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Abstract

Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting

and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index

has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The

present work addresses further generalizations of this index, including its modification into a coincidence index capable

of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions

for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well

as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take

into account more than two sets has also been addressed, including the description of an index capable of quantifying the

level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated

with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing

and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of

clusters similarity or separation and as a resource for representing and analyzing complex networks.

‘Riedificano Ersilia altrove. Tessono com i fili una figura

simile che vorrebbero piú complicata e insieme piú regolare

dell’altra.’

Italo Calvino, Le Città Invisibili.

1 Introduction

Despite its seeming simplicity, set theory underlies a sub-

stantial portion of the mathematical and physical sci-

ences, while being also extensively used in virtually every

area of human activity.

In fact, set theory concepts has been so ubiquitous as to

have been incorporated into common language and daily

conversations. When one says “I will buy bananas and

potatoes and tomatoes,” it is actually the set operation

of union that it is being meant. Interestingly, the tenu-

ous border between set theory and propositional logic is

often blurred by humans (see [1, 2]). At the same time,

multisets (e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11]) offer means

for extending set so as to consider the multiplicity of ele-

ments which, in a sense, seems at least as compatible with

human intuition than the classic set theory.

Other concepts that are as ubiquitously employed in

every human activity regards the similarity and distance

between two entities. Mathematically, this can be related

to quantifying in an objective manner several types of

similarity between two or more mathematical structures

such as scalars, sets, vectors, matrices, functions, den-

sities, graphs, etc (e.g. [12, 13, 14, 15, 16]). This can

be done in several manners, which frequently take into

account the respective type of structure. For instance,

vectors are often compared in terms of their inner prod-

uct, and several similarity indices (e.g. [17]) have been

suggested for comparing matrices with binary features.

One approach to the similarity between two sets that

has attracted particular attention as a consequence of its

effectiveness allied to its simple and intuitive conceptual

characteristics, being therefore employed extensively, is

the Jaccard or Tanimoto index (e.g. [18, 19, 20, 21]). Ex-

tensions have been proposed to sets (e.g. [22, 23, 24]) and

measurable spaces (e.g. [18]), as well as relationships with

distances (e.g. [25]).

In addition to being normalized within the interval

[0, 1], the Jaccard index requires little computational ex-

penses. Besides its vast range of applications (e.g. [26, 18,

27, 28, 29]), most of them related to binary or categorical

data, the Jaccard index has also motivated some exten-

sions and generalizations, including its adaptation to dis-

crete multisets with positive multiplicites (e.g. [3, 4, 11]).

Given the extensive adoption of the Jaccard index, as
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well as its appealing characteristics, it would be particu-

larly useful if it could be adapted to as many as possible

other mathematical structures. The present work aims

at developing further possible generalizations of the Jac-

card index. In particular, we show that its extension to

real functions and fields paves the way to impressive re-

sults in pattern recognition operations such as template

matching.

We start by providing a brief historic perspective of the

Jaccard index, which was introduced in 1901 by Paul Jac-

card (1868–1944) under the name of coefficient de com-

munauté.

Subsequently, we focus on the relative limitation of this

index to reflect to which level one set is contained into the

other, and a respective adaptation of the Jaccard index

is then proposed to address this limitation that involves

another measurement between two sets, here called inte-

riority index (also known as overlap index e.g. [12]). More

specifically, we define the coincidence index between two

sets as corresponding to the square root of the product

of respective Jaccard and Interiority indices. The specific

characteristics and properties of these two indices, as well

as some additional alternatives, are illustrated through a

graphic construction, and it is shown that the coincidence

index impose a more strict and selective characterization

of the similarity between two sets. Another variation of

the Jaccard index, here called addition-based Jaccard sim-

ilarity, is then also motivated and presented.

We then approach the adaptation of the Jaccard in-

dex to take into account sets corresponding to regions in

continuous spaces such as RN . It is shown that this can

be immediately accommodated into the standard Jaccard

(and also the coincidence) indices by having the regions

area in place of the sizes of sets. In addition to allow-

ing useful graphical characterizations of the Jaccard and

coincidence indices, this extension to continuous sets also

paves the way to dealing with densities and scalar fields.

In particular, we develop a related graphical construct to

compare the relationship between the Jaccard, interiority

and coincidence indices.

Next, we address the particularly interesting question

of adapting the Jaccard index to become capable of com-

paring densities, functions and fields in continuous spaces

RN . This is achieved by extending multisets to real func-

tion spaces [11, 2], allowing a version of the Jaccard and

coincidence indices incorporating integrals (functionals)

of the minimum (multiset intersection) and maximum

(multiset union) operations along the respective space.

Because generic fields involve negative values, the ap-

proach is presented first for non-negative densities, being

subsequently extended to more general fields with nega-

tive multiplicities. The potential of the approach, which

is conceptually and computationally simple, is then il-

lustrated with respect to comparing probability density

functions as well as more generic functions corresponding

to two sinusoidals as well as two real-world images.

Another issue of special relevance that has been ad-

dressed regards the inherent, but not often considered,

relationship between the quantification of the similarity

between two probability densities with the also ample

subject of characterizing joint variation of two random

variables. Two particular problems are addressed. We

show that the multiset Jaccard adaptation to densities

and functions can be effectively applied to quantify the

joint relationship between two random variables, be it

in terms of discrete observations or while taking into ac-

count their probability densities describing standardized

versions of the involved variables.

