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Abstract— Human motion prediction aims to forecast future
human poses given a prior pose sequence. The discontinuity
of the predicted motion and the performance deterioration in
long-term horizons are still the main challenges encountered
in current literature. In this work, we tackle these issues by
using a compact manifold-valued representation of human
motion. Specifically, we model the temporal evolution of the
3D human poses as trajectory, what allows us to map human
motions to single points on a sphere manifold. To learn these
non-Euclidean representations, we build a manifold-aware
Wasserstein generative adversarial model that captures the
temporal and spatial dependencies of human motion through
different losses. Extensive experiments show that our approach
outperforms the state-of-the-art on CMU MoCap and Human
3.6M datasets. Our qualitative results show the smoothness of
the predicted motions. The pretrained models and the code
are provided at the following link.

I. INTRODUCTION

The problem of predicting future human motion is at the
core of many applications in computer vision and robotics,
such as human-robot interaction [19], autonomous driving
[25] and computer graphics [20]. In this paper, we are inter-
ested in building predictive models for short-term and long-
term future 3D poses of a skeleton based on an initial history.
Addressing this task gives rise to two major challenges: How
to model the temporal evolution of the motion to ensure the
smoothness of the predicted sequences? and how to take
into consideration the spatial correlations between human
joints to avoid implausible poses? Given the temporal
aspect of the problem, human motion prediction was widely
addressed with Recurrent Neural Networks (RNN) [8], [15],
[9], [23]. However, while RNN based methods achieved
good advance in term of accuracy, it was observed that the
predicted motions present significant discontinuities due to
the frame-by-frame regression process that discourage the
global smoothness of the motion. Besides, RNNs models
accumulate errors across time, which results in large error
and bad performance in long-term prediction. As a remedy,
more recent works avoid these models and explore feed-
forward networks instead. Including CNN [21], GNN [29]
and fully-connected networks [4], the hierarchical structure
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of feed-forward networks can better handle the spatial de-
pendencies of human joints than RNNs. Nevertheless, these
models require an additional strategy to encode the temporal
information. To meet this challenge, an interesting idea was
to model the human motion as trajectory [22], [3].
In this paper, we follow the idea of considering motions
as trajectories but in a different context from the previous
work. Among the advantages of our representation, the
possibility to map these trajectories to single compact points
on a manifold, which helps with the smoothness and the
continuity of the predicted motions. In addition, the compact
representation avoids the accumulation of errors through time
and makes our method powerful for long-term prediction
as illustrated in Figure 2. However, the resulting repre-
sentations are manifold-valued data that cannot be handled
with traditional generative models in a straightforward man-
ner. To meet this challenge, we propose a manifold-aware
Wasserstein Generative Adversarial Networks (WGAN) that
anticipate future poses based on the input manifold-valued
data that encodes the prior motion sequence. Our model
incorporates the spatial dependencies between human joints
through different loss functions that insure the plausibility
of the predicted poses. A brief overview of our prediction
process is illustrated in Figure 1.
Main contributions. The paper gives rise to the following
contributions: (1) To the best of our knowledge, this is
the first approach that exploits compact manifold-valued
representation for human motion prediction. By doing so,
we model both the temporal and the spatial dependencies
involved in human motion, resulting in smooth motions
and plausible poses in long-term horizons. (2) We propose
a manifold-aware WGAN for motion prediction. (3) Ex-
perimental results on Human 3.6M and the CMU MoCap
datasets show quantitatively and visually the effectiveness of
our method for short-term and long-term prediction.

II. RELATED WORK

Human Motion Prediction with Deep Learning. Since
the problem of human motion prediction is a temporal
dependent task, recurrent models were the first potential
solution to be investigated, thus many works applied RNN
and their variants to address this task. In [8], the authors
proposed a model that incorporates a nonlinear encoder and
decoder before and after recurrent layers. Their approach
was limited by the problem of error accumulation. Besides,
they only capture the temporal dependencies while ignoring
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Fig. 1: Overview of the human motion prediction process. Given
a pose sequence history represented as a curve, then mapped to a
single point in a hypersphere. The predictor maps the input point
to a tangent space, then feeds it to the network G that predicts
the future motion as a vector in Tµ(C). Exponential operator maps
this vector to C, before transforming it to a curve representing a
motion. The predicted motion is transformed into a 3D human pose
sequence corresponding to the future poses of the prior ones.

the spatial correlations between joints. To solve this issue,
[15] proposed a Structural-RNN model relying on high-level
spatio-temporal graphs. In an other direction, to reduce the
effect of the error accumulation in recurrent models, [9]
used a feed forward network for pose filtering and a RNN
for temporal filtering. However, this strategy only reduces
the accumulation of the error which still exists and affects
the performance of recurrent models. Taking a different
direction, more recent works use feed-forward networks as an
alternative model. To represent the temporal evolution with
these models, different strategies were proposed. In [21],
[4], convolution across time was adopted to model the tem-
poral dependencies with convolution networks, while [22]
exploit Discrete Cosine Transform to encode the motion as
trajectory.
In this paper, we take a completely different direction and we
propose to deal with human motion by exploiting a manifold-
valued representation with generative adversarial models.

