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KdV Hamiltonian as a Function of Actions

Introduction and main results

We consider the Korteweg de Vries (KdV) equation under zero mean-value periodic boundary conditions: q t = -q xxx + 6qq x , x ∈ T = R/Z, 1 0 q(x, t) dx = 0.

(1.1)

For any α ∈ R denote by H α the Sobolev space of real-valued 1-periodic functions with zero mean-value. In particular, we have H α = H α (T) = q ∈ L 2 (T) : q (α) ∈ L 2 (T), 1 0 q(x) dx = 0 , α 0.

We provide the spaces H α with the trigonometric base {e ±1 , e ±2 , e ±3 , ....}, where e j (x) = √ 2 cos 2πjx, e -j (x) = -√ 2 sin 2πjx, j 1.

We also introduce real spaces p α of sequences f = (f n ) ∞ 1 , equipped with the norms

f p p,α = n 1 (2πn) 2α |f n | p , p 1, α ∈ R, (1.2) 
and positive octants

p α,+ = f = (f n ) ∞ 1 ∈ p α : f n 0, ∀ n 1 .
In the case α = 0 we write p = p 0 , p + = p 0,+ and • p = • p,0 . The operator ∂ ∂x defines linear isomorphisms ∂ ∂x : H α → H α-1 . Denoting by ( ∂ ∂x ) -1 the inverse operator, we provide the spaces H α , α 0, with a symplectic structure by means of the 2-form ω 2 :

ω 2 (q 1 , q 2 ) = -(∂/∂x) -1 q 1 , q 2 , where •, • is the scalar product in L 2 (0, 1). Then in any space H α , α 1, the KdV equation (1.1) may be written as a Hamiltonian system with the Hamiltonian H 2 , given by H 2 (q) = 1 2 1 0 (q (x) 2 + 2q 3 (x)) dx.

That is, as the system

q t = ∂ ∂x ∂ ∂q H 2 (q), (1.3) 
e.g. see [Ku, KaP, HK] (note that H 2 is an analytic function on any space H α , α 1).

It is well known after the celebrated work of Novikov, Lax, Its and Matveev that the system (1.3) is integrable. It was shown by Kappeler and collaborators in a series of publications, starting with [Ka], that it admits global Birkhoff coordinates. Namely, for any α ∈ R denote by h α the Hilbert space, formed by real sequences b

= (b n , b -n ) ∞ 1 , equipped with the norm b 2 hα = n 1 (2πn) 2α (b 2 n + b 2 -n ).
We provide the spaces h α with the usual symplectic form

Ω 2 = n 1 db n ∧ db -n ,
and define the actions I = (I n ) ∞ 1 and the angles φ = (φ n ) ∞ 1 by

I n = 1 2 (b 2 n + b 2 -n ), φ n = arctan b n b -n . (1.4)
This is another set of symplectic coordinates on h α , since Ω 2 = dI ∧ dφ, at least formally. Then 1) There exists an analytic symplectomorphism Ψ : H 0 → h1 2 which defines analytic diffeomorphisms Ψ : H α → h α+ 1 2 , α -1, such that dΨ(0) = Φ, where Φ j 1 u j e j (x) + u -j e -j (x) = b, b j = |2πj| 1 2 u j , ∀ j.

(1.5)

2) The transformed Hamiltonian H 2 (Ψ -1 (b)) (which is an anlytic function on the space h3 2 ) depends solely on the actions I, i.e. K(I(b)) = H 2 (Ψ -1 (b)), where K(I) is an analytic function on the octant 1 3 2 ,+ . A curve q(•, t) ∈ C 1 (R, H 0 ) is a solution of (1.1) if and only if b(t) = Ψ(q(•, t)) satisfies the following system of equations (1.6) where I = (I(b)).

∂b n ∂t = -b -n ∂K ∂I n , ∂b -n ∂t = b n ∂K ∂I n , n 1, 
For 1)-2) with α 0 see [KaP] and with α = -1 see [KaT]. See [KuP] for the important quasilinearity property of the transformation Ψ.

Note that b hα = 2|I| 1,α .

Thus if I ∈ p + for some p < ∞, then I ∈ 1 -1 2 ,+ and the corresponding potential q ∈ H -1 .

By 2), in the action-angle variables (I, φ) the KdV equation takes the form

I t = 0, φ t = ∂ ∂I K(I). (1.7)
This reduction of KdV is due to and was found before the Birkhoff form (1.6). The action maps ψ → I j , j 1, are given by explicit formulas due to Arnold and are defined in a unique way. So the Hamiltonian K(I) also is uniquelly defined, see [FM]. But the symplectic angles are defined only up to rotations φ → φ + (∂/∂I)g(I), where g is any smooth function. So the transformation Ψ is not unique.

The Birkhoff coordinates b and the actions-angles (I, φ) make an effective tool to study properties of the KdV equation, see [KaT], and of its perturbations, see [START_REF] Kuksin | Damped-driven KdV and effective equations for long-time behaviour of its solutions[END_REF][START_REF] Huang | KdV equation under periodic boundary conditions and its perturbations[END_REF]. For both these goals it is important to understand properties of the Hamiltonian K(I) which defines the dynamics (1.6) and (1.7). But the only information about the function K(I) which follows from 1)-2) is that it is analytic on the spaces1 p,+ , p 3/2. 1 Denote by P j moments of the actions I, given by

P j = n 1 (2πn) j I n , j ∈ Z.
(1.8)

Note that

P 1 = 1 2 q 2 , if I = I(b), b = Ψ(q), (1.9) 
-this is the Parseval identity for the transformation Ψ, see [START_REF] Mckean | Hill's surfaces and their theta functions[END_REF][START_REF] Korotyaev | The estimates of periodic potentials in terms of effective masses[END_REF]. Due to (1.5), the linear part dK(0

)(I) of K(I) = H 2 (Ψ -1 (b)) at the origin equals 1 2 1 0 ∂ ∂x Φ -1 b 2 dx = P 3 . Therefore K(I) = P 3 (I) + O(I 2 ).
The cubic part 1 0 q 3 (x) dx of the Hamiltonian H 2 (q) is more regular than its quadratic part

