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Abstract 

Objective. Music and speech are complex signals containing regularities in how they unfold in 

time. Similarities between music and speech/language in terms of their auditory features, 

rhythmic structure, and hierarchical structure have led to a large body of literature suggesting 

connections between the two domains. However, the precise underlying mechanisms behind this 

connection remain to be elucidated. Method. In this theoretical review paper, we synthesize 

previous research and present a framework of potentially shared neural mechanisms for music 

and speech rhythm processing. We outline structural similarities of rhythmic signals in music 

and speech, synthesize prominent music and speech rhythm theories, discuss impaired timing in 

developmental speech and language disorders, and discuss music rhythm training as an 

additional, potentially effective therapeutic tool to enhance speech/language processing in these 

disorders. Results. We propose the processing rhythm in speech and music (PRISM) framework, 

which outlines three underlying mechanisms that appear to be shared across music and 

speech/language processing: precise auditory processing, synchronization/entrainment of neural 

oscillations to external stimuli, and sensorimotor coupling. The goal of this framework is to 

inform directions for future research that integrate cognitive and biological evidence for 

relationships between rhythm processing in music and speech. Conclusion. The current 

framework can be used as a basis to investigate potential links between observed timing deficits 

in developmental disorders, impairments in the proposed mechanisms, and pathology-specific 

deficits which can be targeted in treatment and training supporting speech therapy outcomes. On 

these grounds, we propose future research directions and discuss implications of our framework.  

Keywords: music, speech, rhythm, language, developmental disorders 
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Key Points 

Question: The current paper investigates whether shared mechanisms underlying rhythm 

processing in music and speech can be used to better understand speech and language processing 

in developmental disorders and to develop programs for treatment. 

Findings: We propose a new framework suggesting three common mechanisms underlying 

music and speech rhythm processing: precise auditory timing, synchronization/entrainment of 

neural oscillations to external rhythmic stimuli, and sensorimotor coupling. 

Importance: The identification of these underlying mechanisms allows for a more targeted 

approach to future research investigating music and speech rhythm processing in typically 

developing children/adults and those with developmental speech and language impairments.  

Next Steps: We outline a number of avenues for future research, including the need to 

incorporate multiple sources of evidence for the investigation of potential links between music 

and speech rhythm processing, and different approaches to apply the current framework to 

speech and language disorders.  
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Music and language are both structured means of communication that exhibit connections 

across multiple components, including acoustic parameters, hierarchical syntactic structure, and 

rhythm. Research has investigated the neural mechanisms supporting various aspects of music 

perception and production, speech perception and production, and some processes that appear to 

be shared between both domains. In the current theoretical review, we synthesize a number of 

independently developed theories and different sources of evidence that contain recurring and 

common elements. Our aim is to create a parsimonious framework based on three common 

underlying neural mechanisms supporting music and speech rhythm processing: the processing 

rhythm in speech and music (PRISM) framework. This framework aims to provide a solid 

foundation for both theoretical/empirical and applied future research, with implications for 

developmental speech and language disorders.  

First, we define rhythm in music and speech. Second, we focus on the three mechanisms 

suggested to be common to rhythm processing as it occurs for music and speech: precise 

auditory processing, synchronization/entrainment of neural oscillations to external rhythmic 

stimuli, and sensorimotor coupling. Third, we propose predictions and future directions derived 

from the PRISM framework. Within this section, we provide evidence for timing deficits across 

different developmental speech and language disorders and provide suggestions on how to apply 

the PRISM framework in both empirical and applied research. Finally, we provide a larger 

context and outlook for how to integrate different sources of evidence to better understand 

rhythm processing in music and speech. Although these suggested underlying mechanisms exist 

across different theories and within different domains, to our knowledge, they have not before 

been brought together in a framework to explain rhythmic processing in music and speech. The 

acoustic, sensory, and cognitive links between music and speech rhythm on the one hand, and 
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developmental speech and language disorders and timing impairments on the other hand, suggest 

a promising research area that can be guided by the current evidence-based framework.   

 

Rhythm in Music and Speech  

Rhythm is a fundamental element of both music and language and is universally present 

across different cultures and languages (Brown & Jordania, 2011; Ding et al., 2017; Kotz et al., 

2018; Savage et al., 2015). Rhythm refers to the temporal patterns created by the onsets and 

durations of acoustic events in an incoming sequence (London, 2012; McAuley, 2010). Fulfilling 

this definition, both music and speech are auditory signals that unfold in the temporal domain 

and contain periodic (and quasi-periodic) information structured by a number of similar acoustic 

cues, including duration (timing), frequency (pitch), amplitude/intensity (loudness), and timbre 

(instrument/voice quality) (Allen et al., 2017; Besson et al., 2011). These acoustic cues and the 

way they are structured in time form the basis of the bottom-up percept of auditory stimulus 

rhythm in both domains, which then has implications for higher-level processes of prediction and 

structure building.  

Music is often perceived as having a clear, isochronous beat or pulse, defined as a salient 

point in time when an event is expected to occur (i.e., where listeners might naturally clap their 

hands, see Repp & Su, 2013). Although speech does not have such isochrony (see the 

unsuccessful history of the search for speech isochrony, Cummins, 2012; Knowles, 1974; Patel, 

2008), speech rhythm emerges through a number of interacting lexical and prosodic factors. We 

will first discuss this difference in regularity and then the hierarchical nature of music and 

speech. This section thus focuses on acoustic aspects of music and speech and how they 

influence the sensory and cognitive processing of the auditory signals, which lay the foundation 
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for musicality and speech/language skills (Honing, 2018). Note that we will primarily be 

focusing on Western concepts of music rhythm for the current discussion, as most music 

cognition research focuses on Western tonal structure, but see Brown and Jordania (2011); 

Savage et al. (2015); and Stevens (2012) for cross-cultural perspectives aiming to confirm 

similar underlying perceptual and cognitive processes. 

One key distinction between music rhythm and speech rhythm is the regularity by which 

the acoustic events are patterned in time (see Figure 1). Music rhythm largely consists of regular, 

recurring patterns that allow for quick synchronization and strong predictions of upcoming 

events at multiple embedded time levels (Huron, 2008; Jones, 2016; Patel & Morgan, 2016). 

Importantly, this strong predictability facilitates synchronization both to the music and amongst 

individuals when listening and performing music. The strong activation in motor areas when just 

listening to music (Grahn & Brett, 2007), and the urge to dance when a rhythm is played (Levitin 

et al., 2018) suggest strong connections between music rhythm and movement, perhaps driven by 

the perception-production or auditory-motor loop (Lezama-Espinosa & Hernandez-Montiel, 

2020; Zatorre et al., 2007), and the role of music in social bonding and group cohesion (Bowling 

et al., 2013; Kotz et al., 2018; Savage, Brown et al., 2015; Savage, Loui et al., 2020).  

In contrast to music, speech rhythm is less periodic and more variable, possibly related to 

the referential nature of speech (with its lexical properties) that does not allow for a strict 

rhythmic pulse. However, speech rhythm is nevertheless predictable (i.e., the prediction of 

syllable stress patterns; Beier & Ferreira, 2018), and the rhythm that emerges from speech 

improves perception and segmentation of the speech signal by providing cues to word 

boundaries (Cutler, 1994; Cutler & Butterfield, 1992; Cutler & Norris, 1998; Echols et al., 1997; 

Spinelli et al., 2010), enhancing communication between individuals (Hawkins, 2014; Kotz et 
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al., 2018), and facilitating turn-taking in conversations (Garrod & Pickering, 2015; Wilson & 

Wilson, 2005). The perception-production loop is also important for speech, with motor areas 

activated in speech perception (Wilson et al., 2004). These different features and mechanisms 

should apply independently of language types. The different stress patterns and syllable types 

evident in different languages (perhaps also influencing syllable prominence patterns) resulted in 

the traditional separation of stress- and syllable-timed languages (i.e., see Ramus et al., 1999 for 

one of the initial metrics used to quantify stress- versus syllable-timing and Patel, 2008 for a 

discussion). However, this distinction is less clear-cut than previously claimed, as suggested by 

the lack of supporting empirical data and inconsistencies regarding the metrics used to achieve 

this classification (Arvaniti, 2009), which ultimately may be more complex. Therefore, it has 

been suggested that speech rhythm should be discussed in relation to patterns of prominence, 

grouping, and lexical stress, which can also be more readily related to music (Arvaniti, 2009; 

Beier & Ferreira, 2018).   

