the bottom row show the posterior distribution of the effect of contrast in accuracy and speed along with the difference
between both conditions (T0 SAT × FC in Table 1).

selectively affected by the Contrast manipulation and the
boundary was selectively affected by the SAT manipulation.

Motor times (MT )

Linear mixed model. The following observations are
illustrated in Figure 2 and in Figure 3 (third column). The
SAT condition Speed reduced MT , d̂S AT = −24, CrI =

[−30,−17]. A higher force requirement increased MT , both
in the accuracy, d̂FC:Acc. = 93, CrI = [75, 110], and the
speed conditions, d̂FC:S peed = 59, CrI = [48, 71]. The in-
teraction term confirmed that the effect of Force was indeed
smaller when speed was emphasized d̂FC:S peed−Acc. = −34,
CrI = [−47,−20].

Contrast and its interaction with Force had no reliable ef-
fect on MT across any of the SAT conditions, as indicated by
coefficients restricted to low effect sizes and CrIs containing
0.

Summary and discussion of MT results. We found no
evidence for an effect of contrast on MT nor of its interac-
tion with SAT. In the section on behavioral results (RT and
error rates), we reported an interaction between Contrast and
SAT, and speculated that Contrast may have opposite effects
on Tencoding and Tresponse, the two components of T0, in the
Accuracy condition. The current analysis of MT shows that
this hypothesis is implausible. One alternative possibility is
that response mechanisms in the Speed and Accuracy condi-
tions are different enough that they are differently sensitive
to the encoding of contrast. We come back to this issue in
the General Discussion.

The expected effect of Force on MT was clear, but its size
(93 ms and 60 ms in the Accuracy and Speed conditions, re-
spectively) was much larger than that observed on RT (48 ms
and 35 ms). Because each RT is the sum of its corresponding
MT and PMT , this discrepancy can only be explained by an
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Figure 6. Effect of Force on the boundary parameter a when estimated on RTs (left panel) vs. on PMTs (right panel).
Upper row: estimated mean values and one SD as shaded lines.
Bottom row: posterior distribution of DDM regression coefficients for the effect on a of Force in accuracy, speed and their
difference on either chronometric variable (see Boundaries in Table 1).

opposite effect of Force on PMT . We pursue this issue in the
next section on PMT .

The effect size of Force on MT was also remarkably
higher than the effect size estimated in the previous section
on T0 (71 and 47 ms). Our assumption linking MT to the
Tresponse component of T0 invites, again, a tentative compen-
sation account in which the other component of T0, namely
Tencoding, would be sensitive to Force in the opposite direc-
tion. While this hypothesis may seem counter-intuitive, it
can be directly tested in our framework by fitting DDM to
PMT distributions, as we do in the next section.

Pre-Motor times (PMT )

Linear Mixed Model. The results for PMT were very
similar to those reported above for RT with the important
exception of the effects of Force. This can be appreciated
by comparing the second and fourth columns in Figure 2
and Figure 3. The effect of Force on PMT was opposite
to that observed on RT both in accuracy, d̂FC:Acc = −53,
CrI = [−79,−27] and speed conditions, d̂FC:S peed = −27,

CrI = [−46,−8]. Here the effects of Force were reli-
ably different across SAT conditions, d̂FC:S peed−Acc = 26,
CrI = [2, 50].

Drift Diffusion Model selection. The model selection
procedure applied to PMT selected the same model struc-
ture that was selected when the procedure was applied to RT ,
namely M13 in Table B1.

Effects on T0 when fitted on PMT. The patterns of ef-
fects were similar for both PMT and RT fits, with the fol-
lowing important exceptions (compare the two panels on Ta-
ble 1). The main difference is that neither Force nor its inter-
action with SAT appeared to affect the T0 estimated on PMT
(Figure 4 right panel). In addition, we highlight in Figure
5 that the effect of contrast on T0 interacted with SAT. The
effect was in the expected direction in the Speed condition
(although the CrI included 0) but centered on 0 in the Accu-
racy condition.