1 2 1 0 q (x) 2 dx.
Thus it is natural to assume that the term P 3 is a singular part of K(I) and to study smoothness of the more regular quadratic part V , given by

H 2 (q) = K(I) = P 3 (I) -V (I).
(1.10)

Here the minus-sign is convenient, since below we will see that V 0. For any N 1 denote by N ⊂ 2 the N-dimensional subspace

N = {I = (I n ) ∞ 1 , I n = 0 ∀ n > N }, (1.11) and set ∞ = ∪ N . Clearly V is analytic on each octant N + (i.e., it analytically extends to a neighbourhood of N + in N ). So V is Gato-analytic on ∞ + . That is, it is analytic on each interval {(a + tc) ∈ ∞ + |t ∈ R}, where a, c ∈ ∞ + . It is known that ∂ 2 V (0) ∂I i ∂I j = 6δ i,j ∀ i, j 1, (1.12)
see [BoKu] and [KaP, Ku, HK]. So d 2 V (0)(I) = 6 I 2 2 . This suggests that the Hilbert space 2 rather than the Banach space 1 3 2 (which is contained in 2 ) is a distinguished phase-space for the Hamiltonian K(I). This guess is justified by the following theorem which is the main result of our work.

Theorem 1.1. The function V : ∞ + → R extends to a non-negative continuous function on the 2 -octant 2 + , such that V (I) = 0 for some

I ∈ 2 + iff I = 0. Moreover, 0 V (I) 8P 1 P -1 , ∀ I ∈ 1 1,+ , (1.13)
and π 10

I 2 2 (1 + P 1 2 -1 ) V 4 11 2 (1 + P 1 2 -1 ) 1 2 P 2 -1 + 6πe √ P -1 I 2 I 2 , ∀ I ∈ 2 . (1.14)
Let X be a Banach space which contains ˜ ∞ as a dense subsets. We say that the function V (I) agrees with the norm I X if V extends to a continuous function on

X + (= the closure of ∞ + in X) and F 1 ( I X ) V (I) F 2 ( I X ), ∀ I ∈ X + , where F 1 , F 2 are monotonous continuous functions from R + into R + such that F j (0) = 0 and F j (t) → ∞ as t → ∞, j = 1, 2.
It is easy to see that there exists at most one Banach space X as above (i.e., if X is another space, then X = X and the two norms are equivalent).

Estimates (1.14) imply that the function V (I) agrees with the norm I 2 . So 2 is the natural phase space for the non-linear part V of the Hamiltonian K(I). In Section 3 we shoe that 2 -sequences I correspond to potentials q ∈ H -1 and in general these potentials do not belong to H 1/2 (see there Remark 2).

A proof of the theorem is based on a new identity (see Theorem 4.2), representing V (I) in terms of the quasimomentum of the Hill operator with a potential q. It uses properties of the conformal mapping, associated with this quasimomentum, developed in [K1] - [K5].

Remarks. 1) (1.13) improves the known estimate |H 2 (q)| 4 5 P 3 (1 + P 4 3

3 ) from [K3].

2) We claim that the function V is real analytic on 2 + . This will be proven elsewhere.

3) The complete Hamiltonian K(I) is analytic on the space 1 3/2,+ . Our results show that the function K(I) -dK(0)(I) = -V (I) is smoother and continuously extends to a larger space 2 + . A natural question is if the function

K(I) -dK(0)(I) -1 2 d 2 K(0)(I, I) = K(I) -P 3 + 3 I 2 2
is even smoother and continuously extends to a larger space, etc. We do not know the answer. 4) By Theorem 1.1, V (I) admits a quadratic upper bound in terms of P 1 . The estimate (1.14) implies the exponential upper bound for V in terms of I 2 . The bottle neck of our proof which yields the unpleasant exponential factor in (1.14) is the Bernstein inequality, used in Section 3 to prove Lemma 3.1. We conjective that, in fact, V (I) is bounded by a polynomials of I 2 .

Consider the restriction of the function V (I) to N + with any N 1. It is known that the corresponding Hessian is non-degenerate:

det ∂ 2 V (I) ∂I i ∂I j 1 i,j N = 0, ∀ I ∈ + N .
(1.15)

This result was proven in [Kri] with serious omissions, fixed in [BiKu] (see also Appendix 3.6 in [Ku] and [HK]). Since V is analytic on N + , then (1.12) and (1.15) yield that the Hessian of

V | N + is a positive N × N matrix. Thus V is convex on + N . Since ∞ = ∪ N is dense in 2
, where V is continuous, we get Corollary 1.2. The function V (I) is convex on 2 + . Remark 5). By (1.12) and remark 2, the function V is strictly convex in some vicinity of the origin in 2 + (note that 2 + is the only phase-space where V is strictly convex). We conjecture that it is strictly convex everywhere in 2 + . In difference with V (I), the total Hamiltonian K(I) is not continuous on 2 + since its linear part P 3 (I) is there an unbounded linear functional. But P 3 (I) contributes to equations (1.6) the linear rotations

∂b n ∂t = -(2πn) 3 b -n , ∂b -n ∂t = (2πn) 3 b n , n 1.
So the properties of (1.6) essentially are determined by the component -V (I) of the Hamiltonian K(I). We also note that since P 3 (I) is a bounded linear functional on the space 1 3/2,+ ⊂ 2 , then the complete Hamiltonian K(I) = P 3 -V is concave on 1 3/2,+ . The flow of the KdV equation in the action-angle variables (1.7) is

(I, φ) → I, φ(t) = φ + tK (I) , t ∈ R, K (I) = ∂K(I) ∂I .
Since the function K is concave and analytic on 1 3/2,+ , then the flow-maps are twisting:

φ(t; I (2) , φ (1) ) -φ(t; I (1) , φ (1) ), I (2) -I (1) = t K (I (2) ) -K (I (1) ), I (2) -I (1) 0 ∀ t 0.
If the assertion of Remark 5 above holds true, then L.H.S. is -Ct

I (2) -I (1) 2 2
, where the positive constant C depends on I (2) , I (1) .