Though music and speech rhythm diverge in relation to regularity (periodic, non-

periodic) and individual elements (notes, chords, musical phrases, versus syllables, words, 

sentences), they both have similar acoustic features, create top-down cognitive predictions of 

upcoming elements, and are organized in hierarchical structures (i.e., contain meter, where 

events are organized temporally along multiple time scales, McAuley, 2010), see Figure 1. In 

addition, music and speech can both generate strong syntactic predictions, with additional lexical 

and semantic predictions for speech (see also semantics in music; Koelsch, 2011; Koelsch, 

2009). Patterning of strong and weak events allows for perception at multiple levels within a 

larger hierarchical framework, and the creation of top-down expectations. For music, patterns of 

strong and weak beats obtained by changes in acoustic and/or temporal parameters of the events 



 7 

(Lerdahl & Jackendoff, 1983; London, 2012; Povel & Essens, 1985) create this hierarchical 

structure, also referred to as metric hierarchy (see also evidence for rhythmic hierarchy in non-

Western music with more complex metrical patterns; Magill & Pressing, 1997; Stevens, 2012). 

For speech, interacting lexical, prosodic, and accentual elements (Beier & Ferreira, 2018; Patel, 

2008; Wagner & Watson, 2010) create a rhythmic hierarchy that is reflected in patterns of 

prominence, grouping, and lexical stress (Arvaniti, 2009; Beier & Ferreira, 2018). In both 

domains, rhythmic stress patterns help to direct attention to more prominent events (music: 

Bharucha & Pryor, 1986; Jones et al., 1982; Palmer & Krumhansl, 1990; speech: Cutler & Foss, 

1977; Gow & Gordon, 1993; Pitt & Samuel, 1990), engaging top-down temporal predictions. 

Although it is not entirely clear how top-down knowledge influences the perception of speech 

rhythm (with language background being one of the potential influences; Zhang & Francis, 

2010), natural speech rhythm enhances comprehension, as altering speech rhythm through time-

compression (Adank & Janse, 2009; Ghitza, 2012; Ghitza & Greenberg, 2009), or manipulating 

the stress structure (Bohn et al., 2013; Rothermich et al., 2012) lowers intelligibility and results 

in a cognitive processing cost, respectively. Music and speech therefore share similarities in 

terms of the acoustic signal itself, the sensory processing of the acoustic signal, and cognitive 

processing parallels in relation to prediction and hierarchical structure, which contribute to 

connections between musical and linguistic skills or behavior, and which are the focus of the 

present proposal.   
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Figure 1. Representations of (a) music (a simple melody) and (b) speech (a simple sentence) 

showing the acoustic waveforms, the melody or sentence represented within the waveform, and 

the hierarchical structure for each element. For (a) the duration differences of each note are 

outlined in the rhythm row, the perceived beat is marked with an x in the beat row, and the 

higher-level metric structure of the melody is marked with x’s in the following two rows. For (b) 

each syllable is marked on the syllable-level row, and the higher-level structure of stressed 

syllables are marked on the following rows.  

 

Shared Neural Mechanisms for Rhythmic Processing 

The commonalities between music and speech regarding acoustic elements, hierarchical 

organization, and the role of rhythm for perception and production suggest the involvement of 

shared neural mechanisms. Several theoretical frameworks (outlined below) have aimed to 
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further understand and characterize various underlying neural mechanisms supporting rhythmic 

processing in music, speech, or music and speech together. However, most of these frameworks 

are limited in that they focus only on one or two elements or mechanisms supporting rhythmic 

processing, and often focus on one domain or from one perspective only. It is critical for future 

research to be directed by a more global understanding of rhythm processing that underlies both 

music and speech rhythm, with implications for connections between the two domains. We 

propose here the PRISM framework (see Figure 2): a parsimonious framework of three central 

mechanisms that emerge separately across theories from different research fields, and which 

appear critical for the processing of rhythm in music and speech. Our goal is to combine these 

mechanisms into an overarching theoretical framework that can inform and drive (1) 

fundamental research investigating the mechanisms underlying rhythm processing and (2) 

applied research investigating how music rhythm training can be mobilized in clinical-

translational settings to support speech rhythm and language processing in normal and impaired 

populations. We propose that: (1) precise, fine-grained auditory processing; (2) 

synchronization/entrainment of neural oscillations to external rhythmic stimuli; and (3) 

sensorimotor coupling; are critical elements underlying speech and music rhythm processing (see 

Figure 2). The PRISM framework will be used as a basis to propose directions for future training 

on each of these mechanisms, with the goal to benefit speech and language processing.  

These three underlying mechanisms have emerged from a critical reading and synthesis 

of elements discussed in previously proposed approaches. Specifically, we have drawn on the 

sound envelope processing and synchronization and entrainment to pulse hypothesis (SEP; Fujii 

& Wan, 2014), the precise auditory timing hypothesis (PATH; Tierney & Kraus, 2014), and the 

temporal sampling framework for developmental dyslexia (TSF; Goswami, 2011), which focus 
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on different yet complementary approaches to understand shared elements of music and speech 

rhythm. The PRISM framework is also informed by the broader OPERA hypothesis, which 

suggests that Overlap, Precision, Emotion, Repetition, and Attention drive the influence of music 

training on speech processing (Patel, 2011, 2014). The three mechanisms proposed here as 

central are also informed by sensorimotor theories (e.g., action simulation for auditory 

prediction, ASAP, Patel & Iversen, 2014; active sensing, Morillon et al., 2015; Schroeder et al., 

2010), dynamic attending theory (Jones, 1976, 2016, 2019; Large & Jones, 1999) and predictive 

coding (Friston, 2005, 2010). Drawing on this research, the following section will outline the 

three proposed mechanisms (precise auditory processing, synchronization/entrainment of neural 

oscillations to external rhythmic stimuli, and sensorimotor coupling) that appear integral to 

music and speech rhythm processing in more detail, as well as theoretical and empirical evidence 

that support them. Note that prediction as well as emotion are considered to be related to all 

mechanisms. The PRISM framework is both novel and parsimonious as it explicitly combines 

these three underlying mechanisms as directly applicable to the processing of music and speech 

rhythm. Bringing together these underlying mechanisms can provide the theoretical groundwork 

to inform further empirical and applied research investigating links between impaired timing in 

speech and language disorders, with the goal to better understand impaired timing in these 

disorders, and to inform applied research for music training interventions. 

While the three mechanisms proposed in the PRISM framework are deeply intertwined, 

each plays a distinct role within music and speech rhythm processing. Precise auditory 

processing is crucial for the discrimination of small timing deviations and accurate auditory 

perception, which lay the foundation for auditory processing. The synchronization and 

entrainment of neural oscillations to external stimuli allows for prediction of upcoming elements 
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and the tracking of hierarchical structure at multiple levels. Sensorimotor coupling allows for a 

tight connection between perception and production in the brain, as well as links to the motor 

system, which also benefits timing and prediction mechanisms. However, each mechanism can 

also be involved in the functioning of the other mechanisms, as indicated in the bidirectional 

arrows in Figure 2. Throughout the following section, we will outline the contributions of these 

three mechanisms, signpost some important connections between them, and outline how they fit 

into the broader body of research on music and speech processing.  
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Figure 2. The processing rhythm in speech and music (PRISM) framework proposes three 

common underlying mechanisms for music and speech processing observed across different 

theories: precise auditory processing; synchronization/entrainment of neural oscillations to 

external rhythmic stimuli; and sensorimotor coupling.  

