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Abstract This paper studies the model selection problem in a large class
of causal time series models, which includes both the ARMA or AR(∞) pro-
cesses, as well as the GARCH or ARCH(∞), APARCH, ARMA-GARCH
and many others processes. We first study the asymptotic behavior of the
ideal penalty that minimizes the risk induced by a quasi-likelihood estima-
tion among a finite family of models containing the true model. Then, we
provide general conditions on the penalty term for obtaining the consistency
and efficiency properties. We notably prove that consistent model selection
criteria outperform classical AIC criterion in terms of efficiency. Finally, we
derive from a Bayesian approach the usual BIC criterion, and by keeping all
the second order terms of the Laplace approximation, a data-driven criterion
denoted KC’. Monte-Carlo experiments exhibit the obtained asymptotic re-
sults and show that KC’ criterion does better than the AIC and BIC ones in
terms of consistency and efficiency.
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1. Introduction. Model selection is one of the fundamental tasks in Statistics and Data
Science. It aims at providing a model (or an algorithm) that is the best, following a criterion,
to represent observed data. Two leading model selection procedures have received a lot of
attention in the literature. On one hand, the resampling methods such as hold out or more
generally V -fold cross-validation are widely used in the machine learning community. On
the other hand, the methods based on the minimization of a penalized risk are also now very
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popular in the community of applied or theoretical statisticians. They are certainly more ap-
propriate to be applied to time series since they take into account the dependence between
data. This will be our choice in this paper.

The main challenging task when designing a penalized based criterion is the calibration of
the penalty. This is mainly dependent on the goal one would like the final criterion achieves.
For instance, the objective could be the consistency, the efficiency or the adaptive nature in

the minimax sense to name a few.

The consistency property aims at identifying the data generating process with high prob-
ability. Hence, it requires the assumption whereby there exists a true model in the set of
competitive models and the goal is to select this with probability approaches one as the sam-
ple size tends to infinity. Although the consistency is a convincing mathematical property,
this asymptotic property is not always the most interesting when switching to a practical im-
plementation. Indeed, the true underlying process is generally unknown and trying to identify
the true model for any data is quite ambitious. It is often more plausible to assume that the
true data generating process is infinite-dimensional, and that one tries to identify a "good"
finite-dimensional model based on the data ([19]). Therefore, it is common in this framework
to let the dimension of the competitive models to depend on the number of observations in
order to obtain a better approximation and to reduce the prediction’s risk. Hence, the model
selection is said to be efficient when its risk is asymptotically equivalent to the risk of the
oracle.

In this work, we are interested by providing efficient and consistent penalized data-driven
criteria for affine causal time series, which are defined by:

Class AC(M,f) : A process X = (Xt)t∈Z belongs to AC(M,f) if it satisfies:

(1.1) Xt =M
(
(Xt−i)i∈N∗

)
ξt + f

(
(Xt−i)i∈N∗

)
for any t ∈ Z.

where (ξt)t∈T is a sequence of zero-mean independent and identically distributed random

vectors (i.i.d.r.v) satisfying E(|ξ0|r)<∞ with r ≥ 1 and M , f : R∞ → R are two measur-

able functions, where R∞ is the set of numeric sequence with finite number of non-zero terms.

For instance,

• if M
(
(Xt−i)i∈N∗

)
= σ and f

(
(Xt−i)i∈N∗

)
= φ1Xt−1 + · · ·+ φpXt−p, then (Xt)t∈Z is an

AR(p) process;

• if M
(
(Xt−i)i∈N∗

)
=
√

a0 + a1X2
t−1 + · · ·+ apX2

t−p and f
(
(Xt−i)i∈N∗

)
= 0, then (Xt)t∈Z

is an ARCH(p) process.

Note that numerous classical time series models such as ARMA(p, q), GARCH(p, q),
ARMA(p, q)-GARCH(p, q) (see [13] and [27]) or APARCH(δ, p, q) processes (see [13]) be-
long to AC(M,f).
The study of these causal affine time series more often requires the classical regularity condi-
tions on the functions M and f that are not really restrictive and remain valid for many time
series.

We will consider the semi-parametric class of models AC(Mθ, fθ) where θ ∈Θ (a compact
subset of Rd, d ∈ N), where (fθ)θ∈Θ and (Mθ)θ∈Θ are two families of functions such as for
θ ∈Θ, fθ :R∞ →R and Mθ : R

∞ → [0,∞) are known and the distribution of ξ0 is unknown.
A finite family of models M (for instance, the class of AR(p) processes where 0≤ p≤ pmax)
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will be considered, where a model m ∈M corresponds to a linear subspace of Rd. A trajec-
tory (X1, · · · ,Xn) generated from the class AC(Mθ∗ , fθ∗) with the "true" model m∗ ∈M is
supposed to be observed (see Section 2).

There already exist several important contributions devoted to the model selection for time
series; we refer to the book of [31] and the references therein for an overview on this topic.
Also, the time series model selection literature is very extensive and still growing; we refer
to the monograph of [33], which provided an excellent summary of existing model selection
procedure, including the case of time series models as well as the recent review paper of [12].
The asymptotically efficient selection property has already been tackled in case of linear pro-
cess type AR(∞) by [37], [36], [22], [21], [20], and recently by [18].

The study of a consistent model selection in this class of affine causal processes has been
also considered by [4] and [25]. As in these papers, we consider here a risk built from the
Gaussian conditional log-Likelihood, which is naturally deduced for all causal affine mod-
els AC(Mθ, fθ), and consider a model selection criterion as a penalized Gaussian Quasi-
Maximum conditional log-Likelihood (see for instance [16] or [5]). This allows us:

1. To study the asymptotic behavior of an ideal penalty that is defined as providing a mini-
mization of the risk;

2. To determine the conditions for obtaining (or not) the asymptotic consistency of a crite-
rion, i.e. that it allows asymptotically to select the true model;

3. To determine the conditions for approaching (or not) in 1/n or even in o(1/n) the minimal
risk, thus to obtain an asymptotic efficiency;

4. To determine from a Bayesian approach the BIC criterion as well as a second data-driven
criterion called KC’, which is obtained by keeping all the second order terms in the
Laplace approximation and to prove that they verify the properties of asymptotic con-
sistency and efficiency in o(1/n).

In the end, we show that in the chosen framework the BIC and KC’ criteria offer all the
advantages with respect to the classical AIC criterion, which allows neither the asymptotic
consistency nor the same efficiency. Numerical simulations confirm these results and also
show that the new data-driven KC’ criterion clearly outperforms the BIC criterion both in
terms of consistency and efficiency.

The paper is organized as follows. The model selection framework based on Gaussian Likeli-
hood risk is described in Section 2. In Section 3, the precise assumptions are stated and they
lead to new asymptotic results satisfied by the Quasi-Maximum Likelihood Estimator. The
asymptotic behavior of the ideal penalty is studied in Section 4 as well as some conditions for
obtaining the asymptotic efficiency or consistency of a criterion. In Section 5, the usual BIC
criterion as well as the data-driven criterion KC’ are studied. Finally, examples are detailed
in Section 6, numerical results are presented in Section 7 and Section 8 contains the proofs.

2. Model selection framework.

2.1. Finite family M of parametric affine causal models. Assume a trajectory (X1, . . . ,Xn)
is observed from a causal stationary solution of (1.1) where M and f are two known func-
tions depending on an unknown finite dimensional vector of parameters θ∗.

Now consider a finite family M of models belonging to parametric affine causal models.
In Proposition 1 of [4], due to the linearity of such models and because M is a finite family,
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it was established that it is always possible to find a dimension d ∈ N∗ and a unique couple
of known functions (Mθ, fθ) with θ ∈ Rd such as in such a way that any model m ∈M be-
longs to the class AC(Mθ, fθ). More precisely, there is a one-to-one correspondence between
each model m ∈ M and a linear subspace Θm ⊂ Rd and dim(Θm) = |m| the number of
unknown parameters of the model m. As a consequence, if we denote m∗ the "true" model
corresponding to AC(Mθ∗ , fθ∗), we will say:

• if m ∈M is such that Θm∗ ⊂ Θm and Θm∗ 6=Θm (also denoted m∗ ⊂m and m∗ 6=m),
this is an overfitting’s case;

• if m ∈M is such that Θm∗ 6⊂Θm (also denoted m∗ 6⊂m) , this is a misspecified case.

For example, if m∗ corresponds to a AR(2) process and if M contains AR(pmax) processes
and ARCH(qmax), we have d= 1+ pmax + qmax and for θ = (θi)0≤i≤d,

fθ((Xt−k)k≥1) =

pmax∑

i=1

θiXt−i and Mθ((Xt−k)k≥1) =
(
θ0 +

pmax+qmax∑

i=pmax+1

θiX
2
t−i

)1/2
.

Then Θm∗ =
{
(θ0, θ1, θ2,0, . . . ,0), (θ0, θ1, θ2) ∈ R3

}
, an AR(4) process implies an overfit-

ting, while an AR(1) or an ARCH(2) process implies a misspecified case.
In the sequel, we will always assume that

m∗ ∈M.

This true model m∗ is supposed to be unknown. After observing the trajectory (X1, . . . ,Xn),
our goal is to find the most probable model (see Section 5) among the finite family M or a
"best" model that forecasts with a minimum risk. Here we have chosen a risk that is derived
from a Quasi-Maximum Likelihood contrast, which is presented below.

2.2. Maximum Likelihood Estimation. For each θ ∈Θ, we will begin by defining its risk
by:

(2.1) R(θ) := Pγ(θ) = E[γ(θ,X1)]

with γ(θ,Xt) :=
(Xt − f t

θ)
2

Ht
θ

+ log(Ht
θ) and





f t
θ := fθ

(
(Xt−k)k≥1

)

M t
θ :=Mθ

(
(Xt−k)k≥1

)

Ht
θ :=

(
M t

θ

)2 .

By referring to [30] or [16], the contrast γ(θ, .) is −2 times the Gaussian conditional
log-density of Xt. Moreover, the Gaussian Maximum Likelihood Estimator (MLE) is de-
rived from the conditional (with respect to the filtration σ

{
(Xt)t≤0

}
) log-likelihood of

(X1, . . . ,Xn) when (ξt) is supposed to be a Gaussian standard white noise. We deduce that
this conditional log-likelihood (up to an additional constant) Ln is defined for a parameter θ
by:

(2.2) Ln(θ) :=−1

2

n∑

t=1

γ(θ,Xt).

As it has been proved in [5], under a classical identifiability assumption, the risk function
R achieves its unique minimum at the "true"’ parameter θ∗ over any parameter set Θ, when
θ∗ ∈Θ, i.e.

(2.3) θ∗ = argmin
θ∈Θ

R(θ).
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Therefore θ∗ is considered as an ideal predictor for the model selection procedure and serves
as a benchmark to compare predictors. Given a model m ∈M and Θm its parameter space
that does not necessarily contains θ∗, let us define

(2.4) θ∗m = argmin
θ∈Θm

R(θ).

As a consequence, we have:

θ∗m∗ = θ∗ and if m∗ ⊂m, θ∗m = θ∗.

Besides of minimizing the risk R, we also consider the minimization of its associated loss
function, which is defined as

(2.5) ℓ(θ, θ∗) :=R(θ)−R(θ∗)≥ 0.

This is a well-known measure of separation between the candidate model generated by θ and
the true one indexed by θ∗.

Let set by γn the associated empirical risk defined by

γn(θ) := Pnγ(θ, .) =
1

n

n∑

t=1

γ(θ,Xt) =− 2

n
Ln(θ),

so that maximizing the log-likelihood is equivalent to minimize the empirical criterion γn.

2.3. Quasi-Maximum Likelihood Estimation. Since the white noise is not necessarily a
Gaussian one and since the log-likelihood (and then the empirical risk) Ln(θ) depends on
(Xt)t≤0 that are unknown, a quasi-log-likelihood L̂n(θ) can be used as an approximation
of the log-likelihood. It It consists of replacing γ(θ,Xt) by an approximation γ̂(θ,Xt) and
those statistics are defined for all θ ∈Θ by

(2.6) L̂n(θ) :=−1

2

n∑

t=1

γ̂(θ,Xt)

with γ̂(θ,Xt) :=
(Xt − f̂ t

θ)
2

Ĥt
θ

+ log(Ĥt
θ) and





f̂ t
θ := fθ(Xt−1,Xt−2, · · · ,X1, u)

M̂ t
θ :=Mθ(Xt−1,Xt−2, · · · ,X1, u)

Ĥt
θ := (M̂ t

θ)
2

for any deterministic sequence u= (un)n∈N with finitely many non-zero values (we will use
u= 0 without loss of generality).
In addition the computable empirical risk is then:

γ̂n(θ) = Pnγ̂(θ, .) =
1

n

n∑

t=1

γ̂(θ,Xt) =− 2

n
L̂n(θ).