The next generalizing approach described in the present

work concerns the possibility of generalizing the Jaccard

index to deal with more than 2 sets (see also [15]). We

argue that there are two main ways in which this problem

can be addressed. First, it is possible to have any of the

two sets involved in the Jaccard index to correspond to

generic combinations of any number of sets, obtained by

using set operations. Alternatively, more than two sets

can be actually considered as arguments of extended Jac-

card indices. The latter possibility has been illustrated

through the development of a generalization of the Jac-

card index capable of quantifying the degree of chaining

between three sets, as intermediated by one of them.

The above developments motivate the possibility to sys-

tematically combine several normalized indices, possibly

involving several orders of data combinations, so as to

logically integrate diverse data characteristics of interest

about the analyzed data, therefore leading to a possible

algebra of indices, of which the coincidence index consti-

tutes an example.

The article concludes by discussing the particularly im-

portant role of indices such as those discussed and sug-

gested here for the ubiquitous activities of model building

and pattern recognition. Prospects for future develop-

ments are also provided.

2 A Brief Historic Note on Paul

Jaccard

Paul Jaccard (1868–1944) (e.g. [18, 20, 30]) was a re-

searcher in the area of plant physiology in Zurich, who

started his studies in 1889 at the L Université de Lau-

sanne (paleobotanic and phytoembriology), then moving

to the L’Universit’e de Zurich, where he concluded his

PhD in 1894, followed by an internship in Paris with Gas-

ton Bonnier (1853–1922), a French botanist and ecologist

and full professor at Sorbonne.
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Jaccard held teaching and research activities at Lau-

sanne, and then Zurich, focusing on subjects related to

geobotanic and tree histophysiology, including wood mi-

croscopic studies. He also travelled extensively to Egypt,

Sweden and Turkistan (Kazakhstan region), being partic-

ularly interested on trees interbreeding from the anatomic

and physiologic points of view.

The similarity index that bears his name was proposed

in 1901 [19] as a means to quantify co-localization of

alpine flora, with particular interest in the study of species

diversity. The index that now bears his name can be ex-

pressed in set theory notation as:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

where A and B are any two sets and |A| and |B| are

their respective cardinality (number of elements).

Jaccard also proposed another relative index [31],

namely the coefficient générique, aimed at quantifying

species-to-genus ratio, which consists of:

G(species, genus) =
|genus|
|species|

(2)

where |genus| and |species| stand respectively to the

number of genus and species in a considered region.

3 The Basic Jaccard Index

The basic Jaccard index can be simply expressed (e.g. [19,

18, 20]) as:

J (A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(3)

where A and B are any two sets to be compared. It

is henceforth understood that J (A,B) = 0 in the case of

|A ∪B| = 0 or |A ∩B| = 0.

It is interesting to keep in mind that, though not fre-

quently specified, the universe set of A and B can be

conveniently taken as being equal to Ω = A ∪B.

The Jaccard distance can be immediately derived from

the Jaccard index by making:

DJ(A,B) = 1− J (A,B) (4)

This approach can be immediately extended to any

other similarity index bound between 0 and 1.

It is also interesting to observe that it is possible to

modify the Jaccard index so as to reflect in absolute terms

the effective cardinality of the intersection of the two sets.

More specifically, as 0 ≤ J (A,B) ≤ 1, its product by

|A ∩B|2 yields

J2(A,B) =
|A ∩B|2

|A ∪B|
(5)

with 0 ≤ J2(A,B) ≤ |A ∩B|, so that the cardinality of

the intersection appears as a respective weight, implying

the resulting index to have an absolute meaning.

Actually, it is also possible to consider taking higher

powers, therefore implying even larger intersection cardi-

nality weights, such as:

JP (A,B) =
|A ∩B|P

|A ∪B|
(6)

with P ∈ R.

The Jaccard index can be immediately generalized to

multisets or bags (e.g. [5, 6, 3]), which are basically sets

in which repeated elements are allowed.

The multisets A and B sharing the same elements (sup-

port) can be simply represented as respective vectors
~A = [a1, a2, . . . , aN ], ~B = [b1, b2, . . . , bN ], where N is the

total number of possible distinct elements in the universe

defined by the union of the two multiset elements, and ai
corresponds to the multiplicity of element i in the mul-

tiset A. The Jaccard index for multisets then becomes:

JM (A,B) =

∑N
i=1 min (ai, bi)∑N
i=1 max (ai, bi)

(7)

with 0 ≤ JM (A,B) ≤ 1.

As an example, let’s consider A = {a, a, a, b, b} and

B = {a, a, b, c, c, d}. If we have the set of possible elements

organized into the indexing vector ~p = [a, b, c, d], we will

obtain ~A = [3, 2, 0, 0] and ~B = [2, 1, 2, 1]. Observe that

the order of elements in ~p is immaterial to our analysis.