 

Precise Auditory Processing 

The capacity of the auditory system for precise auditory processing is unparalleled and is 

fundamental to music and speech rhythm perception. Precise or fine-grained auditory processing 

refers to the ability to discriminate very small deviations or changes in timing (i.e., on the 

millisecond level), pitch, and timbre (Kraus & Chandrasekaran, 2010). This ability is critical for 
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accurate perception of acoustic events, such as discriminating between /ba/ and /pa/ in speech, 

and processing subtle timing deviations as well as synchronizing different instrumental parts in 

music perception and production (Patel, 2011). The auditory system also appears to be sensitive 

to timing deviations below the threshold of conscious change detection: evidence suggests that 

participants can alter synchronization behavior to isochronous sequences with deviations as little 

as three milliseconds (Madison & Merker, 2004), likely based on tight connections between the 

auditory and motor areas of the brain (see Repp, 2000; Tierney & Kraus, 2014). The capacity to 

track temporal information at different temporal integration windows (including precise 

processing of information, such as formant transitions to discriminate for instance /pa/ and /ta/, 

i.e., discriminations of 20-40 ms) is suggested to be supported by neural oscillations (e.g., in 

delta, theta, and gamma frequency ranges; Giraud & Poeppel, 2012; Poeppel, 2003). Precise 

auditory processing is therefore also strongly intertwined with sensorimotor coupling and 

synchronization/entrainment of neural oscillations to external rhythmic stimuli.  

Precise auditory processing has been proposed to be a mechanism underlying potential 

transfer between music and speech rhythm processing capacities (Fujii & Wan, 2014; Kraus & 

Chandrasekaran, 2010; Tierney & Kraus, 2014). In line with the OPERA hypothesis (Patel, 

2011, 2012), it has been suggested that music training can enhance speech processing, based on 

overlapping brain circuits that process the acoustic signal, and the more precise timing necessary 

to process music rhythm compared to speech rhythm (Patel, 2011). Precise auditory processing is 

outlined also in the SEP and PATH hypotheses: Fujii and Wan (2014) suggest that the 

processing of sound envelopes in music requires enhanced temporal precision, which has carry-

over effects to the processing of the less regular speech envelope and the neural encoding of 

speech sound. In PATH, Tierney and Kraus (2014) suggest that (1) the millisecond-level 
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precision required for entrainment to music can sharpen brain networks responsible for speech 

processing, and (2) phonological processing and auditory-motor entrainment rely on precise 

timing in the auditory system to generate accurate predictions. The role of auditory-motor 

entrainment in generating precise auditory predictions is also in line with hypotheses of 

sensorimotor theories discussed below.  

Supporting evidence has been provided by research showing that music training can 

actively enhance precise auditory processing, which may benefit speech processing across the 

lifespan (Kraus & Chandrasekaran, 2010). In addition to correlational studies (see 

Supplementary Table 1), longitudinal training studies have shown benefits of music rhythm 

training on precise temporal processing of the speech signal. For nine-month-old infants, 12 

sessions of music training emphasizing rhythm (compared to a control group who engaged in 

non-musical play activities) enhanced the neural response (the mismatch negativity, MMN1) to 

violations of temporal structure in both music and speech, suggesting that music rhythm training 

can improve speech rhythm processing (Zhao & Kuhl, 2016). Further, compared to a group who 

received painting training, 8-year-old children who received music training showed an increase 

in speech segmentation skills after one and two years (François et al., 2013). This music-training 

group also showed an enhanced MMN to syllable duration and vowel onset time deviants (but 

not frequency deviants) after one year of training (Chobert et al., 2014). The participants were 

pseudo-randomly assigned to ensure matched groups in terms of age, school level, sex, socio-

economic status, and neuropsychological test scores, and did not differ on the measures of 

                                                        
1 The MMN is an evoked neural response which is classically elicited within an oddball paradigm (i.e., when a 
sequence of similar events are interspersed with occasional deviant events), or when a unexpected event occurs 
(Garrido et al., 2009). 
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interest before the training, suggesting that the enhanced fine-grained speech processing can be 

attributed to effects from the music training.  

Precise auditory processing has been also suggested to be critical for encoding of the 

speech envelope. In the TSF, Goswami (2011) suggests that impaired rise-time perception of 

syllables (i.e., occurring every ~200 ms or every ~500 ms for accented syllables) can affect 

accurate encoding of the speech envelope, potentially resulting in deficits in phonological 

processing, segmentation, and phonological awareness, which in turn can impact reading skills in 

developmental dyslexia (Di Liberto et al., 2018; Goswami, 2011, 2018; Goswami et al., 2002, 

2010). The TSF and related research suggest that the regularity of music rhythm could sharpen 

the precision of auditory processing and entrained neural oscillations, which could enhance 

phonological skills by improving the neural tracking of the speech envelope (Flaugnacco et al., 

2015; Goswami, 2012). Compared to control groups (with sports training or no-training), music 

rhythm training, which was experimentally implemented over periods covering 14 weeks to 4 

months, has been shown to enhance phonological processing in typically developing children, 

providing support for this hypothesis (Degé & Schwarzer, 2011 (5-6 year olds); Gromko, 2005 

(kindergarten); Patscheke et al., 2016 (4-6 year olds)). Numerous positive correlations between 

rhythm production/perception skills and phonological awareness have also been reported for 

children (see Supplementary Table 1). Music and speech rhythm processing therefore builds on 

precise auditory timing, which is also linked to both synchronization and entrainment of neural 

oscillations to external stimuli and sensorimotor coupling (e.g., Morillon & Baillet, 2017; Peelle 

& Davis, 2012; ten Oever & Sack, 2015).  
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Synchronization and Entrainment of Neural Oscillations to External Rhythmic Stimuli   

Neural oscillations are regularly recurring inhibitory and excitatory patterns of electrical 

activity produced by neurons (Buzsáki, 2019; Buzsáki & Draguhn, 2004). They are ubiquitous 

throughout the brain (Buzsáki, 2006), and have been shown to play a central role in music and 

speech processing (Jones, 2019). Neural oscillations track auditory rhythms, and are suggested to 

underlie the perception of music (Fujioka et al., 2012; Nozaradan et al., 2011, 2012, 2015) and 

speech (Giraud & Poeppel, 2012; Kösem et al., 2018; Kösem & Wassenhove, 2017), and to 

function similarly across the two domains (Harding et al., 2019). Neural oscillations have been 

linked to temporal attention (Jones, 2019), prediction (Arnal & Giraud, 2012), entrainment 

(Calderone et al., 2014), hierarchical processing (Jones, 2016; Poeppel & Assaneo, 2020), and 

communication between brain regions (i.e., auditory and motor cortices, Assaneo & Poeppel, 

2018), which are all elements integral to music and speech processing. They have been also 

linked to precise auditory processing (Goswami, 2011; Poeppel, 2003) and sensorimotor 

coupling (Morillon & Baillet, 2017; van Wijk et al., 2012; Yang et al., 2018). Neural oscillations 

have been observed at several different frequency rates (Buzsáki & Draguhn, 2004), and can be 

hierarchically coupled, supporting the processing and integration of information at various 

embedded frequencies (Jones, 2016). Neural oscillations are also suggested to be involved in the 

generation and signaling of predictions and prediction errors (Arnal & Giraud, 2012; Chao, 

Takaura, Wang, Fujii, & Dehaene, 2018; see also Buzsáki, 2019). Neural oscillations therefore 

appear to be a mechanism underlying predictive processing, temporal attention, and the tracking 

of external rhythmic stimuli, and could underlie the efficacy of music-based rhythm training for 

speech processing. Here, we will focus primarily on the role of neural oscillations in the 

synchronization and entrainment to external rhythmic stimuli.  
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 The crucial role of neural oscillations in temporal attention and predictive processing, as 

well as applications to music and speech processing, is outlined clearly in the theory of dynamic 

attending (DAT) proposed by Jones (1976, 2018). The central thesis of DAT is that endogenous 

neural oscillations entrain in phase to external rhythmic (or quasi-rhythmic) signals, which allow 

for the direction of temporal attention towards predicted points in time and enhanced predictive 

processing. Behavioral research has supported this theory with data on perception, learning, and 

memory. For example, perceptual judgments (and memory; Hickey et al., 2020) are facilitated 

for events occurring at expected points in time, in line with the hypothesis that neural oscillations 

entrain and direct attention to these moments for both auditory (Barnes & Jones, 2000; Jones et 

al., 2002, 2006; Large & Jones, 1999; McAuley & Kidd, 1998), and visual (Bolger et al., 2013; 

Escoffier et al., 2010) stimuli (see also Henry & Herrmann, 2014 for a review and link between 

behavioral and electrophysiological research). 