Finally, for each specific model m ∈Mn, we define a Gaussian Quasi-Maximum Likelihood
Estimator (QMLE) θ̂m as

(2.7) θ̂m ∈ argmax
θ∈Θm

L̂n(θ) = argmin
θ∈Θm

γ̂n(θ).

The estimator θ̂m is commonly called the Empirical Risk Minimizer (ERM).
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2.4. The penalization procedure. For m ∈M, the ERM provides an estimator in Θm.
The goal is to come up with a model that minimizes the excess loss over M
(2.8) argmin

m∈M
ℓ(θ̂m, θ∗).

This model is unknown since (2.8) depends on θ∗ and the distribution P(X1,...,Xn) that are
unknown.

A classical way to solve (2.8) problem is to design for every m ∈M an estimator of R(θ̂m)

and we naturally choose γ̂n(θ̂m). First, it is well known that the empirical criterion γ̂n(θ̂m)

is an optimistic version of R(θ̂m) and decreases with the dimension of the model. Therefore,
it is common to add a penalty term to counteract this bias.
As a consequence, define a function pen: m ∈ M 7→ pen(m) ∈ R+, which is called the
penalty function and is possibly data-dependent. We will only require that pen(m1) ≤
pen(m2) when m1 ⊂m2. Then define the penalized contrast and the model selected by it:

(2.9) m̂pen = argmin
m∈M

{
Ĉpen(m)

}
with Ĉpen(m) := γ̂n

(
θ̂m
)
+ pen(m).

In order to achieve (2.8), the ideal penalty to consider in (2.9) is

(2.10) penid(m) =R(θ̂m)− γ̂n(θ̂m).

Using this definition, we obtain an "ideal" model defined by:

(2.11) m̂id :∈ argmin
m∈M

{
ℓ(θ̂m, θ∗)

}
= argmin

m∈M

{
R(θ̂m)

}
= argmin

m∈M

{
Ĉpenid

(m)
}
.

However, the function R is unknown except for very few particular and parametric cases and
therefore penid cannot generally be used directly. Therefore the question is how to choose the
penalty in (2.9) so that m̂pen mimics the oracle m̂id. Hence, we would like our final estimator
θ̂m̂pen to behave asymptotically like the oracle. That is to satisfy:

(2.12) P

(
ℓ(θ̂m̂pen , θ

∗)≤ min
m∈M

{
ℓ(θ̂m, θ∗)

}
+

C

n

)
−→
n→∞

1

and/or for any n≥ n0

(2.13) E
[
ℓ(θ̂m̂pen , θ

∗)
]
≤ min

m∈M

{
E
[
ℓ(θ̂m, θ∗)

]}
+

C

n
.

The aim of this paper is to find a good choice of pen(m) in order to obtain the asymptotic

efficiency (2.13) or (2.12).

3. Asymptotic behavior of the QMLE. Before considering the problem of model se-
lection, we establish a central limit theorem satisfied by θ̂m for any model m ∈M, i.e. as well
if m is an overfitted or a misspecified model. Before this, some notations and assumptions
have to be precised.

3.1. Notations and main assumptions. In the sequel, we will consider a subset Θ of Rd

which is compact. We will use the following norms:

• ‖.‖ denotes the usual Euclidean norm on Rν , with ν ≥ 1;
• for a matrix A, denote ‖A‖ the subordinate matrix norm such that ‖A‖= sup

v 6=0

‖Av‖
‖v‖ ;

• if X is a Rν -random variable and r≥ 1, we set ‖X‖r =
(
E
[
‖X‖r

])1/r ∈ [0,∞];
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• for θ ∈ Θ ⊂ Rd, if Ψθ : R
∞ → E where E = Rν or E is a set of square matrix, denote

‖Ψθ(·)‖Θ = sup
θ∈Θ

{
‖Ψθ(·)‖

}
;

• for θ ∈Θ⊂Rd, if Ψθ :R
∞ →R is a C2(Θ×R∞) function, we will denote

∂θΨθ(·) =
( ∂

∂θi
Ψθ(·)

)
1≤i≤d

=
(
∂θiΨθ(·)

)
1≤i≤d

and ∂2
θ2Ψθ(·) =

( ∂2

∂θi∂θj
Ψθ(·)

)
1≤i,j≤d

;

• consider Ψθ : R
∞ →R for any θ ∈Θ⊂Rd. Then, we define the assumption:

Assumption A(Ψθ,Θ): ‖Ψθ(0)‖Θ <∞ and there exists a sequence of non-negative real
numbers

(
αk(Ψθ,Θ)

)
k≥1

such that
∑∞

k=1αk(Ψθ,Θ)<∞ and satisfying:

‖Ψθ(x)−Ψθ(y)‖Θ ≤
∞∑

k=1

αk(Ψθ,Θ)|xk − yk| for all x, y ∈R∞.

Several assumptions on the AC class will be considered thereafter:

Assumption A0: The process X ∈AC(Mθ∗ , fθ∗) where θ∗ ∈Θ is defined in (1.1) where:

• the white noise (ξt)t is such as ‖ξ0‖r <∞ with 8< r;

• for any x ∈R∞, the functions θ→Mθ and θ→ fθ are C2(Θ) functions:

• Θ ∈Rd is a compact set such as

(3.1) Θ⊂
{
θ ∈Rd, A(fθ,{θ}) and A(Mθ,{θ}) hold with

∞∑

k=1

αk(fθ,{θ}) + ‖ξ0‖r
∞∑

k=1

αk(Mθ,{θ})< 1
}
.

Under this assumption, [14] showed that there exists a stationary causal (i.e. Xt is depending
only on (Xt−k)k∈N for any t ∈ Z) and ergodic solution of (1.1) with r-order moment for any
θ ∈Θ.

Now the assumption A0 holds. We will also add several assumptions required for insur-
ing the strong consistency and the asymptotic normality of the QMLE:

The first following classical assumption ensures the identifiability of θ∗.

Assumption A1: For all θ, θ′ ∈Θ, (f0
θ = f0

θ′ andM0
θ =M0

θ′) a.s. =⇒ θ = θ′.

REMARK 1. Even if this assumption is a classic one in an M-estimation framework,
it is important to remark that it does not cover all the cases of model selection of usual
causal time series. Indeed, in the case of the family of ARMA processes, it is well known
that a model is unique when both the polynomials P0 and Q0 of AR and MA parts are
coprime. Hence, for instance, if the true model is an ARMA(p0, q0) process, any ARMA(p0+
1, q0 + 1) representation with respective polynomials P (X) = P0(X)(X − r) and Q(X) =
Q0(X)(X−r) of AR and MA parts, is identically the same as the true model whatever r ∈R.
Then, Assumption A1 is never satisfied for ARMA processes in case of overfitting. However,
by initializing θ around 0 in the optimization algorithm, we have noticed from Monte-Carlo
experiments that the algorithm always converges to θ∗ and not other solution.
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Next, the following Assumption ensures the invertibility of the asymptotic covariance matrix
G and F (see below) that is necessary to prove the asymptotic normality of the QMLE (see
for instance [5]).

Assumption A2: <α,∂θf
0
θ >= 0 =⇒ α= 0 a.s. or <α,∂θM

0
θ >= 0 =⇒ α= 0 a.s.

The definition of the computable empirical risk and requires that its denominators do not
vanish. Hence, we are going to assume throughout this paper that the lower bound of Hθ(·) =(
Mθ(·)

)2
is strictly positive:

Assumption A3: ∃h > 0 such that inf
θ∈Θ

(Hθ(x))≥ h for all x ∈R∞.

The following assumption is a technical classical condition (see [28]).

Assumption A4: For every m ∈M, if (θm,n) is a sequence of Θm satisfying θm,n
a.s.−→

n→+∞
θ∗,

then

(3.2) lim sup
n→∞

{
E

[(∥∥∥ 1
n

(
∂2
θiθjLn(θm)

)
i,j∈m

)−1∥∥∥
8]}

<∞.

REMARK 2. Note that under assumption A0, if θm,n
a.s.−→

n→+∞
θ∗m then

∥∥∥
( 1
n

(
∂2
θiθjLn(θm)

)
i,j∈m

)−1∥∥∥
8 a.s.−→
n→+∞

∥∥∥
((

− 1

2
∂2
θiθjγ(θ

∗
m)
)
i,j∈m

)−1∥∥∥
8

Thus, from the Egorov’s Theorem, we can find an event Ω̃ with sufficiently large probability
such that the relation (3.2) in the assumption A4 holds if the expectation is taken on the event
Ω̃. For the particular case of the linear processes, the assumption A4 holds true under a mild
condition on the distribution of X , see for instance [32] and [15].

Finally, the decrease rates of (αj(fθ,Θ))j , (αj(Mθ,Θ))j , (αj(∂θfθ,Θ))j and (αj(∂θMθ,Θ))j
have to be fast enough for insuring the strong consistency and the asymptotic normality of
the QMLE:

Assumption A5: Conditions A(fθ,Θ), A(Mθ,Θ), A(∂θfθ,Θ), A(∂θMθ,Θ), A(∂2
θ2fθ,Θ)

and A(∂2
θ2Mθ,Θ) hold with

αj(fθ,Θ)+ αj(Mθ,Θ)+αj(∂θfθ,Θ)+ αj(∂θMθ,Θ) =O(j−δ) where δ > 7/2.

Note that Assumption A5 does not allow to consider long-range dependent processes, but
usual short memory causal time series satisfy this assumption.

3.2. New asymptotic results satisfied by θ̂m. The asymptotic normality of θ̂m has been
already established in [5] when m=m∗ and in [4] when m∗ ⊂m (overfitting). This property
can also be extended in the case of misspecified model, i.e. when m∗ 6⊂m.

First, the following corollary is a particular case of a more general result, Proposition 4,
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which is stated in Section 8 devoted to the proofs.
To begin with, and from Assumption A2 and A5, we can define the definite positive matrix

G(θ) :=
1

4

(∑

t∈Z
Cov

(
∂θiγ(θ,X0) , ∂θjγ(θ,Xt)

))
1≤i,j≤d

(3.3)

F (θ) :=−1

2

(
E

[
∂2
θi θjγ(θ,X0)

])
1≤i,j≤d

.(3.4)

Now, for any m ∈M and θ ∈Θ, denote:

Gm(θ) :=
1

4

(∑

t∈Z
Cov

(
∂θiγ(θ,X0) , ∂θjγ(θ,Xt)

))
i,j∈m

(3.5)

=⇒ Gm(θ∗) =
1

4

(
Cov

(
∂θiγ(θ

∗,X0) , ∂θjγ(θ
∗,X0)

))
i,j∈m

if m∗ ⊂m

Fm(θ) :=−1

2

(
E

[
∂2
θi θjγ(θ,X0)

])
i,j∈m

.(3.6)

COROLLARY 1. Let m ∈M and suppose that Assumptions A0-A5 hold. Then, with θ∗m
defined in (2.4),

(3.7)
1√
n

(
∂θjLn(θ

∗
m)
)
j∈m

D−→
n→∞

N
(
0 , Gm(θ∗m)

)
.

Using mainly this new result, we also obtain:

THEOREM 3.1. Under Assumptions A0-A5, for any m ∈M,

(3.8)
√
n
(
(θ̂m)i − (θ∗m)i

)
i∈m

D−→
n→∞

N
(
0 ,
(
Fm(θ∗m)

)−1
Gm(θ∗m)

(
Fm(θ∗m)

)−1
)
,

with Gm and Fm defined in (3.5) and (3.6).

Hence, even in the misspecified case, θ̂m satisfies a central limit theorem. We will use this
result several times, in particular to prove that the probability of selecting a misspecified
model tends quickly enough towards 0. Another technical result will also be useful for the
sequel:

PROPOSITION 1. Under Assumptions A0-A5, with 8/3< r′ ≤ (8+ r)/6 and r′ < 2(δ−
1) where δ > 7/2 is given in Assumption A5 and for any m ∈M, then we have

(3.9) sup
n∈N∗

∥∥∥
√
n
(
(θ̂m)i − (θ∗m)i

)
i∈m

∥∥∥
r′
<∞.

Note that we also have supn∈N∗

∥∥√n
(
(θ̂m)i − (θ∗m)i

)
i∈m
∥∥
2
<∞. This result will be essen-

tial for establishing the asymptotic behavior of the expectation of the ideal penalty.

4. Efficient model selection. The expectation of the ideal penalty (2.10) has been com-
puted (or asymptotically approximated) in several frameworks (see [29], [1], [34], [19], [7];
etc) and it is most often proportional to the dimension of the model (denoted |m| in the
sequel).

