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Abstract  

 

Far transfer is rare to occur, and a recent meta-analysis suggests that music is no 

exception. The overall effect of musical training on cognition was claimed to be null when 

considering studies with active control groups or implemented randomization procedures (Sala 

& Gobet, 2020). Using the authors’ data file and program (https://osf.io/rquye), we did not 

confirm the effect of randomization, and we demonstrated that their conclusion is based in part 

on the failure to differentiate near and far transfer, with near transfer effect sizes being 

selectively excluded for the musical training group studies, but not for the active control group 

studies. Reanalyzing their data file resulted in a significant effect size (g = .234), and also 

provided new evidence that far-transfer effects of musical training can challenge near-transfer 

effects of linguistic training. Music is a recreational activity that may be special in allowing for 

small, but statistically significant far-transfer effects.   

 

  

https://osf.io/rquye
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 Recent research investigating neuroplasticity has reignited the debate about near and far 

transfer, which has a long history in cognitive psychology. The human brain remains plastic 

throughout life, and this plasticity has important theoretical and social implications for health, 

wellness and education. The possibility to compensate for aging and to rehabilitate brain-

damaged patients or children with neurodevelopmental disorders by cognitive stimulation 

opens new perspectives and leads to understandable enthusiasm. However, this enthusiasm 

must be qualified: while there is no doubt that specific training improves performance directly 

linked to the trained skill (referred to as near transfer), it remains unclear whether training in a 

given task can improve other skills that are not directly related to the training activities (referred 

to as far transfer). Most cognitive stimulation programs claim to provide far transfer effects, 

but there are almost as many studies confirming this claim than those denying it. The 

heterogeneity of the training methods and tests used, the differences in participants, the 

relatively small sample sizes or the types of implemented control groups undoubtedly contribute 

to this puzzling panorama. Three questions remain critical: Does far transfer following musical 

training exist? If yes, is its size of practical interest, and is it actually caused by the training 

program?  

 

1. Meta-analyses of cognitive training programs 

Numerous metanalyses have led to strongly moderate the initial enthusiasm about far 

transfer. Neither working memory training, nor brain training, nor computer games, nor other 

more playful training, such as chess games, video games or exergames were found to provide 

far transfer (see Sala & Gobet, 2019a for a review). A second order meta-analysis of these meta-

analyses reported no impact of training on far-transfer measures, regardless of the type of 

populations and cognitive training programs (Sala et al., 2019). According to the authors, these 

analyses provide converging evidence that when the allocation procedure (randomization) and 

the implementation of control groups (i.e., active groups) were controlled for, the far-transfer 

effects were almost nil, suggesting that previously reported far-transfer effects came mostly 

from scientifically poor empirical studies. The failure to observe far transfer suggests that “the 

lack of generalization of skills acquired by training is thus an invariant of human cognition” 

(Sala et al., 2019; abstract). As a consequence, “researchers and policymakers should seriously 

consider stopping spending resources for this type of research. Rather than searching for a way 

to improve overall domain-general cognitive ability, the field should focus on clarifying the 

domain-specific cognitive correlates underpinning expert performance” (Sala & Gobet, 2017a, 

p. 519).  

Meta-analyses are a powerful statistical tool, but have some limitations (Borenstein et 

al., 2009). Although numerous statistical procedures are available, their outcome can be based 

on several decisions performed without double blindness in an a posteriori process. Our present 

paper illustrates this limitation by showing how the authors’ decisions led to underestimate far-

transfer effects for musical training (Sala & Gobet, 2020). Using open science resources of their 

publication (https://osf.io/rquye), we revisited their analysis by using their program and data 

pool and reached a rather different conclusion. 

 

2. Music and far transfer 

Music is an interesting domain to investigate far transfer. It is a joyful activity, which is 

easily accessible over lifespan, from young children to the elderly, and for patients with brain 

deficiency. It can be practiced alone or in a group. Music is also a demanding activity that 

requires numerous cognitive resources (Patel, 2011). It stimulates brain regions beyond the 

auditory cortex, including the frontal cortex and the motor cortex, emotional and reward 

systems as well as socio-affective brain networks. Because the engaged neural network is rather 

large, music is a good candidate for far-transfer training, which could have “transformational 
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power” over the brain (Patel, 2018). Correlational studies have reported brain differences 

associated to musical training (Herholz & Zatorre, 2011), and a recent meta-analysis confirmed 

that musically trained individuals show better memory performance than untrained individuals 

(Talamini et al., 2017). Correlational studies provide a necessary, but insufficient demonstration 

for a causal relationship. The repetition of a demanding task over months and even years could 

plausibly shape the brain, but an alternative explanation is that only the smarter individuals 

manage to pursue this training. Put differently, music does not make people smarter, but smarter 

individuals are more likely to start to learn and to succeed to play music (Schellenberg, 2020). 

Experimental studies implementing musical training in a longitudinal approach have led to 

disparate findings (Sala & Gobet, 2017b). Once again, meta-analyses seem promising to further 

assess whether musical training might be inducing far transfer effects. 

