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Abstract

Quantifying the similarity between two entities constitutes a particularly interesting and useful operation in several

theoretical and applied problems. Aimed at quantifying the similarity between two sets, the Jaccard index has been

extensively used in the most diverse types of problems, also motivating some respective generalizations. The present

work addresses further generalizations of this index, including its modification into a coincidence index capable of

accounting also for the level of interiority of the sets, an extension for sets in continuous vector spaces, the consideration

of weights associated to the involved set elements, the generalization to multiset addition, densities and generic scalar

fields, as well as a means to quantify the joint interdependence between random variables. The also interesting possibility

to take into account more than two sets was also addressed, including the description of an index capable of quantifying

the level of chaining between three sets. Several of the described and suggested generalizations have been illustrated

with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing

and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of

clusters similarity or separation.

‘Riedificano Ersilia altrove. Tessono com i fili una figura

simile che vorrebbero piú complicata e insieme piú regolare

dell’altra.’

Italo Calvino, Le Città Invisibili.

1 Introduction

Despite its seeming simplicity, set theory underlies a sub-

stantial portion of the mathematical and physical sci-

ences, while being also extensively used in virtually every

area of human activity. In fact, set theory concepts are so

ubiquitous as to be incorporated into language and daily

conversations. When one says “I will buy bananas and

potatoes and tomatoes,” it is actually the set operation

of union that it is being meant. Interestingly, the tenuous

border between set theory and propositional logic is often

blurred by humans (see [1]). At the same time, multi-

sets (e.g. [2, 3, 4]) offer means for extending set so as to

consider the multiplicity of elements.

Another concept that is as ubiquitously employed in

every human activity regards the concepts of similarity

and distance between two entities. Mathematically, this

can be related to quantifying in an objective manner sev-

eral types of similarity between two or more mathematical

structures such as scalars, sets, vectors, matrices, func-

tions, densities, graphs, etc. This can be done in several

manners, which frequently take into account the respec-

tive type of structure. For instance, vectors are often

compared in terms of their inner product, and several

similarity indices (e.g. [5]) have been suggested for com-

paring matrices with binary features.

One approach to the similarity between two sets that

has attracted particular attention as a consequence of its

interesting characteristics, being therefore employed ex-

tensively, is the Jaccard or Tanimoto index (e.g. [6, 7]).

In addition to being constrained within the interval [0, 1],

the Jaccard index is also intuitive, relatively simple and

requires little computational expenses. Besides its vast

range of applications (e.g. [8, 6, 9, 10, 11]), the Jaccard

index has also motivated some extensions and generaliza-

tions, including its adaptation to discrete multisets with

positive multiplicites (e.g. [2, 3, 4]).

Given the popularity of the Jaccard index, as well as its

appealing characteristics, it would be particularly useful

if it could be adapted to as many as possible other math-

ematical structures. The present work aims at developing

further possible generalizations of the Jaccard index.

We start by focusing on the relative limitation of this

index to reflect to which level one set is contained into the

other, and a respective adaptation of the Jaccard index
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is then proposed to address this limitation that involves

another measurement between two sets, here called inte-

riority index. More specifically, we define the coincidence

index between two sets as corresponding to the square

root of the product of respective Jaccard and Interiority

indices.

We then approach the adaptation of the Jaccard in-

dex to take into account sets corresponding to regions in

continuous spaces such as RN . It is shown that this can

be immediately accommodated into the standard Jaccard

(and also the coincidence) indices by having the regions

area in place of the sizes of sets. In addition to allow-

ing useful graphical characterizations of the Jaccard and

coincidence indices, this extension to continuous sets also

paves the way to dealing with densities and scalar fields.

In particular, we develop a related graphical construct to

compare the relationship between the Jaccard, interiority

and coincidence indices.

Another interesting possibility covered in the present

work concerns the characterization of the similarity of sets

whose elements have been assigned to weights expressing

the respective relevance. This was achieved by a simple

modification of the Jaccard and coincidence indices.

Next, we address the particularly interesting question

of adapting the Jaccard index to become capable of com-

paring densities and functions in continuous spaces RN ,

which correspond to generic scalar fields on those do-

mains. This is achieved by extending the multiset version

of the Jaccard index to incorporate integrals (function-

als) of the minimum and maximum operations along the

respective space. Because generic fields involve negative

values, the approach is presented first for non-negative

densities, being subsequently extended to more general

fields with negative multiplicities. The potential of the

approach, which is conceptually and computationally sim-

ple, is then illustrated with respect to comparing proba-

bility density functions as well as more generic functions

corresponding to two sinusoidals as well as two real-world

images.