The, we have:

J (A,B) =
2 + 1 + 0 + 0

3 + 2 + 2 + 1
=

3

8
(8)

As a consequence, this adaptation of the Jaccard in-

dex allows it to be applied also to vectors, matrices, and

graphs. In the case of matrices, the Jaccard equation can

be further modified as:

JM (A,B) =

∑N
i=1

∑N
j=1 min (ai,j,bi,j)∑N

i=1

∑N
j=1 max (ai,j , bi,j)

(9)

Observe that this equation corresponds to a re-

arrangement of Equation 8. Similarly, many other math-

ematical structures, such as matroids, tensors, etc., can

be compared by further adapting the above equation.

4 Interiority and Coincidence In-

dices

As illustrated in the previous sections, and also by the

relatively extensive related literature, the Jaccard index

provides an intuitive and logical manner to quantify the
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similarity between two discrete or continuous set. Yet,

there is one particular situation, illustrated in Figure 1,

which is not accounted for by this index.

Figure 1: Two distinct situations involving two sets A and B that

yield the same Jaccard index value of 3/7. However, the two sets

in (b) are much more compatible because B is a subset of A and

therefore shares all its elements.

As it can be easily verified, both the situations depicted

in Figure 1 lead to the same Jaccard index J = 3/7.

However, the situation in (b) can be deemed to be quite

distinct because, in this case, the set B is completely con-

tained in A to the point of becoming a subset, i.e. B ⊂ A.

In other words, all elements of B are shared with the set

A. This is not the case in the situation (a), for both sets

A and B have elements that are not shared.

It therefore follows that it would be interesting to ob-

tain a modification of the Jaccard index that could distin-

guish between these two situations. A possible approach

is described as follows.

We start by considering an index capable of quantifying

how much a set is relatively interior to another. Let A and

B be any two sets. The henceforth called interiority index

(also overlap index e.g. [12]) can be written as:

I(A,B) =
|A ∩B|

min {|A| , |B|}
(10)

Though this index has been also known by the names

of overlap or homogeneity, in this work we will adhere to

the interiority term as it seems to convey more directly

the concept of how much one of the sets is contained in

the other.

It can be verified that 0 ≤ I(A,B) ≤ 1. Its minimum

value is observed when A is completely separated from

B, i.e. A ∩ B = 0. The maximum value is reached when

any of the sets is completely contained into the other. In

other words, there is no need to specify which of the two

sets is being considered as being internal to the other.

By comparing Equations 34 and 34, it follows that:

0 ≤ I(A,B) ≤ J (A,B) ≤ 1 (11)

and it can also be verified that:

0 ≤ J (A,B) H(A,B) ≤ 1 (12)

The verification of similarity accounted for by the Jac-

card index can be conveniently combined with the interi-

ority index simply by considering their respective product,

i.e.:

C(A,B) = J (A,B) I(A,B) (13)

which is the same as:

C(A,B) =
|A ∩B|2

|A ∪B| min {|A| , |B|}
(14)

It may also interesting to take the square root of the

coincidence in order to compensate for the smaller values

implied when multiplying to measurements in the interval

[0, 1]. Therefore, in the present work we will adopted the

coincidence indes as:

C(A,B) =
√
J (A,B) I(A,B) (15)

It is also possible, in certain situations, to dispense with

the square root operation.

In some specific cases it is also possible to use these

two indices separately, defining a corresponding tuple

[J (A,B), I(A,B)].

As with the Jaccard index, the coincidence index can

also be generalized to virtually any mathematical struc-

ture including, we will discuss in Section 8 functions and

fields in RN .

5 Weighted Discrete Elements

The Jaccard and coincidence indices can be readily

adapted (e.g. [18]) to cope with cases in which the el-

ements of sets A and B have been assigned respective

weights corresponding to their relative importance in each

specific problem.

This situation can be approached by using ordered pairs

to represent each of the elements in A ∪ B associated to

its respective weigh, i.e. [xi, w(xi)]. The Jaccard index

then becomes:

JW (A,B) =

∑
xi∈(A∩B) w(xi)∑
yi∈(A∪B) w(yi)

(16)

with 0 ≤ Jw(A,B) ≤ 1.

As an example, let A = {[a, 2]; [b, 5]; [c, 1]} and B =

{[b, 5]; [e, 1], [f, 1]}. It follows that A ∩B = {[b, 5]}.

JW (A,B) =
5

10
=

1

2
(17)

Thus, in spite of in this particular example the intersec-

tion being limited to a single of the possible elements, the

Jaccard index resulted relatively high as a consequence of

the large weigh associated to the element b.

Observe that the weighted version of the Jaccard index

is not the same as the Jaccard index adapted to multisets,
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as the latter case does not involve the sum of weights.

However, it is possible to considered weighted multisets,

in which case the Jaccard index becomes:

J[W,M ](A,B) =

∑
i wi min {ai, bi}∑
i wi max {ai, bi}

(18)

6 Addition-Based Multiset Jac-

card Index

The multiset Jaccard index can be further generalized by

taking into account the sum of the two sets A and B al-

lowed by multiset theory, instead of their respective union,

which leads to:

JS(A,B) =
2
∑N

i=1 min (ai, bi)∑N
i=1 (ai + bi)

(19)

with 0 ≤ JS(A,B) ≤ 1. Observe that other multi-

set operations including subtraction, complement, and in-

tersection can also be employed to define other indices.