To the best of our knowledge, seven published meta-analyses have addressed this issue 

up to now. The first three have included rather small sets of studies and effect sizes (Vaughn, 

2000; Hetland & Winner, 2001; Gordon et al., 2015). A more elaborated meta-analysis was 

performed by Sala and Gobet (2017b) with 38 studies investigating 3- to 16-year old children, 

leading to the inclusion of 118 effect sizes and 3085 participants. This same pool of studies 

(minus two studies) was reanalyzed in a second-order meta-analysis (Sala et al., 2019a). The 

majority of these studies was then combined with more recent studies in Sala and Gobet 

(2019b), leading to 43 studies, 204 effects size and 3,780 participants. Finally, a selection of 

these studies was combined with eleven new studies in a multilevel meta-analysis, including 54 

studies, 254 effect sizes and 6,984 participants, which will be the focus of our present paper 

(Sala & Gobet, 2020; referred to as S&G 2020 hereafter). Another recent meta-analysis 

(Cooper, 2020) was run with 21 studies and 100 effect sizes (numerous had also been included 

in Sala & Gobet, 2017b, 2020). In contrast to Sala and Gobet (2017b, 2019b, 2020), Cooper’s 

(2020) meta-analysis reported a moderate overall effect of musical training for both active and 

non-active control group studies (g = .28), but this effect failed to be significant for studies done 

in a laboratory setting instead of classroom or community center settings.  

 

3. Sala & Gobet’s (2020) meta-analyses of music training programs 

The present paper focuses on S&G2020’s multilevel meta-analysis approach. Several 

moderators relative to randomization, type of control, baseline differences, age, duration of 

training and type of outcome measures were included. These outcome measures were organized 

into four categories: non-verbal ability (fluid reasoning, mathematical and spatial skills), verbal 

ability (vocabulary and reading skills, phonological processing), memory (short-term/working-

memory tasks) and speed (processing speed and inhibition tasks). Three modeling approaches 

were used, notably the robust variance estimation (RVE), a random effect model (RE) and 

Bayesian analysis. Only far transfer tests following musical training run with typically 

developing, 3- to 16-year-old children were considered.   

As a main outcome, S&G2020 reported an overall impact of music training programs 

on cognitive and academic outcomes (g = 0.184, p < .001) that dropped close to zero when 

either only the active control group studies (g = 0.056; p = .350) or the randomized non-active 

control group studies (g = 0.064, p =.381) were considered separately (see Table 1 for details). 

S&G2020 concluded that when confounding factors, such as type of controls or the lack of 

random assignment of participants to the groups, were neutralized, the overall effect of music 

training was null. Neither age, duration of training, and outcome measures were found to have 

a significant contribution. Accordingly, “researchers’ optimism about the benefits of music 

training is empirically unjustified and stems from misinterpretation of the empirical data and, 

possibly, confirmation bias” (S&G, 2020, page 1429). This finding was considered to be 

consistent with their previous conclusions, summarized as “Music is over” (Sala & Gobet, 

2017b) and “Elvis has left the building” (Sala & Gobet, 2019b). For the authors, “the obvious 
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practical implication is that music training should not be used as a tool for cognitive 

enhancement” (Sala & Gobet, 2019b, page 991) and “Educators and policymakers should be 

aware that music training provides no benefits on non-music-related cognitive or academic 

skills” (ibid.).  

We here propose to reconsider their conducted meta-analysis and its swift conclusions 

in three steps. We focus first on the potential influence of randomization. S&G2020 found a 

significant effect of this factor, but Sala and Gobet (2019b) and Sala and Gobet (2017b, after 

their sensitivity analysis) did not. We then demonstrate for S&G2020 that the active control 

group studies instilled an unfair comparison, notably by including near transfer effects in the 

control group studies, but only far transfer effects in the musical training studies. Finally, using 

S&G2020’s data file and R program (https://osf.io/rquye), we ran a set of meta-analyses that 

removed both concerns aiming to have a more appropriate estimation of the effect of music 

training (here based on the studies included in their data file).  

 

4. Revisiting Sala and Gobet’s (2020) meta-analyses on musical training  

 

4.1 Randomization 

One of the two main conclusions of S&G2020 was that the observed effect of musical 

training vanishes when only randomized studies were considered. Randomization was not a 

significant moderator in their previous meta-analysis (Sala & Gobet, 2019b), which involved 

204 of the 254 effect sizes of S&G2020. Randomization was also not a significant moderator 

in the main analysis of S&G2020 (p = .5181, based on all effect sizes). In contrast to Sala and 

Gobet (2019b), S&G2020 ran a two-step sensitivity analysis. After the first step of the 

sensitivity analysis of S&G2020, randomization was not a significant moderator (p = .6931), 

but type of control was (as in the main analysis). This led S&G2020 to perform the subgroup 

analyses: For the non-active control group studies, the effect size remained significant (g = 

0.226; p < .001, see Table 1 middle), and no moderator analysis was reported at that point. 