Effects on decision related parameters when fitted on
PMT. Contrary to the results observed with a fit on RT ,
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RT PMT
DDM Par. Factor d̂ 2.5% 97.5% d̂ 2.5% 97.5%

Drift (Intercept) 1.79 2.03 1.51 1.91 2.19 1.62
Contrast -1.77 -1.46 -2.08 -1.90 -1.55 -2.23

Boundaries

(Intercept) 1.08 1.02 1.15 1.05 0.99 1.10
SAT -0.33 -0.40 -0.25 -0.30 -0.38 -0.22
FC:Acc. -0.06 -0.14 0.02 -0.17 -0.26 -0.08
FC:Speed -0.03 -0.13 0.08 -0.07 -0.19 0.05
FC:Speed-Acc. 0.03 -0.05 0.11 0.10 0.01 0.18

Bias (Intercept) 0.50 0.48 0.53 0.49 0.47 0.51
FC 0.004 -0.001 0.01 0.002 -0.002 0.006

T0 (ms)

(Intercept) 414.6 391.0 439.1 301.2 280.0 322.8
SAT -77.7 -106.1 -49.0 -51.5 -77.7 -22.7
FC:Acc. 70.6 54.1 87.2 -4.2 -14.6 6.6
FC:Speed 46.3 26.0 66.2 -5.6 -19.7 9.1
FC:Speed-Acc. -24.3 -37.2 -11.3 -1.4 -12.4 9.8
Contrast:Acc. 1.0 -8.8 11.0 0.0 -9.7 9.4
Contrast:Speed -10.2 -21.6 0.7 -8.9 -20.0 2.0
Contrast:Speed-Acc. -11.2 -19.3 -2.7 -8.8 -16.6 -1.1
FC × Contrast:Acc. -6.0 -16.0 4.1 -2.5 -11.9 6.8
FC × Contrast:Speed 5.5 -3.6 14.7 6.9 -1.6 15.5
FC × Contrast:Speed-Acc. 11.5 -1.3 24.7 9.3 -4 .1 21.5

Table 1
Comparison of Estimated differences between conditions levels (d̂) across fits on RT and on PMT. Columns labelled d̂ refer
to the maxima a posteriori from the corresponding marginal posterior distribution. Columns labelled 2.5% and 97.5% refer
to the CrI intervals. Colors refer to the sign of the estimate, red for positive values, blue for negative values.

in the fit on PMT the boundary parameter was affected by
Force and this effect interacted with SAT. Increasing Force
resulted in a lower boundary parameter, an effect that was
much reduced (if not absent) in the Speed condition (Figure
6 right panel). The other decision parameters, drift and bias,
were roughly similar when derived from fits on PMT and RT
(compare the two panels on Table 1).

Summary and discussion of PMT observations and
their DDM fit. The effects of Contrast were consistent
with those observed on RT , revealing “opposite” effects on
T0 and drift, including the fact that Contrast interacts with
SAT instructions showing that the expected effect is mainly
present in the Speed condition only (Figure 5). PMT does
not include MT , which we hypothesized to be strongly linked
to Tresponse. Therefore, in this analysis, T0 provides a reason-
able estimate of Tencoding. In sum, encoding processes are
orderly affected by Contrast in the Speed condition only.

Conversely, the effect of Force was remarkably different
for RT and for PMT . The linear models revealed Force
effects of opposite signs on RT and PMT , whereby PMT s
were shorter with stronger force (Figure 2). The DDM fit
of PMT did not capture this effect on T0 (Figure 4). This
absence of effect is consistent with the assumption that,
here, T0 indexes force-independent encoding processes (i.e.
Tencoding). It undermines the tentative hypothesis (from the

section on MT ) that opposite effects of Force compensate
one another on the two components of T0, Tencoding and
Tresponse. Instead, the DDM fit attributed the effect of Force
to the boundary parameter. Boundary decreased with in-
creasing Force requirements, in the Accuracy condition only
(Figure 6). This means that the DDM fits on RT and on PMT
lead to different attributions of the Force effect, particularly
in the Accuracy condition.