This index has been known as the Sørensen-Dice coeffi-

cient (e.g. [32]), and a signed version has been previously

described [33] in analogy to the cosine similarity in L1

spaces.

The interesting feature of this index is that it takes into

account the situations where the multiple instances in the

multisets need to be taken into account at its fullest when

combining the sets.

As an example, let’s consider that A = {a, a, a, b, c, c, c}
and B = {a, a, c}. Then, we have that:

JS(A,A) =
(2)(7)

7 + 7
= 1 (20)

and:

JS(A,B) =
(2)(3)

7 + 3
=

3

5
(21)

The additive multised Jaccard index can be immedi-

ately combined with the respective interiority index to

yield the addition-based multiset coincidence index.

7 Continuous Sets

The henceforth described approach holds for RN , but

we shall consider the plane vector space R2. It

is possible to associate sets to the points (x, y) of

this space in any possible manner, such as R =

{(x, y) | x and y are even}, which is a discontinuous in

R2, or S = {(x, y) | 0 ≤ x ≤ 2,−1 ≤ y ≤ 1}, which defines

a continuous region.

Though the Jaccard index can be immediately applied

to any of these sets, it is of particular interest to our de-

velopments to consider sets configurations corresponding

Figure 2: The three most relevant situations to be considered when

comparing two sets: (a) no intersection; (b) partial interesection;

(c) complete intersection.

to simple connected regions of R2 such as those illustrated

in Figure 2.

In this case, the size of the involved sets and subsets

can be conveniently represented by the respective areas,

indicated as |A|, |B|, |A ∩B|, and |A ∪B|, which can be

immediately used in Equation 34.

The three cases in Figure 2 correspond to the most

representative situations when comparing two sets. In

Figure 2(a), we have two separated sets, which results in

null intersection, suggesting minimal similarity between

the two sets. The situation depicted in (c) can be under-

stood as leading to the maximum similarity that can be

achieved with the sets A and B. Figure 2(b) illustrates

a frequently found situation in which there is some inter-

section between the sets. In this case, the similarity value

would be expected to increase with the intersection area

in a possibly linear manner.

The situation represented in Figure 2(b) actually incor-

porates the two other situations as limit cases. Consider

the diagram shown in Figure 3, involving two square re-

gions A and B, with respective sides a and b, b ≤ a.

Figure 3: A construction representing all possible situations regard-

ing the similarity of two sliding squares A and B with sides a and

b, respectively. Without loss of generality, we assume that a ≥ b.

Any of these situations can be specified by just two parameters: the

relative position x and the relative size r = b/a. This construction

allows us to better understand the behavior of the Jaccard and other

similarity indices covered in this work.

The relative position, and also the similarity, of the two

sets can be completely controlled in terms of the relative

position parameter x, with a−b
2 ≤ x ≤ a+b

2 . As b in-

creases, the two squares progressively separate, therefore
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becoming less similar.

There is only one other parameter that needs to be

specified in order to completely represent the situation

in Figure 3, namely the relative sizes of the two regions

r = b/a, with 0 ≤ r ≤ 1.

The area of the intersection A ∩B and union A ∪B of

the two sets can now be conveniently expressed in terms

of x and b as:

|A ∩B| = (ra)
(a

2
−
(
x− ra

2

))
=

1

2

(
a2r(1 + r)− 2rax

)
(22)

|A ∪B| = 1

2

(
2a2

(
1 + r2

)
− a2r(1 + r) + 2rax

)
(23)

We can now rewrite the Jaccard index as:

J (A,B) =
a2r(1 + r)− 2rax

2a2 (1 + r2)− a2r(1 + r) + 2rax
(24)

Figures 4 (a) to (c) present the Jaccard index for two

rectangles, as developed above, in terms of several config-

urations of the parameters x and r. Observe the yellow

regions obtained for all indices, corresponing to the sit-

uations in which the smaller square is either completely

insider or outside the other square.

The first row in Figure 4 concerns the Jaccard (a), in-

teriority (b) and respectively obtained coincidence (c) in-

dices. It can be observed that the Jaccard index values

increase diagonally from top right to the lower left corner,

achieving the peak a at the bottom left corner in (a). The

interiority index, however, varies from 0 to 1 along each

vertical slice in (b), being therefore ‘degenerate’ in the

mathematical sense of not implementing a bijective map-

ping with respect to the peak 1. Indeed, every point at the

lower non-null region in (b) will correspond to maximum

interiority of 1. The coincidence index values, shown in

(c) correspond to the product between the Jaccard and in-

teriority indices, yielding a bijective association with the

maximum value of 1 at the bottom right corner. Observe

the respective change in the level sets shapes. Similar re-

sults hold for the addition-based Jaccard index shown in

the lower row in Figure 4(d-f).

The geometrical construct in Figure 3 therefore pro-

vides an interesting approach to comparing the varying

results obtained in Figure 4. The rationale is as follows:

as the square B slides from being completely inside the

square A, until it becomes completely outside the lat-

ter, it is reasonable to expect the similarity to decrease

in a linear manner with x. This suggests that we can

compare the several indices in Figure 4 while taking into

account their respective slice along vertical slices of the

scalar fields. For simplicity’s sake, we will consider five

slices corresponding to b = 10, 20, 30, 40, 50. The results

are shown in Figure 5.