When running a moderator analysis with their program, it revealed that randomization was not 

a significant moderator (p = .480). At that stage, the second step of S&G2020’s sensitivity 

analysis intervened: S&G2020 ran an influential case analysis and wrote “Five effect sizes were 

found to be significantly inflating the true heterogeneity” (p. 1435). Removing these values 

resulted in the reduced g of 0.181 (Table 1, right), and a moderator analysis was run. Although 

not explicitly written in manuscript, this moderator analysis was slightly different from that 

performed for the other analyses. Instead of running one moderator analysis with all moderators 

(here randomization, baseline, age), the program (see lines 737-739) reveals that S&G2020 ran 

here three separate moderator analyses, each one with one moderator. With this change in 

model, randomization was a significant moderator, p = .042. However, when we ran one 

moderator analysis with the three moderators (similar to the other moderator analyses 

performed by S&G2020, see lines 579 and 665 of their program), the contribution of 

randomization did not reach significance (p = .08). When performing the analysis with their 

program, we also observed that the influential case analysis suggests nine influential effect sizes 

for this data set, and not five as stated by S&G2020 (p. 1435). When all nine influential cases 

were removed, the effect size for the non-active control group studies remained significant (g 

= 0.203; p < .0001; see Table 2 left) and, most importantly, heterogeneity dropped to 0 (RVE: 

I2 and τ2), indicating that these additional four influential cases were actually increasing 

heterogeneity. Once again randomization was not a significant moderator (p = .194 or p = .158 

when running one or three moderator analyses, respectively).   

In sum, these findings suggest that randomization is not a robust moderator, and was 

 
1 The authors ran this moderator analysis, but the manuscript did not list this p-value, we recalculated it with the open source program 

provided by S&G2020.  

https://osf.io/rquye
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obtained by S&G2020 via a two-step sensitivity analysis, with the second step applying the 

influential case analysis only to the non-active control group studies, by removing only five 

influential cases (out of nine) and changing the implementation of the moderator analysis. In 

contrast to S&G2020, Sala and Gobet (2019b) ran a simpler, one-step process: an influential 

case analysis was run on all studies of the main analysis and did not find evidence for a 

significant influence of the moderator randomization. We applied this one-step process to the 

present data file of S&G2020 (i.e., the full data set as used in S&G2020’s main analysis). The 

influential case study revealed 16 influential effect sizes (see Supplementary Table 1 for details 

of studies excluded for all analyses reported in this manuscript, available at 

https://osf.io/w5kx9/). Without them, the effect size was significant (p < .0001; see Table 2 

right), and the moderators randomization and type of control did not reach significance (p = 

.476 and p = .064). For comparison purpose with S&G2020, we nevertheless ran the separate 

analysis for non-active control group studies, and the effect size remained significant (g = 0.202; 

p < .0001; see Table 2, right), the heterogeneity was 0 (I2 and τ2) and randomization was not a 

significant moderator (p = .185 or p = .157 when running one or three moderator analyses, 

respectively). (See Supplementary Material for Bayesian analyses). In agreement with the 

previous findings of Sala and Gobet (2019b), our reanalysis here provides converging evidence 

that randomization is not a significant moderator.  

 

4.2 Near vs. far transfer in control vs. experimental training programs 

The second main conclusion of S&G2020 is that the effect of musical training is null 

for active control group studies. In the following, we demonstrate that this conclusion is based 

on their failure to differentiate far transfer from near transfer. When active control groups 

perform sport, computer or video game activities, the various pre- and post-test tasks measure 

far-transfer effects, as for the experimental musical training groups. However, when the control 

group follows drama lessons and is evaluated, just like the musical training group, on linguistic 

performance, then this raises the question of the relevance of the active control group and its 

equidistance to the tests. Given that drama stimulates different facets of linguistic abilities, 

drama training is closer to the linguistic target tasks than is musical training, and we know from 

a previous meta-analysis that a group with classroom drama training (i.e., enacting text) 

outperforms an active control group (passive reading) on different verbal skills, such as writing, 

story understanding and recall as well as oral understanding (Hetland & Winner 2001). The 

concern raised here becomes even more important when the active control group is directly 

trained on linguistic tasks that are similar to the target tasks used in pre- and post-tests. For 

instance, when the control group receives phonological training and is tested on phonological 

awareness, or when the control group is trained on reading and evaluated for reading, the active 

control group is tested for near transfer, while the musical training group is tested for far transfer 

(with these same language tests). This results in a somewhat biased or unfair comparison, 

notably with effect sizes having a different meaning here than do effect sizes in an equidistant 

control training implementation. In such an unequal comparison, an effect size close to zero 

does not mean that musical training does not create transfer effects. It indicates that musical 

training creates far-transfer effects that are not stronger than the near-transfer effects instilled 

by the given control trainings. S&G2020 were well aware of differences between far transfer 

and near transfer, and they correctly removed all effect sizes associated with musical tests (e.g., 

pitch, rhythm) and even environmental sound discrimination tests. However, they did not apply 

the same caution to the active control group studies. This unequal treatment leads to 

underestimate the effect of musical training in the analyses2.  