General summary of findings

Altogether when a DDM is fitted on RT we observe the
expected results. A manipulation of contrast translates into
an effect on the T0 and the drift rate. A manipulation of force
specifically impacts the T0 while leaving the decision related
parameters unchanged. Finally as observed on a regular ba-
sis, changing SAT instructions translated into an adjustment
of both the decision boundaries and T0. This last manipula-
tion however also resulted in a change in the expected effect
of contrast. When instructions where to favor accuracy over
speed the expected decrease in T0 with the increase in con-
trast was not found. Fitting the DDM on PMT also proved to
be challenging to the interpretation usually made from model
parameters as in such case the force manipulation also affects
the estimated decision boundaries.
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General Discussion

The reported findings help clarifying how faithfully a
quantitative model such as DDM can separate decision and
non-decision processes. In this General Discussion, we con-
sider the consequences of observing that the response out-
put manipulation changed decision related parameters, in
contrast to common expectations. We then re-examine the
fact that T0 did not conform to the predictions regarding vi-
sual encoding processes in the accuracy condition. Finally,
we discuss more generally why observing different findings
across SAT conditions may challenge the assumed generative
model, despite the rather canonical setting we used.

T0 and motor processes

The common assumption that T0 contains processes re-
lated to motor execution or, more specifically, assuming that
Tresponse is equal to MT (Luce, 1986; Weindel et al., 2021),
entails two predictions. The first one is that T0 estimated
using a DDM fitted on RT should be sensitive to the force
manipulation whereas T0 fitted on PMT (hence correspond-
ing to Tencoding) should not. As expected MT (measured) and
T0 (estimated) are both influenced by the force required to
respond. We found no effect of force on Tencoding. This pat-
tern of results strengthens the hypothesis that T0 is the sum
of two components, one of which captures motor processes.

The second prediction is that decisional parameters should
be the same when estimated on RT vs. PMT . This is because
motor processes are hypothesized to start after the threshold
has been reached. This prediction proved inaccurate, most
clearly in the condition combining high force condition and
accuracy; there, the threshold parameter was lower in the
PMT than in the RT DDM fit (Figure 6). This implies that
the EMG onset does not index the end of the accumulation
process estimated by DDM.

If the standard fit on RT is taken as a reference to es-
tablish decision duration, then the shorter decision durations
estimated based on PMT invites the inference that the de-
cision process (i.e., accumulation of evidence) continues
beyond EMG onset. In other words, the appropriate inter-
pretation of the response component of T0 (i.e., Tresponse)
is it that starts as late as after EMG onset. Evidence that
the decision process is pursued during response execution
has previously been observed (Buc Calderon, Dewulf, Gev-
ers, & Verguts, 2017; Resulaj, Kiani, Wolpert, & Shadlen,
2009; Selen, Shadlen, & Wolpert, 2012). Crucially, the re-
sponse settings in those previous studies were very different,
e.g., pointing or reaching movements, and response execu-
tion took much longer than in (isometric) button presses (for
a related discussion see Burle, Roger, Vidal, & Hasbroucq,
2008; Scaltritti, Job, Alario, & Sulpizio, 2020).

In addition to modifying the standard interpretation of
Tresponse, the previous paragraph begs the question of the

interpretability of EMG onsets in the context of DDM. An
EMG onset occurring during the evidence accumulation pro-
cess would challenge our hypothesis that PMT = Tencoding +

TD. Other aspects of the data help clarifying this issue.
Goodness of fit was comparable for PMT and RT fits. PMT
could thus be generated by a diffusion process. Moreover,
the other decision parameters (drift and bias) were essen-
tially similar across both fits. This would happen if the
EMG onset and the end of TD correspond to the crossing
of two different thresholds for the same diffusion process.
Such double-threshold hypothesis is congruent with a re-
cent theory proposing that motor execution is determined by
an evolving decision variable (Servant et al., 2021; Servant,
White, Montagnini, & Burle, 2015).