One benefit of music is that it is highly rhythmic and predictable, thus defining an ideal 

stimulus to entrain neural oscillations. Neural oscillations entrained by music rhythm have been 

shown to persist and influence subsequent language processing. For example, short rhythmic 

cues matched to the syllabic structure of a subsequent sentence enhance phoneme detection 

(Cason et al., 2015; Cason & Schön, 2012) and the neural response (Falk et al., 2017) to 

subsequent sentences compared to non-matching or temporally irregular cues. Though the effect 

of these shorter rhythmic cues may possibly be explained by auditory short-term memory of the 

same matching pattern, similar effects have been found with longer (~30 second) rhythmic 

primes that persist over six subsequent naturally pronounced sentences. Regular rhythmic primes 

facilitate grammatical judgments of orally presented sentences compared to irregular rhythmic 

primes for English (Chern et al., 2018), French (e.g., Canette et al., 2020; Fiveash, Bedoin et al., 



 18 

2020; Przybylski et al., 2013), and Hungarian (Ladányi, Lukács et al., 2020) children. These 

findings suggest that music rhythm can entrain temporal attentional cycles, which can persist 

after the music has ended and influence subsequent language processing, or even simple 

detection of events (Hickok et al., 2015). This evidence suggests that the 

synchronization/entrainment of neural oscillations can be targeted as a mechanism to extend the 

benefits of the regular music signal to the less regular speech signal.  

The regularity of music rhythm is also beneficial for enhancing prediction and 

minimizing prediction error in line with predictive coding and predictive timing approaches 

(Arnal & Giraud, 2012; Friston, 2005, 2010). Predictive coding (i.e., predicting what will occur) 

and predictive timing (i.e., predicting when an event will occur) are based on the hypothesis that 

the brain constantly generates predictions about upcoming events based on incoming sensory 

evidence, with the goal to minimize prediction error (see also Friston & Kiebel, 2009; Jones, 

2019; Jones & Boltz, 1989). If the sensory evidence does not match the prediction, this 

prediction error is sent up the cortical hierarchy, and subsequent predictions are updated. 

Predictive coding/timing is supported by both forward (i.e., bottom-up) and backward (i.e., top-

down) processes to signal predictions and prediction errors based on sensory information. 

Importantly, neural oscillations have been suggested to support predictive coding (Arnal & 

Giraud, 2012; Chao et al., 2018), and prediction appears to work similarly across different 

hierarchically organized domains (Siman-Tov et al., 2019). Links between predictive neural 

networks and networks involved in rhythmic entrainment (i.e., Levitin et al., 2018; Merchant et 

al., 2015), as well as fluctuations in attention and entrainment as outlined in the DAT (Jones, 

1976, 2019) have also been proposed (Siman-Tov et al., 2019). The strongly rhythmic and 

predictable nature of music could therefore be used to train domain-general predictive networks 
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associated with predictions and prediction errors and to enhance predictive precision in speech 

processing. Along these lines, research has shown that sung sentences result in stronger cerebro-

acoustic phase coherence compared to spoken sentences in difficult listening conditions (Vanden 

Bosch der Nederlanden et al., 2020), suggesting an added benefit of musical attributes to the 

processing of the speech signal.  

The entrainment of neural oscillations is also implicated in representing the different 

hierarchical levels of music and speech rhythm. The DAT suggests that neural oscillations 

entrain at multiple hierarchical levels to external regularities, resulting in nested oscillations that 

track multiple levels of hierarchical structure simultaneously and provide benefits of metric 

binding (Jones, 1976, 2016). Indeed, different beat- and meter-related frequencies have been 

observed in the neural response of participants listening to music (Fiveash, Schön, et al., 2020; 

Nozaradan et al., 2012) as well as in response to an imagined meter that was not present in the 

acoustic stimulus (Nozaradan et al., 2011; see also Nozaradan, 2014, Nozaradan et al., 2012, 

2015). For speech, phrasal, syllabic, and phonemic processing (i.e., covering time scales ranging 

from ~300-1000 ms, to 125-250 ms, to ~30-40 ms) are suggested to be represented by coupled 

oscillations in the delta (1-3 Hz), theta (4-8 Hz), and low gamma (25-35 Hz) frequency bands, 

respectively (Giraud & Poeppel, 2012, see also Ghitza, 2011 for slightly different timescales). 

Neural oscillations have been observed at these different levels not only with isochronous (Ding 

et al., 2016), but also with natural (Keitel et al., 2018) speech rhythms. Further, Ding et al. 

(2016) showed that higher level (phrasal and sentence level) neural oscillations were only 

observed when participants could comprehend the language they were listening to, suggesting 

strong effects of top-down processing. Similarly, in music, behavioral (Large et al., 2015) and 

electrophysiological (Tal et al., 2017) evidence shows that participants both perceive and 
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represent in the brain the underlying pulse (or beat) that is not present in the acoustic signal of 

the rhythm, suggesting top-down processing of hierarchical structure driven by neural 

oscillations.  

Observing neural oscillations at hierarchical levels not physically present in the stimulus 

is particularly pertinent to the discussion of whether neural oscillations represent the entrainment 

of already-present endogenous oscillations to an external stimulus (entrainment in the narrow 

sense, Obleser & Kayser, 2019), or whether they only represent evoked neural responses to the 

acoustic (rhythmic) properties of the external stimulus (see Haegens, 2020; Haegens & Zion 

Golumbic, 2018; and Zoefel et al., 2018 for discussion). This distinction has implications for the 

active role of neural oscillations in the prediction of upcoming events via the entrainment of self-

sustaining endogenous oscillations (see also links with predictive coding, Friston, 2018; Giraud 

& Arnal, 2018; Hovsepyan et al, 2018; Rao & Ballard, 1999). Despite an ongoing debate, 

accumulating evidence suggests that observed neural oscillations cannot be reduced to evoked 

responses, but include also the entrainment of neural oscillations with functional significance 

(e.g., Bree et al., 2021; Doelling et al., 2019). The recruitment of endogenous neural oscillations 

for rhythmic processing suggests that entrainment to an external stimulus is an active process 

involving temporal attention and prediction, rather than a passive response to an external 

stimulus. The regular rhythmic structure and temporal precision of music makes it an ideal 

stimulus for enhancing neural entrainment and precise processing, with potential benefits for the 

speech signal.  