 
2 One might argue that phonological processing may benefit from musical training because musical activities train listening skills. However, 

phonological tests tap into processes that go beyond sound discrimination and that have no equivalent in the musical training program, such 

as for example rhyme detection, phoneme-grapheme correspondence or phoneme deletion, which requires participants to remove one 

phoneme from a nonword to create a word. As a consequence, phonological training is necessarily closer to the phonological tasks than is 
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Aiming to assess the extent of this underestimation, we removed from S&G2020’s data 

file the 21 effect sizes that are related to the most unbalanced comparisons. As the boundary 

between “near” and “far” transfer might be a matter of debate, we excluded only effect sizes 

that tap into highly similar constructs in training and test in the control group: 18 effect sizes 

were related to the comparison with an active control group receiving phonological training and 

being tested on phonological processing, two effect sizes were related to the comparison with 

an active control group receiving a reading intervention and being tested on reading, and one 

effect size was related to the comparison with an active control group receiving visual art 

lessons and being tested on visual form analysis (see Supplementary Table 1 for details). All 

other effect sizes, including those linked to drama or dance remained included. Using the 

program of S&G2020, we observed comparable (or even slightly increased) effect sizes for this 

reduced data set (RVE: g = 0.208; p < .0001; RE: g = 0.195; p < .0001; see Table 3 left, for 

details), with similar heterogeneity as in the main analysis of the authors (see Table 1 left). As 

the authors did in the main analysis, we ran a moderator analysis with type of control, 

randomization, baseline and age as moderators, but neither randomization nor type of control 

was significant (p = .610 and p = .193, respectively). (See Supplementary Material for 

complementary analyses)  

To further investigate whether near-transfer effects induced by linguistic training (and 

art lessons for one measure, i.e., the set of active control training studies described above) was 

significantly stronger than far-transfer effects induced by musical training, a subgroup analysis 

was performed on the 21 removed effect sizes (corresponding to eight studies). We observed 

an effect size of g = -0.126 (SE = .071; 95% CI [-0.350; 0.099]; df = 3.01; p = .17; I2 = 0; τ2 = 

0) with the RVE model, and g = -0.117 (SE = .107; p = .275; τ2 = 0) for the RE model. This 

absence of difference was further supported by Bayesian analyses; the Bayes factor (BFg = 

0.447) provided some evidence that g was more likely be null than non-null (i.e., H0 almost 

2.24 times more likely to be true than H1) (see Supplementary Material for details)3. This 

finding provides new evidence suggesting that far-transfer effects induced by musical training 

could even compete with near-transfer effects induced by linguistic training (and art lessons for 

one measure).   

 

4.3 Meta-analysis without post-test-only studies  

A further concern with S&G2020’s sensitivity analysis was to include studies that did 

not report pretest measures of the targeted tests. In these cases, the program of S&G2020 

assumes that experimental and control groups did not differ at pre-test (coded as a difference of 

0 in the baseline moderator), which is certainly unlikely, in particular in developmental 

psychology. In another meta-analysis run with a similar set of studies, the authors had excluded 

post-test-only studies (Sala et al., 2019), and this was done also by Gordon et al. (2015). We 

thus applied this rationale to the present data set (i.e., removing all effect sizes without pre-test 

measures from the data file of S&G2020), while still focusing on studies testing for far-transfer 

effects. This analysis confirmed a significant overall effect size (RVE: g = 0.243; p < .0001 RE: 

g = .226; p < .0001; see Table 3, middle), and neither randomization nor type of control was a 

significant moderator (p = .676 and p = .181, respectively). (See Supplementary Material for 

 
musical training. 

3 One of the included studies (Herrera et al., 2011) used a phonological outcome measure and compared experimental and control groups that 

both received phonological training (i.e., near transfer), with the experimental group performing this training in music. In response to the 
argumentation that this study should not have been included here, we reran the analysis by excluding the eight effect sizes of this study. The 

results of this additional analysis confirmed the previous finding, notably an effect size of g = -0.126 (SE = .076; 95% CI [-0.385; 0.131]; df = 

2.68; p = .20; I2 = 0; τ2 = 0) with the RVE model, and g = -0.118 (SE = .110; p = .287; τ2 = 0) for the RE model. This absence of difference was 

further supported by Bayesian analyses; the Bayes factor (BFg = 0.383) provided evidence that g was more likely be null than non-null (see 

Supplementary Material for details) 
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complementary analyses).  

We then applied an influential case analysis on the effect sizes of this data set, following 

the procedure of Sala and Gobet (2019b). This influential case analysis led us to remove seven 

effect sizes (i.e., six were positive), which reduced heterogeneity (see Table 3 right for details)4. 