The unexpected findings occurred in the accuracy SAT
condition, only. This could suggest strategical adjustments
of the participants across SAT conditions. We come back to
this point in the last section.

T0 and encoding processes

We observed, as expected, a negative relation between
contrast and non-decision processes whether estimated on
the whole RT (T0) or the PMT (Tencoding). Unexpectedly,
this was only true when participants had to respond rapidly,
but not when accuracy was emphasized. We undertook addi-
tional analysis to better understand this discrepancy.

In psychophysical (Harwerth & Levi, 1978) and neuro-
physiological (Reynaud, Masson, & Chavane, 2012) stud-
ies, latencies related to the encoding of visual gratings have
been found to be negatively and non-linearly related to stim-
ulus contrast. This well established effect concerns the early
(∼ 80 ms) discharge latency of V1 neurons in macaques.
Such an early process is not expected to be modulated by
response strategy adjustments such as SAT. Therefore, if our
estimated Tencoding reflects these stages, it should be non-
linearly related to the contrast manipulation similarly across
SAT levels.

This prediction was tested against external data from Rey-
naud et al. (2012). These authors measured the latency of the
onset of cortical neuron activity in visual area V1 in awake
monkeys (described in Appendix C1). Their data provide
onset times of V1 neurons, revealing a non-linear increase of
onset-latencies across visual gratings of decreasing contrast.
Reynaud et al. (2012) then used these latencies to fit a well
established neurophysiologically motivated model (Naka &
Rushton, 1966) using the inverted equation as in Barthélemy,
Fleuriet, and Masson (2010) (summarized in Appendix C).
If Tencoding really reflects the low level extraction of stimulus
features, its latency should follow the same quantitative rela-
tionship. We tested whether the modulation of our estimated
Tencoding matches the modulation observed in V1 (Reynaud et
al., 2012) by calculating an R2 across contrast levels between
the centered V1 data and our centered Tencoding, broken down
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by SAT and force conditions (see Figure 5 or Figure C1 in
Appendix C for a close-up).

In the condition where speed is emphasized and the force
required is weak, there was an almost perfect adjustment
(R2 = 0.99) between the model fitted on V1 discharge laten-
cies and our out-of-sample Tencoding estimates. When speed
is emphasized but the force required is high, we observed a
lower but still substantial agreement (R2 = 0.63). Thus, un-
der speed instructions, Tencoding likely reflects a meaningful
duration pertaining to visual processing.

In contradistinction, the model fitted on V1 discharge la-
tencies did not adjust to Tencoding when accuracy was em-
phasized, neither in the low nor the high force conditions
(R2 = −0.71, R2 = −1.14, respectively).5 Thus, under ac-
curacy instructions, the variations of Tencoding are not easily
linked to variations of early visual process durations.

Overall, this analysis consolidates the standard interpreta-
tion of Tencoding durations in speed but undermines it in accu-
racy.

SAT and non-decision processes

As reported in the two previous sections, the manipulation
of SAT instructions played a crucial role for the congruence
between experimental and physiological predictions on the
estimated non-decision durations. Consistently, these predic-
tions were found to be true mainly when participants where
instructed to speed their response. Analysing the effect of
SAT on the estimated T0 is also informative on the nature of
this parameter.

Replicating previous studies, T0 was found to be sensi-
tive to SAT instructions (Palmer et al., 2005; Ratcliff, 2006;
Voss et al., 2004; Weindel et al., 2021). This is coherent
with the observations made multiple times, including in this
manuscript, that motor processes as captured by MT are sen-
sitive to SAT (Spieser et al., 2017; Steinemann et al., 2018;
Weindel et al., 2021). It would then be tempting to conclude
that motor processes alone drive the SAT effect on the es-
timated T0. This is found to be false as the SAT effect on
Tencoding is of 50 ms, suggesting that most of the SAT effect
on T0 is actually estimated to be in Tencoding.