Generative Adversarial Networks (GANs): Human mo-
tion prediction was also addressed with GANs in [11]
and [1], however, their generator is based on RNN structures
to deal with the temporal aspect of this task. By doing
so, their models keep the problem of error accumulation
which may affect their performance in the long-term. In our
work we completely discard recurrent models by adopting a
compact representation of the human motion.
Motivated by the interest of manifold-valued images in a va-

riety of applications, [13] proposed manifold-aware WGAN.
Inspired from this work, we build a manifold-aware WGAN
that predict the future points of a poses trajectory given
previous pose sequence. However, our model is different
from the one proposed in [13] in two ways. Firstly, instead
of unsupervised image generation from a vector noise, our
model addresses the problem of predicting future manifold-
valued representations from a manifold-valued inputs. Be-
sides, we propose different objective functions to train our
model on the task at hand.

Modeling Human motions as trajectories on a Rie-
mannian Manifold: While our present work is the first
that explores the benefit of manifold-valued trajectories for
human motion prediction, representing 3D human poses
and their temporal evolution as trajectories on a manifold
was adopted in many recent works for action recognition.
Different manifolds were considered in different studies
[27], [2], [16]. More related to our work, in [6], a human
action is interpreted as a parametrized curve and is seen as a
single point on the sphere by computing its Square Root
Velocity Function (SRVF). Accordingly, different actions
were classified based on the distance between their associated
points on the sphere. All papers mentioned above show the
effectiveness of motion modeling as a trajectory in action
recognition. Motivated by this fact, we show in this paper
the interest of using such representation to address the recent
challenges that still encountered in human motion prediction.

III. HUMAN MOTION MODELING

Two 3D skeleton representations were adopted for human
motion prediction; angles based and 3D coordinates based
representations. The first one models each joint by its rotation
in term of Euler angles, while the second representation uses
the 3D coordinates of the joints. More recently, [29], showed
in their experiments that the angles based representation
where two different sets of angles can represent the exact
same pose, leads to ambiguous results and cannot provide a
fair and reliable comparison. Motivated by this, we use 3D
joint coordinates to represent our skeleton poses.

A. Representation of Pose Sequences as Trajectories in Rn

Let k be the number of joints that compose the
skeleton, we represent Pt the pose of the skele-
ton at frame t by a n-dimensional tuple: Pt =
[x1(t), y1(t), z1(t) . . . xk(t), yk(t), zk(t)]T , The pose Pt en-
codes the positions of k distinct joints in 3 dimensions.
Consequently, an action sequence of length T frames, can be
described as a sequence {P1, P2 . . . , PT }, where Pi ∈ Rn
and n = 3× k.
This sequence represents the evolution of the action over time
and can be considered as a result of sampling a continuous
curve in Rn. Based on this consideration, we model in what
follows, each pose sequence of a skeleton, as a continuous
curve in Rn that describes the continuous evolution of the
sequence over time.
Let us represent the curve describing a pose sequence by a
continuous parameterized function α(t) : I = [0, 1] → Rn.



In this work, we formulate the problem of human motion pre-
diction given the first consecutive frames of the action as the
problem of predicting the possible next points of the curve
describing these first frames. More formally, the problem
of predicting the future poses {Pτ+1, Pτ+2, . . . , PT }, given
the first τ consecutive skeleton poses {P1, P2, . . . , Pτ},
where τ < T , is formulated as the problem of predicting
α(t)t=τ+1...T given α(t)t=1...τ , such that, α(t) is the con-
tinuous function representing the curve associated to the pose
sequence {P1, P2, . . . , PT }.

B. Representation of Human Motions as Elements in a
Hypersphere C

For the purpose of modeling and studying our curves,
we adopt square-root velocity function (SRVF) proposed
in [26]. It was successfully exploited for human action
recognition [6], 3D face recognition [7] and facial expression
generation [24]. Conveniently for us, this function maps each
curve α(t) to one point in a hypersphere which provides a
compact representation of the human motion. Specifically,
for a given curve α(t) : I → Rn, the square-root velocity
function (SRVF) q(t) : I → Rn is defined by the formula

q(t) =
α̇(t)√
‖α̇(t)‖

, (1)

where, ‖·‖ is the Euclidean 2-norm in Rn. We can easily re-
cover the curve (i.e, pose sequence) α(t) from the generated
SRVF (i.e, dynamic information) q(t) by,

α(t) =

∫ t

0

‖q(s)‖q(s)ds+ α(0) , (2)

where α(0) is the skeleton pose at the initial time step
which corresponds in our case to the final time step of
the history. In order to remove the scale variability of the
curves, we scale them to be of length 1. Consequently, the
SRVF corresponding to these curves are elements of a unit
hypersphere in the Hilbert manifold L2(I,Rn) as explained
in [26]. We will refer to this hypersphere as C, such that,
C = {q : I→ Rn| ‖q‖ = 1} ⊂ L2(I,Rn) . Each element of C
represents a curve in Rn associated with a human motion. As
C is a hypersphere, the geodesic length between two elements
q1 and q2 is defined as:

dC(q1, q2) = cos−1(〈q1, q2〉) . (3)