Another issue of special relevance that has been ad-

dressed regards the inherent, but not often considered,

relationship between the quantification of the similarity

between two probability densities with the also ample

subject of characterizing joint variation of two random

variables. Two particular problems are addressed. We

show that the multiset Jaccard adaptation to densities

and functions can be effectively applied to quantify the

joint relationship between two random variables, be it

in terms of discrete observations or while taking into ac-

count their probability densities describing standardized

versions of the involved variables. The methodology in-

volves reflecting negative multiplicities across quadrants,

therefore allowing the treatment of joint distributions and

scalar fields with negative values.

The last topic approach described in the present work

concerns the possibility of generalizing the Jaccard index

to deal with more than 2 sets. We argue that there are

two main ways in which this problem can be addressed.

First, it is possible to have any of the two sets involved in

the Jaccard index to correspond to generic combinations

of any number of sets, obtained by using set operations.

Alternatively, more than two sets can be actually con-

sidered as arguments of extended Jaccard indices. The

latter possibility has been illustrated through the devel-

opment of a generalization of the Jaccard index capable

of quantifying the degree of chaining between three sets,

as intermediated by one of them.

The article concludes by discussing the particularly im-

portant role of indices such as those discussed and sug-

gested here for the ubiquitous activities of model building

and pattern recognition. Some prospects for future devel-

opments are also provided.

2 The Basic Jaccard Index

The basic Jaccard index can be simply expressed as:

J (A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B|+ |A ∩B|
(1)

where A and B are any two sets to be compared.

It is interesting to keep in mind that, though not fre-

quently specified, the universe set of A and B can be

conveniently taken as being equal to Ω = A ∪B.

The Jaccard distance can be immediately derived from

the Jaccard index by making:

DJ(A,B) = 1− J (A,B) (2)

This approach can be immediately extended to any

other similarity index bound between 0 and 1.

It is also interesting to observe that it is possible to

modify the Jaccard index so as to reflect in absolute terms

the effective cardinality of the intersection of the two sets.

This can be done as:

Js(A,B) =
|A ∩B|2

|A ∪B|
(3)

The Jaccard index can be immediately generalized to

multisets or bags (e.g. [12, 13]), which are basically sets

in which repeated elements are allowed. The multi-

sets A and B can be represented as respective vectors
~A = [a1, a2, . . . , aN ], ~B = [b1, b2, . . . , bN ], where N is the

total number of possible distinct elements in the universe

defined by the union of the two multisets, and ai corre-

sponds to the multiplicity of element i in the multiset A.
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The Jaccard index for multisets then becomes:

JM (A,B) =

∑N
i=1 min (ai, bi)∑N
i=1 max (ai, bi)

(4)

with 0 ≤ JM (A,B) ≤ 1.

As an example, let’s consider A = {a, a, a, b, b} and

B = {a, a, b, c, c, d}. If we have the set of possible elements

organized into the indexing vector ~p = [a, b, c, d], we will

obtain ~A = [3, 2, 0, 0] and ~B = [2, 1, 2, 1]. Observe that

the order of elements in ~p is immaterial to our analysis.

The, we have:

J (A,B) =
2 + 1 + 0 + 0

3 + 2 + 2 + 1
=

3

8
(5)

As a consequence, this adaptation of the Jaccard in-

dex allows it to be applied also to vectors, matrices, and

graphs. In the case of matrices, the Jaccard equation can

be further modified as:

JM (A,B) =

∑N
i=1

∑N
j=1 min (ai,j,bi,j)∑N

i=1

∑N
j=1 max (ai,j , bi,j)

(6)

Observe that many other mathematical structures, such

as matroids, tensors, etc., can be compared by further

adapting the above equation.

3 Interiority and Coincidence In-

dices

As illustrated in the previous sections, and also by the

relatively extensive related literature, the Jaccard index

provides an intuitive and logical manner to quantify the

similarity between two discrete or continuous set. Yet,

there is one particular situation, illustrated in Figure 1,

which is not accounted for by this index.

Figure 1: Two distinct situations involving two sets A and B that

yield the same Jaccard index value of 3/7. However, the two sets

in (b) are much more compatible because B is a subset of A and

therefore shares all its elements.

As it can be easily verified, both the situations depicted

in Figure 1 lead to the same Jaccard index J = 3/7.

However, the situation in (b) can be deemed to be quite

distinct because, in this case, the set B is completely con-

tained in A to the point of becoming a subset, i.e. B ⊂ A.

In other words, all elements of B are shared with the set

A. This is not the case in the situation (a), for both sets

A and B have elements that are not shared.

It therefore follows that it would be interesting to ob-

tain a modification of the Jaccard index that could distin-

guish between these two situations. A possible approach

is described as follows.