• the penalty is 2 |m|σ2/n in the regression setting, leading to the famous Mallows’s Cp

criterion [29];
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• the penalty is 2 |m|/n in the density estimation framework and others, leading to the fa-
mous AIC criterion [1];

• the penalty is |m| log(n)/n in the Bayesian density estimation setting and other frame-
works, leading to the famous BIC criterion [34] ;

• the penalty is Trace
(
BnA

−1
n

)
/n where An is the opposite of the Hessian matrix of the

log-likelihood and Bn the Fisher Information matrix in a general framework issued from
a Bayesian setting [28].

In order to approximate (2.10) in this framework, let first provide a decomposition of this
term in order to facilitate the computation. For any model m ∈M, write

(4.1) penid(m) :=R(θ̂m)− γ̂n(θ̂m) = I1(m) + I2(m) + I3(m),

with





I1(m) :=R(θ̂m)−R(θ∗m)

I2(m) := γ̂n(θ
∗
m)− γ̂n(θ̂m)

I3(m) :=R(θ∗m)− γ̂n(θ
∗
m)

.

Next we provide a preliminary result about the asymptotic behavior of the terms I1(m) and
I2(m). Then we obtain:

LEMMA 1. Under Assumptions A0-A5, for any model m ∈M, there exists a probability
distribution U∗(m) such that

1. n I1(m) = n
(
R(θ̂m)−R(θ∗m)

) D−→
n→∞

U∗(m)

and E
[
nI1(m)

]
−→
n→∞

E[U∗(m)] =−Trace
((

Fm(θ∗m)
)−1

Gm(θ∗m)
)
.(4.2)

2. n I2(m) = n
(
γ̂n(θ

∗
m)− γ̂n(θ̂m)

) D−→
n→∞

U∗(m)

and E
[
nI2(m)

]
−→
n→∞

− Trace
((

Fm(θ∗m)
)−1

Gm(θ∗m)
)
.(4.3)

The proof of this lemma, as well as all the other proofs, can be found in Section 8. This result
leads to our first main result:

PROPOSITION 2. Under Assumptions A0-A5, there exists N0 ∈ N such as for any n≥
N0,

(4.4) argminm∈ME
[
ℓ(θ̂m, θ∗)

]
=m∗.

Another application of Lemma 1 is devoted to an expansion of the expectation of the ideal
penalty defined in (2.10):

PROPOSITION 3. Under Assumptions A0-A5 and for any m ∈M, there exists a bounded
sequence (v∗n)n∈N∗ , not depending on m when m∗ ⊂m, and satisfying

(4.5) E
[
penid(m)

]
∼

n→∞
− 2

n
Trace

((
Fm(θ∗m)

)−1
Gm(θ∗m)

))
+

v∗n
n
.

Note that the Slope Heuristic Procedure, which allows to estimate a so called minimal penalty

(see [2]) consists in evaluating the slope of a linear regression of γ̂n(θ̂m) onto |m| for m∗ ⊂m

and this is equivalent to estimating the slope of
1

n
Trace

(
Gm(θ∗m)Fm(θ∗m)−1

)
onto |m| from
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(4.3). We will see that Trace
(
Gm(θ∗m)Fm(θ∗m)−1

)
behaves as a linear function of |m| in

many cases, which also gives legitimacy to this approach in the case of time series after
having obtained it in the case of linear regression. The minimal penalty is then −2× the
estimated slope and this finally corresponds to an approximation of E

[
penid(m)

]
. The trace

of the matrix mentioned above is easily computable in some cases using the explicit forms
of the matrices F (θ∗), G(θ∗) in [5]. Hence, even if the ideal penalty cannot be explicitely
obtained, we can replace it with its expectation, i.e. this trace of matrix. Then, define for
m ∈M,

(4.6) p̃en(m) :=− 2

n
Trace

((
F (θ∗m)

)−1
G(θ∗m)

)
.

As shown in Section 6, this trace is proportional to the dimension of the model |m| in some
cases, but could be more complex functions of |m|. In case of Gaussian process, we will also
see that it corresponds to the AIC penalty, 2/n. However, we will see that this penalty does
not provide a consistent model selection and contrary to the ideal penalty, does not provide
an optimal efficient model criterion.
Before this, we study the probability of not selecting a misspecified model under a general
condition on the penalty that is satisfied for instance by p̃en or by BIC criterion:

THEOREM 4.1. Under Assumptions A0-A5 and if for any ε > 0,

(4.7) nP
(
pen(m)≥ ε

)
−→
n→∞

0 for any m ∈M.

Then,

(4.8) nP
(
m∗ 6⊂ m̂pen

)
−→
n→∞

0.

Theorem 4.1 says that if the penalty asymptotically decreases to 0 in probability, then the
criterion Ĉpen does not select a misspecified model asymptotically.
Now, we state the main results of this paper, which specify the convergence rate of pen to
obtain an excess loss close to the minimal one over M:

THEOREM 4.2. Under Assumptions A0-A5, and if for any ε > 0 there exists Kε > 0
such as

(4.9) lim sup
n→∞

max
m∈M

P

(
npen(m)≥Kε

)
≤ ε.

Then for any ε > 0, there exists Mε > 0 and Nε ∈N∗ such as for any n≥Nε,

(4.10) P

(
ℓ(θ̂m̂pen , θ

∗)≤ min
m∈M

{
ℓ(θ̂m, θ∗)

}
+

Mε

n

)
≥ 1− ε.

REMARK 3. Let notice that this asymptotic optimality is quite a bit different from the
classical one about asymptotic efficiency, where both the cardinal of the collection M and
the dimension of competitive models are allowed to depend on n. However, this is done in
the framework where the parameter θ∗ is infinite-dimensional (see for example [37], [26],
[18]).

Now, we provide a condition on the penalty allowing to obtain a consistent criterion. More-
over, we also prove that such criterion satisfies a sharper efficiency inequality than (4.10):
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THEOREM 4.3. Under Assumptions A0-A5, if the penalty pen satisfies (4.7), and if for
any m ∈M such as m∗ ⊂m and m 6=m∗,

(4.11) nE[en(m)] −→
n→∞

∞ and nE
[∣∣en(m)− E[en(m)]

∣∣] −→
n→∞

0

with en(m) = pen(m)− pen(m∗)> 0 since m∗ ⊂m and m 6=m∗. Then we have,

(4.12) P
(
m̂pen =m∗) −→

n→∞
1.

Moreover, for any ε > 0 and η > 0, there exists Nε,η ∈N∗ such as for any n≥Nε,η,

(4.13) P

(
ℓ(θ̂m̂pen , θ

∗)≤ ℓ(θ̂m∗ , θ∗) +
η

n

)
≥ 1− ε,

and there exists Nη ∈N such as for any n≥Nη,

(4.14) E
[
ℓ(θ̂m̂pen , θ

∗)
]
≤ min

m∈M
E
[
ℓ(θ̂m, θ∗)

]
+

η

n
.

The best known criterion satisfying the conditions of this theorem and in particular (4.11) is
certainly the BIC criterion for which pen(m) = logn

n |m| and therefore en(m) = logn
n

(
|m| −

|m∗|
)
. This is also such a case for Hannan-Quinn criterion (pen(m) = log(logn)

n |m|, see [17])

or if pen(m) =
√
n
n |m| as we used it in [4]. Note also that both the consistent data-driven

criteria mentioned in the next section (see (5.4) defined in [23], and (5.5)) also verify the
conditions of Theorem 4.3.
On the contrary, the AIC criterion with pen(m) = 2

n |m|, or the criterion with penalty p̃en(m)
do not satisfy these conditions. The following theorem even shows that these criteria asymp-
totically overfit and have a less good asymptotic efficiency than consistent criteria satisfying
Theorem 4.3:

THEOREM 4.4. Assume that there exists g :M→ [0,∞[ such as pen(m) = g(m)/n for
any m ∈M. Then, under Assumptions A0-A5, the probability of overfitting is asymptotically
positive i.e.

(4.15) lim inf
n→∞

P
(
m̂pen overfits

)
> 0.

and there exists M > 0 such as for n large enough,

(4.16) E
[
ℓ(θ̂m̂pen , θ

∗)
]
≥ min

m∈M
E
[
ℓ(θ̂m, θ∗)

]
+

M

n
.

COROLLARY 2. Theorem 4.4 is valid for pen(m) = 2
n |m| (AIC criterion) or pen = p̃en.

To conclude, in this context where a true model belonging to a finite family of models exists,
the consistent criteria are those which also propose the best asymptotic efficiency. The next
section focuses on these. However, a criterion like the AIC criterion or more generally the
criterion with penalty p̃en regain all their optimality properties in asymptotic efficiency when
the model family is infinite or when the true model does not belong to the family.

5. From a Bayesian model selection to a data-driven consistent model selection. An-
other classical paradigm for model selection is the Bayesian one, leading typically to the BIC
criterion (see [34]). In this approach, the construction of the model selection criterion is first
done by assuming that the parameter vector θ∗ is a random vector. Let recall the hierarchical
prior sampling scheme in the Bayesian setting: given the finite family of models M, a model



DATA-DRIVEN MODEL SELECTION FOR TIME SERIES 13

m is drawn according to a prior distribution (πm)m∈M (generally a uniform distribution) and
then, conditionally on m, θ is sampled according to some prior distribution µm(θ).

The goal of this model selection procedure is to choose the most probable model after ob-
serving the trajectory X := (X1, · · · ,Xn), i.e.

(5.1) m̂B = argmax
m∈M

{
P
(
m |X

)}
.

Using Bayes Formula, we can write P
(
m |X

)
=

πm P

(
X |m

)
P(X) . Moreover, we have:

P
(
X |m

)
=

∫

Θm

P
(
X | θ,m

)
dµm(θ).

In addition, since P(X) does not depend on m, and P
(
X | θ,m

)
is the likelihood of X given

θ ∈Θm and m ∈M, maximizing P
(
m |X

)
is equivalent to maximize

Ŝn(m,X) := log
(
P
(
X |m

))
= log

(∫

Θm

πm exp
(
Ln(θ)

)
dµm(θ)

)
.

From now on, we will assume that πm = 1/|M| for any m ∈M, a priori uniform distribution
of the models in the family M. We can also assume that there exists a non-negative Borel
function θ→ bm(θ) such as dµm(θ) = bm(θ)dθ. Then we have:

(5.2) Ŝn(m,X) =− log(|M|) + log
(∫

Θm

bm(θ) exp
(
Ln(θ)

)
dθ
)
.

Let us give an asymptotic expansion of the a posteriori probability in order to derive a BIC
type criterion that is coherent with our framework where the observed trajectory is that of a
causal affine process. This could be obtained from a Laplace approximation, leading to the
following theorem:

THEOREM 5.1. Under Assumptions A0, A1, A2, A3, A5 and if for any x ∈ R∞, the
functions θ→Mθ and θ→ fθ are C6(Θ) functions satisfying A(∂k

θkfθ,Θ) and A(∂k
θkMθ,Θ)

for any 0≤ k ≤ 6. Then

(5.3) Ŝn(m,X) = L̂n(θ̂m)− log(n)

2
|m|+ log

(
bm(θ̂m)

)

+
log(2π)

2
|m| − 1

2
log
(
det
(
− F̂n(m)

))
− log(|M|) +O(n−1) a.s.

where F̂n(m) :=
(
∂2
θiθj

γ̂n(θ̂m)
)
i,j∈m.

In the above equation, it is clear that −2 Ŝn(m,X)≃−2 L̂n(θ̂m)+log(n) |m| a.s.. This gives
legitimacy to the usual BIC criterion within the framework of causal affine processes since:

m̂BIC = argminm∈M
{
− 2 L̂n(θ̂m) + log(n) |m|

}
,

and we see that m̂BIC maximizes the main terms of Ŝn(m,X).
From the relation (5.3), considering certain second order terms of the asymptotic expansion
of Ŝn(m,X), we also obtain the Kashyap criterion (see Kashyap [23], Sclove [35], Bozdogan
[6]), denoted KC criterion, defined for all m ∈M by

(5.4) K̂C(m) :=−2 L̂n(θ̂m) + log(n) |m|+ log
(
det
(
− F̂n(m)

))

and m̂KC = argminm∈M
{
K̂C(m)

}
.
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Therefore the term log
(
det
(
− F̂n(m)

))
is added to the usual BIC criterion. Several exam-

ples of computations of this term, generally equal to c |m| but not always, are provided in
the forthcoming Section 6. It is clear that m̂KC can be more interesting that m̂BIC in terms
of consistency only for non asymptotic framework (typically for n of the order of a hundred
or several hundred). Note also that the data-driven criteria KC that is "optimal" in the sense
of the a posteriori probability (see Kashyap [23]) is also asymptotically consistent under the
Assumption A5.
However, this choice of second order terms of the asymptotic expansion of Ŝn(m,X) is
somewhere arbitrary. A criterion taking account of all the second order terms could also be
defined. For this, we could define a uniform distribution bm on a compact set included in Θm.
As a consequence, using condition (3.1) of Assumption A0, there always exists 0<C1 ≤C2

such as C1

|m| ≤ bm(Θm)≤ C2

|m| . As a consequence, we could define a new data-driven consis-

tent criterion, called KC ′, such as for any m ∈M

(5.5)

K̂C ′(m) :=−2 L̂n(θ̂m) +
(
log(n)− log(2π)

)
|m|+ log

(
det
(
− F̂n(m)

))
+2 log

(
|m|
)

and m̂KC′ = argminm∈M
{
K̂C

′
(m)

}
.