Among the five indices in Figure 4, only the additive

multiset Jaccard index accounts for linear similarity quan-

tification as x varies also in linear manner. The interiority,

as expected, is unable to consider the relative size of the

sets. The coincidence indices penalize the similarity for

small values of x (i.e. when the slices are further away),

with the basic coincidence index being more strict and

selective. Also, the basic Jaccard tends to penalize these

cases more intensely than the additive multised Jaccard

index.

None of these indices are absolutely better than the

others. It is the specific requirements of each application

that should lead to a suitable choice while considering the

above identified properties of each index. For instance,

situations required enhanced selectivity and more strict

similarity quantification may consider the adoption of any

of the two described coincidence indices.

8 Continuous Densities and Scalar

Fields

The developments discussed in the previous sections pave

the way for considering also sets corresponding to den-

sities, such as probability density functions, as well as

completely generic functions and scalar fields. One of the

main problem to be overcome here is that densities of-

ten have infinite support, meaning that they extend over

infinite ranges in their respective space.

The problem of comparing two distributions is partic-

ularly important in many theoretical and applied areas,

having motivated great interest and the proposal of sev-

eral respective approaches (e.g. [34, 35]).

One interesting perspective that can be used to adapt

the Jaccard and coincidence indices so as to allow com-

parison of densities is developed as follows.

We start by representing a generic continuous function

in terms of a respective discretization, with resolution ∆x,

as illustrated in Figure 6.

The density p(x) becomes the vector ~p = [xi]∆x. Now,

in a vector the order of the elements is all important, but

it can indeed be incorporated into the multiset represen-

tation as:

X = {[x1,m(x1); . . . ; [xi,m(xi)]; . . . [xn,m(xn)]} (25)

where xi are the elements in the respective support and

m(xi) is the multiplicity of the element xi generalized to

take real values. In addition, we have also assumed, for

simplicity’s sake, that the discretization takes place on

n points, which are henceforth understood as the sup-

port of both the function and the multiset. The functions
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Figure 4: The Jaccard (a), interiority (b), and square root of the coincidence (c) indices obtained for the geometrical construction illustrated

in Figure 3. The heat map increases from yellow to brown. The incorporation of the interiority level into the Jaccard index leads to a more

comensurated distribution of the level sets. The maximum value the Jaccard and continuity indices are to be found at the lower righthand

corner of the respective plots. The values of the interiority index increase linearly from the top to the bottom diagonal in (b). Along (d)

to (f), we have analogous results concerning the additive multiset Jaccard index (d), the interiority (e), and square root of the additive

coincidence index, the latter corresponding to the p (f). The latter index corresponds to the product of the additive multiset Jaccard and

interiority indices.

transformed into their respective multisets are here called

multifunctions, or mfunctions.

Now, let mA(xi) and mB(xi) correspond to the mul-

tiplicity of the elements xi in the two sets obtained by

discretization of two density functions pA(x) and pB(x)

assuming the same support. The respective multiset Jac-

card can now be obtained as:

JP (A,B) =

∑
i∈Φ min(mA(xi),mB(xi))∑
j∈Φ max(mA(xj),mB(xj))

(26)

where Φ is the combined support of the two multisets

A and B.

This index is then capable of expressing the similarity

between the two original densities up to the x−resolution

∆x. The above reasoning extends immediately to discrete

probability densities.

By making ∆x → 0, we then obtain:

JP (A,B) =

´
Φ

min(mA(x),mB(x))dx´
Φ

max(mA(x),mB(x))dx
(27)

Observe that a bijective map is therefore obtained be-

tween the original density values [x, p(x)] and the respec-

tive 2-tuples [xi, (xi)].

As such, the Jaccard index can be understood to cor-

respond to a functional derived fro the two functions or,

perhaps more specifically, an mfunctional.

In addition to the above described limiting situation,

it is also possible [2] to consider the Equation 28 directly

from the real function space, without the need of taking

the limit. Observe that the generalized Jaccard index as

defined by equation is completely specified and valid in

the space of real functions, provided the integrals exist.

The above result extends immediately to density func-

tions on higher dimensional domains as:

JP (A,B) =

´
Φ

min(mA(~x),mB(~x))d~x´
Φ

max(mA(~x),mB(~x))d~x
(28)

Which provides a means to generalize the multiset Jac-

card index to continuous or discrete scalar or vector fields

for any number of random variables.

As an example of the generalization of multisets to real

values, let’s consider the two density functions XA and

7



Figure 5: Five vertical slices of the respective indices in Fig. 4. Only the interiority and additive multiset Jaccard indices account for the

expected linear decrease of similarity following x displacements. However, the interiority is unable to take into account the relative size of

the squares, which leaves only the additive multiset Jaccard as presenting a complete and linear quantification of the similarity between the

two sets. The square root of the coincidence indices both penalizes the similarity when x is small, with the basic coindicence index imposing

the most severe test of similarity.

Figure 6: A generic density function p(x) being discretized with

resolution ∆x, so that it can be represented as a vector ~p = [xi]∆x.

The integral of the original and respective discretization are as-

sumed to be 1, so that they are both normalized as densities.

XB depicted in Figure 7(a).