IV. ARCHITECTURE AND LOSS FUNCTIONS

Given a set of m action sequences {{P1, P2, . . . PT }i}mi=1

of T consecutive skeleton poses. Let us consider the first τ
poses (τ < T ) as the actions history represented by their
corresponding SRVFs {qiτ}mi=1, and the last (T −τ) skeleton
configurations as the future poses {qiT }mi=1 to be predicted.
Motivated by the success of generative adversarial networks,
we aim to exploit these generative models to learn an
approximation of the function Φ : C → C that predicts the
(T −τ) future poses from their associated τ prior ones. This
can be achieved by learning the distribution of SRVFs data
corresponding to future poses, on their underlying manifold

i.e., hypersphere. As stated earlier, SRVFs representations
are manifold-valued data that cannot be used directly by
classical GANs. This is due to the fact that the distribution of
data having values on a manifold is quite different from the
distribution of those lying on Euclidean space. [13], exploited
the tangent space of the involved manifold and propose a
manifold-aware WGAN that generates random data on a
manifold. Inspired from this work, we propose a manifold-
aware WGAN for motion prediction, to which we refer as
PredictiveMA-WGAN, that can predict the future poses from
the past ones. This is achieved by using the prior poses as
input condition to the MA-WGAN. This condition is also
represented by its SRVF; as a result PredictiveMA-WGAN
takes manifold-valued data as input to predict its future,
which is also a manifold-valued data.

A. Network Architecture

PredictiveMA-WGAN consists of two networks trained in
an adversarial manner: the predictor G and the discriminator
D. The first network G adjust its parameters to learn the
distribution PqT of the future poses qT conditioned on the
input prior ones qτ , while D tries to distinguish between the
real future poses qT and the predicted ones q̂T . During the
training of these networks, we iteratively map the SRVF data
back and forth to the tangent space using the exponential
and the logarithm maps, defined in a particular point on the
hypersphere.

The predictor network is composed of multiple upsam-
pling and downsampling blocks. It takes as input the prior
poses qτ and output the predicted future poses q̂T . A fully
connected layer with 36864 output channels and five upsam-
pling blocks with 512, 256, 128, 64 and 1 output channels,
process the input prior pose. These upsampling blocks are
composed of the nearest-neighbor upsampling followed by
a 3 × 3 stride 1 convolution and a Relu activation. The
Discriminator D contains three downsampling blocks with
64, 32 and 16 output channels. Each block is a 3 × 3
stride 1 Conv layer followed by batch normalization and
Relu activation. These layers are then followed by two fully
connected (FC) layers of 1024 and 1 outputs. The first FC
layer uses Leaky ReLU and batch normalization.

B. Loss Functions

In general, the objective of the training consists in mini-
mizing the Wasserstein distance between the distribution of
the predicted future poses Pq̂T and that of the real ones PqT
provided by the dataset. Toward this goal we make use of
the following loss functions:

Adversarial loss – We propose an adversarial loss for pre-
dicting manifold-valued data from their history. The predictor
takes a manifold-value data qτ as input rather than a random
vector as done in [13], which requires to map these data to a
tangent space using the logarithm map before feeding them



to the network. Our adversarial loss is the following:

La =EqT∼PqT
[
D
(
logµ(qT )

)]
−EG(logµ(qτ ))∼Pq̂T

[
D
(
logµ

(
expµ(G(logµ(qτ )))

))]
+λEq̃∼Pq̃

[
(‖∇q̃D(q̃)‖ − 1)

2
]
,

(4)

where logµ(.) and expµ(.) are the logarithm and exponential
maps on the sphere, used to iteratively map the SRVF data
back and forth to the tangent space Tµ(C) at a reference
point µ. They are given by:

logµ(q) =
dC(q, µ)

sin(dC(q, µ))
(q − cos(dC(q, µ))µ) ,

expµ(s) = cos(‖s‖)µ+ sin(‖s‖) s

‖s‖
,

(5)

where dC(., .) is the geodesic distance defined by (3). The
last term of La represents the gradient penalty proposed
in [12]. q̃ is a random sample following the distribution
Pq̃ , which is sampled uniformly along straight lines between
pairs of points sampled from the real distribution PqT and
the generated distribution Pq̂T . It is given by: q̃ = (1 −
a) logµ(qT )+a logµ(expµ(G(logµ(qτ )))), where ∇q̃D(q̃) is
the gradient with respect to q̃, and 0 6 a 6 1.
The reference point µ of the tangent space used in our
training is set to the mean of the training data. It is given
by the Karcher mean [17] in C, µ = argmin

qi∈C

∑m
i=1 d

2
C(µ, qi),

where {qi}mi=1 is m training data.
Reconstruction loss – In order to predict motions close

to their ground truth, we add a reconstruction loss Lr.
This loss function quantifies the similarities in the tangent
space Tµ(C) between the tangent vector logµ(qT ) of the
ground truth qT and its associated reconstructed vector
logµ(expµ(G(logµ(qτ )))). It is given by,

Lr = ‖logµ(expµ(G(logµ(qτ ))))− logµ(qT )‖1 , (6)

where ‖.‖1 denotes the L1-norm.
Skeleton integrity loss – We propose a new loss function

Ls that minimizes the distance between the predicted poses
and their ground truth as a remedy to the generation of
abnormal skeleton poses. Indeed, the aforementioned loss
functions rely only on the SRVF representations, which im-
poses constraints only on the dynamic information. However,
to capture the spatial dependencies between joints that avoid
implausible poses, we need to impose constraints on the
predicted poses directly instead of their motions. By doing
so, we predict dynamic changes that fit the initial pose and
result in a long-term plausibility. The proposed loss function
is based on the Gram matrix of the joint configuration P ,
G = PPT , where P can be seen as k × 3 matrix. Let
Gi, Gj be two Gram matrices, obtained from joint poses
Pi, Pj ∈ Rk×3. The distance between Gi and Gj can be
expressed [10, p. 328] as:

∆(Gi, Gj) = tr (Gi) + tr (Gj)− 2

3∑
i=1

σi , (7)

where tr(.) denotes the trace operator, and {σi}3i=1 are the
singular values of PTj Pi. The resulting loss function is,

Ls =
1

m

1

τ

m∑
i=1

τ∑
t=1

∆(Pi,t, P̂i,t) , (8)

where m represents the number of training samples, τ is the
length of the predicted sequence, P is the ground truth pose
and P̂ is the predicted one.