REMARK 4. We also know that under Assumptions A0-A5, F̂n(m)
a.s.−→

n→+∞
F (θ∗m) where

F is defined in (3.4). Therefore the term log
(
det
(
− F̂n(m)

))
can also be replaced by

log
(
det
(
− Fm(θ∗m)

))
in the expression of K̂C ′(m).

COROLLARY 3. The criteria BIC, KC and KC’ are consistent model selection criteria
and satisfy Theorem 4.3.

Thus, these three criteria are asymptotically consistent and asymptotically efficient following
the inequalities (4.13) and (4.14). Monte-Carlo experiments in Section 7 will also exhibit
that m̂KC′ , which is a data-driven criterion, outperforms m̂BIC in terms of consistency and
efficiency when the n size of the trajectory is of the order of a hundred or a thousand.

6. Examples of computations of the asymptotic expectation of ideal penalties. From
[5], with µ4 = E[ξ40 ], f

0
θ and H0

θ defined in (2.1), we have for m∗ ⊂m and i, j ∈m:

(
Gm(θ∗m)

)
i,j

= E

[∂θif0
θ∗

m
∂θjf

0
θ∗

m

H0
θ∗

m

+
(µ4 − 1)

4

∂θiH
0
θ∗

m
∂θjH

0
θ∗

m

(H0
θ∗

m
)2

]

(
Fm(θ∗m)

)
i,j

=−E

[∂θif0
θ∗

m
∂θjf

0
θ∗

m

H0
θ∗

m

+
1

2

∂θiH
0
θ∗

m
∂θjH

0
θ∗

m

(H0
θ∗

m
)2

]
,(6.1)

Here there are 3 frameworks where Trace
((

Fm(θ∗m)
)−1

Gm(θ∗m)
)

can be computed for

m∗ ⊂m:

1/ A first and well-known case is the Gaussian case. Indeed, when (ξt) is a Gaussian white
noise, then µ4 = 3 and then from (6.1), for any i, j ∈m,

(
Gm(θ∗m)

)
i,j

=−
(
Fm(θ∗m)

)
i,j

=⇒ −2Trace
((
Fm(θ∗m)

)−1
Gm(θ∗m)

)
= 2Trace

(
I|m|

)
= 2 |m|,
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with Iℓ the identity matrix of size ℓ ∈N∗. As a consequence, in the Gaussian framework, for
m∗ ⊂m, the expectation of the ideal penalty is exactly the classical Akaike Criterion (AIC).

2/ A frequent case is when the parameter θ identifying an affine causal model Xt =M t
θ ξt+f t

θ

can be decomposed as θ = (θ1, θ2)
′ with f t

θ = f̃ t
θ1

and M t
θ = M̃ t

θ2
. Let p1, p2 such that

p1 = |θ1|, p2 = |θ2| and |m|= p1 + p2.
In such a case, from (6.1), it is clear that all the terms Fm(θ∗m)i,j and Gm(θ∗m)i,j are equals
to zero for i= 1, . . . , p1 and j = 1, · · · , p2 implying

Fm(θ∗m) =−
(

A1,p1
Op1,p2

Op2,p1
Bp1+1,p1+p2

)
and Gm(θ∗m) =

(
A1,p1

Op1,p2

Op2,p1

(µ4−1)
2 Bp1+1,p1+p2

)

where O is the null matrix and from the expressions of matrix Gm(θ∗m) and Fm(θ∗m) in (6.1),

A1,p1
=
(
E

[
∂θi

f0
θ∗m

∂θj
f0
θ∗m

H0
θ∗m

])
1≤i,j≤p1

and Bp1+1,p1+p2
=
(
1
2 E

[
∂θi

H0
θ∗m

∂θj
H0

θ∗m

(H0
θ∗m

)2

])
p1+1≤i,j≤p1+p2

.

As a consequence,

Gm(θ∗m)Fm(θ∗m)−1 =−Diag
(
A1,p1

,
(µ4 − 1)

2
Bp1+1,p1+p2

)
× Diag

(
A−1

1,p1
,B−1

p1+1,p1+p2

)

=−Diag
(
Ip1

,
(µ4 − 1)

2
Ip2

)

and we obtain

(6.2) −2Trace
((

Fm(θ∗m)
)−1

Gm(θ∗m)
)
= 2p1 + (µ4 − 1)p2.

This setting includes many classical times series:

• For ARMA(p, q) processes, we have Xt = f t
θ+σ ξt since Xt+a1Xt−1+ · · ·+apXt−p =

σ
(
ξt+ b1 ξt−1+ · · ·+ bq ξt−q

)
for all t ∈ Z. Then θ1 =

(
a1, . . . , ap, b1, . . . , bq) and θ2 = σ.

The penalty term is slightly different according to σ is known or not:
(a) if σ is known, then θ = θ1 and Gm(θ∗) = −Fm(θ∗), so that we recover exactly the

AIC penalty term:

−2Trace
(
Gm(θ∗m)Fm(θ∗m)−1

)
= 2 |m|= 2(p+ q);

(b) if σ is unknown, θ = (θ1, σ) and simple computations lead to

Fm(θ∗) =

(
(Fm(θ∗)

)
1≤i,j≤|m|−1

0

0 − 1
2σ4

)

and Gm(θ∗) =

(
(Gm(θ∗)

)
1≤i,j≤|m|−1

0

0 (µ4−1)
4σ4

)

where (Gm(θ∗)
)
1≤i,j≤|m|−1

=−(Fm(θ∗)
)
1≤i,j≤|m|−1

.

Thus, we obtain Gm(θ∗)Fm(θ∗)−1 = −
(
I1≤i,j≤|m|−1 0

0 µ4−1
2

)
and therefore, with

|m|= p+ q +1 in this case,

−2Trace
(
Gm(θ∗m)Fm(θ∗m)−1

)
= 2 |m|+ (µ4 − 3) = 2(p+ q) + (µ4 − 1),

and therefore once again the expectation of the ideal penalty leads to the AIC model
selection.
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• For GARCH(p, q) processes (see [16]), we have fθ = 0 and Xt = M t
θ ξt since for any

t ∈ Z,
{
Xt = σt ξt
σ2
t = ω0 + a1X

2
t−1 + · · ·+ apX

2
t−p + b1 σ

2
t−1 + · · ·+ bq σ

2
t−q

.

Denote θ = θ2 = (ω0, a1, . . . , ap, b1, . . . , bq).

Then we have Ap1
= 0 and therefore Gm(θ∗) =− (µ4−1)

2 Fm(θ∗). As a result:

−2Trace
(
Gm(θ∗m)Fm(θ∗m)−1

)
= (µ4 − 1) |m|= (µ4 − 1) (p+ q +1).

• For APARCH(δ, p, q) processes (see [13]), we also have fθ = 0 and Xt =M t
θ ξt since for

any t ∈ Z,




Xt = σt ξt
σδ
t = ω0 + a1 (Xt−1 − γ1|Xt−1|)δ + · · ·+ ap (Xt−p − γp|Xt−p|)δ

+b1 σ
δ
t−1 + · · ·+ bq σ

δ
t−q

.

For such a process, θ = θ2 = (ω0, a1, . . . , ap, γ1, . . . , γp, b1, . . . , bq) when we assume that δ
is known, and, mutatis mutandis, the result is the same than for GARCH processes:

−2Trace
(
Gm(θ∗m)Fm(θ∗m)−1

)
= (µ4 − 1) |m|= (µ4 − 1) (2p+ q+ 1).

3/ Otherwise, the computations are no longer easy. Let us see the example of the family
of AR(1) − ARCH(p) processes. Then for any t ∈ Z we have Xt = φXt−1 + Zt where

Zt = ξt
(
α0 + α1Z

2
t−1 + · · ·+ αpZ

2
t−p

)1/2
. As a consequence, with θ = (φ,α0, . . . , αp)

′, we
obtain for any t ∈ Z,

Xt = fθ(Xt−1) +Mθ(Xt−1, . . . ,Xt−p−1) ξt

with

{
fθ(Xt−1) = φXt−1

Mθ(Xt−1, . . . ,Xt−p) =
(
α0 +

∑p
i=1αi(Xt−i − φXt−i−1)

2
)1/2 .

Thus the parameter φ is present in fθ as well as in Mθ . From (6.1), and with the notations of
1/, we obtain:

Fm(θ∗m) =−
(

A1,1 O1,p+1

Op+1,1 Op+1,p+1

)
−B1,p+2

and Gm(θ∗m) =

(
A1,1 O1,p+1

Op+1,1 Op+1,p+1

)
+

(µ4 − 1)

2
B1,p+2.

As a consequence,

Gm(θ∗m) =−(µ4 − 1)

2
Fm(θ∗m) +

(µ4 − 3)

2

(
A1,1 O1,p+1

Op+1,1 Op+1,p+1

)
.

Thus, with |m|= p+2,

Gm(θ∗m)F−1
m (θ∗m) =−(µ4 − 1)

2
I|m| +

(µ4 − 3)

2

(
A1,1 O1,p+1

Op+1,1 Op+1,p+1

)
F−1
m (θ∗m).

Whatever the matrix F−1
m (θ∗m), we have

(
A1,1 O1,p+1

Op+1,1 Op+1,p+1

)
F−1
m (θ∗m) =

(
c(θ∗m) O1,p+1

Op+1,1 Op+1,p+1

)

with c(θ∗m) = c(θ∗) ∈R since m∗ ⊂m. Then for all m∗ ⊂m,

−2Trace
(
Gm(θ∗m)Fm(θ∗m)−1

)
=−2 c(θ∗) + (µ4 − 1) |m|,

where −2 c(θ∗) does not depend on m.
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7. Numerical Studies. This section aims to investigate the numerical behavior of the
model selection criteria studied in Section 4 and Section 5 using R software.
To do that, three Data Generating Processes (DGP) have been considered:

DGP I AR(2) Xt = 0.4Xt−1 +0.4Xt−2 + ξt,
DGP II ARMA(1,1) Xt − 0.5Xt−1 = ξt +0.6 ξt−1,
DGP III GARCH(1,1) Xt = σt ξt with σ2

t = 1+ 0.35X2
t−1 + 0.4σ2

t−1,

where (ξt)t is a Gaussian white noise with variance unity.

REMARK 5. As already observed in the Remark 1, Assumption A1 is never satisfied for
ARMA processes in case of overfitting. However, in the used optimization under constraint
algorithm (program nloptr), we initialized θ at 0 (except for the variance estimator). By
this way, we have noticed in Monte-Carlo experiments that the algorithm always converges
to θ∗ and not other solution due to the overfitting.

In order to illustrate the obtained theoretical asymptotic behaviors, we have realized Monte-
Carlo experiments where the performance of the AIC, BIC and KC’ criteria are compared
using the following parameters:

• The considered family of competitive models is the same for the three DGP

M=
{

ARMA(p, q) and GARCH(p, q) processes with 0≤ p, q ≤ 6
}
.

• Several values of n, the observed trajectory length, are considered: 200, 500, 1000, 2000.
• For each n and DGP, we have generated 500 independent replications of the trajectories.

Hence, for each replication, the selected models m̂AIC , m̂BIC and m̂KC′ are computed.
Then,

1. The consistency property is illustrated by the computation of the frequency (percentage)
of selecting the true model versus a model other than the true one (called here "wrong").