The respective intersectionXA∩XB and unionXA∪XB

of these two densities, obtained by using the minimum

and maximum operation between the elements of pair of

values, are presented in Figures 7(a) and (b), respectively.

The Jaccard index, obtained by dividing the area of the

intersection curve by the area of the union, yielded the

value 0.09257.

It is also interesting to observe that the comparison of

two densities can be represented as a scatterplot, with the

two density functions defining a parametric curve. This

is illustrated in Figure 8. The closest the set of points

covered by the respectively obtained parametric curve are

to the identity line (in salmon), the higher the similarity

index between the two densities will be. This construction

can be immediately extended to generic functions.

The Jaccard index can be also adapted to quantify the

separation of two groups of points, or clusters, which can

be understood as a discrete or continuous scalar field. The

basic idea here would be to represent each of the clusters

in terms of the joint probability density and then apply

the Jaccard index over them by considering the densi-

ties as the respective multiplicity of every element. This

method can be applied to any number of involved features.

Though we have so far considered both XA(~x) and

XB(~x) to correspond to non-negative scalar fields with

hypervolume 1, it is actually possible to employ the Jac-

card and coincidence indices to quantify the similarity

8



Figure 7: Two probability density functions p(x) and q(x) (a), with

respective intersection and union as shown in (b) and (c). This

situation yields a Jaccard index equal to 0.41. The maximum value

1 is obtained whenever the two densities are identical.

between any two scalar mfunctions or mfields φA(~x) and

φB(~x) sharing the same domain, even in presence of neg-

ative multiplicities.

The extension of similarity indices to negative values

has been previously approached in [13, 33, 36]. A respec-

tive possible manner to adapt the Jaccard index to nega-

tive multiplicities in a two-dimensional space is as follows.

In case the pair of points [m(XA),m(XB)] is in the first

quadrant, the minimum and maximum between the two

multiplicities are accumulated into the intersection and

union integral, respectively. It the point is in the third

quadrant, both coordinates have their signal inverted and

the respective minimum and maximum are accumulated.

Otherwise, if the point belongs to the II or IV quadrant,

the point [m(XA),m(XB)] is mirrored into the opposite

quadrant respectively to the vertical axis, and it is the

negative of the minimum between the multiplicities that

is then accumulated into the intersection integral (to com-

pensate for the reflection), while the union is taken with

positive sign, and the resulting accumulated intersection

Figure 8: The two probability densities p(x) and q(x) in Figure 7

shown as a parametric curve in the respective scatterplot. In case

of discrete densities, they can be represented in terms of parametric

curves related to the joint observations. Continuous densities can

be represented in a similar manner. The identity line, shown in

salmon, partitions the scatterplot space into the two regions U and

D.

and union are then used in Equation 28 to obtain the

respective Jaccard index.

Figure 9: Jaccard for mfunctions with negative multiplicity. Points

in the II and IV quadrants are reflected with respect to the vertical

axes, and their intersection (minimum values) and union (maximum

values) enter with negative values in the accumulated intersection

and union.

For instance, let’s calculate the multisets Jaccard index

for the functions f(x) = cos(θ) and g(x) = sin(θ) for a

complete period 0 ≤ θ ≤ 2π, as illustrated in Figure 10.

This operation, which has been found to correspond to

the intersection of real multisets with possibly negative

9



(a)

(b)

Figure 10: The Jaccard index calculated for a cosine and a sine

function. The mfunctions are shown in (a), and the respective in-

teresection and union mfunctions are shown in (b). The obtained

Jaccard index was equal to 0. Indices of 1 and -1 will be obtained

in case g(x) = cos(t) and g(x) = −cos(t), respectively.

values [11, 37], can be summarized as:

f(x) u g(x) =

ˆ
S

sfsg min(sff(x), sgg(x))dx (29)

where S is the combined support of f(x) and g(x).

From which, the multiset convolution [11] (mconvolu-

tion) of two functions can be derived:

f(x)�g(x)[y] =

´
S
f(x) u g(x− y)dx´

S
f(x)t̃g(x− y)dx

(30)

where f(x)t̃g(x− y) corresponds to the absolute value

union of generalized multisets [37]:

f(x)t̃g(x) =

ˆ
S

sfsg min(sff(x), sgg(x))dx (31)

Equation 30 presents a direct analogy to the multiset

Jaccard index. The other generalizations of the Jaccard

index can be readily employed in the above expressions in

order to cater for less or more strict similarity quantifica-

tion.

Preliminary results have shown that the multiset con-

volution provides, in general, sharper and more selective

peaks and smaller sidelobes than the standard correla-

tion [11, 38].

A further example of the Jaccard index adapted to mul-

tidimensional scalar fields, namely a gray level image, also

incorporating the respective scatterplot representation of

the paired multiplicities is provided in Figure 11.

9 Joint Variations

Joint variation are often taken in a normalized manner

as when using the Pearson correlation coefficient. More

specifically, we have that this coefficient can be under-

stood as corresponding to the variance provided the sam-

ples of the two sets have been first standardized. By stan-

dardization it is henceforth understood that, given a ran-

dom variable X, we apply the following random variable

transformation:

X̃ =
X − µX

σX
(32)

This standardization has the effect of normalizing the

dispersions of a random variables, so that the its variance

becomes 1 while the average is 0. It can also be verified

that a standardized random variable will present most of

its observations within the interval [−2, 2].