Sensorimotor Coupling via Cross-Region Neural Connectivity  

Sensorimotor (or auditory-motor) coupling refers to the connection between the auditory 

and motor cortices, and is a central underlying mechanism for the perception and production of 



 21 

music and speech rhythm. Research has shown that just listening to music/rhythmic patterns 

(Chen et al., 2008; Fujioka et al., 2012; Gordon et al., 2018; Grahn & Brett, 2007; Stephan et al., 

2018) or speech (Glanz et al., 2018; Möttönen et al., 2013; Wilson et al., 2004) activates areas 

within the motor cortex (largely the supplementary motor area (SMA), pre-SMA, and premotor 

cortex), suggesting a tight coupling between perception and production in each domain. For 

music, this sensorimotor link is evident with the urge to move to music (Janata et al., 2012), and 

moving with a rhythm enhances the subsequent perception of that rhythm (Chemin et al., 2014; 

Manning & Schutz, 2013). Sensorimotor coupling appears crucial to the perception and 

production of speech, with the motor system implicated also in speech perception, and the 

auditory system implicated also in speech production (Guenther & Hickok, 2015; Hickok et al., 

2011). Speech production inherently involves movement, and speech perception partly utilizes 

similar networks in the brain (Fujii & Wan, 2014; Kotz & Schwartze, 2010). There appears to be 

specific synchronization between auditory and motor cortices at the syllable rate (4.5 Hz), 

suggesting the significance of the motor cortex for speech processing (Assaneo & Poeppel, 

2018). Further, the sensorimotor connection plays a central role in the development of speech in 

infants (Bruderer et al., 2015). Recent evidence has also shown that participants who were 

classified as high-synchronizers in a spontaneous synchronization of speech test differ from low-

synchronizers in the white matter pathways that connect frontal and auditory regions, suggesting 

a connection between auditory-motor coupling and neural synchronization (Assaneo et al., 

2019). Importantly, this connection was also linked to enhanced word learning for high-

synchronizers compared to low-synchronizers, suggesting implications for language learning. 

Further, speech perception has been shown to be enhanced by rhythmic speech production, but 
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only for high-synchronizers, suggesting the importance of individual differences in the 

connection between auditory and motor cortices (Assaneo et al., 2021).  

The involvement of the motor system in sensorimotor coupling benefits the generation of 

precise sensory predictions for music and speech (Grahn & Rowe, 2013; Kotz & Schwartze, 

2010; Large et al., 2015; Palva & Palva, 2018; Schubotz, 2007; Zatorre et al., 2007). Though the 

exact process by which this occurs is not fully known yet, one theory focusing on musical beat 

perception suggests that motor regions (including the premotor cortex, the SMA, pre-SMA and 

the putamen) receive input from the auditory cortex, use this input for motor planning (even in 

the absence of movement), and then send timing predictions based on motor planning back to the 

auditory cortex (action simulation for auditory prediction (ASAP) hypothesis, Patel & Iversen, 

2014; see Cannon & Patel, 2021 for a neurophysiological update on the ASAP hypothesis; see 

also Large et al., 2015; Ross et al., 2016). Similarly, the active sensing framework posits that 

neural oscillations are generated by the motor system and influence predictive timing and coding 

(Morillon et al., 2015; Schroeder et al., 2010). Active sensing is applicable to both speech and 

music, and suggests a role of neural oscillations in the communication between regions, and the 

amplification of sensory input arriving at predicted times (Morillon et al., 2015; Morillon & 

Baillet, 2017; Schroeder et al., 2008; Schroeder & Lakatos, 2009). The strong involvement of 

auditory and cortical motor areas for both speech and music processing points to the contribution 

of sensorimotor coupling for the processing of temporal regularities.  

Findings suggesting shared sensorimotor mechanisms for music and speech materials 

lead to the prediction that training focusing on rhythm processing and in particular, entrainment 

to rhythm would strengthen the connection between auditory and motor cortices. This training 

could therefore be beneficial to both music and speech processing, particularly in relation to 
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temporal attention and prediction. Entrainment satisfies all of the OPERA conditions (Patel, 

2011, 2012), and has thus been suggested as an underlying plasticity mechanism behind training 

transfer from music to speech (PATH; Tierney & Kraus, 2014). The temporal regularity of music 

has also been suggested to enhance sensorimotor coupling also involved in the perception and 

production of speech (SEP, Fujii & Wan, 2014). In support of music enhancing sensorimotor 

coupling, a recent study has shown that just 24 weeks of piano training enhances functional 

connectivity between auditory and sensorimotor regions compared to a control group without 

training (Li et al., 2018; see also Hyde et al., 2009). It therefore appears likely that neural 

oscillations in the motor cortex and auditory cortex align to enhance perception (Bowers et al., 

2014; Fujioka et al., 2012; Morillon et al., 2015), and that this connection can be trained. 

Predictions and Future Directions of the PRISM Framework 

 The Processing Rhythm in Speech and Music (PRISM) framework brings together 

evidence from multiple research fields, focusing on separate aspects of music and speech 

rhythm. While previous research has focused on individual elements separately or in subsets, the 

PRISM framework provides a global, parsimonious combination of the underlying mechanisms 

that support rhythm processing in music and speech. One of the aims of this framework is to 

direct future research investigating the connections between music and speech rhythm 

processing, and to inform the development of specific music rhythm interventions and training 

that could be particularly pertinent to the treatment of developmental speech and language 

disorders. We propose that a better understanding of the contributions and connections between 

precise auditory processing, synchronization/entrainment of neural oscillations to external 

rhythmic stimuli, and sensorimotor coupling will provide a valuable perspective for future 

rhythm studies at the intersection between speech and music. We further suggest that these three 
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underlying mechanisms support the connections observed between music rhythm and speech 

rhythm skills and should be targeted directly in future research on developmental speech and 

language disorders. Based on the neuroplasticity of the brain (Patel, 2011), training of the three 

suggested mechanisms should enhance precision of and connections between cortical and 

subcortical temporal processing networks, including the basal ganglia, auditory and motor 

cortices, and fronto-temporal connections, which serve both speech and music processing (Kotz 

& Schwartze, 2010; Rajendran et al., 2018). 

The predictions of the current framework are that (1) deficits in one or more of the 

proposed underlying mechanisms should be related to deficits in both speech/language and music 

processing, (2) different expressions of speech/language difficulties in different disorders should 

be related to specific impairments in one (or more) of the underlying mechanisms proposed, and 

(3) targeted training of these mechanisms should enhance related skills in both music and 

speech/language processing. The following sections will outline some available evidence fitting 

with these predictions and suggest pathways for future research.  

 

Deficits in Shared Underlying Mechanisms of Music and Speech/Language Rhythm  

Mounting evidence suggests that speech and language difficulties may be related to co-

morbid impairments in timing (Falk et al., 2015; Falter & Noreika, 2014; Goswami, 2011; Peter 

& Stoel-Gammon, 2008), and that atypical rhythm processing may be a risk factor for 

developmental speech and language disorders (Atypical Rhythm Risk Hypothesis, ARRH; 

Ladányi, Persici et al., 2020)2. Although developmental speech and language disorders may 

                                                        
2 The genetic implications and risk factors that could be informed by the PRISM framework are outlined in Ladányi, 

Persici et al. (2020).  
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express differently (e.g., children often present with a heterogeneous constellation of perceptual 

and production deficits at the levels of phoneme awareness, phonological processing, 

articulation, fluency, supra-syllabic prosodic sensitivity, vocabulary, spoken grammar, and 

reading skills), the notable levels of comorbidity between disorders (Heaton et al., 2018; Kaplan 

et al., 2001; Nicolson & Fawcett, 2007; Puyjarinet et al., 2017; Zwicker et al., 2009), and the 

strong link between perception and production in the brain (Kotz & Schwartze, 2010) makes it 

likely that there are shared impairments in underlying neural mechanisms across different 

disorders. In the current section, we will focus primarily on developmental dyslexia, 

developmental language disorder (DLD), and stuttering. These three disorders have speech or 

language as a primary deficit, show a high prevalence in the population, with frequent 

persistence into adulthood, and have communication difficulties that exert a personal and 

professional toll. Notably, these three disorders have also been shown to have deficits in timing 

(Goswami, 2019; Ladányi, Persici et al., 2020).  