The overall effect size was significant (RVE: g = 0.234; p < .0001; RE: g = 0.213; p < .0001), 

and again, the moderators type of control and randomization were not significant (p = .163 and 

p = .319, respectively). (See Supplementary Material for complementary analyses). 

Our finding is consistent with two recent meta-analyses reporting a significant effect 

size of musical training, albeit slightly stronger, g = .26 in Román-Caballero et al. (2021), and 

g = .28 in Cooper (2020). These small differences in effect sizes might be explained by several 

minor decisions of the different authors about potential selection or merging of effect sizes for 

a given study. For example, Cooper (2020) included six positive effect sizes for Bilhartz et al. 

(1999; notably d = .37, d = .56,  d = .68, d = .70,  d = .75, d = .78), while S&G2020 included 

only one effect size (d = .19). Similarly, for the study of Costa Giomi (2004), three positive 

effect sizes were included by Roman-Caballero et al. (2021, notably  d = .34, d = .40. and d = 

.53), while S&G2020 included only one (d = .209). On the contrary, S&G2020 included all 26 

effect sizes of Rickard et al. (2012), who failed to find an effect of music training, while Cooper 

(2020) included only ten. These observations suggest that S&G2020 favored an approach with 

more conservatism, which is further supported by other changes between Sala and Gobet 

(2017b) and S&G2020 (i.e., from a set of 13 effect sizes, ten effect sizes decreased and two 

positive effect sizes were excluded in S&G2020). All of these points might contribute to 

underestimate the potential effect size of music training in S&G2020, and when revisiting their 

data file, we inherited this tendency.  

This said, it might be argued that effect sizes ranging from .234 to .28 remain small according 

to Hattie’s (2008) barometer of influence. In his book, Hattie (2008) analyzed more than 800 

meta-analyses and reported that the median value of intervention effect sizes in education is 

0.40. One simplistic way to understand this contribution would be to recommend that all 

effects below this value should be ignored, as 50% of all interventions obtained at least such 

an effect. Along this line, the effects of music training on cognitive abilities could be 

considered as too small to be of any practical use, a view consistent with S&G2020’s 

conclusion. However, according to Hattie (2008), this effect size of .40 “is not a magic 

number that should become like a p < .05 cut-off point” (page 17). “Effect lower than d = .40 

can be regarded as a need of more consideration, although it is not as simple as saying that all 

effect below d = .40 are not worth having” (page 16). “There are many examples that show 

small effects may be important” (page 9) and Hattie insists on the fact that the value of an 

effect size also depends on the cost of its implementation. For instance, the effect of 

homework, which is typically d = .29 according to Hattie (page 234), is of interest because of 

its low cost of implementation. A similar situation occurs with music training, which is a 

recreational activity with low cost and with effect sizes likely to be in the same range as 

visual/audio visual learning (d = .22, page 229) or programed instruction (d = . 24, page 231) 

and larger than effect sizes of extra curricula activities (d = .17, page 159), sport (d = .10) and 

numerous teaching approaches explicitly designed to improve achievement, such as 

“mentoring” (d = .15, page 188), aptitude treatment interaction (d = .19, page 194), problem-

based learning (d = .15 page 211), web-based learning (d = . 18, page 227), or home school 

programs (d = .16, page 234). A more recent publication, which involved 1200 meta- 

analyses (Hattie, 2015) even reported an effect size of .37 for music-based programs, 
which thus placed music at rank 94 among the 195 variables that influence school 

achievement.  

 
4 Note that in comparison to the data set of S&G2020 used in their main analyses, the data set used here was overall reduced by as many 

effect sizes in randomized (26) than in non-randomized (27) studies. 
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Conclusion 

 Over the last five years, Sala and Gobet have published several meta-analyses providing 

converging evidence that cognitive training does not enhance general cognition (see Sala & 

Gobet 2019a for a review). Their finding about music training fits well with this claim (Sala & 

Gobet, 2017b; 2019b; 2020) and has led them to conclude that “researchers’ optimism about 

the benefits of music training is empirically unjustified and stems from misinterpretation of the 

empirical data and, possibly, confirmation bias” (Sala & Gobet, 2020, page 1429).  

Thanks to the resources made available by S&G2020 within the Open Science 

Framework related to their manuscript, we revisited their meta-analysis of 2020. We provided 

some evidence that their findings are based on decisions that led them to underestimate potential 

far-transfer effects created by music training. Our findings show the importance to test 

experimental and control groups for far transfer. Without such a fair comparison, the effect of 

music training is underestimated. As all meta-analyses of Sala and Gobet on musical training 

included studies with an unbalanced far- versus near-transfer comparison, which is unfavorable 

to musical training, their conclusions need to be reevaluated. This issue also applies to Sala et 

al.’s (2019) second-order meta-analysis that combined their meta-analysis on music training 

(Sala & Gobet, 2017b) with meta-analyses on other cognitive training types. Revisiting this 

second order meta-analysis is now needed to further evaluate whether music might actually be 

a special case allowing for far transfer. 