We start by considering an index capable of quantifying

how much a set is interior to another. Let A and B be

any two sets. The henceforth called interiority index can

be written as:

I(A,B) =
|A ∩B|

min {|A| , |B|}
(7)

It can be verified that 0 ≤ I(A,B) ≤ 1. Its minimum

value is observed when A is completely separated from

B, i.e. A ∩ B = 0. The maximum value is reached when

any of the sets is completely contained into the other. In

other words, there is no need to specify which of the two

sets is being considered as being internal to the other.

By comparing Equations 31 and 31, it follows that:

0 ≤ I(A,B) ≤ J (A,B) ≤ 1 (8)

and it can also be verified that:

0 ≤ J (A,B) H(A,B) ≤ 1 (9)

The verification of similarity accounted for by the Jac-

card index can be conveniently combined with the interi-

ority index simply by considering their respective product,

i.e.:

C(A,B) = J (A,B) I(A,B) (10)

which is the same as:

C(A,B) =
|A ∩B|2

|A ∪B| min {|A| , |B|}
(11)

It may also interesting to take the square root of the

coincidence in order to compensate for the heterogeneity

implied when multiplying to measurements in the interval

[0, 1]. Therefore, in the present work we will adopted the

coincidence indes as:

C(A,B) =
√
J (A,B) I(A,B) (12)

In some specific cases it is also possible to use these

two indices separately, defining a corresponding tuple

[J (A,B), I(A,B)].

The consideration of continuous sets in the next section

provides an interesting resource for comparing between

several indices.
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4 Continuous Sets

The henceforth described approach holds for RN , but

we shall consider the plane vector space R2. It

is possible to associate sets to the points (x, y) of

this space in any possible manner, such as R =

{(x, y) | x and y are even}, which is a discontinuous in

R2, or S = {(x, y) | 0 ≤ x ≤ 2,−1 ≤ y ≤ 1}, which defines

a continuous region.

Though the Jaccard index can be immediately applied

to any of these sets, it is of particular interest to our de-

velopments to consider sets configurations corresponding

to simple connected regions of R2 such as those illustrated

in Figure 2.

Figure 2: The three most relevant situations to be considered when

comparing two sets: (a) no intersection; (b) partial interesection;

(c) complete intersection.

In this case, the size of the sets can be conveniently

substituted by the respective areas, indicated as |A|, |B|,
|A ∩ B|, and |A ∪ B|, which can be immediately used in

Equation 31.

The three cases in Figure 2 also corresponds to the

most representative situations when comparing two sets.

In Figure 2(a), we have two separated sets, which results

in null intersection, suggesting minimal similarity between

the two sets. The situation depicted in (c) can be under-

stood as leading to the maximum similarity that can be

achieved with the sets A and B. Figure 2(b) illustrates a

frequently found situation in which there is some intersec-

tion between the sets. In this case, it would be expected

that the similarity increases with the intersection area.

The situation represented in Figure 2(b) actually incor-

porates the two other situations as limit cases. Consider

the diagram shown in Figure 3, involving two square re-

gions A and B, with respective sides a and b, b ≤ a.

The relative position, and also the similarity, of the two

sets can be completely controlled in terms of the relative

position parameter x, with a−b
2 ≤ x ≤ a+b

2 . As b in-

creases, the two squares progressively separate, therefore

becoming less similar.

There is only one other parameter that needs to be

specified in order to completely represent the situation

in Figure 3, namely the relative sizes of the two regions

r = b/a, with 0 ≤ r ≤ 1.

Figure 3: A construction representing all possible situations regard-

ing the similarity of two sliding squares A and B with sides a and

b, respectively. Without loss of generality, we assume that a ≥ b.

Any of these situations can be specified by just two parameters: the

relative position x and the relative size r = b/a. This construction

allows us to better understand the behavior of the Jaccard and other

similarity indices covered in this work.

The area of the intersection A ∩B and union A ∪B of

the two sets can now be conveniently expressed in terms

of x and b as:

|A ∩B| = (ra)
(a

2
−
(
x− ra

2

))
=

1

2

(
a2r(1 + r)− 2rax

)
(13)

|A ∪B| = 1

2

(
2a2

(
1 + r2

)
− a2r(1 + r) + 2rax

)
(14)

We can now rewrite the Jaccard index as:

J (A,B) =
a2r(1 + r)− 2rax

2a2 (1 + r2)− a2r(1 + r) + 2rax
(15)

Figures 4 (a) to (c) present the Jaccard index for two

rectangles, as developed above, in terms of several config-

urations of the parameters x and r.