Smith and Lilburn (2020) have shown that inferences of
SAT effect on T0 can be influenced by an inappropriate mod-
eling of how the evidence is entering the decision process.
Here, we used a canonical stimulus comparison task which
we think aligns with the theory behind the DDM. We are
thus left with the interpretation that approximately 1/3 of the
effect of SAT found on RT (and 2/3 of the effect of SAT on
TO) is of unknown pre-motor origin given the residual SAT
effect of 50 ms on Tencoding. But given the observations that
the DDM does not account for all effects of SAT manipu-
lations (Rafiei & Rahnev, 2019, 2021) and that predictions
are rejected only in the accuracy condition, we suggest that
the DDM is not decomposing decision and non-decision pro-

cesses as expected by modellers when accuracy is empha-
sized. This could further fuel the idea that the DDM is the
reduced version of an overarching model only reasonable in
the condition where RTs are (highly) speeded (Verdonck et
al., 2020).

One alternative interpretation can be made given that an
increased T0 is linked to an added non-decision process (Rat-
cliff & McKoon, 2008). Following this logic and contrary to
the common assumption that non-decision processes refer to
encoding and motor latencies, an additional pre-motor non-
decision stage is present in the accuracy condition. This is
actually congruent with a recent finding which shows, us-
ing electro-encephalographic data, an additional pre-decision
stage specifically in the accuracy condition (van Maanen,
Portoles, & Borst, 2021). Together with the observation of
decreased boundaries and decreased motor times under speed
stress, this would show that SAT is achieved by participants
by multiple adjustments therefore definitely breaking the se-
lective influence of SAT hypothesis. If this interpretation
turned out to be true, would remain the question of the func-
tional role of the added stage. One could for example suggest
that when speed is emphasized, participants are accumulat-
ing evidence as soon as evidence enters the system while in
accuracy they are using a fixed time to start the accumula-
tion of evidence (respectively the hypothesis of visual short
term memory vs. a release from inhibition mechanism Smith,
Ratcliff, & McKoon, 2014), congruent with the absence of
contrast effect on Tencoding in accuracy.

Conclusion

The combination of EMG measurement and model fit for
a canonical perceptual decision task, questions the usual in-
terpretation of the drift diffusion model in terms of cognitive
processes.

The drift diffusion model postulates a partition of the reac-
tion time into decisional and non-decisional times (encoding
and response execution durations). However, we show that
the EMG onset does not index the end of the accumulation
process, contrary to what is commonly assumed. Moreover,
when accuracy is emphasized over speed, the model does not
allow to recover the encoding time. This may question the
validity of the interpretation of DDM parameters in many
studies. Therefore, providing decision making models ac-
counting for non-decision times is a major issue for future
research.

5 When computing the R2 on T0 estimated from RT rather than
from PMT we find the similar results: R2 = 0.91 and R2 = 0.88
in speed, low and high force respectively vs. R2 = −1.11 and
R2 = −0.02 in accuracy, low and high force. The different levels
of adequacy between the V1 data (Reynaud et al., 2012) and DDMs
Tencoding were further replicated with a different unpublished data set
involving a three-level manipulation of contrast.
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Appendix A
From Linear model parameters to estimated effects

All regression models, including the regression on the DDM
parameters followed the same factor coding scheme. The
SAT factor was coded as a treatment factor (0 for accuracy
and 1 for speed). The force condition was coded as a sum
contrast (-0.5 for weak and 0.5 for strong force). The factor
contrast was centered on the middle value and scaled so that
-0.5 represented the lowest contrast and 0.5 the highest. A
summary of this factor coding for the regression models is
given in the matrices below, the first row represent the origi-
nal levels, the second row the values on which the regression
were estimated :