Individuals with developmental dyslexia present with learning difficulties for reading and 

spelling (Goswami, 2011; Lyon et al., 2003), usually associated with phonological processing 

deficits in the perceptual domain, whereas those with DLD generally have impaired oral 

language acquisition (McArthur et al., 2000; Ramus et al., 2013). Developmental language 

disorder (previously termed specific language impairment, see Bishop et al., 2017 for 

specifications of the terminology) manifests primarily in delayed and disordered acquisition of 

morpho-syntax (grammar) and vocabulary, and may be characterized by solely expressive or 

expressive-receptive deficits. DLD has lifelong negative consequences for academic, economic, 

and social well-being (Conti-Ramsden et al., 2018; Hubert-Dibon et al., 2016; Law et al., 2009). 
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Further, dyslexia and DLD very often co-occur (Bishop & Snowling, 2004; Snowling et al., 

2019, 2020). In contrast, individuals who stutter have difficulty producing fluent speech, and 

may prolong syllables and produce speech with irregular temporal patterns (Perez & Stoeckle, 

2016) but generally have intact acquisition of vocabulary, grammar, and reading to the extent 

that language structure can be dissociated from motor speech. Note that for a diagnosis of these 

disorders, speech or language deficits cannot be attributed to low IQ, neurological damage, an 

inadequate learning environment, or hearing impairment. 

Impairments in precise auditory processing and entrainment of neural oscillations to 

external stimuli have been observed for individuals with dyslexia and DLD, who show deficits in 

the processing of syllable rise-time and stress perception, as well as deficits in the larger-scale 

temporal sampling of the speech envelope (dyslexia: Goswami et al., 2016; Huss et al., 2011; 

Leong et al., 2011; Leong & Goswami, 2014; Molinaro et al., 2016; Power et al., 2016; Thomson 

et al., 2006; DLD: Corriveau et al., 2007; Cumming, Wilson, & Goswami, 2015; Richards & 

Goswami, 2015). This research has motivated the development of the TSF for developmental 

dyslexia (and extended to DLD), which links observed perceptual deficits with impaired 

synchronization across multiple neural oscillation bands in the brain (Goswami, 2011; Goswami 

et al., 2016). Based on the TSF, Cumming, Wilson, & Goswami (2015) proposed the prosodic 

phrasing hypothesis, which also suggests that children with DLD are impaired in the perception 

of amplitude rise-times and duration cues, and further focuses on implications for the perception 

of larger scale prosodic structure and grammatical processing (see also Cumming, Wilson, Leong 

et al., 2015). Support for the impairment of neural oscillations in individuals with dyslexia comes 

from research finding atypical neural entrainment to slow modulations in auditory signals in 

dyslexic children (Cutini et al., 2016; Power et al., 2016) and adults (Hämäläinen et al., 2012; 
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Soltész et al., 2013). Therefore, dyslexia and DLD may be associated with fundamental 

impairments in precise auditory processing and synchronization of neural oscillations to the 

speech signal (Goswami, 2011, 2018). 

Related impairments have been observed for the processing of music and music-like 

stimuli for these populations, supporting the hypothesis of shared underlying mechanisms for 

music and speech rhythm. Individuals with dyslexia appear to show a general impairment in 

synchronization to an external beat (Colling et al., 2017; Overy et al., 2003; Thomson & 

Goswami, 2008), and perform poorly on measures of rhythm perception, rhythm production, and 

synchronization (e.g., Degé et al., 2015; Flaugnacco et al., 2014; Meyler & Breznitz, 2005; 

Thomson & Goswami, 2008; Wolff, 2002). Similarly, individuals with DLD show difficulties in 

both speech rhythm and music rhythm processing (Cumming, Wilson, Leong, et al., 2015; Sallat 

& Jentschke, 2015), are poorer at paced rhythmic tapping (Corriveau & Goswami, 2009) and 

have poorer singing ability (Clément et al., 2015) compared with controls. Children with DLD 

also perform worse than controls on a semantic judgment task when natural sentences are spoken 

fast or are time-compressed (Guiraud et al., 2018).  

Timing and synchronization impairments have been observed not only for children with 

dyslexia and DLD, but also for individuals who stutter. Individuals who stutter exhibit 

impairments in synchronized tapping (Falk et al., 2015), show impaired rhythm perception with 

musical material (Wieland et al., 2015), and are impaired in unpaced tapping tasks, which rely on 

internal time keeping (Olander et al., 2010). These results suggest similar impairments across 

music and speech and open up the possibility that training in music rhythm could enhance both 

music and speech processing in these populations by co-opting shared neural circuitry. For 

stuttering, reduced sensorimotor coupling may affect the perception/production loop (S.-E. 
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Chang et al., 2016b; Hickok et al., 2011), and impaired internal beat generation may be related to 

deficient production of internal timing cues from the basal ganglia (Alm, 2004; Toyomura et al., 

2011). By better understanding how impairments in these underlying temporal processing 

mechanisms are involved across different developmental speech and language problems, it may 

be possible to directly target (and train) specific mechanisms for improvement. 

Impaired timing mechanisms also often co-occur in developmental disorders that are 

frequently characterized by speech and language impairments (see Lense et al., in press for a 

review). Timing impairments have been observed, for example, in Autism Spectrum Disorder 

(Duffield et al., 2013; Green et al., 2009; Hardy & LaGasse, 2013; Isaksson et al., 2018; 

Morimoto et al., 2018; Mostofsky et al., 2009; Rinehart et al., 2001; Tryfon et al., 2017), 

Attention Deficit Hyperactivity Disorder (Hove et al., 2017; Noreika et al., 2013; Puyjarinet et 

al., 2017; Rubia et al., 1999; Shapiro & Huang-Pollock, 2019; Slater & Tate, 2018; Valera et al., 

2010; Zelaznik et al., 2012), and Developmental Coordination Disorder (DCD; Chang et al., 

2021; Rosenblum & Regev, 2013; Trainor et al., 2018). In the adult-focused brain pathology 

literature, co-morbid timing deficits have also been observed linked to basal ganglia 

dysfunction/impairments, such as in Parkinson’s disease and patients with basal ganglia lesions 

(Kotz & Gunter, 2015; Kotz, Gunter, & Wonneberger, 2005). Future research could search for 

similarities in timing impairments across different disorders that could be trained using common 

and/or specific music rhythm interventions (e.g., see the success of auditory cueing in individuals 

with Parkinson’s disease; Dalla Bella, 2018; Kotz & Gunter, 2015; and the key role of rhythm in 

melodic intonation therapy for patients with aphasia, Stahl et al., 2011).  
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Targeting Shared Underlying Mechanisms for Music and Speech Rhythm  

Music Rhythm to Stimulate and Train Speech/Language Processing 

Research has started to show that using music rhythm as a stimulation or training tool can 

be beneficial to language processing in dyslexia, DLD, and stuttering. Current music training 

studies tend to provide general rhythmic or music training, or combined pitch and rhythm music 

training, so it is difficult to assess the direct effects of training specific underlying mechanisms. 

Rhythm training in general should enhance precise auditory processing, as well as training 

temporal attention, sequencing, and predictive timing skills, which may then also indirectly 

influence the processing of the less regular speech signal. This transfer could occur by 

sharpening and directing attention to relevant points in time, thereby enhancing various aspects 

of sentence processing such as phonological, syllable and word processing, as well as prosody, 

syntax, and reading (see also the OPERA hypothesis; Patel, 2011). The majority of experimental 

studies implementing music rhythm training alongside a control condition have been conducted 

in individuals with dyslexia. These studies have shown that rhythm training (of various types) 

can enhance the perception of the speech signal (e.g., voice onset time; Frey et al., 2019), 

phonological awareness (Flaugnacco et al., 2015; Thomson et al., 2013), and reading skills 

(Bonacina et al., 2015; Flaugnacco et al., 2015) compared to painting or no-training control 

groups. Even though a full, systematic review of this literature is beyond the scope of the current 

paper3, these dyslexia studies are a promising proof of concept that rhythm training can impact 

speech and language task performance. Meanwhile, more research is needed to investigate the 

effect of rhythm training in other developmental speech and language disorders.  

                                                        
3 See Table 1 in Ladányi, Persici, et al. (2020) for an overview of research investigating connections between 
rhythm and speech/language impairments.  