5 Addition-Based Multiset Jac-

card Index

The multiset Jaccard index can be further generalized by

taking into account the sum of the two sets A and B

instead of their respective union, which leads to:

JS(A,B) =
2
∑N

i=1 min (ai, bi)∑N
i=1 (ai + bi)

(16)

with 0 ≤ JS(A,B) ≤ 1.

The interesting feature of this index is that it takes into

account the situations where the multiple instances in the

multisets need to be taken into account at its fullest when

combining the sets.

As an example, let’s consider that A = {a, a, a, b, c, c, c}
and B = {a, a, c}. Then, we have that:

JS(A,A) =
(2)(7)

7 + 7
= 1 (17)
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Figure 4: The Jaccard (a), interiority (b), and square root of the coincidence (c) indices obtained for the geometrical construction illustrated

in Figure 3. The heat map increases from yellow to brown. The incorporation of the interiority level into the Jaccard index leads to a more

comensurated distribution of the level sets. The maximum value the Jaccard and continuity indices are to be found at the lower righthand

corner of the respective plots. The values of the interiority index increase linearly from the top to the bottom diagonal in (b). Along (d)

to (f), we have analogous results concerning the additive multiset Jaccard index (d), the interiority (e), and square root of the additive

coincidence index, the latter corresponding to the p (f). The latter index corresponds to the product of the additive multiset Jaccard and

interiority indices.

and:

JS(A,B) =
(2)(3)

7 + 3
=

3

5
(18)

Figures 4(d) to (f) depict the results obtained for the

additive multiset Jaccard index considering the same con-

struction as described in Figure 3. The additive multised

Jaccard index can be immediately combined with the re-

spective interiority index to yield the additive multiset

coincidence index.

The geometrical construct in Figure 3 offers an interest-

ing approach to comparing the varying results obtained

in Figure 4. The rationale is as follows: as the square

B slides from being completely inside the square A, until

it becomes completely outside the latter, it is reasonable

to expect the similarity to decrease in a linear manner

with x. This suggests that we can compare the several

indices in Figure 4 while taking into account their respec-

tive slice along vertical slices of the scalar fields. For sim-

plicity’s sake, we will consider five slices corresponding to

b = 10, 20, 30, 40, 50. The results are shown in Figure 5.

Among the five indices in Figure 4, only the additive

multiset Jaccard index accounts for linear similarity quan-

tification as x varies also in linear manner. The interiority,

as expected, is unable to consider the relative size of the

sets. The coincidence indices penalize the similarity for

small values of x (i.e. when the slices are further away),

with the basic coincidence index being more strict. Also,

the basic Jaccard tends to penalize these cases more in-

tensely than the additive multised Jaccard index.

None of these indices are absolutely better than the

others. It is the specific requirements of each application

that should lead to a suitable choice while considering the

above identified properties of each index.

6 Weighted Discrete Elements

The Jaccard and coincidence indices can be readily

adapted to cope with cases in which the elements of sets A

and B have been assigned respective weights correspond-

ing to their relative importance in each specific problem.
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Figure 5: Five vertical slices of the respective indices in Fig. 4. Only the interiority and additive multiset Jaccard indices account for the

expected linear decrease of similarity following x displacements. However, the interiority is unable to take into account the relative size of

the squares, which leaves only the additive multiset Jaccard as presenting a complete and linear quantification of the similarity between the

two sets. The square root of the coincidence indices both penalizes the similarity when x is small, with the basic coindicence index imposing

the most severe test of similarity.

This situation can be approached by using ordered pairs

to represent each of the elements in A ∪ B associated to

its respective weigh, i.e. [xi, w(xi)]. The Jaccard index

then becomes:

JW (A,B) =

∑
xi∈(A∩B) w(xi)∑
yi∈(A∪B) w(yi)

(19)

with 0 ≤ Jw(A,B) ≤ 1.

As an example, let A = {[a, 2]; [b, 5]; [c, 1]} and B =

{[b, 5]; [e, 1], [f, 1]}. It follows that A ∩B = {[b, 5]}.

JW (A,B) =
5

10
=

1

2
(20)

Thus, in spite of in this particular example the intersec-

tion being limited to a single of the possible elements, the

Jaccard index resulted relatively high as a consequence of

the large weigh associated to the element b.

Observe that the weighted version of the Jaccard index

is not the same as the Jaccard index adapted to multisets,

as the latter case does not involve the sum of weights.