Bone length loss – To ensure the realness of the predicted
poses, we impose further restrictions on the length of the
bones. This is achieved through a loss function that forces
the bone length to remain constant over time. Considering
bi,j,t and b̂i,j,t the j-th bones at time t from the ground truth
and the predicted i-th skeleton, respectively, we compute the
following loss :

Lb =
1

m

1

τ

1

B

m∑
i

τ∑
t=1

B∑
j

‖bi,j,t − b̂i,j,t‖ , (9)

with B the number of bones in the skeleton representation.
Global loss – PredictiveMA-WGAN is trained using a

weighted sum of the four loss functions La, Lr, Ls and Lb
introduced above, such that,

L = β1La + β2Lr + β3Ls + β4Lb. (10)

The parameters βi are the coefficients associated to different
losses, they are set empirically in our experiments.

The algorithm 1 summarizes the main steps of our ap-
proach. It is divided in two stages, first we outline the steps
needed to train our model, then we present the prediction
stage, where the trained model is used to predict future poses
of a given sequence.

V. EXPERIMENTS

In order to evaluate the proposed approach, we performed
extensive experiments on two commonly used datasets. In
what follows, we present and discuss our results.

A. Datasets and Pre-processing

Human 3.6M. Human 3.6M [14] has 11 subjects in 15
various actions (Eating, Walking, Taking photos. . . ). It is
the largest dataset and the most commonly used for hu-
man motion prediction with 3D skeletons in literature. As
previous works [23], [5], our models are trained on 6
subjects and tested on the specific clips of the 5th subject.
Following [5] we use only 17 joints out of 32; the removed
joints correspond to duplicate joints, hands and feet.
CMU Motion Capture (CMU MoCap). CMU Mocap
dataset 1 consists of 5 categories, each containing several
actions. To be coherent with [21], we choose 8 actions:
’basketball’, ’basketball signal’, ’directing traffic’,’jumping’,
’running’, ’soccer’, ’walking’ and ’washing window’. We
use the same joint configuration and pre-processing as for
Human3.6M.

1http://mocap.cs.cmu.edu
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Algorithm 1: PredictiveMAWGAN algorithm

// Training
Data: {qiτ}mi=1: SRVFs of training prior poses,

{qiT }mi=1: real future poses, θ0 : initial
parameters of G, η0 : initial parameters of D,
ε: learning rate, K: batch size, λ: balance
parameter of gradient penalty, ζ: iterations
number.

Result: θ: generator learned parameters.
1 for i = 1 . . . ζ do
2 Sample a mini-batch of K random prior poses

{qjτ}Kj=1 ∼ Pqτ ;
3 Sample a mini-batch of K real future poses;

{qjT }Kj=1 ∼ PqT ;
4 Dη ← ∆η(L),L is given by Eq. 10;
5 η ← η + ε.AdamOptimizer(η,Dη);
6 Sample a mini-batch of K random prior poses;

{qjτ}Kj=1 ∼ Pqτ ;
7 Compute {Gθ(logµ(qjτ ))}Kj=1;
8 Gθ ← ∆θ(−Dη

(
logµ

(
expµ(Gθ(logµ(qτ ))

))
))

9 θ ← θ + ε.AdamOptimizer(θ,Gθ);

// Prediction
Data: θ: generator learned parameters,

{Pi}τi=1: Prior poses of a testing sequence.
Result: {P̂i}Ti=τ+1: Predicted future poses.

10 Compute qτ from {Pi}τi=1 with Eq. 1;
11 Compute q̂T = expµ(Gθ(logµ(qτ ))) using the learned

parameters θ;
12 Transform q̂T into pose sequence {P̂i}Ti=τ+1 using

Eq. 2, with α(0) = Pτ

B. Implementation Details

Our method is implemented using Tensorflow 2.2 on a
PC with two 2.3Ghz processors, a Nvidia Quadro RTX 6000
GPU and 64Go of RAM. The models are trained using the
Adam optimizer [18]. The batch size is set to 64 and the
number of epochs is fixed to 500. The learning rate is fixed to
10−4. The loss coefficients β1, β2, β3 and β4 are respectively
set to 1, 1, 10 and 10.

C. Evaluation Metrics and Baselines

We compare our results with state-of-the-art motion pre-
diction methods that were based on 3D coordinate represen-
tation, including RNN based method (Residual sup). [23],
CNN based method (ConvSeq2Seq) [21] and graph models;
(FC-GCN) [29] and (LDRGCN) [5]. We also compare with
a simple baseline, Zero velocity introduced by [23], which
sets all predictions to be the last observed pose at t = τ .
For LDRGCN we present the results reported by the authors
for the method trained with data in 3D coordinate space.
For FC-GCN, ConvSeq2Seq and Residual sup., we present
the results reported by [29] with the methods that use 3D
coordinate data for training. For the long-term (1000ms) on
Human 3.6M, we use the results presented by [5] since they

are not provided in [29]. We do not present the long-term
results for Residual sup. on Human 3.6M as they are not
available.