In the finite-dimensional case convexity (and strict convexity) of an integrable Hamiltonian significantly simplifies the study of long time behavior of actions of solutions for perturbed equations. Similar, we are certain that results of this work will help to study perturbations of the KdV equation (1.1), especially, those which are Hamiltonian. It is important that as a phase space our results suggest the Hilbert space 2 , rather than a weighted 1 -space.

Momentum, quasimomentum and KdV equation

2.1. Spectrum of the Hill operator. We consider the Hill operator T acting in L 2 (R) and given by

T = - d 2 dx 2 + q 0 + q(x),
where a 1-periodic potential q (with zero mean-value) belongs to the Sobolev space H α , α -1 and q 0 is a constant (so the potential q 0 + q may be a distribution). Below we recall the results from [K2] on the Hill operator with potentials q ∈ H -1 . The spectrum of T is absolutely continuous and consists of intervals (spectral bands) S n , separated by gaps γ n and is given by

S n = [λ + n-1 , λ - n ], γ n = (λ - n , λ + n ), where λ - n-1 λ - n λ + n , n 1. Re λ Im λ 0 λ + 0 λ - 1 λ + 1 λ - 2 λ + 2 λ - 3 λ + 3 λ - 4 Figure 1. The spectral domain C \ ∪S n and the bands S n = [λ + n-1 , λ - n ], n 1
We choose the constant q 0 = q 0 (q) in such a way that λ + 0 = 0. Note that a gap-length |γ n | 0 may be zero. If the n-th gap degenerates, that is γ n = ∅, then the corresponding spectral bands S n and S n+1 merge. The sequence 0 = λ + 0 < λ - 1 λ + 1 < . . . form the energy spectrum of T and is the spectrum of the equation -y + (q 0 + q)y = λy with the 2-periodic boundary conditions, i.e. y(x + 2) = y(x), x ∈ R. Here the equality means that λ - n = λ + n is a double eigenvalue. The eigenfunctions, corresponding to λ ± n , have period 1 when n is even, and they are antiperiodic, i.e., y(x + 1) = -y(x), x ∈ R, when n is odd.

In order to study the actions I n , n 1, we introduce the quasimomentum function. We can not introduce the standard fundamental solutions for the operator T , since the perturbation q is too singular if α < 0. Instead we use another representation of T . Define a function ρ(x) by ρ(x) = e

x 0 q * (t)dt , where q * ∈ H 0 q * = q. Consider the unitary transformation U : L 2 (R, ρ 2 dx) → L 2 (R, dx) given by the multiplication by ρ. Then T is unitarily equivalent to

T 1 y = U -1 T U y = - 1 ρ 2 (ρ 2 y ) + (q 0 -q 2 * )y = -y -2q * y + (q 0 -q 2 * )y,
acting in L 2 (R, ρ 2 dx). Note that the norm in this space is equivalent to the original L 2norm. This representation clearly is more convenient, since q * and q 2 * are regular functions. It is convenient to write the the spectral parameter λ as λ = z 2 .

Let ϕ(x, z) and ϑ(x, z) be solutions of the equation

-y -2q * y + (q 0 -q 2 * )y = z 2 y, z ∈ C, (2.1) satisfying ϕ (0, z) = ϑ(0, z) = 1 and ϕ(0, z) = ϑ (0, z) = 0. The Lyapunov function is defined by ∆(z) = 1 2 (ϕ (1, z) + ϑ(1, z)). (2.2)
This function is entire and even, i.e., ∆(-z) = ∆(z) for all z ∈ C. It is known that ∆( λ ± n ) = (-1) n , n 0 and the function ∆ (z) has a unique zero z n in each gap [ λ - n , λ + n ] ⊂ R + (see e.g., [Kr], [K7]).

2.2. Momentum and quasimomentum. Consider a strongly increasing odd sequence u n , n ∈ Z, of real numbers, u n = -u -n , such that u n → ±∞ as n → ±∞, and a non-negative sequence

h = (h n ) ∞ 1 ∈ ∞ + .
We define the following domains

K(h) = C \ ∪ n∈Z Γ n , K + (h) = C + ∩ K(h),
where

Γ 0 = ∅, Γ n = (u n -ih n , u n + ih n ) = -Γ -n ,
and C + = {z : Im z > 0}. We call K + (h) the "comb" and denote its points by k = u + iv. Then there exists a unique conformal mapping z = z(k):

z : K + (h) → C + , normalized by the condition z(0) = 0 and the asymptotics:

z(iv) = iv + o(v) as v → +∞, where z = x + iy, k = u + iv.
(2.3)

We call z(k) "the comb mapping". Define the inverse mapping

k = z -1 : C + → K + (h), k(z) = u(z) + iv(z). (2.4)
This function is continuous in C + up to the boundary, i.e., on the closure C + . It is convenient to introduce "gaps" g n , "bands" σ n and the "spectrum" σ of the comb mapping by:

g n = (z - n , z + n ) = (z(u n -0), z(u n + 0)), σ n = [z + n-1 , z - n ], σ = ∪σ n , g 0 = ∅, z ± 0 = 0. Note that the identities λ ± n = z ± n 2 yields |γ n | = z + n 2 -z - n 2 = |g n |(z + n + z - n ), ∀ n 1. (2.5)
Define the momentum domain Z = C \ ∪ n∈Z g n . The function k(z) may be continued from C + to the domain Z by the symmetry the formula k(z) = k(z), Im z < 0. Thus we obtain a conformal mapping k : Z → K(h), called the quasimomentum mapping (or shortly the quasimomentum), which generalizes the classical quasimomentum ( see e.g. [RS]). A point z ∈ Z is called momentum and a point k ∈ K(h) is called quasimomentum. It is odd, i.e., k(-z) = -k(z), since the domains K(h) and Z both are invariant under the inversion z → -z.

If the spectrum of the comb mapping k(z) has only finite number of open gaps, then k(z) is called a finite-gap quasimomentum. Different properties of the finite-gap quasimomentum (and of more general conformal mappings) were studied by Hilbert one hundred years ago, see in [J].