However, it is possible to considered weighted multisets,

in which case the Jaccard index becomes:

J[W,M ](A,B) =

∑
i wi min {ai, bi}∑
i wi max {ai, bi}

(21)

7 Continuous Densities and Scalar

Fields

The developments discussed in the previous sections pave

the way for considering also sets corresponding to den-

sities, such as probability density functions, as well as

completely generic functions and scalar fields. One of the

main problem to be overcome here is that densities of-

ten have infinite support, meaning that they extend over

infinite ranges in their respective space.

The problem of comparing two distributions is partic-

ularly important in many theoretical and applied areas,

having motivated great interest and the proposal of sev-

eral respective approaches (e.g. [14, 15]).

One interesting perspective that can be used to adapt

the Jaccard and coincidence indices so as to allow com-

parison of densities is developed as follows.

We start by representing a generic continuous function

in terms of a respective discretization, with resolution ∆x,

as illustrated in Figure 6.

The density p(x) becomes the vector ~p = [xi]∆x. Now,
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Figure 6: A generic density function p(x) being discretized with

resolution ∆x, so that it can be represented as a vector ~p = [xi]∆x.

The integral of the original and respective discretization are as-

sumed to be 1, so that they are both normalized as densities.

in a vector the order of the elements is all important, but

it is also possible to relax this constraint and represent

the discretized function as the respective multiset:

X = {[x1,m(x1); . . . ; [xi,m(xi)]; . . . [xn,m(xn)]} (22)

where m(xi) is the multiplicity of the element xi gen-

eralized to take real values. In addition, we have also as-

sumed, for simplicity’s sake, that the discretization takes

place on n points, which are henceforth understood as the

support of both the function and the multiset. It is pro-

posed here that functions transformed into their respec-

tive multisets can be called multifunctions, or mfunctions.

Now, let mA(xi) and mB(xi) correspond to the mul-

tiplicity of the elements in the two sets obtained by dis-

cretization of two density functions pA(x) and pB(x) as-

suming the same support. Though the order of the co-

ordinates is not considered in multisets, the respective

multiset Jaccard can be nevertheless obtained as:

JP (A,B) =

∑
i∈Φ min(mA(xi),mB(xi))∑
j∈Φ max(mA(xj),mB(xj))

(23)

This index is then capable of expressing the similarity

between the two original densities up to the x−resolution

∆x. The above reasoning extends immediately to discrete

probability densities, and the Dirac delta approach can be

applied conveniently here.

By making ∆x → 0, we then obtain:

JP (A,B) =

´
Φ

min(mA(x),mB(x))dx´
Φ

max(mA(x),mB(x))dx
(24)

where φ is the common support of the two multisets A

and B.

As such, the Jaccard index can be understood to cor-

respond to a functional derived fro the two functions or,

perhaps more specifically, an mfunctional.

The above result extends immediately to density func-

tions on higher dimensional domains as:

JP (A,B) =

´
Φ

min(mA(~x),mB(~x))d~x´
Φ

max(mA(~x),mB(~x))d~x
(25)

Which provides a means to apply the multiset Jaccard

index to continuous or discrete density functions for any

number of random variables.

As an example, lets consider the two density functions

XA and XB depicted in Figure 7(a).

Figure 7: Two probability density functions p(x) and q(x) (a), with

respective intersection and union as shown in (b) and (c). This

situation yields a Jaccard index equal to 0.41. The maximum value

1 is obtained whenever the two densities are identical.

The respective intersectionXA∩XB and unionXA∪XB

of these two densities, obtained by using the minimum

and maximum operation between the elements of pair of

values, are presented in Figures 7(a) and (b), respectively.

The Jaccard index, obtained by dividing the area of the

interesection curve by the area of the union, yielded a

value of 0.09257.

The Jaccard index can be also adapted to quantify the

separation of two groups of points, or clusters. The basic

idea here would be to represent each of the clusters in
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terms of the joint probability density and then apply the

Jaccard index over them by considering the densities as

the respective multiplicity of every element. This method

can be applied to any number of involved features.

Though we have so far considered both XA(~x) and

XB(~x) to correspond to non-negative scalar fields with

hypervolume 1, it is actually possible to employ the Jac-

card and coincidence indices to quantify the similarity

between any two scalar mfunctions or mfields φA(~x) and

φB(~x) sharing the same domain, even in presence of neg-

ative multiplicities.

A possible manner to adapt the Jaccard index to nega-

tive multiplicities in a two-dimensional space is as follows.

In case the pair of points [m(XA),m(XB)] is in the first

quadrant, the minimum and maximum between the two

multiplicities are accumulated into the intersection and

union integral, respectively. It the point is in the third

quadrant, both coordinates have their signal inverted and

the respective minimum and maximum are accumulated.