Following the state-of-the-art [5], our quantitative evalua-
tion is based on the Mean Per Joint Position Error (MPJPE)
[14] in millimeter. This metric compares the predicted
motions and their corresponding ground-truths in the 3D
coordinate space. It is given by,

Err =

√√√√ 1

∆t

1

k

τ+∆t∑
t=τ+1

k∑
j=1

‖pt,j − p̂t,j‖2 , (11)

where pt,j = [xj(t), yj(t), zj(t)] are the coordinates of
joint j at time t from the ground truth sequence, p̂t,j the
coordinates from the generated sequence, k the total number
of joints in the skeleton, τ the number of frames in prior
sequence and ∆t the number of predicted frames at which
the sequence is evaluated.

D. Quantitative Comparison

In consistency with recent work, we report our results in
short-term and long-term prediction. Given 10 prior poses,
10 future frames are predicted within 400ms in short-term,
while 25 frames are predicted in 1s for long-term prediction
based on the previous 25 frames. In Table I, we compare our
results with recent methods based on 3D joint coordinates
representation. This latter, has been proven in [29] to
provide a reliable comparison in contrast to the angle based
representation. The table shows a clear superiority of our
approach over the state-of-the-art for both Human3.6M
and CMU-MoCap datasets. We highlight that our approach
in 80ms and 160ms is very competitive with LDRGCN
approach, while in longer horizons we outperform this
method in 320ms, 400ms and 1s, which demonstrates the
robustness of our method in predicting motions that are
closer to the ground-truth in long-term.

Human3.6M average
millisecond (ms) 80 160 320 400 1000
Zero velocity 19.6 32.5 55.1 64.4 107.9
Residual sup. 30.8 57.0 99.8 115.5 -
convSeq2Seq 19.6 37.8 68.1 80.3 140.5
FC-GCN 12.2 25.0 50.0 61.3 114.7
LDRGCN 10.7 22.5 43.1 55.8 97.8
Ours 12.6 22.5 41.9 50.8 96.4

CMU MoCap average
millisecond (ms) 80 160 320 400 1000
Zero velocity 18.4 31.4 56.2 67.7 130.5
Residual sup. 15.6 30.5 54.2 63.6 96.6
convSeq2Seq 12.5 22.2 40.7 49.7 84.6
FC-GCN 11.5 20.4 37.8 46.8 96.5
LDRGCN 9.4 17.6 31.6 43.1 82.9
Ours 9.4 15.9 29.2 38.3 80.6

TABLE I: Average error over all actions of Human3.6M and CMU
MoCap. The short-term in 80,160,320,400ms, and long-term in 1s.

We further report in Table II and III, our results and those
of the literature on all actions of Human3.6M and CMU



MoCap datasets, respectively. The protocol adopted by the
baseline methods is to report the average error on eight
randomly sampled test sequences. However, we found that
the error is significantly affected by this random sampling,
which makes it difficult to present a fair comparison. To
alleviate this issue, we report the mean error obtained over
100 runs; in each run, we randomly sample 8 test sequences.
Hence we report the average error as well as the standard
deviation obtained with our model. Indeed, the standard devi-
ation allows us to better measure the general performance of
our model on different samples. The large variance obtained
for some classes (e.g, jumping). is due to the high diversity
of samples corresponding to these classes in the training
data, while the other classes (e.g, walking) are present with
less variability and then show less variance. According to
Tables II and III, our approach outperforms the state-of-the-
art especially for long-term prediction, which is consistent
with the average error over all actions. Our results show also
that the simple zero-velocity baseline outperforms the state
of art in long-term for some actions (e.g, Photo, Sitting and
Walking dog for Human3.6H, Soccer and Jumping for CMU
MoCap), while in short-term, zero-velocity baseline error is
generally higher. This evidences that the performance of the
compared approaches decrease over time, while ours is more
robust in long-term horizons, performing better than both the
literature and the zero velocity baseline overall.

E. Qualitative Comparison

We show in Figure 2, 3D pose sequences of a predicted
motion using our trained model for long-term prediction. We
show also the predicted 3D poses of the same sequence ob-
tained with the baseline methods ConvSeq2Seq [21] and FC-
GCN [29], based on their publicly available codes. We did
not include LDRGCN [5] in this comparison since their code
is not yet available. Visually, we observe that our method
produces a realistic pose sequences with a smooth motion
that follows the ground truth more closely than the other
methods even for long-term prediction. Our method does not
show any discontinuity as a consequence of predicting the
dynamic of the motion then applying it to a starting pose
rather that directly predicting the pose sequence as the other
methods do. We provide more qualitative comparison as well
as video comparisons with our supplementary materials.

F. Smoothness of the motion

In order to quantitatively assess the smoothness of our pre-
dicted motions, we report in table IV, the average euclidean
distance between consecutive frames for our method against
the ground truth data for some actions of the CMU MoCap
dataset over all frames (25), all joints (17) and all samples
from the given action (variable). The results demonstrate that
the generated movements are characterized by changes in
time that are close to those shown in real videos. The Fig 3
shows the evolution over time of the y coordinate from the
skeleton’s left foot on a random sample of 25 frames from
the walking action from the Human3.6M dataset. The motion

Fig. 2: The left frames correspond to the sequence used as a prior.
From top to bottom : ground truth, the results of ConvSeq2Seq [21],
FC-GCN [29] and our method. The illustrated action corresponds
to ’Walking Together’ from Human3.6M dataset. Short-term frames
shown correspond to predicted frames 1, 9 and 10 and long-term
frames to frames 11, 12, 22, 23, 24 and 25.