Our findings converge with those of other recent meta-analyses towards a consistent 

conclusion for the first two questions we raised in our introductory section: yes, there is a 

significant effect of musical training on general cognition, and it can be considered of practical 

interest, even if its size remains small according to Hattie (2008)’s barometer of influence. It 

would not seem reasonable to expect that a couple of hours of musical training per week could 

place music among the most efficient educational interventions (i.e., those with effect sizes d 

superior to .40). The fact that this recreational activity of low implementation cost succeeds to 

create significant far-transfer effects to general cognition is of interest for cognitive psychology, 

and it may have practical implications for educational science. The third question raises the 

need to specify whether music may cause these benefits. Revisiting S&G2020 data file here 

supported a general effect of music training, which is not significantly modulated by 

randomization or type of control. A causal interpretation thus cannot be rejected, even though 

this point needs further new studies that should rigorously control for randomization, fair active 

control group comparisons, the inclusion of both pre- and post-test measurements as well as the 

measurement of IQ at baseline. For now, all findings together lead us to conclude that music is 

not over and Elvis is still on stage.  
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Data availability 

The data set and R program used in the present manuscript are those of Sala & Gobet (2020) 

who made them openly available in OSF at https://osf.io/rquye/. The Supplementary Table 1 

reproduces the data file of Sala & Gobet (2020) with additional information about the 

excluded studies in each of the analyses reported in Tables 1 to 3. It is openly available in 

OSF at https://osf.io/w5kx9/. 
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Table 1. Summary presentation of the analyses presented in Sala & Gobet (2020, p. 1435f) 

  
Main analyses  

Senstivity analysis Step 1  

(3 studies removed) 

 

  m = 54; k = 254 m = 51; k = 235  

RVE 

g = 0.184; SE = 0.041; p < .001 g = 0.166; SE = 0.041; p < .001  

df = 38.36; 95% CI [0.101; 0.268]  df = 34.9; 95% CI [0.083; 0.249]  

τ2 = 0.041; I2 = 43.16% τ2= 0.036; I2 = 40.62%  

RE 
g = 0.176; SE = 0.037; p < .001  g = 0.149; SE = 0.035; p < .001   

τ2 = 0.033  τ2 = 0.024   

  Non active control group studies Non active control group studies:  
Step 2 (5 influential cases removed) 

Non active control group studies:   

  m = 41; k = 144 m =  40; k = 139 m =  39; k = 134 

RVE 

g = 0.228; SE = 0.045; p < .001 g = 0.226; SE = 0.045; p < .001 g = 0.181; SE = 0.042; p < .001 

df = 30.1; 95% CI [0.137;0.320] df = 29.2; 95% CI [0.133; 0.319] df = 21.9; 95% CI [0.093; 0.268] 

τ2= 0.042; I2 = 43.11% τ2 = 0.041; I2 = 42.96% τ2 = 0.018; I2 = 24.92% 

RE 
g = 0.201; SE = 0.041; p < .001 g = 0.200;  SE = 0.041; p < .001 g = 0.161;  SE = 0.037; p < .001 

τ2= 0.023  τ2 = 0.024  τ2 = 0.013  

Moderator 

Randomization 
p = .4871 p = .4801 p = .0422 

 
  Non-randomized studies  

 
  

g = 0.246; SE = 0.049; p < .001 

95% CI [0.140; 0.352] 

 
   Randomized studies   

 

 
  

g = 0.064; SE = 0.065; p = .381 

95% CI [-0.116; 0.244] 

  Active control group studies Active control group studies  

   m = 23; k = 110  m = 20; k = 96  

RVE 

g = 0.056; SE = 0.058; p = 0.350    g = -0.021; SE = 0.032; p = .558  

 df = 12.6; 95% CI [-0.069; 0.182] df = 4.2; 95% CI [-0.109; 0.068]  

τ2 = 0.025; I2 = 23.10% τ2 = 0; I2 = 0  

RE 
g = 0.090; SE = 0.060; p = .136 g = -0.010; SE = 0.035; p = .787  

τ2= 0.032 τ2= 0  
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Note: m refers to the number of studies, k refers to the number of effect sizes. We used S&G2020’s R script and data file, available at  

https://osf.io/rquye. Supplementary Table 1 lists the studies excluded at the various analysis steps.  
1 We run this moderator analysis (not reported in the manuscript) with the authors' program. It included the three moderators Randomization, 

Baseline and Age.  
2 The authors' program showed (lines 737-739) that the authors ran three separate analyses, one for each moderator: 1) randomization, 2) baseline, 3) 

age. When we run one moderator analysis with the three moderators, similar to the other moderator analyses performed before by the authors (lines 

579 and 665), the influence of the moderator Randomization was at p = .08. 