Otherwise, if the point belongs to the II or IV quadrant,

the point [m(XA),m(XB)] is mirrored into the opposite

quadrant respectively to the vertical axis, and it is the

negative of the minimum between the multiplicities that

is then accumulated into the intersection integral (to com-

pensate for the reflection), while the union is taken with

positive sign, and the resulting accumulated intersection

and union are then used in Equation 25 to obtain the

respective Jaccard index.

Figure 8: Jaccard for mfunctions with negative multiplicity. Points

in the II and IV quadrants are reflected with respect to the vertical

axes, and their intersection (minimum values) and union (maximum

values) enter with negative values in the accumulated intersection

and union.

For instance, let’s calculate the multisets Jaccard index

for the functions f(x) = cos(θ) and g(x) = sin(θ) for a

complete period 0 ≤ θ ≤ 2π, as illustrated in Figure 9.

The intersection of two mfunctions with negative values

(a)

(b)

Figure 9: The Jaccard index calculated for a cosine and a sine

function. The mfunctions are shown in (a), and the respective in-

teresection and union mfunctions are shown in (b). The obtained

Jaccard index was equal to 0. Indices of 1 and -1 will be obtained

in case g(x) = cos(t) and g(x) = −cos(t), respectively.

involves a binary operator analogous to the inner product

in function spaces, in which the multiplicities are reflect

among the four quadrants depending on their signs [4].

This operator, which will be referenced to as common

product can be expressed as:

� f(x), g(x)�=

ˆ ∞
−∞

sfsg min(sff(x), sgg(x))dx (26)

From which, the multiset convolution [4] (mconvolu-

tion) of two functions can be derived:

f(x)�g(x)[y] =

ˆ ∞
−∞

� f(x)g(x− y)�
f(x)©∗ g(x− y)

dx (27)

and it can be shown that: which, interestingly, is pre-

cisely the same as:

f(x)�g(x)[y] =

ˆ ∞
−∞
J (f(x), g(x− y))dx (28)

The other generalizations of the Jaccard index can be

readily employed in the above expressions in order to cater

for less or more strict similarity quantification.

Preliminary results have shown that the multiset con-

volution provides, in general, sharper peaks and smaller

sidelobes than the standard correlation [4].

8



A further example of the Jaccard index adapted to mul-

tidimensional scalar fields, namely a gray level image, also

incorporating the respective scatterplot representation of

the paired multiplicities is provided in Figure 10.

8 Joint Variations

Joint variation are often taken in a normalized manner

as when using the Pearson correlation coefficient. More

specifically, we have that this coefficient can be under-

stood as corresponding to the variance provided the sam-

ples of the two sets have been first standardized. By stan-

dardization it is henceforth understood that, given a ran-

dom variable X, we apply the following random variable

transformation:

X̃ =
X − µX

σX
(29)

This standardization has the effect of normalizing the

dispersions of a random variables, so that the its variance

becomes 1 while the average is 0. It can also be verified

that a standardized random variable will present most of

its observations within the interval [−2, 2].

In the case of a set of N observations of two standard-

ized random variables, the Pearson correlation coefficient

becomes:

P(X,Y ) =
1

N

N∑
i,j=1

[X̃i][Ỹi] (30)

When two standardized random variables X̃ and Ỹ are

taken jointly, they define a scatterplot providing a useful

illustration about the interrelationship between the two

considered values. This scatterplot can be immediately

understood as corresponding to a sampling of the joint

probability density of the two random variables, which

may be kernel expanded to obtain an estimation of the

respective counterpart.

It constitutes an interesting issue considering if it may

be possible to obtain an alternative joint variation quan-

tification based on the Jaccard or coincidence indices.

Since joint distributions of points in scatterplots often

incorporate negative values of the variables, it becomes

necessary to employ the procedure described in Section 7

in order to cope with the negative values.

In order to illustrate the possibility to quantify the joint

variation of observations in a scallterplot (or, actually,

joint densities), we consider the situation in Figure 11,

which shows several scatterplots drawn from normal den-

sities with increasing correlation.

It is also interesting to observe that the comparison

of two densities can be shown as a scatterplot, with the

(a)

(b)

(c)

Figure 10: A gray level image of flowers img[x, y] (a) was mixed with

random noise uniformly distributed between −0.5 and 0.5, resulting

in the noisy image img[x, y] + ξ[x, y] shown in (b). The resulting

scatterplot is depicted in (c), including the identity line defining the

two regions for calculation of the scalar field intersection and union,

from which a respective Jaccard index of J (img, img + ξ) = 0.83

was obtained, reflecting a relatively high similarity between the two

scalar fields.