Fig. 3: Walking action from Human3.6M. In blue the ground
truth, in red the sequence generated by our model, in magenta
ConvSeq2Seq [21] and in black FC-GCN [29] , x-axis and y-axis
corresponds respectively to frame numbers and joint position on
the y axis.

of the selected action can be observed in the video in the
supplementary materials. We represent the ground truth in
blue, the sample generated by our model in red and the
sample generated by ConvSeq2Seq [21] and FC-GCN [29]
in magenta and red respectively. We can see that our method
produces a smooth motion that follows the motion of the
ground truth.

G. Computation Time

In Table V, we compare the computation time re-
quired by our method for long-term prediction with that of
ConvSeq2Seq and FC-GCN. The time was obtained by pre-
dicting the long-term motion (i.e, 25 frames) of 8 sequences
for each of the 15 actions from Human3.6M dataset. It is
worthy to note that the codes used for ConvSeq2Seq and FC-
GCN are provided by their authors. The results of the table
show that regardless of the additional computations required
to map the motion back and forth to the tangent space w.r.t
standard GAN models, our prediction time is similar to those
of the two other methods and even faster than ConvSeq2Seq.

H. Visualization

To further assess the quality of the predicted samples,
we present, in Figure 4 a 2D visualization of 677 long-
term prediction samples from the CMU MoCap dataset
predicted with our model using the t-Distributed Stochastic
Neighbor Embedding (t-SNE) algorithm [28]. This figure
clearly evidences that the predicted motions and their ground
truth belong to very close distributions. Furthermore, the



Directions Discussion Eating Greeting
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 16.0 27.1 46.4 53.9 83.9 17.8 29.7 51.0 59.8 103.1 13.5 21.9 37.0 43.9 83.3 26.4 43.7 70.1 80.5 124.9
Residual sup. 36.5 56.4 81.5 97.3 - 31.7 61.3 96.0 103.5 - 17.6 34.7 71.9 87.7 - 37.9 74.1 139.0 158.8 -
convSeq2Seq 22.0 37.2 59.6 73.4 118.3 18.9 39.3 67.7 75.7 123.9 13.7 25.9 52.5 63.3 74.4 24.5 46.2 90.0 103.1 191.2
FC-GCN 12.6 24.4 48.2 58.4 89.1 9.8 22.1 39.6 44.1 78.5 8.8 18.9 39.4 47.2 57.1 14.5 30.5 74.2 89.0 148.4
LDRGCN 13.1 23.7 44.5 50.9 78.3 9.4 20.3 35.2 41.2 67.4 7.6 15.9 37.2 41.7 53.8 9.6 27.9 66.3 78.8 129.7
Ours 11.1 20.9 38.8 47.0 83.5 11.9 22.7 44.8 54.6 102.2 9.0 15.9 29.1 35.0 65.3 19.6 35.1 64.0 78.2 126.8

±2.7 ±4.9 ±8.4 ±9.7 ±15.3 ±1.9 ±3.4 ±6.5 ±7.7 ±16.5 ±1.5 ±2.8 ±4.8 ±5.3 ±6.8 ±3.4 ±6.8 ±13.1 ±16.1 ±16.7

Phoning Photo Posing Purchase
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 15.8 26.5 43.7 51.0 92.3 16.9 28.4 49.2 58.3 98.8 20.4 34.7 61.5 73.3 136.1 22.1 36.5 61.8 72.2 126.3
Residual sup. 25.6 44.4 74.0 84.2 - 23.6 47.4 94.0 112.7 - 27.9 54.7 131.3 160.8 - 40.8 71.8 104.2 109.8 -
convSeq2Seq 17.2 29.7 53.4 61.3 127.5 14.0 27.2 53.8 66.2 151.2 16.1 35.6 86.2 105.6 163.9 29.4 54.9 82.2 93.0 139.3
FC-GCN 11.5 20.2 37.9 43.2 94.3 6.8 15.2 38.2 49.6 125.7 9.4 23.9 66.2 82.9 143.5 19.6 38.5 64.4 72.2 127.2
LDRGCN 10.4 14.3 33.1 39.7 85.8 7.1 13.8 29.6 44.2 116.4 8.7 21.1 58.3 81.9 133.7 16.2 36.1 62.8 76.2 112.6
Ours 11.7 19.4 34.9 42.3 81.8 8.8 16.0 32.4 40.9 98.9 13.7 25.9 50.0 61.1 137.7 14.2 26.5 48.3 58.1 120.8

±2.2 ±3.6 ±6.4 ±7.6 ±9.8 ±2.0 ±3.5 ±6.9 ±8.6 ±16.1 ±3.3 ±6.3 ±11.0 ±12.7 ±12.8 ±2.5 ±4.8 ±9.8 ±12.5 ±19.0