 

 

  

https://osf.io/rquye
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Table 2: Alternative sensitivity analyses of Sala & Gobet's data set, see main text for details (see Section 4.1) 

 

  
Sensitivity analysis Step 2 

Influential case analysis on all 

studies (main analysis data) 

    m = 51; k = 238 

RVE 
 g = 0.171; SE = 0.038; p < .0001 

 df = 33.40; 95% CI [0.095; 0.248] 

  τ2 = 0.015; I2 = 14.41% 

RE 
 g = 0.152; SE = 0.032; p < .0001  

 τ2 = .018 

  Non active control group studies: 
Non active control group 

studies 
  

Step 2 (all 9 influential cases 

removed) 

  m =  38; k = 130 m =  39; k = 134 

RVE 

g = 0.203; SE = 0.036; p <.0001 g = 0.202; SE = 0.035; p < .0001 

df = 19.77; 95% CI [0.128; 0.278] df = 20.18; 95% CI [0.129; 0.276] 

τ2 = 0; I2 = 0% τ2= 0; I2 = 0% 

RE 
g = 0.175; SE = 0.034; p < .0001 g = 0.170; SE = 0.032; p  <  .0001 

τ2 = .001 τ2 = 0.0002 

Moderator 

Randomization 
p = .1941 p = .1852 

 

Note: m refers to the number of studies, k refers to the number of effect sizes. Note that for the influential case analysis on all studies 

(Table 2 right), the moderators randomization and type of control did not reach significance (p = .48 and p = .06, respectively), but we 

reported the non-active control group studies data separately for comparison with Table 1 and Table 2 left. See Supplementary Material for 

Bayesian analyses. We used S&G2020’s R script and data file, available at  https://osf.io/rquye. Supplementary Table 1 lists the studies 

excluded at the various analysis steps.  
1 All three moderators (i.e., randomization, baseline, age) were entered in one moderator analysis. When three separate analyses were ran, 

then the moderator randomization was at p = .158.  
2 All three moderators (i.e., randomization, baseline, age) were entered in one moderator analysis. When three separate analyses were ran, 

then the moderator randomization was at p = .157. 

  

https://osf.io/rquye
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Table 3: Reanalysis of the data set of Sala & Gobet (2020) with a new approach (see Sections 4.2 and 4.3 for details) 

 

  

Removal of near-transfer active 

control group studies 

Additional removal of studies 

without pre-tests 

Additional removal of studies without pre-tests, 

combined with influential case analyses (7 effect 

sizes) 

  m = 51; k = 233 m = 42; k = 197 m = 41; k = 190 

RVE 

g = 0.208; SE = 0.043; p < .0001 g = 0.243; SE = 0.052; p < .0001 g = 0.234; SE = 0.046; p <.0001 

df = 36.99; 95% CI [0.121; 0.295] df = 34.41; 95% CI [0.136.; 0.345] df = 28.84; 95% CI [0.141; 0.327] 

τ2= 0.044; I2 = 45.81% τ2 = 0.059; I2 = 36.42% τ2 = 0.017; I2 = 13.03% 

RE 
g = 0.195; SE = 0.039; p <.0001 g = 0.226; SE = 0.045; p < .0001 g = 0.213; SE = 0.041; p < .0001 

τ2 = 0.033 τ2 = 0.037 τ2 = 0 

 

Note: m refers to the number of studies, k refers to the number of effect sizes. Note that for these three analyses, the moderators randomization 

and type of control did not reach significance (see main text for details). For comparison purpose with S&G’s analyses, we present separate 

analyses for the non-active and active control group studies respectively in the Supplementary Material. We used S&G2020’s R script and data 

file, available at  https://osf.io/rquye. Supplementary Table 1 lists the studies excluded at the various analysis steps.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://osf.io/rquye
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Supplementary material 

 

1. Bayesian analyses 

 

In addition to RVE et RE analyses, S&G 2020 reported Bayesian analyses. For completion, we used their program (available at 

https://osf.io/rquye) to also run Bayesian analyses on our analyses reported in the main text. S&G 2020 “estimated the Bayes factors (BFs) for 

two sets of competing hypotheses for g and τ. First, [they] compared the alternative hypothesis H1: g ≠ 0 with the null hypothesis H0: g = 0. 

Second, [they] compared the alternative hypothesis H1: τ > 0 with the null hypothesis H0: τ = 0. BFs > 1 indicated support for H1, while BFs < 1 

indicated support for H0. In line with common guidelines, H1 was considered as substantially supported only if BF > 3 (i.e., H1 three times more 

likely to be true than H0; e.g., Dougherty, Hamovitz, & Tidwell, 2016). Analogously, H0 was substantially supported only if BF < 0.333 (i.e., H0 

three times more likely to be true than H1).” (Sala & Gobet, 2020, page 1434). We used S&G2020’s distribution assumptions and priors. 

S&G2020 based their priors on Sala et al.’s (2019) second-order meta-analysis, notably expecting “the mean effect size to be null (prior g = 0) in 

models including active control groups and slightly positive (prior g = 0.150) in models including passive controls groups” (Sala & Gobet, 2020, 

page 1434).  