In the case of a set of N observations of two standard-

ized random variables, the Pearson correlation coefficient

becomes:

P(X,Y ) =
1

N

N∑
i,j=1

[X̃i][Ỹi] (33)

When two standardized random variables X̃ and Ỹ are

taken jointly, they define a scatterplot providing a useful

illustration about the interrelationship between the two

considered values. This scatterplot can be immediately

understood as corresponding to a sampling of the joint

probability density of the two random variables, which

may be kernel expanded to obtain an estimation of the

respective counterpart.

The quantification of joint variation by a L1-based op-

eratoron possibly negative values [36] has been previously

addressed [39].

It constitutes an interesting issue to consider joint vari-

ation quantification based on the Jaccard and coincidence

indices. In order to illustrate the possibility to quantify

the joint variation of observations in a scallterplot (or,

actually, joint densities), we consider the situation in Fig-

ure 12, which shows several scatterplots drawn from nor-

mal densities with increasing correlation.

10 Multiple Sets

We have so far considered indices applied to two sets or

entities (e.g. [15]). There are two basic ways in which

10



(a)

(b)

(c)

Figure 11: A gray level image of flowers img[x, y] (a) was mixed with

random noise uniformly distributed between −0.5 and 0.5, resulting

in the noisy image img[x, y] + ξ[x, y] shown in (b). The resulting

scatterplot is depicted in (c), including the identity line defining the

two regions for calculation of the scalar field intersection and union,

from which a respective Jaccard index of J (img, img + ξ) = 0.83

was obtained, reflecting a relatively high similarity between the two

scalar fields.

more sets can be taken into account. The first one consists

of simply understanding that each of the two sets A and B

are obtained by set operation combinations among several

other sets.

For instance, in case we are interested in A = (C∩D)∪
E − F and B = C ∪G, we can write:

A = f(C,D,E, F )

B = f(C,G)

and then apply the Jaccard or coincidence indices.

Observe that there is absolute no restriction on these

functions, except that they are not both empty sets.

The Jaccard index for the example above can be ex-

pressed as:

J (A(C,D,E, F ), B(C,G)) =
|A(C,D,E, F ) ∩B(C,G)|
|A(C,D,E, F ) ∪B(C,G)|

Therefore, a vast range of possible combinations of di-

verse sets become possible, but they will ultimately always

lead to two resulting sets A and B to be compared by the

Jaccard or coincidence indices.

There is another interesting possibility to take into ac-

count more than 2 sets, and this corresponds to extending

the Jaccard index, for instance in the case involving 3 sets,

as:

J3(A,B,C) =
|A ∩B ∩ C|
|A ∪B ∪ C|

with 0 ≤ J (A,B,C) ≤ 1. This concept can be imme-

diately extended to any number NS of sets.

The extension of the interiority index becomes:

I[3,1](A,B,C) =
|A ∩B ∩ C|

min {|A| , |B| , |C|}

It can be verified that this extended interiority index

now quantifies how much the smallest of the sets is con-

tained in the overall intersection. However, it does not

take into account how the intermediate size set relates

to the mutual intersection. This can be accomplished by

introducing a second interiority index as:

I[3,2](A,B,C) =
|A ∩B ∩ C|
|X|

where X is the set with the second smallest cardinality.

The two obtained interiority indices can then be com-

bined into a single respective index as:

I3(A,B,C) = I[3,1](A,B,C) I[3,2](A,B,C)

with 0 ≤ I3(A,B,C) ≤ 1.

We can now define the coincidence index extended to

three sets as:

C3(A,B,C) = I3(A,B,C) J3(A,B,C)

A similar development applies to more than 3 sets.

11



Figure 12: Comparision of the Pearson correlation coefficient and the multiset Jaccard index for negative multiplicities with respect to

several distribution of points with increasing correlation. Interestingly, the Jaccard index seems to provide a more gradual quantification of

the joint variations that is probably more compatible with our perception. At the same time, the respective Pearson correlation coefficients

tend to saturate as the correlation increases.

The consideration of more than 2 sets in similarity in-

dex suggests other possible extensions of the Jaccard and

coincidence indices. For instance, it becomes interesting

not only to quantify the overall similarity between 3 sets,

but also to develop indices capable of reflecting how these

three sets are connected one another. Consider the situ-

ation depicted in Figure 13.

Figure 13: Three sets A, B and C characterized by sequential, or

chained intersections. In the suggested approach, B is taken as a

candidate reference for intermediating the other two sets through a

chaining relationship.

This situation suggests that set B intermediates the

connection between the sets C follows and A, therefore

establishing a chaining relationship. The Jaccard index

with 2 sets cannot cope directly with this situation.