Sitting Sitting Down Smoking Waiting
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 14.6 23.9 40.9 48.4 94.7 19.5 32.4 53.5 61.8 112.2 14.9 24.6 41.7 49.3 84.0 17.0 28.2 48.9 57.8 99.4
Residual sup. 34.5 69.9 126.3 141.6 - 28.6 55.3 101.6 118.9 - 19.7 36.6 61.8 73.9 - 29.5 60.5 119.9 140.6 -
convSeq2Seq 19.8 42.4 77.0 88.4 132.5 17.1 34.9 66.3 77.7 177.5 11.1 21.0 33.4 38.3 52.2 17.9 36.5 74.9 90.7 205.8
FC-GCN 10.7 24.6 50.6 62.0 119.8 11.4 27.6 56.4 67.6 163.9 7.8 14.9 25.3 28.7 44.3 9.5 22.0 57.5 73.9 157.2
LDRGCN 9.2 23.1 47.2 57.7 106.5 9.3 21.4 46.3 59.3 144.6 8.1 13.4 24.8 24.9 43.1 9.2 17.6 47.2 71.6 127.3
Ours 10.4 17.9 33.1 40.7 97.7 15.8 28.2 52.9 64.5 125.2 7.9 14.3 25.2 30.4 63.4 11.4 20.3 38.8 47.2 94.0

±2.8 ±3.5 ±5.3 ±6.4 ±14.0 ±3.4 ±5.1 ±9.3 ±11.5 ±23.3 ±1.6 ±2.7 ±4.5 ±5.2 ±9.7 ±3.1 ±4.3 ±7.6 ±9.0 ±13.7

Walking Dog Walking Walking Together Average
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 26.9 42.3 69.2 79.5 119.2 28.1 49.2 86.0 100.3 149.1 23.5 39.2 65.4 75.6 111.3 19.6 32.5 55.1 64.4 107.9
Residual sup. 60.5 101.9 160.8 188.3 - 23.8 40.4 62.9 70.9 - 23.5 45.0 71.3 82.8 - 30.8 57.0 99.8 115.5 -
convSeq2Seq 40.6 74.7 116.6 138.7 210.2 17.1 31.2 53.8 61.5 89.2 15.0 29.9 54.3 65.8 149.8 19.6 37.8 68.1 80.3 140.5
FC-GCN 32.2 58.0 102.2 122.7 185.4 8.9 15.7 29.2 33.4 50.9 8.9 18.4 35.3 44.3 102.4 12.2 25.0 50.0 61.3 114.7
LDRGCN 25.3 56.6 87.9 99.4 143.2 8.9 14.9 25.4 29.9 45.8 8.2 18.1 31.2 39.4 79.2 10.7 22.5 43.1 55.8 97.8
Ours 19.3 34.2 65.6 77.5 117.8 12.0 21.1 35.6 42.4 68.2 11.6 19.7 34.5 41.8 63.4 12.6 22.5 41.9 50.8 96.4

±5.9 ±9.5 ±17.8 ±19.7 ±23.7 ±1.1 ±1.7 ±2.9 ±3.8 ±5.3 ±1.1 ±1.6 ±3.0 ±3.8 ±6.4

TABLE II: Motion prediction results measured with eq.11 for all actions in the Human 3.6M dataset for short-term within 80, 160, 320,
400ms, and long-term in 1s. Best results in bold, while state-of-the-art best results that fit in our confidence interval are also written bold.

Basketball Basketball signal Directing traffic Jumping
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 20.3 34.6 62.2 75.0 143.5 6.4 11.0 19.9 24.2 50.5 26.6 41.9 69.1 81.9 155.3 21.4 36.3 63.2 75.2 138.8
Residual sup. 18.4 33.8 59.5 70.5 106.7 12.7 23.8 40.3 46.7 77.5 15.2 29.6 55.1 66.1 127.1 36.0 68.7 125.0 145.5 195.5
convSeq2Seq 16.7 30.5 53.8 64.3 91.5 8.4 16.2 30.8 37.8 76.5 10.6 20.3 38.7 48.4 115.5 22.4 44.0 87.5 106.3 162.6
FC-GCN 14.0 25.4 49.6 61.4 106.1 3.5 6.1 11.7 15.2 53.9 7.4 15.1 31.7 42.2 152.4 16.9 34.4 76.3 96.8 164.6
LDRGCN 13.1 22.0 37.2 55.8 97.7 3.4 6.2 11.2 13.8 47.3 6.8 16.3 27.9 38.9 131.8 13.2 32.7 65.1 91.3 153.5
Ours 9.1 16.6 34.7 44.5 108.4 3.3 5.9 11.5 14.7 44.7 19.6 31.3 54.8 66.1 155.5 12.5 22.7 44.4 55.8 120.4

±0.7 ±1.5 ±3.5 ±4.4 ±5.1 ±1.1 ±2.0 ±3.7 ±4.7 ±15.0 ±16.7 ±23.2 ±34.4 ±37.4 ±52.1 ±2.0 ±3.8 ±7.4 ±9.6 ±21.0

Running Soccer Walking Wash window
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 30.6 52.8 94.1 112.2 242.6 10.3 17.5 31.8 39.0 79.4 18.3 31.2 55.1 66.2 137.7 12.3 21.1 37.8 45.7 90.9
Residual sup. 15.6 19.4 31.2 36.2 43.3 20.3 39.5 71.3 84.0 129.6 8.2 13.7 21.9 24.5 32.2 8.4 15.8 29.3 35.4 61.1
convSeq2Seq 14.3 16.3 18.0 20.2 27.5 12.1 21.8 41.9 52.9 94.6 7.6 12.5 23.0 27.5 49.8 8.2 15.9 32.1 39.9 58.9
FC-GCN 25.5 36.7 39.3 39.9 58.2 11.3 21.5 44.2 55.8 117.5 7.7 11.8 19.4 23.1 40.2 5.9 11.9 30.3 40.0 79.3
LDRGCN 15.2 19.7 23.3 35.8 47.4 10.3 21.1 42.7 50.9 91.4 7.1 10.4 17.8 20.7 37.5 5.8 12.3 27.8 38.2 56.6
Ours 12.4 19.7 32.3 39.0 68.9 4.9 7.9 14.2 18.0 53.1 8.1 13.6 22.1 26.1 32.4 5.5 9.8 19.2 24.3 61.3