2. For the efficiency property (Theorem 4.2, 4.3 and 4.4), we first compute a very sharp
estimator R̃ of the risk function R for each DGP: R̃= γ̂N computed from an independent
and very large (N = 106) trajectory of the DGP. By this way, and we obtain an estimator
ℓ̃(θ̂m̂, θ∗) = R̃(θ̂m̂) − R̃(θ∗) of ℓ(θ̂m̂, θ∗) for m̂ = m̂AIC , m̂BIC and m̂KC′ . Then, we
compute

M̂E := n
(
ℓ̃(θ̂m̂, θ∗)− ℓ̃(θ̂m∗ , θ∗)

)

where ℓ̃ is the average of ℓ̃ over the 500 replications. Therefore M̂E is an estimator of
n
(
E
[
ℓ(θ̂m̂, θ∗)

]
− min

m∈M
E
[
ℓ(θ̂m, θ∗)

])
, which appears in (4.14) and (4.16).

The results of Monte-Carlo experiments are reported in Table 1, devoted to the consistency
property, and in Table 2, devoted to the efficiency property.

Conclusions of numerical experiments:

• Concerning the consistency properties, the numerical results of Table 1 show that the per-
centages of choice of the true model tend towards 100 for increasing n and with the criteria
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n 200 500 1000 2000

AIC BIC KC’ AIC BIC KC’ AIC BIC KC’ AIC BIC KC’

DGP I True 17.2 36.2 35.6 30.4 73.2 78.2 36.4 87.4 92.2 32.4 96.2 98.4
Wrong 82.8 63.8 64.4 69.6 26.8 21.8 63.6 13.6 7.8 67.6 03.8 01.6

DGP II True 27.8 80.8 92.0 30.6 88.4 96.6 31.0 89.1 97.5 33.3 95.2 99.9
Wrong 72.2 19.2 08.0 69.7 11.6 03.4 69.0 10.9 02.5 66.7 04.8 00.1

DGP III True 00.4 10.8 14.8 01.4 32.2 55.8 01.0 54.8 82.0 02.0 75.8 93.8
Wrong 99.6 89.2 85.2 98.6 67.8 44.2 99.0 45.2 18.0 98.0 24.2 06.2

TABLE 1
Percentage of "true" selected models depending on the criterion and sample’s length for DGP I-III.

n 200 500 1000 2000

AIC BIC KC’ AIC BIC KC’ AIC BIC KC’ AIC BIC KC’

DGP I 4.91 2.59 5.35 3.46 1.11 1.18 3.08 0.98 0.75 3.05 0.38 0.29

DGP II 3.66 0.87 0.54 3.37 0.42 0.11 2.62 0.15 0.05 2.5 0.10 0.04

DGP III 2.39 4.63 13.16 2.53 4.08 9.54 2.69 2.96 2.52 3.21 2.06 0.76

TABLE 2
M̂E of selected models depending on the criterion and the sample’s length for DGP I-III.

BIC and KC’, and this corresponds well to the obtained asymptotic result (Corollary 3).
And as it could also be deduced from the theory (see Corollary 2) the AIC criterion is not a
consistent one. Moreover, we observe that the KC’ criterion outperforms BIC when deal-
ing as well as small and large samples for all considered DGP. These results confirm that
it is important to also consider the neglected terms in the derivation of the BIC criterion.

• From the results of Table 2, we notice a decrease of the residual term M̂E to 0 for in-
creasing n for the consistent criteria BIC and KC’. This corresponds well to the o(1/n)
term observed in (4.14). We also observe that this convergence to 0 is globally faster with
the KC’ criterion than with the BIC one. Thus, in terms of efficiency as well as in terms
of consistency, the KC’ criterion performs even better than the BIC one for the selected
DGPs. Finally, as shown by Theorems 4.2 and 4.4, the statistic M̂E seems asymptotically
bounded and does not converge to 0 when the AIC criterion is applied to select the model.
This confirms that BIC and especially KC’ criteria are more accurate in terms of efficiency
than AIC criterion.

8. Proofs.

8.1. Proofs of Section 3. The asymptotic normality of
(
1
n

(
∂θiLn(θ

∗
m)
)
i∈m was estab-

lished in [5] and [4] when m∗ ⊂m using a central limit theorem for stationary martingale
difference. Here we extend this result to any m ∈M:

PROPOSITION 4. Under Assumption A0-A5, for any θ ∈Θ, we have

(8.1)
√
n
( 1
n
∂θLn(θ) +

1

2
E
[
∂θγ(θ,X0)

]) D−→
n→∞

N
(
0 , G(θ)

)

with G(θ) :=
1

4

(∑

t∈Z
Cov

(
∂θiγ(θ,X0) , ∂θjγ(θ,Xt)

))
1≤i,j≤d

.
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The main tool we use here for establishing Theorem 4 is the notion of τ -dependence for sta-
tionary time series and more precisely, the τ -dependence coefficients, which are a version of
the coupling coefficients introduced in [11] and used for stationary infinite memory chains.
The reader is deferred to the lecture notes [10] for complements and details on coupling,
based on the Wasserstein distance between probabilities defined as below. Its stationary ver-
sion is:

DEFINITION 1. Let (Ω,C,P) be a probability space, M a σ-subalgebra of C and Z a
random variable with values in E. Assume that ‖Z‖p <∞ and define the coefficient τ (p) as

τ (p)(M,Z) =
∥∥∥ sup
f∈Λ1(E)

{∣∣∣
∫

f(x)PZ|M(dx)−
∫

f(x)PZ(dx)
∣∣∣
}∥∥∥

p
.

Using the definition of τ , the dependence between the past of the sequence (Zt)t∈Z and its
future k-tuples may be assessed: consider the norm ‖x− y‖= ‖x1 − y1‖+ · · ·+ ‖xk − yk‖
on Ek , set Mp = σ(Zt, t≤ p) and define

τ
(p)
Z (s) = sup

k>0

{
max
1≤l≤k

1

l
sup

{
τ (p)(Mp, (Zj1 , . . . ,Zjl)) with p+ s≤ j1 < · · ·< jl

}}
.

Finally, the time series (Zt)t∈Z is τ (p)Z -weakly dependent when its coefficients τ (p)Z (s) tend to
0 as s tends to infinity.

LEMMA 2. Under Assumption A0, then for p ≤ r and b
(p)
k = αk(Mθ,Θ)‖ξ0‖p +

αk(fθ,Θ) for any j ∈N∗,

(8.2) τ
(p)
X (s)≤C λs with λs = inf

1≤r≤s

{( ∞∑

k=1

b
(p)
k

)s/r
+

∞∑

t=r+1

b
(p)
t

}
for s≥ 1.

PROOF OF LEMMA 2. This Lemma can be directly deduced from Proposition 3.1 of [14]
where T (x, ξ0) =Mθ(x) ξ0 + fθ(x) for any x ∈R∞ and therefore

∥∥T (x, ξ0)− T (y, ξ0)
∥∥
p
≤ ‖ξ0‖p

∣∣Mθ(x)−Mθ(y)
∣∣+
∣∣fθ(x)− fθ(y)

∣∣

inducing
∥∥T (x, ξ0)− T (y, ξ0)

∥∥
p
≤∑∞

k=1 b
(p)
k . �

REMARK 6. Using Assumption A0 and A5, we deduce that b(p)t =O
(
t−δ
)

with δ > 7/2,

and therefore τ
(p)
X (s)≤ λs =O

(
s1−δ log s

)
.

Now, under the Assumption A0, since X is a causal time series, define for any j = 1, . . . , d
and θ ∈Θ,

φ
(j)
θ

(
(Xt−k)k≥0

)
:= ∂θjγ(θ,Xt) =−2∂θjM

t
θ

(Xt − f t
θ)

2

(
M t

θ

)3 − 2∂θjf
t
θ

Xt − f t
θ(

M t
θ

)2 + 2
∂θjM

t
θ

M t
θ

.

Then we have:

LEMMA 3. Under Assumption A0-A5, for any j = 1, . . . , d, for any θ ∈Θ, the sequence(
φ
(j)
θ

(
(Xt−k)k≥0

))
t∈Z is a causal stationary sequence that is τ (p)

φ(j)
θ

-weakly dependent where
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its coefficients τ (1)
φ

(j)
θ

(s) satisfies:

(8.3) τ
(1)

φ(j)
θ

(s)≤C
( s∑

ℓ=1

(
αℓ(fθ,Θ)+ αℓ(Mθ,Θ)+ αℓ(∂θjMθ,Θ)+ αℓ(∂θjfθ,Θ)

)
λs+1−ℓ

+

∞∑

ℓ=s+1

(
αℓ(fθ,Θ)+αℓ(Mθ,Θ)+αℓ(∂θjMθ,Θ)+αℓ(∂θjfθ,Θ)

))
,

for any s≥ 0 where (λs) is defined in (8.2).

PROOF OF LEMMA 3. In the proof of Proposition 4.1 of [3], it has been proven for
U = (Ui)i≥1 and V = (Vi)i≥1 such as supi≥1

{∥∥Ui‖4 ∨
∥∥Vi‖4

}
<∞ that there exists C > 0

satisfying

(8.4) E
[
sup
θ∈Θ

∥∥φ(j)
θ (U)− φ

(j)
θ (V )

∥∥ ]≤C
(
‖U1 − V1‖4

+

∞∑

i=2

(
αi(fθ,Θ)+ αi(Mθ,Θ)+ αi(∂θjfθ,Θ)+αi(∂θjMθ,Θ)

)
‖Ui − Vi‖4

)
.

Using coupling techniques, if (ξ̃t)t∈Z is an independent replication of (ξt)t∈Z, define also

(X̃t)t∈Z satisfying the assumptions with (ξ̃t)t∈Z instead of (ξt)t∈Z and
(
φ
(j)
θ

(
(X̃t−k)k≥0

))
t∈Z.

Then for s≥ 0, using (8.4),

τ
(1)

φ(j)
θ

(s)≤
∥∥φ(j)

θ

(
(Xs−k)k≥0

)
− φ

(j)
θ

(
(X̃s−k)k≥0

)∥∥
1

≤ C
(
‖X1 − X̃1‖4

+

∞∑

i=2

(
αi(fθ,Θ)+ αi(Mθ,Θ)+ αi(∂θjfθ,Θ)+αi(∂θjMθ,Θ)

)
‖Xi − X̃i‖4

)

≤ C

∞∑

ℓ=1

(
αℓ(fθ,Θ)+αℓ(Mθ,Θ)+αℓ(∂θjfθ,Θ)+αℓ(∂θjMθ,Θ)

)
λs+1−ℓ,

that implies (8.3). �

REMARK 7. Under Assumption A0 and A5, and therefore with λs =O
(
s1−δ log s

)
with

δ > 7/2, we also deduce that τ (1)
φ(j)

θ

(s) =O
(
s1−δ log s

)
.

PROOF OF PROPOSITION 4. If Z is a τZ -dependent centered stationary time series satis-
fying E[|Z0|κ] < ∞ with κ > 2, and

∑∞
s=1 s

1/(κ−2)τZ(s) < ∞, we deduce from Lemma
2, point 2. of [9] that condition D(2, θ/2,X) is satisfied as θ-weakly dependent coeffi-
cients are smaller than τ -weakly dependent coefficients, see (2.2.13) p.16 of [10], and
0<

∑
t∈Z
∣∣E[Z0Zt]

∣∣<∞ from Proposition 2 of [9]. Then,

1√
n

n∑

t=1

Zt
D−→

n→∞
N
(
0 ,
∑

t∈Z
E[Z0Zt]

)
.

We can apply this central limit theorem to

Zt :=

d∑

j=1

cj
(
φ
(j)
θ

(
(Xt−k)k≥0

)
− E

[
φ
(j)
θ

(
(Xt−k)k≥0

)])
with (cj)1≤j≤d ∈Rd.
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Indeed, using Lemma 3, we easily obtain for s≥ 0

τZ(s)≤C
( d∑

j=1

|cj |
) ∞∑

ℓ=1

(
αℓ(fθ,Θ)+αℓ(Mθ,Θ)+αℓ(∂θjfθ,Θ)+αℓ(∂θjMθ,Θ)

)
λs+1−ℓ,

and therefore under Assumption A0 and A5, τZ(s) = O
(
s1−δ log s

)
. Moreover, using

Lemma 6, we deduce E
[
|Z0|8/3

]
< ∞. Then with κ = 8/3,

∑∞
s=1 s

1/(κ−2)τZ(s) =∑∞
s=1 s

3/2 τZ(s)<∞ is satisfied since δ > 7/2.
Therefore, we deduce for any θ ∈Θ,

√
n

d∑

j=1

cj

( 1
n
∂θjLn(θ) +

1

2
E
[
∂θjγ(θ,X0)

])

D−→
n→∞

N
(
0 ,

1

4

d∑

i=1

d∑

j=1

ci cj
∑

t∈Z
Cov

(
∂θiγ(θ,X0) , ∂θjγ(θ,Xt)

))
,

which implies the multidimensional central limit theorem (8.1). �

PROOF OF COROLLARY 1. Firstly, it was already established in [4] that if m∗ ⊂ m
then

(
∂θiγ(θm,Xt)

)
t∈Z is a stationary martingale difference process with respect to Ft =

σ
(
(Xt−k)k∈N

)
. As a consequence Cov

(
∂θiγ(θ,X0) , ∂θjγ(θ,Xt)

)
= 0 if t 6= 0.