The abstract quasimomentum, which we have just defined, is related to the spectral theory of the Hill operator T by the following construction invented in [MO]. Namely, let {z ± n , n ∈ Z} be an odd sequence as above. For n 0 denote λ ± n = (z ± n ) 2 . Then {λ ± n , n 0} is the energy spectrum of the Hill operator T with a potential q 0 + q, where q ∈ H α , α 0, if and only if the corresponding comb domain

K(h) is such that u n = πn, n ∈ Z and h = (h n ) ∞ 1 ∈ 2 α+1 . Moreover, in this case cos k(z) = ∆(z) is the Lyapunov function for T .
In [K2] the construction was generalized for potentials from H -1 , see below Theorem 2.1. Despite the objects, treated by Theorem 1.1, are defined in terms of Hill operators with periodic potentials, for the proofs in Sections 3-4 below we need the quasimomentum mapping k(z), k = u + iv, z = x + iy, corresponding to general odd sequences {u n }. Now we summarize their basic properties, refering for a proof to [START_REF] Kargaev | Effective masses and conformal mappings[END_REF] 

[K1], [K2], [K4], [L1]-[L3], [MO], [M]. 1) v(z) Im z > 0 and v(z) = -v(z) for all z ∈ C + and k(-z) = -k(z), k(z) = k(z), all z ∈ Z, (2.6) 2) v(z) = 0 for all z ∈ σ n = [z + n-1 , z - n ], n ∈ Z. 0 Re z Im z z - 1 z + 1 z - 2 z + 2 z - 3 z + 3 -z - 1 -z + 1 -z - 2 -z + 2 -z - 3 -z + 3 Figure 2. z-domain Z = C \ ∪g n , where z = √ λ and momentum gaps g n = (z - n , z + n ) 0 Re k Im k π -π 2π -2π 3π -3π π + ih 1 -π + ih 1 2π + ih 2 -2π + ih 2 3π + ih 3 -3π + ih 3 Figure 3. k-plane and cuts Γ n = (πn -ih n , πn + ih n ), n ∈ Z z - n z + n v n v z + n-1 z - n+1 z n Figure 4. The graph of v(z + i0), z ∈ g n ∪ σ n ∪ σ n+1 and |h n | = v(z n + i0) > 0 3) If some g n = ∅, n ∈ Z, then h n v(z + i0) = -v(z -i0) > 0, v (z + i0) < 0 ∀ z ∈ g n , (2.7)
see Fig. 4. The function v(z + i0)| gn > 0 attains its maximum at a point z n ∈ g n , where

h n = v(z n + i0), v (z n ) = 0.
(2.8)

Moreover, v = 0 on R \ ∪ n∈Z g n , (2.9) v(z + i0) > v n (z) = |(z -z - n )(z -z + n )| 1 2 > 0, ∀ z ∈ g n , (2.10) |g n | 2h n , |σ n | u n -u n-1 , ∀ n ∈ Z.
(2.11) 4) u (z) > 0 on each σ n , and

u(z) = πn, ∀ z ∈ g n = ∅, n ∈ Z.
(2.12)

5) The function k(z) maps a horizontal cut (a gap ) g n onto the vertical cut Γ n and maps a spectral band σ n onto the segment [π(n -1), πn], for all n ∈ Z.

6) The following asymptotics hold true:

z ± n = πn + o(1)
as n → ∞.

(2.13)

7) If h ∈ 2 and inf n 1 (u n+1 -u n ) > 0, then v(z +i0), z ∈ R belongs to L 1 (R)
and the following identity holds true:

k(z) = z + 1 π n∈Z gn v(t) t -z dt, ∀z ∈ Z. (2.14)
For additional properties of the comb mapping

z(k), see [K1]-[K6], [L1]-[L3].
2.3. Quasimomentum and the KdV Hamiltonian. Recall that we choose the constant q 0 0 in such a way that λ + 0 = 0. If q ∈ H 0 (T), then the quasimomentum k(•) has asymptotics

k(z) = z - Q 0 z - Q 2 + o(1) z 3 as Im z → ∞, (2.15) 
see [K2]. If q, q ∈ H 0 , then the asymptotics (2.15) may be improved:

k(z) = z - Q 0 z - Q 2 z 3 - Q 4 + o(1) z 5 as z → +i∞, (2.16)
and

k 2 (z) = λ -S -1 - S 0 λ - S 1 + o(1) λ 2 as λ = z 2 , z → +i∞, (2.17) 
where

Q j = 1 π R z j v(z + i0) dz 0, j 0, S j = 4 π ∞ 0 z 2j+1 u(z)v(z + i0) dz, j -1.
(2.18) Note that Q 2j+1 = 0 for all j 0 by the symmetry. The involved quantities Q j and S j are defined by converging integrals (see [START_REF] Kargaev | Effective masses and conformal mappings[END_REF], [K5]), and satisfy the following identities

q 0 (q) = S -1 = 2Q 0 if q ∈ H -1 , (2.19) H 1 (q) = 1 0 q 2 (x) dx = 2P 1 = 4S 0 = 8Q 2 -4Q 2 0 if q ∈ H 0 , (2.20) H 2 (q) = 8(S 1 -S -1 S 0 ), S 1 + 2Q 0 Q 2 = 2Q 4 if q ∈ H 1 , (2.21) 8Q 2 = q 2 + q 2 0 , 2 4 Q 4 = H 2 (q + q 0 ). (2.22)
See [K2], [K5].