 30 

Music training research in general (across both typically developing and clinical 

populations) is in need of clear, hypothesis-driven experiments that aim to train the precise 

mechanisms predicted to be shared between music and speech/language processing. Although 

there are a limited number of studies investigating pure rhythmic training, current meta-analyses 

and systematic reviews of music training (not specific to rhythm) report beneficial transfer 

effects on speech/language skills, albeit weak to moderate (Cooper, 2020; Gordon et al., 2015; 

Pesnot Lerousseau et al., 2020; Román-Caballero et al., 2021). These reviews and related 

discussions (see Schellenberg, 2019a) also underline the need for more systematic research, in 

particular including the use of random assignment to groups and an active control group to 

investigate causal effects of music training on related abilities (see also the series of exchanges in 

Bidelman & Mankel, 2019; Mankel & Bidelman, 2018 and Schellenberg, 2019b for a discussion 

of musical aptitude versus training). Such controlled designs are particularly important to 

investigate the effect of training the three mechanisms proposed in the current framework. Note 

that reported correlations in the literature can also provide some first insights into potential links 

between music rhythm and language processing. However, correlations between different music 

rhythm and speech/language skills should be taken with some caution as they may be driven by 

other pre-disposition-related factors (Schellenberg, 2019b; Swaminathan et al., 2017; 

Swaminathan & Schellenberg, 2020). With this caveat in mind, numerous correlations have been 

found between various rhythmic abilities and phonological awareness/reading skills in both 

typically developing children (see Supplementary Table 1) and clinical populations (e.g., 

Flaugnacco et al., 2014; Forgeard et al., 2008; Goswami et al., 2013, 2013; Huss et al., 2011; 

Thomson & Goswami, 2008). Much less is known about possible benefits of rhythm-based 

treatment in DLD (see Wiens & Gordon, 2018), and it will be important to explore whether 
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speech-rhythm or musical-rhythm-focused training could impact spoken grammar and 

potentially extend to vocabulary, key areas of difficulty for children with DLD. 

An important source of converging evidence comes from other research that has adapted 

short-term stimulation approaches. Benefits of rhythm regularity in priming stimuli and rhythmic 

cueing have been observed across these three speech and language disorders. Presenting a 

regular rhythm before a set of sentences has been shown to enhance grammatical processing for 

children with DLD and dyslexia compared to both irregular primes (Ladányi, Lukàcs et al., 

2020; Przybylski et al., 2013) and environmental sound scenes (Bedoin et al., 2016). These 

findings suggest a role for sustained neural oscillations stimulated by musical rhythm (i.e., in the 

prime) in improving temporal expectations for various aspects of the subsequently presented 

speech signal (e.g., morphosyntactic cues for enhanced grammatical processing) even in 

developmental disorders. Rhythmic cueing or auditory stimulation has also been suggested to be 

valuable for individuals who stutter, notably by providing an external structure for internal time 

keeping, enhancing temporal attention allocation and predictive processing, strengthening the 

auditory-motor networks, and training the generation of an internal rhythm (Thaut, 2005). 

Supporting this suggestion, individuals who stutter appear to benefit from external auditory 

stimulation (Frankford et al., 2021; Toyomura et al., 2011), and asking individuals who stutter to 

sing enhances fluency in speech, potentially by regulating the temporal structure of the words 

(Falk et al., 2016; Glover et al., 1996; Wan et al., 2010). Both short- and long-term music rhythm 

stimulation and training therefore appear able to enhance precise auditory processing, 

synchronization/entrainment of neural oscillations to external rhythmic stimuli, and sensorimotor 

coupling, and could be valuable therapeutic tools to be used alongside speech therapy for these 

pathologies, especially with targeted interventions.  
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Music rhythm training could be particularly valuable to complement traditional speech or 

neuropsychological therapy as it contains a number of additional components which could be 

beneficial across the two domains (including links to attention, emotion, and motor functions; 

e.g., Särkämö et al., 2008). Importantly, music training is an enjoyable, easily administered, 

motivating, and cost-effective intervention, and can be used in group sessions (see Tamplin et al., 

2013 and Tierney et al., 2013 for examples of group applications), as well as in individual 

sessions. Group sessions have the additional advantage of benefiting from joint motivation and 

joint action, social coherence and synchronization, enhancing potential entrainment (see Cross & 

Morley, 2008; Kokotsaki & Hallam, 2007; Miendlarzewska & Trost, 2014). The use of music 

rhythm training in treatment has also been developed in the SEP hypothesis, which focuses on 

applications to Parkinson’s Disease, stuttering, aphasia, and Autism. Studies in both typically 

developing children (Degé & Schwarzer, 2011; Patscheke et al., 2016) and children with 

dyslexia (Thomson et al., 2013) suggest that music training may provide comparable 

improvements in phonological awareness to direct training in phonology (Bhide et al., 2013; see 

also Bigand & Tillmann, 2021). Such results would suggest that music (rhythm) training could 

be used to complement more direct approaches, allowing for more diverse training, potentially 

increased motivation, and enhanced progress (Schön & Tillmann, 2015).  

Music (rhythm) training can therefore be a motivating and engaging way to train 

associated neural timing mechanisms (Thaut, 2005; Thaut & Hoemberg, 2014) in combination 

with traditional evidenced-based speech and language therapeutic techniques. It can also be used 

to improve motor-related functioning such as coordination in motor speech disorders and motor-

focused treatment of apraxia of speech (Lee et al., 2019). Additionally, music rhythm training 

could also be effective in training infant rhythm processing, as newborns are sensitive to rhythm 
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and beat in music-like material (Cirelli et al., 2016; Winkler et al., 2009), as well as linguistic 

rhythm of speech in different languages (Nazzi & Ramus, 2003; Ramus, 2002). Such results 

suggest that rhythm processing might be a risk indicator for the development of speech and 

language difficulties (Atypical Rhythm Risk Hypothesis; Ladányi, Persici et al., 2020) and that 

music rhythm training might be able to shape the underlying neural mechanisms involved in 

timing at a young age (Gerry et al., 2012). 

 

Future Directions for Research and Training 

We suggest that a fruitful research direction would be to target more directly the three 

underlying mechanisms proposed in the current framework along two parallel axes: both 

theoretical/empirical and applied. Theoretically and empirically, the link between these three 

underlying mechanisms and different speech/language disorders needs to be systematically 

investigated to clarify potential links between the underlying mechanisms and specific 

speech/language impairments. Developing on insights from perceptual and production behavioral 

tasks and commonalities across different disorders, neuroscience methods such as 

electroencephalography, magnetoencephalography, and functional magnetic resonance imaging 

can be applied in a more targeted way to detect deficits in underlying neural mechanisms. These 

deficits may manifest as (1) impaired or reduced responses to fine-grained/precise auditory 

information (i.e., see the work on rise-time perception and speech envelope encoding in 

individuals with dyslexia as well as early evoked electrophysiological potentials; Chobert et al., 

2012; Power et al., 2016; Van Hirtum et al., 2019), (2) reduced phase alignment and connectivity 

of neural oscillations to external stimuli (i.e., see the work on phase locking, coherence, and 

entrainment in dyslexia: Hämäläinen et al., 2012; Soltész et al., 2013, and Fiveash, Schön et al., 
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2020 for more natural stimuli), or (3) reduced connectivity between auditory and motor regions 

(e.g., in stuttering: Chang et al., 2016; Hickok et al., 2011). Such already available methods and 

paradigms could be used to investigate neural processing underlying timing deficits across 

different disorders involving some deficit in speech perception/production. Further insight could 

be gained by investigating whether musical training enhances the precision of the proposed 

mechanisms and extends to speech/language processing (i.e., Assaneo et al., 2021; Doelling & 

Poeppel, 2015). 

These research lines should aim to clarify links between impaired speech/language 

functioning in developmental disorders and the three underlying mechanisms proposed in the 

PRISM framework. It might be argued that a potential alternative hypothesis is that there are no 

observable links between the three mechanisms proposed in the PRISM framework and 

developmental speech and language disorders. Such evidence would necessitate a revisit of the 

mechanisms proposed and the links between music and speech rhythm. However, the evidence 

presented above (including first findings of timing deficits in developmental speech/language 

disorders) suggests that impaired timing, based on the mechanisms proposed, might be a crucial 

deficit occurring in developmental speech and language disorders (Ladányi, Persici, et al., 2020).  