S AT =

(
Accuracy S peed

0 1

)

Force =

(
Weak S trong
−0.5 0.5

)

Contrast =

(
23% 37% 51% 65% 79% 93%
−.5 −.3 −.1 .1 .3 .5

)
These coding features were chosen to ease the inter-

pretation of the resultant coefficients. When the binary pre-
dictor is sum-contrasted (-0.5 and 0.5), the estimated β value
can be read as the difference between both conditions. When
the binary predictor is treatment-contrasted (0 and 1), the es-
timated β can be read as the difference to add to the intercept
(predictor at 0) to obtain the mean of the condition where the
predictor is at value 1. Hence, in our analysis, the intercept
can be read as the predicted time for the reference condition
where the SAT emphasis is on accuracy, and at an intermedi-
ate value for the predictors contrast and FC.

Given these coding features and the Bayesian nature
of the estimation we can estimate the effect of a factor in a
given condition and preserve the uncertainty associated with
the effects. E.g. To compute the effect of Force in the speed
condition we can add the interaction term βS AT×Force to the
estimated βForce in the accuracy condition. As coefficients
are estimated using a MCMC procedure this addition is done
on each MCMC iteration, allowing to keep the uncertainty
around the resulting coefficient.

Units of the g/LMMs parameters. For the LMMs
on proportion correct, RT , PMT and MT , the data was trans-
formed prior to the modeling (logit for proportion correct
and log for the other variables). Using Monte Carlo Markov
Chain (MCMC) processes, we back-transformed the predic-
tions of the linear models for the chosen differences at each
iteration, with the exponential for log transformed variables
(LMM) or the inverse logit for proportion correct (gLMM).
This preserves the uncertainty around the parameter values
while reverting them to the natural units of the dependent
variables.
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Appendix B
Model Selection

As seen in table B1 the DIC criterion almost always favor
the complex models over the simpler one. However two pat-
terns are consistent across the models, allowing the bound-
aries and the bias to vary with force conditions and drift rate
to vary with SAT in addition to the contrast always improves
the goodness of fit as assessed by the DIC. However when
considering the BPIC criterion, initially intended to correct
the complexity bias of the DIC, only allowing the variation
of force on boundaries and on the bias seems to improve the
goodness of fit. Hence based on BPIC we select the model
allowing the boundaries and the bias to vary across force con-
dition in addition to the designed base model (respectively
M13 and M1 in Table B1). Importantly the results of the
model selection is the same for a fit on PMT. The goodness
of fit both on RT and PMT as displayed with quantile prob-
ability plot (see Figure B2 and B1) is satisfactory in most
conditions but the amount of errors is rather misfitted when
considering a high force especially in the fit on PMT (that
pattern is common across all tested models).

Appendix C
Predictions by V1 neuron activation onset

Reynaud et al. (2012) performed a measurement of the tem-
poral activation of V1 neurons in awake monkey using volt-

age sensitive dye and the variation of this temporal activation
with the contrast of stimuli close to the one used in this study.
They then fitted the relationship between onset of V1 neurons
activity and contrast with an inverted Naka-rushton equation
from Barthélemy et al. (2010) :

τc(c) = τmax + τshi f t ·
cn

cn + sn
50

Where c is contrast, τmax and τshi f t are respectively the mini-
mum latency observed at highest contrast and the maximum
decrease in latency. n is the estimated latency shift exponent,
s50 the estimated half decay contrast value. For the purpose
of our analysis we recovered the values of the parameters
estimated by Reynaud et al. (2012) and draw the predictions
associated with the mean contrast levels used in our study.