2.4. The KdV actions. The components I n of the action vector I = (I n ) ∞ 1 (see (1.4)) may be calculated with the help of a general formula due to Arnold, which in the KdV-case takes the form

I n = (-1) n+1 2 π gn z 2 ∆ (z) dz |∆ 2 (z) -1| 1 2 0, n 1, (2.23)
see [FM]. These integrals may be re-written, using the quasimomentum. Indeed, since sin k(z) = 1 -∆ 2 (z), then

I n = - 1 πi cn z 2 ∆ (z) sin k(z) dz,
where c n is a contour around g n . It is convenient to introduce contours χ n around Γ n by

χ n = k ∈ K(h) : dist (k, Γ n ) = π 4 ⊂ K(h), n 1, (2.24)
and define the contours c n as

c n = z(χ n ) ⊂ Z, ∀ n 1.
The differentiation of ∆(z) = cos k(z) gives k (z) = -∆ (z)/sin k(z). This yields

I n = 1 iπ cn z 2 k (z) dz = - 2 iπ cn zk(z) dz = 4 π gn zv(z + i0) dz 0, (2.25)
since on g n the function k = πn + iv and v satisfies (2.7). This representation for I n is convenient and is crucial for our work. In particular, below in Lemma 3.1 we derive from (2.25) the following two-sided estimates:

2 3π h n |γ n | < I n 2h n |γ n | π , if |γ n | > 0.
Using (2.25) jointly with (2.12) and (2.9), we easily see that

P 3 = n 1 (2πn) 3 I n = 32 π ∞ 0 zu 3 (z)v(z + i0) dz.
(2.26)

Recall that P 3 (I) is the linear in I part of the Hamiltonian H 2 , see (1.10).

2.5. Marchenko-Ostrovski construction for potentials q ∈ H -1 . The Marchenko-Ostrovski construction, described in Section 2.1, defines the mapping q → h, acting from H j-1 into 2 j , j = 0, 1, ..... The results below are proven in [MO] for j 1 and in [K2] for j = 0. Theorem 2.1. The mapping q → h acting from H j-1 into 2 j , j = 0, 1 is a surjection. It satisfies the following estimates

q -1 2 h 2 (1 + 4 h 2 ), h 2 3 q -1 (1 + 2 q -1 ) 2 , ∀ q ∈ H -1 , (2.27)
where q -1 = q H -1 . For each h ∈ 2 there exists a function q ∈ H -1 , and a unique conformal mapping k(•, h) : Z → K(h) defined in (2.4). Moreover,

cos k(z, h) = ∆(z, h), z ∈ Z, (2.28)
where ∆(z, h) is the Lyapunov function for q, and k(z) satisfy

k(z, h) = z - Q 0 + o(1) z as z → i∞, (2.29) k(z ± n , h) = πn ± i0, k(z n ± i0, h) = πn ± ih n , n 1.
(2.30)

In particular, the real numbers z ± n 2 , satisfying (2.30), form the energy spectrum of the operator T . Furthermore, if a sequence h ν , ν 1 converges strongly in 2 to h as ν → ∞, then ∆(z, h ν ) → ∆(z, h) uniformly on bounded subsets of C.

In order to prove our main result, Theorem 1.1, we use Theorem 2.1 to reformulate it as questions from the conformal mapping theory in terms of quasimomentum of the Hill operator. To proceed we need auxillary results from previous work of the first author: Lemma 2.2. Let h ∈ 2 and let each u n = πn, n 1. Then following estimates hold true: 

π 4 Q 0 h 2 2 π 2 2 1 + √ 2 π Q 1 2 0 Q 0 , (2.31) ρ 2 2 (16) 2 Q 0 , (2.32) h 2 ∞ 2 Q 0 2 π ∞ 0 zv(z) dz u(z) = j 1 I j 2πj = P -1 , (2.33) h ∞ 4 π ∞ j=1 |γ j | 2πj . ( 2 
∞ 0 zv(z) dz u(z) = j 1 I j 2πj ,
and we get (2.33). Finally, using (2.33), (2.8) and (2.12) we obtain

h 2 ∞ 4 π ∞ 0 zv(z) dz u(z) 4 π j 1 h j g j z dz u(z) = 2 π j 1 h j |γ j | πj 2 h ∞ π j 1 |γ j | πj , (2.35)
which gives (2.34).

Local estimates

In this section we derive estimates for h n , I n and |γ n | with a fixed n 1. We use the following constants

C -= e √ P -1 , C I = 1 + P -1 C 0 = ch h ∞ e √ 2P -1 , (3.1)
where the inequality follows from lemma below.

Lemma 3.1. Let h ∈ 2 and let each u n = πn, n 1. Then for each n 1 the following estimates hold true:

2 3π h n |γ n | < 2 3π h n |g n |(z n + z - n + z + n ) < I n 2h n |γ n | π , if |γ n | > 0, (3.2) z ± n πn + n j=1 |g j |, (3.3) πn 2z ± n + ρ 2 2 π , ρ = (ρ n ) ∞ 1 , ρ n = π -|σ n |, (3.4) 2n C 0 z ± n , h n √ C 0 2 |g n |, (3.5) z - n z + n zn ε - ε + f - f + v(zn + i0) = hn v(z + i0) Figure 5. The graphs of v(z + i0) and f ± 2πnh 2 n C 0 3π 2 I n + 2 ρ 2 π h 2 n , (3.6) 1 C I |γ n | 4πn h n πC 3 2 0 |γ n | 8πn . (3.7) 1 3πC I |γ n | 2 (2πn) I n C 3 2 0 2 |γ n | 2 (2πn) , (3.8) 8C -3 2 0 3π 2 (2πn)|h n | 2 I n 8nC I h 2 n .
(3.9)

Proof. We show (3.2). Using (2.7), (2.8) and standard convexity arguments (see Fig. 5) we have

v(z - n + t + i0) f -(t) = t h n ε - , t ∈ (0, ε -), ε -= z n -z - n > 0. (3.10)
This yields

I - n = 4 π zn z - n zv(z) dz 4 π ε - 0 (z - n + t)f -(t)dt = 4 π h n ε - z - n ε 2 - 2 + ε 3 - 3 = 2 π h n ε -z n - ε - 3 . Let f + (t) = (ε + -t) hn ε + , t ∈ (0, ε + ), ε + = z + n -z n > 0.
A similar argument gives

I + n = 4 π z + n zn zv(z) dz 4 π ε + 0 (z + n +t-ε + )f + (t)dt = 4 π h n ε + z + n ε 2 + 2 - ε 3 + 3 = 2 π h n ε + z n + ε + 3 . Denoting z 0 n = 1 2 (z + n + z - n )
, we obtain