two density functions defining a parametric curve. This

9



Figure 11: Comparision of the Pearson correlation coefficient and the multiset Jaccard index for negative multiplicities with respect to

several distribution of points with increasing correlation. Interestingly, the Jaccard index seems to provide a more gradual quantification of

the joint variations that is probably more compatible with our perception. At the same time, the Pearson correlation coefficients tend to

saturate as the correlation increases.

is illustrated in Figure 12

9 Multiple Sets

We have so far considered indices applied to two sets or

entities. There are two basic ways in which more sets

can be taken into account. The first one is simply to

understand that each of the two sets A and B are obtained

by set operation combinations among several other sets.

for instance, we may have A = (C ∩ D) ∪ E − F and

B = C ∪G. We may write:

A = f(C,D,E, F )

B = f(C,G)

Observe that there is absolute no restriction on these

functions, except that they are not both empty sets.

The Jaccard index for the example above can be ex-

pressed as:

J (A(C,D,E, F ), B(C,G)) =
|A(C,D,E, F ) ∩B(C,G)|
|A(C,D,E, F ) ∪B(C,G)|

Therefore, a vast range of possible combinations of di-

verse sets become possible, but they will ultimately always

lead to two resulting sets A and B to be compared by the

Jaccard or coincidence indices.

There is another interesting possibility to take into ac-

count more than 2 sets, and this corresponds to extending

the Jaccard index, for instance in the case involving 3 sets,

as:

J3(A,B,C) =
|A ∩B ∩ C|
|A ∪B ∪ C|

with 0 ≤ J (A,B,C) ≤ 1. This concept can be imme-

diately extended to any number NS of sets.

10



Figure 12: The two probability densities p(x) and q(x) in Figure 7

shown as a parametric curve in the respective scatterplot. In case

of discrete densities, they can be represented in terms of parametric

curves related to the joint observations. Continuous densities can

be represented in a similar manner. It is also possible to assign

weights to the mass distributions so obtained in the scatter plot,

which may reflect the relative important to each specific problem or

the repetition of observations. The identity line, shown in salmon,

partitions the scatterplot space into the two regions U and D.

The extension of the interiority index becomes:

I[3,1](A,B,C) =
|A ∩B ∩ C|

min {|A| , |B| , |C|}

It can be verified that this extended interiority index

now quantifies how much the smallest of the sets is con-

tained in the overall intersection. However, it does not

take into account how the intermediate size set relates

to the mutual intersection. This can be accomplished by

introducing a second interiority index as:

I[3,2](A,B,C) =
|A ∩B ∩ C|

min {{|A| , |B| , |C|} −min {|A| , |B| , |C|}}

The two obtained interiority indices can then be com-

bined into a single respective index as:

I3(A,B,C) = I[3,1](A,B,C) I[3,2](A,B,C)

with 0 ≤ I3(A,B,C) ≤ 1.

We can now define the coincidence index extended to

three sets as:

C3(A,B,C) = I3(A,B,C) J3(A,B,C)

A similar development applies to more than 3 sets.

The consideration of more than 2 sets in similarity in-

dex suggests other possible extensions of the Jaccard and

coincidence indices. For instance, it becomes interesting

not only to quantify the overall similarity between 3 sets,

but also to develop indices capable of reflecting how these

three sets are connected one another. Consider the situ-

ation depicted in Figure 13.

Figure 13: Three sets A, B and C characterized by sequential, or

chained intersections. In the suggested approach, B is taken as a

candidate reference for intermediating the other two sets through a

chaining relationship.

This situation suggests that set B intermediates the

connection between the sets C follows and A, therefore

establishing a chaining relationship. The Jaccard index

with 2 sets cannot cope directly with this situation.

A possible index involving three sets that can quantify

the chaining between 3 sets is:

X (A,B,C) = J (B, (A ∩B) ∪ (B ∩ C)) [1− J (A,C)]

As an example, let’s consider:

A = {a, b, c, d, e, f, g} ;

B = {e, f, g, h, i, j, k} ;

C = {i, j, k, l,m, n, o}

It folows that:

A ∩B = {e, f, g} ;

A ∩ C = {} ;

B ∩ C = {i, j, k} ;

A ∪ C = {a, b, c, d, e, f, g, i, j, k, l,m, n, o} ;

(A ∩B) ∪ (B ∩ C) = {e, f, g, i, j, k} ;

B ∩ [(A ∩B) ∪ (B ∩ C)] = {e, f, g, i, j, k}
B ∪ [(A ∩B) ∪ (B ∩ C)] = {e, f, g, h, i, j, k}

So, we have that:

J (B, (A ∩B) ∪ (B ∩ C)) =

=
|B ∩ [(A ∩B) ∪ (B ∩ C)]|
|B ∪ [(A ∩B) ∪ (B ∩ C)]|

=
6

7
(31)

and:

J (B,C) =
|A ∩ C|
|A ∪ C|

=
0

14
= 0 (32)

From which we obtain the chaining index value of:

X (A,B,C) =

= J (B, (A ∩B) ∪ (B ∩ C)) [1− J (A,C)] =

=
6

7
[1− 0] =

6

7
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which provides an interesting indication of the chaining

between the sets A, B, and C. Observe that the above

described approach assumes that set B has been adopted

as a reference for implementing the chaining between A

and C. More generic situations can be addressed by con-

sidering successive pairwise combinations.