Within our here proposed approach, it would be particularly interesting to investigate the 

patterns of impairment within different developmental disorders across the three mechanisms. 

Because of the links and interactions between the mechanisms, it is possible that all three 

mechanisms might be impaired compared to a control group, or that only one or two mechanisms 

or their combination could be impaired. An example of this pattern could be impaired 

sensorimotor coupling for individuals who stutter, but intact precise auditory processing and 

neural entrainment to external stimuli. Another example could be the use of rhythm training or 
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stimulation to improve temporal attention and hierarchical processing in children with DLD, 

with the aim to test a potential mediating role of speech and music rhythm on the enhancement 

of syntactic skills. It should be noted that individual differences are expected in these outlined 

investigations (related also to the large variance in language impairments exhibited within 

different developmental speech and language disorders), so large samples of participants for each 

disorder would be required to fully understand these links, as well as comparisons with an 

appropriate control group of children with typical development. Strong methodological 

approaches should also be used, including the appropriate tracking of treatment fidelity (i.e., 

tracking the implementation and administration of the rhythmic training; Wiens & Gordon, 

2018). With precision medicine approaches made possible by well-powered high-quality 

datasets, treatment plans combining traditional speech therapy and rhythm-based training can 

eventually be individualized, i.e., tailored to the specific needs of the individual (Ginsburg & 

Phillips, 2018).  

For applied research, we predict that a rhythm training program focusing explicitly on 

direct training of precise auditory processing, the entrainment of neural oscillations to external 

stimuli, and the strengthening of sensorimotor coupling could have direct benefits on the 

speech/language skills that draw on these same underlying mechanisms. This research can start 

to be developed based on the PRISM framework and would be directly informed by the research 

discussed above. The goal of such training programs would be to investigate, with appropriate 

control groups, the effect of training that targets these three mechanisms on different speech and 

language skills. Examples of tasks that could specifically target these underlying mechanisms 

include: (1) discrimination of small timing differences and rise-time perception training (precise 

auditory processing); (2) hierarchical structure tracking at multiple levels (neural entrainment to 
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external stimuli and structure-based predictions); and (3) rhythmic production with auditory 

feedback (sensorimotor coupling). Beat and meter perception and production would be 

particularly valuable to such training, as it can span the three mechanisms. It might be possible 

that specific clinically distinct speech or language impairments would be more or less sensitive 

to modulation via training of different mechanisms (i.e., focus on neural entrainment for dyslexia 

and DLD, focus on sensorimotor coupling for stuttering); this possibility should be explored in 

future research. However, considering the connections between the three mechanisms, targeting 

all mechanisms should still be a valuable approach, especially for preliminary research.  

The implementation of such potential training programs should be guided by research 

showing that rhythm and rhythmic skills are not a single entity; but rather a constellation of 

various sub-processes that may draw on different underlying processing mechanisms and neural 

correlates (Bonacina et al., 2019; Bouwer et al., 2020; Fiveash et al., in preparation; Kotz et al., 

2018; Thaut et al., 2014; Tierney & Kraus, 2015). Current evidence is revealing distinctions 

between beat-based versus memory-based rhythmic tasks/expectations (Bonacina et al., 2019; 

Bouwer et al., 2020; Tierney & Kraus, 2015), periodic motor pattern generation, beat extraction, 

entrainment, and meter perception (Kotz et al., 2018), neural signatures of rhythmic pattern, 

meter, and tempo processing (Thaut et al., 2014), and between rhythm and meter processing 

(Liégeois-Chauvel et al., 1998). Such distinctions should be further investigated in both typically 

developing individuals and those with developmental disorders, and should be considered when 

developing future training programs, in line with the current framework. Appropriate tasks and 

training programs still need to be developed, but can be guided by the PRISM framework and 

further research investigating impaired underlying timing mechanisms across different 
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developmental disorders, with the goal to develop a strong evidence base for targeted music 

rhythm training.  

Larger Context and Outlook 

Finally, we propose to situate the here presented research and PRISM framework within a 

larger context of putative cognitive and biological similiarites between rhythm processing in 

music and speech. Integrating evidence across different methods and techniques will allow for a 

more complete understanding of rhythm processing in the typical and disordered brain. We 

suggest that five major evidence types should be considered for a more complete understanding 

of connections between music and speech rhythm (see Figure 3). Converging with (1) neural and 

cognitive evidence outlined here in detail for our underlying mechanisms approach, it is 

important to incorporate (2) individual differences research and developmental evidence that 

have reported strong associations between performance on tasks measuring sensitivity to musical 

rhythm and speech rhythm, as well as links between musical rhythm and language skills such as 

phonological awareness, grammar, and reading. Although the full extent of point 2 has not been 

presented here (though see Supplementary Table 1 for an outline of selected correlational 

studies), it is important to keep in mind that a comprehensive understanding of rhythm 

processing in speech and language should include findings from individual differences research 

in populations with diverse demographic characteristics to increase the chances of potential 

generalizability (see Jones, 2010). Furthermore, the efficacy of music-based interventions could 

differ across individuals (and depending on age, e.g., see greater sensitivity to foreign rhythms in 

12-month-old infants compared to adults (Hannon & Trehub, 2005). 

As outlined above, evidence from (3) atypical or disordered speech and language 

development in children and (4) initial promising outcomes of rhythm priming and training to 
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influence speech and language outcomes in these populations and in typically developing 

populations provide further evidence for links between music and speech rhythm. Potentially 

shared genetic influences (5) should also be examined in the future, given that musical rhythm 

skills are moderately heritable (meaning a portion of the phenotypic variance can be attributed to 

genetic factors) as shown with genomic and twin methods (Niarchou et al., 2021; Ullén et al., 

2014). Neural oscillatory mechanisms (measured from resting state) are also known to be highly 

heritable (Smit et al., 2005), though the heritability of neural entrainment mechansims to rhythm 

in speech or music have not to our knowledge been studied. Further, while the heritability of 

speech rhythm traits (i.e., prosody-related tasks) has not been studied to our knowledge, 

correlated individual differences at the behavioral level often reflect shared underlying genetic 

architecture (Sodini et al., 2018) and other language-related traits are also moderately heritable 

(Deriziotis & Fisher, 2017). Moreover, potentially shared underlying biology and increased 

prevalence of co-morbid rhythm problems in developmental speech and language disorders have 

led to the proposition that atypical rhythm traits partially share genes with speech and language 

development (see Ladányi, Persici et al., 2020 for an in-depth framework). Genetic evidence 

therefore appears to be an interesting avenue for future research that remains to be explored. The 

integration of these five sources of evidence will allow for a more complete understanding of the 

connections between music and speech rhythm and how they can be exploited to develop 

effective tools for treatment and training in light of patient-centered, precision medicine 

approaches, which are neuroscience-informed. 
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Figure 3. Five different cognitive and biological evidence types that should be considered for a 

more comprehensive contextual understanding of music and speech rhythm.  

 

Conclusion  

The similarities between music and speech in relation to rhythm have spurred a large 

amount of research interest. Based on a synthesis of theoretical and empirical work, the present 

paper proposed the PRISM framework, consisting of three mechanisms underlying the 

processing of music and speech rhythm: precise auditory processing, 

synchronization/entrainment of neural oscillations to external rhythms, and sensorimotor 

coupling. Based on observed timing impairments across developmental speech and language 

disorders including dyslexia, DLD, and stuttering, we suggest that focusing on impairments to 

these neural mechanisms may accelerate our understanding of potentially shared timing deficits 
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across different disorders and inform the development of training and treatment programs. Based 

on the strong regularity of music rhythm, the shared neural circuitry between music and speech 

rhythm processing, and overlapping mechanisms involved in encoding, perception, prediction, 

and production of the speech signal, rhythmic training, in particular when exploiting metrical 

structures and other benefits of musical material, appears to be a promising avenue for future 

research to enhance speech and language processing in both unimpaired and impaired 

populations. 
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