I n = I - n + I + n > 2 π h n ε -(z n - ε - 3 ) + ε + (z n + ε + 3 ) = 2 π h n z n |g n | + ε 2 + -ε 2 - 3 = 2 π h n |g n | z n + 2 z 0 n -z n 3 = 2 3π h n |g n |(z n + 2z 0 n ) 2 3π h n |g n |2z 0 n = 2 3π h n |γ n |.
This implies the first two estimates in (3.2). Using (2.7) for all z ∈ g n , we get

I n < 4 π h n gn z dz = 2 π h n |γ n |
, which gives us the last estimate in (3.2). We show (3.3). It is clear that

z + n = πn + n 1 |g j | -(π -|σ j |) , all n 1. (3.11)
Since by (2.11), ρ j = π -|σ j | 0 and |g n | = z + n -z - n , we get (3.3). We show (3.4). Using identities (3.11) we obtain

πn z ± n + n 1 ρ j z ± n + n 1 2 ρ 2 z ± n + πn 2 + ρ 2 2 2π ,
which yields (3.4).

In order to prove (3.5) we use an argument from [MO]. This is a weak point in our proof, which gives the exponential factor in (3.5) and later in (1.14). The Taylor formula implies (3.12) for some z n ∈ σ n = [z + n-1 , z - n ] and all n 1. Using the Bernstein inequality for the bounded exponential type functions (see e.g., [S]) we obtain

2 = |∆(z - n ) -∆(z + n-1 )| |∆ ( z n )||σ n |,
sup z∈R |∆ (z)| sup z∈R |∆(z)| = C 0 = ch h ∞ e h ∞ .
(3.13) Combining (3.12) and (3.13) we get 2n C 0 z ± n for all n 1, which yields the first estimate in (3.4).

Let n be even and let |z - n -z n | |g n |/2 (for other cases the proof is similar). The identity ch h n = ∆(z n ) (which follows from (2.30)) and the Taylor formula imply We show (3.6). Using (3.4), (3.5), (3.2), (2.5) we obtain

h 2 n 2 ch h n -1 = ∆(z n ) -1 = 1 2 ∆ ( z - n )(z - n -z n ) 2 (3.14) for some z - n ∈ (z - n , z n ).
πnh 2 n (z - n + z + n )h 2 n + ρ 2 2 π h 2 n (z - n + z + n ) √ C 0 2 |g n |h n + ρ 2 2 π h 2 n = √ C 0 2 |γ n |h n + ρ 2 2 π h 2 n √ C 0 2 3π 2 I n + ρ 2 2 π h 2 n , which yields (3.6).
We show (3.7). Using (2.5), (3.3), (2.33) and (2.11) we obtain

|γ n | 4πn = (z - n + z + n )|g n | 4πn 1 + g ∞ π h n 1 + √ 8P -1 π h n C I h n .
Recalling that C 0 = ch h ∞ and using (3.5) and (2.5), we obtain

h n C 1 2 0 |g n | 2 = C 1 2 0 |γ n | 2(z - n + z + n ) πC 3 2 0 |γ n | 8πn ,
and (3.7) is proven. Estimates (3.7) and (3.2) imply the first estimate in (3.8):

|γ n | 2 (2πn) 2C I h n |γ n | 3πC I I n .
Combining the last estimate in (3.7) and (3.2) we obtain the second estimate in (3.8).

We show (3.9). Using (3.2) and (3.7) we obtain

I n 2h n |γ n | π 8nC I h 2 n ,
which yields the second estimate in (3.9). Using (3.7) and (3.2), we obtain

2πnh 2 n π 4 C 3 2 0 h n |γ n | 3π 2 8 C 3 2 0 I n ,
and get the first.

For any h ∈ ∞ we define integrals V n as

V n = 8 π gn zv 3 (z) dz 0, n 1. (3.16)
These quantities are important for our argument since, as we show below, V = n 1 (4πn)V n for I ∈ 2 + . Lemma 3.2. Let h ∈ ∞ and let each u n = πn, n 1. Then for n 1 the following relations hold true:

1 5 h 2 n I n 2 5π h 3 n |γ n | 2 5π h 3 n |g n |(3z n + 2z 0 n ) V n 2h 2 n I n , (3.17) 4 πi cn zk 4 (z) dz = (4πn)V n -(2πn) 3 I n . (3.18)
Proof. We show (3.17). Let g n = ∅. Using (3.10) we get v(z

- n + t + i0) f -(t) = th n /ε -, t ∈ (0, ε -), where ε -= z n -z - n > 0. Therefore V - n := 8 π zn z - n zv 3 (z) dz 8 π ε - 0 (z - n + t)f 3 -(t)dt = 8 π h 3 n ε 3 - z - n ε 4 - 4 + ε 5 - 5 = 2 π h 3 n ε -z - n + 4ε - 5 = 2 π h 3 n ε -z n - ε - 5 . Similar argument yields v(z n + t + i0) f + (t) = (ε + -t)h n /ε + , t ∈ (0, ε + ), where ε + = z + n -z n > 0. Thus V + n = 8 π z + n zn zv 3 (z) dz 8 π ε + 0 (z + n + t -ε + )f 3 + (t)dt = 8 π h 3 n ε 3 + z + n ε 4 + 4 - ε 5 + 5 = 2 π h 3 n ε + z + n - 4ε + 5 = 2 π h 3 n ε + z n + ε + 5 .
Summing these relations we obtain

V n = V - n + V + n > 2 π h 3 n ε -(z n - ε - 5 ) + ε + (z n + ε + 5 ) = 2 π h 3 n z n |g n | + ε 2 + -ε 2 - 5 = 2 π h 3 n |g n | z n + 2 z 0 n -z n 5 = 2 5π h 3 n |g n |(3z n + 2z 0 n ).
Using (2.7), we get V n (8h 2 n /π) gn zv(z, h) dz = 2h 2 n I n , which yields the last two estimates in (3.17). The second follows from (2.5) and the first follows from the last estimate in (3.2).