Secondly, for all m ∈M, from the definition of θ∗m as a local minimum of R on Θm, and
from Assumption A0-A5, then ∂θjR(θ∗m) = E

[
∂θjγ(θ

∗
m,X0)

]
= 0 for all j ∈m. �

PROOF OF THEOREM 3.1. We use here a standard proof, allowing to show the asymptotic
normality of the QMLE and already used in [5].
Firstly, it was established in [4] that θ̂m

a.s.−→
n→+∞

θ∗m.

Secondly, a Taylor-Lagrange expansion is applied to
(
∂θjLn(θ̂m)

)
j∈m around θ∗m:

(8.5)
1√
n

(
∂θjLn(θ̂m)

)
j∈m =

1√
n

(
∂θjLn(θ

∗
m)
)
j∈m

+
( 1
n
∂2
θiθjLn(θm)

)
i,j∈m ×√

n
(
(θ̂m)i − (θ∗m)i

)
i∈m

with θm = c θ̂m + (1− c)θ∗m and 0< c< 1.
Using θ̂m

a.s.−→
n→+∞

θ∗m and the ergodic theorem 1
n

(
∂2
θiθj

Ln(θm)
)
i,j∈m

a.s.−→
n→+∞

Fm(θm) for any

θm ∈Θm since E
[∥∥∂2

θ2γ(θ,X0)
∥∥
Θ

]
<∞ , we obtain:

(8.6)
( 1
n
∂2
θiθjLn(θm)

)
i,j∈m

a.s.−→
n→+∞

Fm(θ∗m).

Finally, by definition of θ̂m, ∂θj L̂n(θ̂m) = 0 for any j ∈m. As a consequence,

(8.7)
1√
n

(
∂θjLn(θ̂m)

)
j∈m

P−→
n→∞

0,

using a Markov Inequality and E
[

1√
n

∥∥∂θL̂n(θ)− ∂θLn(θ)‖Θ
]
−→
n→∞

0 established in (5.11)

of [5]. Considering (8.5), (8.6) and (8.7), and with the central limit theorem satisfied by
1√
n

(
∂θjLn(θ

∗
m)
)
j∈m provided in Corollary 1, this achieves the proof. �



22

Now, before establishing Proposition 1, three technical lemmas can be stated:

LEMMA 4. Under Assumptions A0-A5, with 8/3 < r′ ≤ r/3 and r′ < 2(δ − 1) where
δ > 7/2 is given in Assumption A5, for any m ∈ M, there exists C > 0 such as for any
n ∈N∗

(8.8)
∥∥∥
( 1√

n
∂θjLn(θ

∗
m)
)
j∈m

∥∥∥
r′
≤C.

PROOF. First, for any m ∈M and n ∈N∗,
∥∥(∂θjLn(θ

∗
m)
)
j∈m

∥∥r′ ≤ |m|r′/2−1
∑

j∈m

∣∣∂θjLn(θ
∗
m)
∣∣r′

≤ |m|r′/2−1

2r′
∑

j∈m

∣∣∣
n∑

t=1

∂θjγ(θ
∗
m,Xt)

∣∣∣
r′

.(8.9)

Now, for all j ∈m,
(
∂θjγ(θ

∗
m,Xt)

)
t∈Z is a centered (from the proof of Corollary 1) station-

ary τ
(p)

φ(j)
θ

-weakly dependent where its coefficients
(
τ
(1)

φ(j)
θ

(s)
)
s

satisfies (8.3) (see Lemma 3).

Moreover, from the proof of Proposition 4, τ (1)
φ(j)

θ

(s) =O
(
s1−δ log s

)
.

In Proposition 5.5 of [10], since E
[∣∣∂θjγ(θ∗m,X0)

∣∣r′]<∞ from Lemma 6, it has been estab-
lished that:

E

[∣∣∣
n∑

t=1

∂θjγ(θ
∗
m,Xt)

∣∣∣
r′]

≤Cr′
(
Mr′,n +M

r′/2
2,n

)

where Mm,n := 2n

n−1∑

i=0

(i+ 1)m−2 τ
(1)

φ
(j)
θ

(i).

Using 8/3< r′ < 2(δ − 1) with δ > 7/2, we obtain that

Mr′,n ≤C n

n∑

i=1

ir
′−1−δ log(i)≤C ′n1+r′−δ log(n) =O

(
nr′/2

)

and M2,n ≤ C n
∑n

i=1 i
1−δ log(i) ≤C ′′ n. As a consequence, there exists C > 0 such as for

any n ∈N∗,

(8.10) E

[∣∣∣
n∑

t=1

∂θjγ(θ
∗
m,Xt)

∣∣∣
r′]

≤C nr′/2.

Then, using (8.9) and (8.10), the proof is established. �

LEMMA 5. Under Assumptions A0-A5, then for any m ∈M, there exists C > 0 such as
for any n ∈N∗,

∥∥∥
( 1√

n
∂θjLn(θ̂m)

)
j∈m

∥∥∥
r/3

≤C.

PROOF. First, from the definition of θ̂m, we have ∂θj L̂n(θ̂m) = 0 for any j ∈m. Then,
∥∥∥
( 1√

n
∂θjLn(θ̂m)

)
j∈m

∥∥∥
r/3

=
∥∥∥
( 1√

n

(
∂θjLn(θ̂m)− ∂θj L̂n(θ̂m)

))
j∈m

∥∥∥
r/3
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≤ |m|(r−6)/2r

√
n

∑

j∈m

∥∥∥∂θjLn(θ̂m)− ∂θj L̂n(θ̂m)
∥∥∥
r/3

≤ |m|1/2
2
√
n

∑

j∈m

n∑

t=1

∥∥∥∂θjγ(θ̂m,Xt)− ∂θj γ̂(θ̂m,Xt)
∥∥∥
r/3

.

From the proof of Lemma 2 in [4], there exists C > 0 such as

E

[
sup
θ∈Θ

∥∥∥∂θjγ(θ,Xt)− ∂θj γ̂(θ,Xt)
∥∥∥
r/3]

≤C
(∑

k≥t

αk(fθ,Θ)+ αk(Mθ,Θ)+αk(∂fθ,Θ)+αk(∂Mθ,Θ)
)r/3

.

Therefore,
∥∥∥
( 1√

n
∂θjLn(θ̂m)

)
j∈m

∥∥∥
r/3

≤ C
|m|3/2
2
√
n

n∑

t=1

∑

k≥t

(
αk(fθ,Θ)+αk(Mθ,Θ)

+αk(∂fθ,Θ)+ αk(∂Mθ,Θ)
)

≤ C ′
√
n

n∑

t=1

∑

j≥t

j−δ ≤ C ′′
√
n

n∑

t=1

t1−δ ≤C ′′′,

with C ′ > 0, C ′′ > 0 and C ′′′ > 0 and where the last inequality holds since δ > 7/2 under
Assumption A5. �

LEMMA 6. Under Assumptions A0-A5, for any m ∈M and any θ ∈Θm,

(8.11)
∥∥∥
(
∂θjγ(θ,X0)

)
j∈m

∥∥∥
r/3

<∞.

PROOF. For j ∈m, we have for any θ ∈Θm,

∂θjγ(θ,X0) =−2 (M0
θ )

−2(X0−f0
θ )∂θjf

0
θ −2 (M0

θ )
−3(X0−f0

θ )
2∂θjM

0
θ +2(M0

θ )
−1∂θjM

0
θ .

Therefore, with Assumption A3 and Minkowski Inequality,

∥∥(∂θjγ(θ,X0)
)
j∈m

∥∥
r/3

≤ 2

h3/2

(
h1/2

∥∥(∂θjf0
θ

)
,
(
X0 − f0

θ

)∥∥
r/3

+
∥∥(∂θjM0

θ

) ∣∣X0 − f0
θ

∣∣2∥∥
r/3

+ h
∥∥(∂θpM0

θ

)∥∥
r/3

)
.

Now, applying the Hölder Inequality, we obtain that there exists C > 0 such that for any
θ ∈Θm,

(8.12) E

[∣∣∂θpγ(θ∗,X0)
∣∣r/3
]
≤C

(∥∥∂θjf0
θ

∥∥
2r/3

∥∥X0 − f0
θ

∥∥
2r/3

+
∥∥∂θjM0

θ

∥∥
r

∥∥X0 − f0
θ

∥∥2
r
+
∥∥∂θpM0

θ

∥∥
r/3

)
.

Using Assumption A0 and A5 and the proof of Lemma 1 in [5], all the right side terms in
(8.12) are finite for any θ ∈Θm and this achieves the proof. �

Then Proposition 1 can be established:
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PROOF OF PROPOSITION 1. From (8.5) and (8.6) with F (θ∗m) the positive definite matrix
defined in (3.4), we know that for n large enough,

(8.13)
∥∥√n

(
(θ̂m)i − (θ∗m)i

)
i∈m
∥∥
r′

=
∥∥∥
(( 1

n
∂2
θiθjLn(θm)

)
i,j∈m

)−1
× 1√

n

(
∂θjLn(θ̂m)− ∂θjLn(θ

∗
m)
)
j∈m

∥∥∥
r′
.

Therefore, using Hölder and Minkowski inequalities, we obtain:
∥∥√n

(
(θ̂m)i − (θ∗m)i

)
i∈m
∥∥
r′
≤
∥∥∥
(( 1

n
∂2
θiθjLn(θm)

)
i,j∈m

)−1∥∥∥
rr′

r−3r′

×
∥∥∥ 1√

n

(
∂θjLn(θ̂m)− ∂θjLn(θ

∗
m)
)
j∈m

∥∥∥
r

3

≤
∥∥∥
(( 1

n
∂2
θiθjLn(θm)

)
i,j∈m

)−1∥∥∥
rr′

r−3r′

×
(∥∥∥ 1√

n

(
∂θjLn(θ̂m)

)
j∈m

∥∥∥
r

3

+
∥∥∥ 1√

n

(
∂θjLn(θ

∗
m)
)
j∈m

∥∥∥
r

3

)
.

Now using Assumption A4, Lemmas 4 and 5, we deduce (3.9). �

8.2. Proofs of Section 4.

PROOF OF LEMMA 1. 1. From the assumptions, the function R : θ ∈ Θ 7→ R(θ) is a
C2(Θ) function and the Hessian matrix ∂θ2R=−2F is a definite positive matrix (see (3.4)).
Therefore, from a Taylor-Lagrange expansion:

n
(
R(θ̂m)−R(θ∗m)

)
= n

(
R(θ∗m) +

(
θ̂m − θ∗m

)⊤
∂θR(θ∗m)

+
1

2

(
θ̂m − θ∗m

)⊤
∂θ2R(θ)

(
θ̂m − θ∗m

)
−R(θ∗m)

)

=
1

2

(√
n(θ̂m − θ∗m)

)⊤
∂θ2R(θ)

(√
n(θ̂m − θ∗m)

)
,(8.14)

with θ = θ∗m + c
(
θ̂m − θ∗m

)
∈ Θm since c ∈ [0,1]. Using Lemma 4 of [5] and continuous

mapping Theorem, we deduce that:

(8.15) ∂θ2R(θ) =−2F (θ)
P−→

n→∞
− 2F (θ∗m) and G(θ)

P−→
n→∞

G(θ∗m).

Moreover, using the asymptotic normality of θ̂m established in [5] and [4], we have:

(8.16)
√
n((θ̂m)i − (θ∗m)i)i∈m

D−→
n→∞

N
(
0 ,
(
Fm(θ∗m)

)−1
Gm(θ∗m)

(
Fm(θ∗m)

)−1
)
.

As a consequence, with Zn =
(
Gm(θ)

)−1/2
Fm(θ)

√
n((θ̂m)i − (θ∗m)i)i∈m

D−→
n→∞

N (0 , I|m|)

and from (8.14), we have

n
(
R(θ̂m)−R(θ∗m)

)
=−Z⊤

n

(
Gm(θ)

)1/2(
Fm(θ)

)−1
Fm(θ)

(
Fm(θ)

)−1(
Gm(θ)

)1/2
Zn

=−Z⊤
n

(
Gm(θ)

)1/2(
Fm(θ)

)−1(
Gm(θ)

)1/2
Zn.

Define U∗(m) := −Z⊤ (Gm(θ∗m)
)1/2(

Fm(θ∗m)
)−1(

Gm(θ∗m)
)1/2

Z where Z
D∼N (0 , I|m|).