Figure C1 represents the adjustment between point
estimate of T0 and Tencoding with the curve predicted by the
recovered parameters of Reynaud et al. (2012) for the in-
verted Naka-Rushton equation. However, since monkey la-
tencies are shorter than those we observed with humans, we
centered them by subtracting their mean and adding the mean
of the Tencoding computed over all contrast levels and partici-
pants.
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Bound. Drift T0 Bias sBias sDrift sT0 BPICRT DICRT BPICPMT DICPMT

M1 S C C × F × S 1 S 1 1 -12963 13447 -16125 -16595
M2 S C × S C × F × S 1 S 1 1 -12931 -13483 -16072 -16618
M3 S C × F C × F × S 1 S 1 1 -12866 -13419 -16105 -16645
M4 S C × S × F C × F × S 1 S 1 1 -12800 -13467 -16003 -16668
M5 S × F C C × F × S 1 S 1 1 -13157 -13661 -16471 -16967
M6 S × F C × S C × F × S 1 S 1 1 -13108 -13689 -16423 -16993
M7 S × F C × F C × F × S 1 S 1 1 -13042 -13614 -16393 -16959
M8 S × F C × S × F C × F × S 1 S 1 1 -12946 -13639 -16272 -16964
M9 S C C × F × S F S 1 1 -13022 13519 -16132 -16617
M10 S C × S C × F × S F S 1 1 -12981 -13548 -16075 -16637
M11 S C × F C × F × S F S 1 1 -12926 -13493 -16115 -16668
M12 S C × S × F C × F × S F S 1 1 -12860 -13540 -16006 -16687
M13 S × F C C × F × S F S 1 1 -13212 -13729 -16474 -16987
M14 S × F C × S C × F × S F S 1 1 -13150 -13750 -16418 -17007
M15 S × F C × F C × F × S F S 1 1 -13095 -13654 -16392 -16976
M16 S × F C × S × F C × F × S F S 1 1 -13000 -13728 -16284 -16987

Table B1
Summary of the tested models displaying for each model (row) which parameters could vary with experimental conditions (S,
F and C respectively for SAT, Force and Contrast, 1 indicates that only 1 estimate was fitted across all conditions). sBias,
sDrift and sT0 refer to the inter-trial variability parameters of the corresponding main parameters. The results in terms of
BPIC and DIC are presented in the two last columns.
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Figure B1. Quantile-probability plots (Ratcliff & McKoon, 2008) for high force based on a fit on RT (left column) and PMT
(right column), in the accuracy (upper row) and speed (lower row) conditions, computed from the best fitting model.
The X-axis displays obtained response proportion across contrast levels (color coded), symmetrically for errors (left side) and
correct responses (right side). The Y-axis displays the fitted (dot) and observed (cross) RT binned in 5 quantiles (.1, .3, .5,
.7 and .9 quantiles, from bottom to top). Observed response proportion and RT quantiles were computed from values pooled
across participants. Model predictions were obtained by drawing 250 parameter values from the joint posterior distribution
and computing their associated predicted performance. The misfit of the DDM is particularly apparent in the fit on PMT in
accuracy (upper right corner), where the DDM clearly predicts a response proportion lower than the one observed on the data.
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Figure B2. Quantile-probability plots (Ratcliff & McKoon, 2008) for low force based on a fit on RT (left column) and PMT
(right column), in the accuracy (upper row) and speed (lower row) conditions, computed from the best fitting model.
The misfit of the DDM is particularly apparent in the fit on PMT in accuracy (upper right corner), where the DDM clearly
predicts a response proportion lower than the one observed on the data.
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Figure C1. Estimated T0 (obtained from a DDM fit on RT ) and Tencoding (obtained from a fit on PMT ) across contrast levels
and splitted between SAT and Force conditions. Bars around the point estimate represents 65% CrI of the population mean.
The colored lines represent the mean of T0 or Tencoding for each corresponding sub-cell. The grey lines represents the values
predicted by the parameters of the inverted Naka-Rushton recovered from Reynaud, Masson, and Chavane 2012. These
prediction have been first centered on 0 by subtracting their mean then rescaled by adding the mean of the corresponding
sub-cell. Grey and color lines have therefore the same mean in each sub-cell formed by the combination of SAT and Force
levels.