Using (2.7), (2.12) and (2.25) we obtain 4

πi cn zk 4 (z) dz = 4 πi cn z(u 2 -v 2 + 2iuv) 2 dz = - 8 πi gn 2z(u 2 -v 2 )(2iuv) dz = 32 π gn z(v 2 -u 2 )uv dz = (4πn)V n -(2πn) 3 I n .
This proves (3.18).

Remark. 1) In particular, (3.8) yields that I ∈ 2 + iff γ ∈ 4 -1 . 2) Due to [K2], for any N 0 > 1 and ε ∈ (0, 1 4 ) there exists a potential q ∈ H -1 such that |γ n | = n ε , for all n > N 0 . Then γ = (|γ n |) ∞ 1 ∈ 4 -1 and (3.8) gives that I ∈ 2 + . It is clear that q / ∈ L 2 (T), since the gap length

|γ n | is increasing. Note that if I ∈ 2 + , then (3.7) gives n 1 |γ n | 4 /n 2 < ∞, which yields (|γ n |) ∞ 1 ∈ 2 -1 2
. This and the standard relationship between the gap lengths and the Fourier coefficients of potential imply q ∈ H -1 2 (e.g., see [K2], where an analogy of this relation is established for

(|γ n |) ∞ 1 ∈ 2 -1
and for (|γ n |) ∞ 1 ∈ 2 ). 3) Relations (3.8) show that asymptotically the actions I n are equivalent to the weighted squared gap-length |γ n | 2 /2πn. It is known that the gap-length |γ n | is asymptotically equivalent to the module of the Fourier coefficients |q n | of the potential q (see [MO], [M] for the equivalence and see [K4] for the corresponding estimates). The asymptotical equivalences nI n ∼ |γ n | 2 ∼ |q n | 2 and the corresponding estimates are important for the spectral theory of the Hill operator T and the theory of KdV.

Proof of Theorem 1.1

We remind that V (I) = P 3 -H 2 is the non-linear part of the KdV Hamiltonian, written as a function of actions, see (1.8) and (1.10). Identities (2.21) and (2.25) represent H 2 and I j as integrals in terms of the quasimomentum k = u + iv. They allow to write V in a similar form. We start with an integral representation for V for the case of smooth potentials.

Lemma 4.1. Let q ∈ H 1 . Then V is finite, nonnegative and satisfies

V = 32 π ∞ 0 zu(z)v 3 (z) dz. (4.1)
Proof. Since q ∈ H 1 , then H 2 is finite and I ∈ 1 3/2,+ . So P 3 is finite, as well as V . To prove (4.1) we start with a finite-gap aproximation for the momentum spectrum σ M = R \ ∪g n of the potential q 0 + q, obtained by closing the gaps g m with large m. Namely, we fix r > 0 and consider a new momentum spectrum σ r M = σ M ∪ (-∞, -r) ∪ (r, ∞), where the new gaps g r n are given by r) .

g r n = g n if g n ⊂ (-r, r) ∅ if g n ⊂ (-r,
The variables corresponding to σ r M will be indicated the upper index r. Due to the general construction, presented in Section 2.2, for the finite-gap momentum spectrum σ r M there exists a unique conformal mapping

k r : C \ g r → C \ Γ r n , Γ r n = (u r n + ih r n , u r n -ih r n ), h r n 0,
satisfying the asymptotics k r (z) = z -O(1)z -1 as |z| → ∞. By (2.14), each function k r (z) -z is analytic at ∞. The sequence of real numbers u r n , n ∈ Z is odd, strongly increasing and u r n → ±∞ as n → ±∞. In general, k r is not a quasimomentum for some periodic potential, since not necessarily u n = πn for all n.

For each r we introduce Q r m , S r m , P r 3 and V r by relations (2.18), (2.26) and (4.1) respectively, where k = k r , u = u r and v = v r . Since v r (x) = 0 for large real x and v r (x + i0), u r (x) 0 for real x 0, then all these quantities are finite and non-negative. It is known (see [L1]

-[L3]) that v r (x) v(x), |u r (x)| |u(x)| x ∈ R, as r → ∞,
and that k r converges to k uniformly on compact sets from C \ σ M . From these convergence and Levy's theorem it follows that

Q r m Q m , S r m S m , P r m P m , V r V as r → ∞, (4.2) 
for m = -1, 0, 1, 2, ... (some limits may be infinite).

Assume that for each r sufficiently large we have proved that

8(S r 1 -S r -1 S r 0 ) = P r 3 -V r . (4.3)
Then sending r → ∞ using (4.2) and evoking (2.21), we get that H 2 = P 3 -(r.h.s. of (4.1)).

Since H 2 = P 3 -V , we recover (4.1). So it remains to show (4.3). Fix r > 1 large enough and consider the integral |z|=t zk 4 (z) dz. The function z(k r (z)) 4 is analytic in {|z| > r}. For any m 1 we write its Tailor series at infinity, omitting the index r for brevity:

k(z) = z - Q 0 z - Q 2 z 3 ... - Q 2m z 2m+1 + O(1) z 2m+2 as |z| → ∞. (4.4)
Due to (4.4) we get 

zk 4 = z z 2 -S -1 - S 0 z 2 - S 1 + o(1) z 4 2 = z 5 1 - S -1 z 2 - S 0 z 4 - S 1 + o(1) z 6 = z 5 1 -2 S -1 z 2 + S 0 z 4 + S 1 + o(1) z 6 + S -1 z 2 + S 0 z 4 2 + .. = z 5 + .. -2 S 1 -S 0 S -1 z + O(1) z 2 . If t > r, then 1 2πi |z|=t zk 4 (z) dz = -2(S 1 -S 0 S -1 ), (4.5) since v(z) = 0 for real z such that |z| > r. Thus 1 2πi |z|=t zk 4 (z) dz = 1 2πi |z|=t z(u 2 -v 2 + 2iuv) 2 dz = -1 πi R 2z(u 2 -v 2 )(2iuv)dz = - 8 π ∪ n 1 gn z(u 2 -v 2 )uv dz. ( 4 
(S 1 -S 0 S -1 ) = 32 π ∞ 0 z(u 2 -v 2 )uv dz = 32 π n 1 gn z(u 2 -v 2 )uv dz = P 3 -V, which yields (4.3). Let 0 < a < 1 4 . We note that since |h 2 2,a = n 1 (2πn) 2a-1 (2πnh 2 n ), then h 2 2,a C 2-4a h 4,1 , where C 2 t = n 1 1 (2πn) t < ∞ if t > 1. ( 4 
∞ 0 zu(z)v 3 (z) dz,
ii) satisfies the following estimates 1 5