Then using (8.15) we obtain

n
(
R(θ̂m)−R(θ∗m)

) D−→
n→∞

U∗(m).
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The computation of the expectation of U∗
m follows from

E
[
U∗
m

]
= E

[
Trace

(
U∗
m

)]
=−Trace

((
Gm(θ∗m)

)1/2(
Fm(θ∗m)

)−1(
Gm(θ∗m)

)1/2)

=−Trace
((

Fm(θ∗m)
)−1

Gm(θ∗m)
)
.

Finally, for establishing E
[
n
(
R(θ̂m) − R(θ∗m)

)]
−→
n→∞

E
[
U∗
m

]
, we have to prove that there

exists n0 ∈N such as

(8.17) sup
n≥n0

E
[
n
∣∣R(θ̂m)−R(θ∗m)

∣∣]<∞.

Indeed, from (8.14), we have:

(8.18) n
∣∣R(θ̂m)−R(θ∗m)

∣∣≤ 1

2
sup
θ∈Θ

∥∥∂2
θ2R(θ)

∥∥∥∥√n(θ̂m − θ∗m)
∥∥2

=⇒ E
[
n
∣∣R(θ̂m)−R(θ∗m)

∣∣]≤ λmax

2
E
[∥∥√n(θ̂m − θ∗m)

∥∥2],

since there exists λmax <∞ such as
∥∥∂θ2R(θ)

∥∥≤ λmax for any θ ∈Θ from Assumption A5

where Θ is a compact set.
Using Proposition 1, we know that

sup
n∈N∗

∥∥√n
(
θ̂m − θ∗m

)∥∥
2
<∞.

Finally using (8.18), we deduce (8.17).

2. As in the proof of 1., we use a Taylor-Lagrange expansion of γ̂n(θ∗m) around θ̂m since
∂θ γ̂n(θ̂m) = 0. Then,

n
(
γ̂n(θ

∗
m)− γ̂n(θ̂m)

)
=

1

2

√
n(θ̂m − θ∗m)⊤

(
∂2
θ2 γ̂n(θm)

)√
n
(
θ̂m − θ∗m

)
.

But using θ̂m
a.s.−→

n→+∞
θ∗m and E

[∥∥∥ 1
n
Ln(θ)−

1

n
L̂n(θ)

∥∥∥
Θ

]
−→
n→∞

0, we have

(
∂2
θ2 γ̂n(θm)

) P−→
n→∞

− 2F (θ∗m).

Therefore, using the same reasoning as in 1., we deduce that

n
(
γ̂n(θ

∗
m)− γ̂n(θ̂m)

) D−→
n→∞

U∗(m).

With Hölder Inequality and using 8/3 < r′ defined in Proposition 1, we obtain for n large
enough

E
[
n
(
γ̂n(θ

∗
m)− γ̂n(θ̂m)

)]
≤
∥∥(∂2

θ2 γ̂n(θm)
)1/2√

n(θ̂m − θ∗m)
∥∥2
2

≤
∥∥∥
(
∂2
θ2 γ̂n(θm)

)∥∥∥
r′

r′−2

∥∥√n(θ̂m − θ∗m)
∥∥2
r′
.(8.19)

Finally, with Proposition 1 and Lemma 4 of [5], we have supn∈N∗ E
[∥∥∂2

θ2 γ̂n(θm)
∥∥4
Θ

]
<∞

and r′

r′−2 ≤ 4 since r′ > 8/3, and therefore

sup
n∈N∗

E
[
n
(
γ̂n(θ

∗
m)− γ̂n(θ̂m)

)]
<∞,

which concludes the proof. �
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PROOF OF PROPOSITION 2. For m∗ ⊂ m we have θ∗m = θ∗ and therefore ℓ(θ̂m, θ∗) =
R(θ̂m)−R(θ∗) and using (4.2), we have

E
[
ℓ(θ̂m, θ∗)

]
=

1

n
E[I1(m)] ∼

n→∞
− 1

n
Trace

((
Fm(θ∗m)

)−1
Gm(θ∗m)

)
.

But the matrix G(θ∗m) and −F (θ∗m) are positive definite function from Assumption A2. Thus
if m∗ ⊂m and m 6=m∗, then

−Trace
((

Fm∗(θ∗)
)−1

Gm∗(θ∗)
)
<−Trace

((
Fm(θ∗)

)−1
Gm(θ∗)

)

since all the eigenvalues of −
(
F (θ∗)

)−1
G(θ∗) are positive. This implies E

[
ℓ(θ̂m∗ , θ∗)

]
<

E
[
ℓ(θ̂m, θ∗)

]
for n large enough.

If m∗ 6⊂m, then:

ℓ(θ̂m, θ∗) =
(
R(θ̂m)−R(θ∗m)

)
+
(
R(θ∗m)−R(θ∗)

)
.

Using (4.2), we also have

E
[
ℓ(θ̂m, θ∗m)

]
=

1

n
E[I1(m)] ∼

n→∞
− 1

n
Trace

((
Fm(θ∗m)

)−1
Gm(θ∗m)

)
.

But as it was established in [4] that
(
R(θ∗m)−R(θ∗)

)
= 2DKL(θ

∗‖θ∗m)> 0 since m 6⊂m∗.

Therefore, E
[
ℓ(θ̂m∗ , θ∗)

]
= o
(
E
[
ℓ(θ̂m, θ∗)

])
for any m such as m∗ 6⊂m.

�

PROOF OF PROPOSITION 3. The proof of this proposition can be deduced from

(8.20) E
[
nI3(m)

]
= E

[
n
(
R(θ∗m)− γ̂n(θ

∗
m)
)]

= v∗n

for any m ∈M. For establishing (8.20), we begin by

(8.21) I3(m) =
(
R(θ∗m)− γn(θ

∗
m)
)
+
(
γn(θ

∗
m)− γ̂n(θ

∗
m)
)
:= I31(m) + I32(m).

Firstly, since E
[
γ(θ∗m,X0)

]
= R(θ∗m) and (Xt)t∈Z is a stationary times series, then for any

n ∈N∗,

(8.22) E
[
γn(θ

∗
m)
]
=

1

n

n∑

t=1

E
[
γ(θ∗m,Xt)

]
=R(θ∗m) =⇒ E

[
I31(m)

]
= 0.

Secondly, from Assumption A0 and [5], there exists C > 0 such that for any t≥ 1

E
[∥∥γ(θ,Xt)− γ̂(θ,Xt)

∥∥
Θ

]
≤C

∑

s≥t

(
αs(fθ,Θ)+ αs(Mθ,Θ)

)
.

Therefore, there exist C > 0 and C ′ > 0 such that for any m ∈M,

E
[∥∥γn(θ∗m)− γ̂n(θ

∗
m)
∥∥
Θ

]
≤ C

n

n∑

t=1

∑

s≥t

(
αs(fθ,Θ)+ αs(Mθ,Θ)

)

≤ C

n

n∑

t=1

t1−δ ≤ C ′

n
,(8.23)

since δ > 7/2 from Assumption A5. Moreover, for any m ∈M such as m∗ ⊂m (overfitting
setting), we have γn(θ

∗
m)− γ̂n(θ

∗
m) = γn(θ

∗
m∗)− γ̂n(θ

∗
m∗). Using this and (8.23) we deduce
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that for any m ∈M, there exists a bounded sequence (v∗n)n∈N∗ not depending on m when
m∗ ⊂m satisfying

(8.24) E
[
I32(m)

]
=

v∗n
n
.

Using also Lemma 1, this implies the asymptotic behavior of E
[
penid(m)

]
. �

Now we establish a preliminary lemma that is an important step towards the proof of Theorem
4.2.

LEMMA 7. Let pen :m ∈Mn 7→ pen(m) ∈R+. Then,
(8.25)
ℓ(θ̂m̂pen , θ

∗)≤ min
m∈M

{
ℓ(θ̂m, θ∗)

}
+
(
pen(m̂id)− pen(m̂pen)

)
−
(
penid(m̂id)− penid(m̂pen)

)
.

PROOF. By definition, for any m ∈M,

(8.26) Ĉpenid
(m) =R(θ̂m) = ℓ(θ̂m, θ∗) +R(θ∗).

As a consequence,

(8.27) min
m∈M

{
ℓ(θ̂m, θ∗)

}
= ℓ(θ̂m̂id

, θ∗) = min
m∈M

{
Ĉpenid

(m)
}
−R(θ∗).

For any m ∈M, we also have

Ĉpen(m) = Ĉpenid
(m) + pen(m)− penid(m).

By definition of m̂pen, we have Ĉpen(m̂pen)≤ Ĉpen(m̂id). Therefore,

Ĉpen(m̂pen)≤ Ĉpenid
(m̂id) + pen(m̂id)− penid(m̂id)

Ĉpenid
(m̂pen) + pen(m̂pen)− penid(m̂pen)≤ Ĉpenid

(m̂id) + pen(m̂id)− penid(m̂id).

By replacing Ĉpenid
(m) by ℓ(θ̂m, θ∗) +R(θ∗) following (8.26) and using (8.27), then (8.25)

is established. �

PROOF OF THEOREM 4.1. Let M∗ =
{
m ∈M, m∗ ⊂m

}
and M′ =M\M∗. Let m ∈

M′. We have:

P
(
m̂pen =m

)
≤ P

(
Ĉpen(m)≤ Ĉpen(m

∗)
)

≤ P

{
γ̂n(θ̂m)− γ̂n(θ̂m∗)≤ pen(m∗)− pen(m)

}

≤ P

{
n
(
γ̂n(θ̂m)− γ̂n(θ

∗
m)
)
+ n

(
γ̂n(θ

∗
m)−R(θ∗m)

)
+ n

(
R(θ∗)− γ̂n(θ

∗)
)

+n
(
γ̂n(θ

∗)− γ̂n(θ̂m∗)
)
≤ n

(
R(θ∗)−R(θ∗m)

)
+ n

(
pen(m∗)− pen(m)

)}

≤ P

{
Z1 +Z2 +Z3 +Z4 +Z5≤−2nDKL(θ

∗‖θ∗m)
}

with Z5 = n
(
pen(m)− pen(m∗)

)
and with R(θ∗)−R(θ∗m) = −2DKL(θ

∗‖θ∗m) < 0 since
m 6⊂m∗ from [4]. Now, using P(Z1 + · · ·+Z5 ≤ c)≤ P(Z1 ≤ c/5) + · · ·+P(Z5 ≤ c/5) for
any random variables Zi and real number c, we obtain:

(8.28) P
(
m̂pen =m

)
≤

5∑

i=1

P
(
Zi ≤ cn

)
,
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where cn =−2
5 nDKL(θ

∗‖θ∗m).

Let Z1 := n
(
γ̂n(θ̂m)− γ̂n(θ

∗
m)
)
. Following the same computations than in (8.19), with 8/3<

r′ ≤ r/3 and r′ < 2(δ − 1) defined in Proposition 1, and Hölder Inequality,

E
[∣∣Z1

∣∣ 3r
′

8
]
≤
∥∥(∂2

θ2 γ̂n(θm)
)1/2√

n(θ̂m − θ∗m)
∥∥ 3r′

4
3r′

4

≤
∥∥∥
(
∂2
θ2 γ̂n(θm)

)∥∥∥
3r′

2

∥∥√n(θ̂m − θ∗m)
∥∥ 3r′

4

r′
.

Therefore, using Proposition 1,

(8.29) P
(
Z1 ≤ cn

)
≤ P

(
|Z1|

3r′

8 ≥
(
|cn|
) 3r′

8

)
≤ E

[∣∣Z1

∣∣ 3r
′

8
] 1

|cn|
3r′

8

=⇒ P
(
Z1 ≤ cn

)
=O

( 1

n
3r′

8

)
= o
( 1
n

)
,

since 3r′/8 > 1. The same kind of computations can also be done for Z4 := n
(
γ̂n(θ

∗) −
γ̂n(θ̂m∗)

)
and we also obtain P

(
Z4 ≤ cn

)
= o
(
1
n

)
.

Consider now Z2 := n
(
γ̂n(θ

∗
m)−R(θ∗m)

)
. Then,

E
[∣∣Z2

∣∣8/3]≤ 25/3
(
E
[∥∥L̂n(θ)−Ln(θ)

∥∥8/3
Θ

]
+ n8/3E

[∣∣
n∑

k=1

(
γ(θ∗m,Xk)−R(θ∗m)

)∣∣8/3]
)
.