±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.3 ±0.6 ±1.2 ±1.6 ±4.5 ±0.0 ±0.0 ±0.0 ±0.0 ±1.8 ±0.8 ±1.4 ±2.5 ±3.1 ±8.4

TABLE III: Motion prediction results measured with eq.11 on CMU dataset. Short-term results are reported within 80, 160, 320, 400ms,
and long-term in 1s. Best results in bold while state-of-the-art best results that fit in our confidence interval are also written bold.

Ground truth Generated samples
Basketball signal 2.33 1.94

Running 12.71 10.96
Walking 6.86 6.62

Wash Window 5.08 4.24

TABLE IV: Averaged Euclidean distance between consecutive
frames for all joints and time-steps.

predicted 3D sequences of the same action are relatively
distant from each other, what shows that our model can
predict different motions for the same action while respecting
the action of the given prior poses.

total time time per sample (25 frames)
ConvSeq2Seq 3.04s ≈ 25ms

FC-GCN 1.67s ≈ 14ms
Ours 2.42s ≈ 20ms

TABLE V: Prediction time comparison for 8 predicted samples per
action on Human3.6M.

I. Ablation Study

In order to show the efficiency of the skeleton integrity
loss Ls and the bone length loss Lb on the prediction results,
we perform an ablation analysis on different models trained
with different losses. We chose Human 3.6M to conduct this



(a) Predicted motions

(b) Ground truth motions

Fig. 4: 2D visualization of the predicted motions by our method
and their associated ground truth using t-SNE algorithm based on
Gram distance eq.7. Each color represents an action.

study motivated by the huge data it provides. In Table VI,
we report our results for short-term and long-term using the
average error over all actions at different time steps. These
results show a clear improvement when adding one of the
losses, either Ls or Lb, to the model that use only La and
Lr. Furthermore, while we obtain similar results for short-
term prediction when using both losses (i.e., Ls and Lb)
or only Lb, we notice a remarkable enhancement for long-
term prediction when adding both Lb and Ls to the objective
function over the model that add only one of them. This
evidences the importance of integrating both losses Ls and
Lb to capture the spatial correlations between joints and keep
predicting plausible poses in the long-term horizons.

loss functions 80 160 320 400 1000
La + Lr 20.2 34.9 62.4 74.9 133.3

La + Lr + Ls 13.6 23.4 42.6 51.6 103.8
La + Lr + Lb 12.6 22.4 41.3 49.9 105.6

La + Lr + Ls + Lb 12.3 22.2 41.3 50.1 96.2

TABLE VI: Impact of the bone length loss and the skeleton
integrity loss on the prediction performance for short-term and long-
term.

VI. CONCLUSIONS

In this paper, we have introduced a novel and robust
method to deal with human motion prediction. We have
represented the temporal evolution of 3D human poses as
trajectories that can be mapped to points on a hypersphere. To
learn this manifold-valued representation, a manifold-aware
Wasserstein GAN that captures both the temporal and the
spatial dependencies involved in human motion, has been
proposed. We have demonstrated through extensive experi-
ments the robustness of our method for long-term prediction
compared to recent literature. This has been confirmed also
by our qualitative results that show the ability of the method
to produce smooth motions and plausible poses in long-term

horizons. As a limitation, our model is restricted by the
fixed number of frames that can predict at a time, which
corresponds to the number of frames used during training.
However, our model can be used in iterative prediction up
to 2 seconds for non-periodic actions (e.g., wash windows)
and for longer time for periodic ones (e.g., walking).
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Paiva. A novel geometric framework on Gram matrix trajectories for
human behavior understanding. PAMI, 42(1):1–14, 2020.

[17] H. Karcher. Riemannian center of mass and mollifier smoothing.
Communications on pure and applied mathematics, 30(5):509–541,
1977.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In ICLR, 2015.

[19] H. S. Koppula and A. Saxena. Anticipating human activities for
reactive robotic response. In IROS, pages 2071–2071, 2013.

[20] L. Kovar, M. Gleicher, and F. H. Pighin. Motion graphs. In ACM
SIGGRAPH Classes, pages 51:1–51:10, 2008.

[21] C. Li, Z. Zhang, W. S. Lee, and G. H. Lee. Convolutional Sequence to
Sequence Model for Human Dynamics. In CVPR, pages 5226–5234,
2018.



[22] W. Mao, M. Liu, M. Salzmann, and H. Li. Learning trajectory
dependencies for human motion prediction. In ICCV, pages 9488–
9496, 2019.

[23] J. Martinez, M. J. Black, and J. Romero. On human motion prediction
using recurrent neural networks. In CVPR, pages 4674–4683, 2017.

[24] N. Otberdout, M. Daoudi, A. Kacem, L. Ballihi, and S. Berretti.
Dynamic facial expression generation on hilbert hypersphere with
conditional Wasserstein generative adversarial nets. PAMI, pages 1–1,
2020.
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