A possible index involving three sets that can quantify

the chaining between 3 sets is:

X (A,B,C) = J (B, (A ∩B) ∪ (B ∩ C)) [1− J (A,C)]

As an example, let’s consider:

A = {a, b, c, d, e, f, g} ;

B = {e, f, g, h, i, j, k} ;

C = {i, j, k, l,m, n, o}
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It folows that:

A ∩B = {e, f, g} ;

A ∩ C = {} ;

B ∩ C = {i, j, k} ;

A ∪ C = {a, b, c, d, e, f, g, i, j, k, l,m, n, o} ;

(A ∩B) ∪ (B ∩ C) = {e, f, g, i, j, k} ;

B ∩ [(A ∩B) ∪ (B ∩ C)] = {e, f, g, i, j, k}
B ∪ [(A ∩B) ∪ (B ∩ C)] = {e, f, g, h, i, j, k}

So, we have that:

J (B, (A ∩B) ∪ (B ∩ C)) =

=
|B ∩ [(A ∩B) ∪ (B ∩ C)]|
|B ∪ [(A ∩B) ∪ (B ∩ C)]|

=
6

7
(34)

and:

J (B,C) =
|A ∩ C|
|A ∪ C|

=
0

14
= 0 (35)

From which we obtain the chaining index value of:

X (A,B,C) =

= J (B, (A ∩B) ∪ (B ∩ C)) [1− J (A,C)] =

=
6

7
[1− 0] =

6

7

which provides an interesting indication of the chaining

between the sets A, B, and C. Observe that the above

described approach assumes that set B has been adopted

as a reference for implementing the chaining between A

and C. More generic situations can be addressed by con-

sidering successive pairwise combinations.

It should be observe that it is possible that one of the

intersections betwen B and A or C is large enough to

bias the above index. In these situations, it is possible

to incorporate an additional index specifying a minimum

overlap between both A and B as well as B and C.

Several other analogous chaining indices involving 3 or

more sets or other structures are possible, leading to com-

plementary properties.

11 The Jaccard and Coincidence

Indices in Modeling

By allowing several types of mathematical structures to

have their relationships to be quantified in terms of re-

spective indices, it becomes possible to objective and

quantitatively address a wide range of theoretical and

practical problems, while also catering for the considera-

tion of stochasticity.

In addition, the several indices discussed and suggested

in this work represent a valuable resource while developing

models (e.g. [40]) through the combination of datasets as

described in [1].

Then, we have several additional possibilities of apply-

ing these indices. For instance, a new dataset can be

compared to those already modeled by using the simi-

larity indices. Also of particular interest is to identify

which combinations, through set operations, between the

existing datasets associated to models are more likely to

account for other datasets of interest, therefore providing

insights about how respective models can be identified,

related, or developed.

The discussed indices are also interesting from the

perspective of characterizing, developing, validating and

applying pattern recognition and deep learning ap-

proaches [41, 42, 43].

12 Concluding Remarks

Relationships between the several important mathemat-

ical structures — including sets, functions, vectors, den-

sities, and graphs — are critically important in virtually

all areas where mathematics is employed. Given its in-

teresting features, the Jaccard index has been extensively

employed in a large range of scientific and technological

situations. Also as a consequence of its potential, the

Jaccard index has been generalized in several manners.

The present work aimed at generalizing further the Jac-

card index. One of the first discussed possibilities con-

sisted in using the interiority index, capable of quantify-

ing how much a set is contained into another, as means

to complement a identified limitation of the Jaccard index

in taking into account the interiority of one set into the

other . This index was then combined with the Jaccard

index to yield the coincidence index, which is believed to

provide a more strict and selective quantification of the

similarity between sets. The possibility to adopt the sum

of multisets instead of the union was also addressed, with

promising results for the situations where the multiplicity

of the elements have to be fully taken into in account.

The possibility to apply the Jaccard and coincidence

indices on continuous sets was then addressed by con-

sidering the areas of the involved regions in place of the

number of set elements. This adaptation of the Jaccard

index allowed the consideration of density fields and func-

tions, which was approached by using the Jaccard index

for multisets. The potential of this generalization of the

Jaccard index was then briefly illustrated with respect

to probability density functions as well as in a compari-

son between the cosine and sine functions, which are not

normalized and can take negative values, as well as a real-

world image and a respective noise version.

The intrinsic relationship between similarity indices

13



and statistical quantifications of joint variation between

random variables was approached subsequently, and it has

been argued that both the Pearson correlation coefficient

can be used to compare two density functions, but also

that a respective adaptation of the Jaccard and coinci-

dence indices can also be used for that finality. We also

discussed the interesting possibility to visualize the ac-

tion of the Jaccard and coincidence indices with respect

to the division of the data into two regions defined by the

identity line in the scatterplot distribution.

The also interesting situation of similarity and other

indices considering three or more sets was then discussed,

identifying the possibility to consider the two sets involved

in the basic Jaccard and coincidence index as correspond-

ing to the result of set operation combinations between

any number of other sets. Another important extension

was considered with respect to taking into account more

than 2 sets as arguments for the similarity indices, which

was illustrated in terms of a suggested index to quantify

the chaining between three sets.

Several are the further possible works motivated by

the concepts and methods reported and suggested in this

work, a more complete list of which would be particularly

extensive. Some of the possibilities include comparing

the described indices with other indicators of similarity,

the identification of other types of relationships that can

be quantified when considering 3 or more sets and ana-

logue generalizations of other interesting indices, as well

as extending the described indices to other mathematical

structures.

In addition, as observed in Section 11, similarity and

other indices such as those addressed here provide valu-

able means for developing and evaluating models of data

as well as for several pattern recognition and deep learn-

ing tasks.
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