 

Table A. Bayesian analyses for the analyses presented in Table 2 and the main text 

 

    BFg BFτ  

Table 2 left Step 2 (all 9 influential cases removed); Non-active control group studies 261,108 0.007 

Table 2 right 
Influential case analysis on all studies (main analysis data); Non active 

control group studies  254,736 0.007 

Main text Near-transfer phonological vs. musical training 0.447 0.010 

 Near-transfer phonological vs. musical training without Herrera et al. 0.383 0.012 

    
 

Dougherty, M. R., Hamovitz, T., & Tidwell, J. W. (2016). Reevaluating the effectiveness of n-back training on transfer through the Bayesian 

lens: Support for the null. Psychonomic Bulletin & Review, 23, 206- 316. https://doi.org/10.3758/s13423-015-0865-9 

Sala, G., Aksayli, N. D., Tatlidil, K. S., Tatsumi, T., Gondo, Y., & Gobet, F. (2019). Near and far transfer in cognitive training: A second- order 

meta-analysis. Collabra: Psychology, 5, 18. https://doi.org/10. 1525/collabra.203 

 

  

https://osf.io/rquye
https://doi.org/10.3758/s13423-015-0865-9


 18 

2. Complementary analyses to Table 3 

 

For the three analyses reported in Table 3 (“Reanalysis of the data set of Sala & Gobet (2020) with a new approach”), the moderators 

randomization and type of control did not reach significance (see main text for details). For comparison purpose with S&G2020, we also 

analyzed the non-active and active control group studies separately. We used S&G2020’s R script and data file, available at https://osf.io/rquye. 

Our Supplementary Table 1 reproduces the data file of S&G2020 with additional information about the studies excluded at the various analysis 

steps. It is openly available in OSF at https://osf.io/w5kx9/. Below, we also present Bayesian analyses for these three analyses (see Section 1 

above for details of the implementation of the Bayesian analyses of S&G2020). 

 

Table B. Complementary analyses to Table 3 of the main text 

 

  

Removal of near-transfer active 

control group studies 

Additional removal of studies 

without pre-tests 

Additional removal of studies without pre-tests, 

combined with influential case analyses (7 effect 

sizes) 

  
Non active control group studies (= 

Sala & Gobet's main analysis, see 

Table 1) 

Non-active control group 

studies: 
Non-active control group studies: 

  

  m = 41; k = 144 m =  33; k = 114 m =  32; k = 110 

RVE 

g = 0.228; SE = 0.045; p < .001 g = 0.251; SE = 0.054; p < .0001 g = 0.242; SE = 0.056; p < .0001 

df = 30.1; 95% CI [0.137;0.320] df = 25.30; 955 CI [0.140; 0.362] df = 25.00; 95% CI [0.126; 0.357] 

τ2= 0.042; I2 = 43.11% τ2 = 0.040; I2 = 28.07% τ2 = 0.032; I2 = 21.91% 

RE 
g = 0.201; SE = 0.041; p < .001 g = 0.229; SE = 0.045; p < .0001 g = 0.219; SE = 0.049; p < .0001 

τ2= 0.023  τ2 = 0.008 τ2 = 0.005 

Moderator 

Randomization 
p = .487 p = .453* p = .337* 

  Active control group studies Active control group studies Active control group studies 

   m = 18; k = 89  m = 17; k = 83  m = 17; k = 80 

RVE 

g = 0.125; SE=.075; p = .121 g = 0.152; SE = 0.084; p  = .094 g = 0.168; SE = 0.051; p  = .009 

df = 12.35; 95% CI [-0.038; 0.287] df = 14.06; 95% CI [-0.294; 0.333] df = 9.71; 95% CI [0.053; 0.282] 

τ2 = 0.046; I2 = 35.59%  τ2 = .065; I2 = 34.23% τ2 = 0; I2 = 0% 

RE 
g = 0.147; SE = 0.072; p = .041 g = 0.184; SE = 0.095; p =.052 g = 0.172; SE = 0.071; p = .015 

τ2 = 0.044  τ2 = 0.064 τ2 = 0 

https://osf.io/rquye
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Note: m refers to the number of studies, k refers to the number of effect sizes. The grey-shaded area corresponds to Sala & Gobet's findings (see 

Table 1 main text). 

* All three moderators (i.e., randomization, baseline, age) were entered in one moderator analysis. 

 

 

 

 

Table C. Bayesian analyses to the analyses presented in Table B (see Section 1 above for details of the implementation of the Bayesian analyses 

of S&G2020) 

 

  

  BFg BFτ  

Removal of near-transfer active control group studies    
                                                            - Active control group studies  12.871 0.200 

Additional removal of studies without pre-tests    
                                                            - Non active control group studies  1.226609e+07  0.014 

                                                            - Active control group studies  70.801 0.154 

Combined with influential case analyses    
                                                            - Non active control group studies  864,078  0.011 

                                                            - Active control group studies  145.591  0.00553 
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