It should be observe that it is possible that one of the

intersections betwen B and A or C is large enough to

bias the above index. In these situations, it is possible

to incorporate an additional index specifying a minimum

overlap between both A and B as well as B and C.

Several other analogous chaining indices involving 3 or

more sets or other structures are possible, leading to com-

plementary properties.

10 The Jaccard and Coincidence

Indices and Modeling

By allowing several types of mathematical structures to

have their relationships being quantified in terms of re-

spective indices, it becomes possible to objective and

quantitatively address a wide range of theoretical and

practical problems, while also catering for the considera-

tion of stochasticity.

In addition, the several indices discussed and suggested

in this work represent a valuable resource while developing

models (e.g. [16]) through the combination of datasets as

described in [1].

Then, we have several possibilities of applying these

indices. For instance, a new dataset can be compared

to those already modeled by using the similarity indices.

Also of particular interest is to identify which combi-

nations, through set operations, between the existing

datasets associated to models are more likely to account

for other datasets of interest, therefore providing insights

about how respective models can be identified, related, or

developed.

The discussed indices are also interesting from the

perspective of characterizing, developing, validating and

applying pattern recognition and deep learning ap-

proaches [17, 18, 19].

11 Concluding Remarks

Relationships between the several important mathemat-

ical structures — including sets, functions, vectors, den-

sities, and graphs — are critically important in virtually

all areas where mathematics is employed. Given its in-

teresting features, the Jaccard index has been extensively

employed in a large range of scientific and technological

situations. Also as a consequence of its potential, the Jac-

card index has been generalized in a variety of manners.

The present work aimed at generalizing further the Jac-

card index. One of the first discussed possibilities con-

sisted in using the interiority index, capable of quantify-

ing how much a set is contained into another, as means to

complement a identified limitation of the Jaccard index in

taking into account the interiority of one set into the other

. This index was then combined with the Jaccard index to

yield the coincidence index, which is believed to provide

a more strict quantification of the similarity between sets.

The possibility to adopt the sum of multisets instead of

the union was also addressed, with promising results for

the situations where the multiplicity of the elements have

to be fully taken into in account.

The possibility to apply the Jaccard and coincidence

indices on continuous sets was then addressed by con-

sidering the areas of the involved regions in place of the

number of elements in the involved sets. This adaptation

of the Jaccard index allowed the consideration of density

fields and functions, which was approached by using the

Jaccard index for multisets. The potential of this gener-

alization of the Jaccard index was then briefly illustrated

with respect to probability density functions as well as in a

comparison between the cosine and sine functions, which

are not normalized and can take negative values, as well

as a real-world image and a respective noise version.

The intrinsic relationship between similarity indices

and statistical quantifications of joint variation between

random variables was approached subsequently, and it has

been argued that both the Pearson correlation coefficient

can be used to compare two density functions, but also

that a respective adaptation of the Jaccard and coinci-

dence indices can also be used for that finality. We also

discussed the interesting possibility to visualize the ac-

tion of the Jaccard and coincidence indices with respect

to the division of the data into two regions defined by the

identity line in the scatterplot distribution.

The also interesting situation of similarity and other

indices considering three or more sets was then discussed,

identifying the possibility to consider the two sets involved

in the basic Jaccard and coincidence index as correspond-

ing to the result of set operation combinations between

any number of other sets. Another important extension

was considered with respect to taking into account more

than 2 sets as arguments for the similarity indices, which

was illustrated in terms of a suggested index to quantify

the chaining between three sets.

Several are the further possible works motivated by

the concepts and methods reported and suggested in this

work, a more complete list of which would be particularly

extensive. Some of the possibilities include comparing

the described indices with other indicators of similarity,

the identification of other types of relationships that can

12



be quantified when considering 3 or more sets and ana-

logue generalizations of other interesting indices, as well

as extending the described indices to other mathematical

structures. In addition, as observed in Section 10, similar-

ity and other indices such as those addressed here provide

valuable means for developing and evaluating models of

data as well as for several pattern recognition and deep

learning tasks.
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