n 1 (4πn)h 2 n I n W 2 n 1 (4πn)h 2 n I n , (4.9) W 4 h 2 ∞ P 1 ; (4.10) iii) is continuous on 2 + ; iv) on the octant ˜ ∞ 3/2,+ it coincides with V (I). Proof. Estimates (3.9) imply that h ∈ 4 1 iff I ∈ 2 + . Due to the last inequality in (3.17), W n 1 (4πn)2h 2 n I n 4 I 1/2 2 h 2 4,1 ,
So W is defined by a converging series and satisfies the second estimate in (4.9). Using the lower bound for V n in (3.17) we recover the first estimate in (4.9). Estimate (4.10) follows from (4.9).

Since u = πn on g n and u vanishes outside ∪g n , then W (I) has the integral representation, required by i).

Let a sequence I s = (I s n ) ∞ 1 -→ I strongly in 2 as s → ∞. To prove iii) we need to show that uniformly on bounded subsets in C. These convergences and (2.25) imply that for each n the actions I n (h s j ) and I n (h s j ) converge to limits I n (h ) and I n (h ), which must equal I n . That is, h and h belong to the same iso-spectral class. Since h , h ∈ 2 , then by Theorem 2.1 we have h = h . This proves (4. The last assertion follows from the integral representation for W (I) and (4.1) since q ∈ H 1 means that I ∈ 1 3/2,+ .

W (I s ) → W (I) as s → ∞. ( 4 
Proof of Theorem 1.1. Theorem 4.2 gives that the function V : ∞ → R extends to a non-negative continuous function on the octant 2 + . Using estimates (4.10) and (2.33) we obtain V 4 h 2 ∞ P 1 8P -1 P 1 , which yields (1.13). If I = 0, then (1.13) implies V (I) = 0. let V = 0 for some I. Since the terms V n are non-negative, then each V n = 0 and (3.17) implies that I = 0.

It remains to prove (1.14). Estimates (4.9) and (3.9) give

V 2 5 n 1 (2πn)h 2 n I n π 10C I I 2 2 , (4.17) 
which yields the first inequality in (1.14). Now we show the second. Using (4.9) and (3.6) we find that

V n 1 (8πnh 2 n )I n n 1 C 1 2 0 6πI 2 n + 8 ρ 2 2 π h 2 n I n 6πC 1 2 0 I 2 2 + 8 ρ 2 2 π h 2 h ∞ I 2 .
Using (2.31), (2.32) and (2.33) we obtain

ρ 2 2 h 2 h ∞ π4 4 1 + Q 1 2 0 1 2 Q 2 0 .
Combining these estimates we get that Together with (2.33) this yields the required estimate, since

V 6π C 0 I 2 2 + 4 11 2 (1 + Q 1 2 0 ) 1 2 Q 2 0 I 2 .
C 0 C -= exp √ 2P -1 .
Finally, as a by-product of some relations, derived above in this work, we get two-sided algebraical bounds on the norm q in terms of P 3 = I 1, 3 2 (see [K4] for two-sided algebraical estimates of q (m) in terms of P m+ 1 2 for all m 0). Proposition 4.3. The following estimates hold true:

q 2 4(P 3 + 2P 2 1 ), (4.18) P 3 q 2 2 + q √ 2 q 2 + 2π q 3 (1 + q 1 3 ). (4.19)

4

  |g n | 2 , which gives the second estimate in (3.5).

  V n -(2πn) 3 I n = 4 πi cn zk 4 (z) dz = -8 πi χn z 2 (k, h)k 3 dk.By this relation, (2.25) and (4.15) we haveV n (I s j ) → V n (I) as j → ∞ for each n = 1, 2, 3..... (4.16) For any N denote W (N ) (I s ) = n N (4πn)V n (I s ).Using (3.17) we getW (N ) (I s ) n N (8πn)(h s n ) 2 I s n = A N + B N , I s -I 2 ,then (4.12) and (4.16) yield the required convergence (4.11).

  ∈ 2 a . Indeed, assume that this is not the case. Then by (4.12) there are two different vectors h , h ∈ 2 a and two subsequence {s j } and {s j } such that h s j -→ h , h s j -

										.11)
	Using (3.9) and (3.1) we have							
				h s 4 4,1	3π 2 8	C	3 2 0 I s 2 2 ,
	where C 0 exp 2P -1 (I s ) and P -1 (I) = n 1 I n /(2πn) C 2 I 2 . Together with (4.7) this
	yields the estimates								
	sup s 1	h s	4,1 < ∞,	sup s 1	h s	2,a < ∞ if a <	1 4	.	(4.12)
	We claim that								
		h s -→ h		weakly in 2 a	as s → ∞,	(4.13)
	for some h → h				weakly in 2 a .	(4.14)
	Then								
	h s j -→ h , h s j -→ h				strongly in 2 ν ,
	for each ν < a. Using Theorem 2.1 and the identity
		k(z, h) =	0	z	∆ (t, h) 1 -∆ 2 (t, h)	dt,	z ∈ Z,
	which easily follows from (2.28), we deduce that the corresponding conformal mappings k
	converge to limits:								

k(z, h s j ) → k(z, h ), k(z, h s j ) → k(z, h ) as j → ∞,

(4.15) 

About the behaviour of K(I) of the finite-dimensional subspaces ˜ N , defined below in (1.11), we know more. See in[Ku] and below in Introduction.
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Proof. Since H 2 = P 3 -V and q

which together with (1.9) yields (4.18). Using (4.10) and relations q ∞ q √ 2 , q 2 = 2P 1 (see (1.9)), we obtain

3 ) (see Theorem 2.3 in [K3]), then we get (4.19).