Using [5], we know that supn∈N∗ E
[∥∥L̂n(θ)− Ln(θ)

∥∥8/3
Θ

]
< ∞ from Assumption A5 and

since δ > 7/2 > 2. Now, consider Yk := γ(θ∗m,Xk)−R(θ∗m). Then, (Yk)k∈Z is a stationary
time series, τY -weakly dependent because, using the same type of arguments as in the proof
of Lemma 3, we have:

τY (s)≤
∞∑

ℓ=1

(
αℓ(fθ,Θ)+ αℓ(Mθ,Θ)

)
λs+1−ℓ,

with λ defined in Lemma 2. Therefore, using Assumption A5, we also have τY (s) =
O
(
sδ−1 log(s)

)
, with δ > 7/2. Now, using the same type of arguments as in the proof of

Lemma 4,

E
[∣∣

n∑

k=1

Yk

∣∣8/3]≤C8/3

(
M8/3,n +M

4/3
2,n

)
,

and M2,n ≤ C n while M8/3,n ≤ C n
∑n

i=1 i
8/3−1−δ log(i) = o

(
n4/3

)
. Therefore, there ex-

ists C > 0 such that for any n ∈N∗,

E
[∣∣

n∑

k=1

Yk

∣∣8/3]≤C n4/3.

Finally, we deduce that there exists C > 0 such that for any n ∈N∗,

(8.30) E
[∣∣Z2

∣∣8/3]≤C n4/3.

This result and Markov Inequality imply,

(8.31) P
(
Z2 ≤ cn

)
≤ P

(
|Z2|8/3 ≥

(
|cn|
)8/3)≤ E

[∣∣Z2

∣∣8/3] 1

|cn|8/3

=⇒ P
(
Z2 ≤ cn

)
=O

(
n4/3 1

|cn|8/3
)
=O

( 1

n4/3

)
,
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We obtain the same bound for Z3 := n
(
R(θ∗)− γ̂n(θ

∗)
)
.

Finally using the assumption (4.7), we have:

(8.32) nP
(
Z5 ≤ cn

)
= nP

((
pen(m)− pen(m∗)

)
≤−2

5
DKL(θ

∗‖θ∗m)
)

≤ nP
(

pen(m∗)≥ 2

5
DKL(θ

∗‖θ∗m)
)
−→
n→∞

0.

By this way, (4.8) is established. �

PROOF OF THEOREM 4.2. The proof is mainly based on Lemma 7. From the proof of
Lemma 1, we deduce that for any m ∈M, there exists two positive random variables Y (m)
and Z(m) such as n

∣∣I1(m)+I2(m)
∣∣≤ Y (m) and n

∣∣I3(m)
∣∣≤ Z(m) for any n ∈N∗. More-

over, Y (m) and Z(m) have bounded expectations. Therefore, using Markov Inequality, since
M is supposed to be a finite family of models, for any ε > 0 there exists K ′

ε > 0 such as

lim sup
n→∞

max
m∈M

P

(
npenid(m)≥K ′

ε

)
≤ ε.

Therefore, using this inequality and (4.9), we deduce that for any ε > 0 there exist Mε > 0
and Nε ∈N∗ such that for any n≥Nε,

(8.33) P

(
n
∣∣(pen(m̂id)− pen(m̂pen)

)
−
(
penid(m̂id)− penid(m̂pen)

)∣∣≤Mε

)
≥ 1− ε.

The proof of (4.10) is now completed from (8.25) of Lemma 7 and (8.33). �

PROOF OF THEOREM 4.3. Using the same tricks than in Lemma 7, we obtain:

(8.34) ℓ(θ̂m̂pen , θ
∗)≤ ℓ(θ̂m∗ , θ∗)+

(
pen(m∗)−pen(m̂pen)

)
−
(
penid(m

∗)−penid(m̂pen)
)
.

Let M∗ =
{
m ∈M, m∗ ⊂m

}
and M′ =M\M∗. Now, for m ∈M∗ and m 6=m∗, as in

the beginning of the proof of Theorem 4.1, we have:

P
(
m̂pen =m

)
≤ P

(
Ĉpen(m)≤ Ĉpen(m

∗)
)

≤ P

{
n
(
γ̂n(θ̂m)− γ̂n(θ

∗)
)
+ n

(
γ̂n(θ

∗)− γ̂n(θ̂m∗)
)
≤ n

(
pen(m∗)− pen(m)

)}

≤ P

{
n
(
γ̂n(θ

∗)− γ̂n(θ̂m)
)
≥ E[fn(m)]

}
+ P

{
n
(
γ̂n(θ̂m∗)− γ̂n(θ

∗)
)
≥ E[fn(m)]

}

+P

{
3
(
fn(m)−E[fn(m)]

)
≥ E[fn(m)]

}

with fn(m) = n
3 en(m) and en(m) = pen(m)− pen(m∗)> 0 since m∗ ⊂m and m 6=m∗.

Using exactly the same arguments as in the proof of Theorem 4.1, there exists C1 > 0 such
that for n large enough,

(8.35) P

{
n
(
γ̂n(θ

∗)− γ̂n(θ̂m)
)
≥ E[fn(m)]

}
+ P

{
n
(
γ̂n(θ̂m∗)− γ̂n(θ

∗)
)
≥ E[fn(m)]

}

≤ C1

E[fn(m)]
3r′

8

where r′ > 8
3 . Moreover, from Markov Inequality we have

(8.36) P

{
3
(
fn(m)−E[fn(m)]

)
≥ E[fn(m)]

}
≤ P

{∣∣fn(m)−E[fn(m)]
∣∣≥ 1

3
E[fn(m)]

}

≤ 3E
[∣∣fn(m)−E[fn(m)]

∣∣]

E[fn(m)]
.
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As a consequence, from (8.35) and (8.36), with κ > 1, for m ∈M∗ and m 6=m∗ and n large
enough

(8.37) P
(
m̂pen =m

)
≤ C ′

1

(nE[en(m)])κ
+3

nE
[∣∣en(m)− E[en(m)]

∣∣]

nE[en(m)]
−→
n→∞

0.

Using this result as well as (8.37), one finally obtain (4.12).
Moreover,

E

[∣∣pen(m∗)− pen(m̂pen)
∣∣
]

=
∑

m∈M∗

E

[∣∣pen(m∗)− pen(m̂pen)
∣∣
∣∣∣ m̂pen =m

]
P

{
m̂pen =m

}

+
∑

m∈M′

E

[∣∣pen(m∗)− pen(m̂pen)
∣∣
∣∣∣ m̂pen =m

]
P

{
m̂pen =m

}

=
∑

m∈M∗

E

[∣∣pen(m∗)− pen(m)
∣∣
]
P

{
m̂pen =m

}

+
∑

m∈M′

E

[∣∣pen(m∗)− pen(m)
∣∣
]
P

{
m̂pen =m

}

≤ 1

n

∑

m∈M∗

( C ′
1

(nE[en(m)])κ−1
+ nE

[∣∣en(m)− E[en(m)]
∣∣]
)
+

C ′
2

n

∑

m∈M′

E[en(m)],

from (8.37), where κ > 1 and assumption (4.7). As a consequence, using the conditions (4.11)
of Theorem 4.3,

(8.38) nE
[∣∣pen(m∗)− pen(m̂pen)

∣∣
]
−→
n→∞

0.

Moreover, using (8.23), there exists C3 > 0 such as for any m ∈M,

nE
[∣∣penid(m

∗)− penid(m)
∣∣
]
≤C3.

Using once again the decomposition on M∗ and M′, and P
{
m̂pen =m

}
−→
n→∞

0 for m 6=m∗,

we deduce

(8.39) nE
[∣∣penid(m

∗)− penid(m̂pen)
∣∣
]
−→
n→∞

0.

Using the limit (8.39) as well as (8.38), we deduce with Markov inequality that

n
[(

pen(m∗)− pen(m̂pen)
)
−
(
penid(m

∗)− penid(m̂pen)
)] P−→

n→∞
0

inducing the proof of (4.13) from (8.34).
Now, using the expectation of (8.34), we also obtain

E
[
ℓ(θ̂m̂pen , θ

∗)
]
≤ E

[
ℓ(θ̂m∗ , θ∗)

]
+ E

[∣∣pen(m∗)− pen(m̂pen)
∣∣]

+E
[∣∣penid(m

∗)− penid(m̂pen)
∣∣].

Now, by using (8.38) and (8.39) as well as Proposition 2, we obtain the proof of (4.14). �

PROOF OF THEOREM 4.4. First we will prove that the probability of overfitting is asymp-
totically positive, which is

(8.40) lim inf
n→∞

P

(
m̂pen ∈M∗ \ {m∗}

)
> 0.
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Indeed, let m ∈M∗ \ {m∗}. We have:

P

(
Ĉpen(m)≤ Ĉpen(m

∗)
)

= P

(
n
(
γ̂n(θ̂m∗)− γ̂n(θ

∗)
)
+ n

(
γ̂n(θ

∗)− γ̂n(θ̂m)
)
≥ g(m)− g(m∗)

)

= P

(
nI2(m)− nI2(m

∗)≥ g(m)− g(m∗)
)
,

using the notations of Lemma 1 and since pen(m) = g(m)/n for any m ∈ M. But using
Lemma 1 and Proposition 2, we know that if m ∈M∗ \ {m∗} then:

nI2(m)
D−→

n→∞
U∗
m, n I2(m

∗)
D−→

n→∞
U∗
m∗ and E[U∗

m∗ ]< E[U∗
m]

Moreover, U∗
m =−Z⊤

(m)

(
Gm(θ∗m)

)1/2(
Fm(θ∗m)

)−1(
Gm(θ∗m)

)1/2
Z(m) and Z(m)

D∼N
(
0, I|m|

)
.

With a symmetric matrix diagonalization
(
Gm(θ∗m)

)1/2(
Fm(θ∗m)

)−1(
Gm(θ∗m)

)1/2
=−P(m)D(m)P

⊤
(m)

where D(m) is a diagonal matrix with positive diagonal components, leading to

U∗
m = Z̃⊤

(m)D(m) Z̃(m) and Z̃(m)
D∼N

(
0, I|m|

)
.

Therefore we can write for m ∈M∗ \ {m∗}, U∗
m = V ∗

m∗ +W ∗
m\m∗

with

W ∗
m\m∗ = Z̃⊤

(m\m∗)D(m\m∗) Z̃(m\m∗) and Z̃(m\m∗)
D∼N

(
0, I|m|−|m∗|

)

and V ∗
m∗ and W ∗

m\m∗
are two independent random variables. Moreover, it is clear that

W ∗
m\m∗

behaves as a weighted χ2(|m| − |m∗|) random variable, and therefore for any

c > 0, P
(
W ∗

m\m∗
> c
)
> 0. Using nI2(m) − nI2(m

∗)
D−→

n→∞
(V ∗

m∗ − U∗
m∗) + W ∗

m\m∗
with

(V ∗
m∗ −U∗

m∗) and W ∗
m\m∗

independent random variables, we deduce that

(8.41) P

(
nI2(m)− nI2(m

∗)≥ g(m)− g(m∗)
)
−→
n→∞

pm,m∗ > 0,

and this proves (8.40).

Now, using previous notations, we have:

E
[
ℓ(θ̂m̂pen , θ

∗)
]
=
∑

m∈M∗

E
[
ℓ(θ̂m, θ∗)

]
P
(
m̂pen =m

)
+
∑

m∈M′

E
[
ℓ(θ̂m, θ∗)

]
P
(
m̂pen =m

)

= E
[
ℓ(θ̂m∗ , θ∗)

]
+
∑

m∈M∗\m∗

(
E
[
ℓ(θ̂m, θ∗)

]
−E

[
ℓ(θ̂m∗ , θ∗)

])
P
(
m̂pen =m

)

+
∑

m∈M′

(
E
[
ℓ(θ̂m, θ∗)

]
−E

[
ℓ(θ̂m∗ , θ∗)

])
P
(
m̂pen =m

)
.

Now using Proposition 2, we know that for n large enough E
[
ℓ(θ̂m, θ∗)

]
−E

[
ℓ(θ̂m∗ , θ∗)

])
≥

0 for any m ∈M. Moreover, for m ∈M∗ \m∗ and n large enough,

E
[
ℓ(θ̂m, θ∗)

]
− E

[
ℓ(θ̂m∗ , θ∗)

]

≥ 1

2n

(
Trace

((
−Fm(θ∗m)

)−1
Gm(θ∗m)

)
− Trace

((
− Fm∗(θ∗m∗)

)−1
Gm∗(θ∗m∗)

))

≥ 1

n
K(m,m∗),
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where M(m,m∗) > 0. As a consequence, for n large enough, with p(m,m∗) defined in
(8.41),

E
[
ℓ(θ̂m̂pen , θ

∗)
]
≥ E

[
ℓ(θ̂m∗ , θ∗)

]
+

1

2n

∑

m∈M∗\m∗

K(m,m∗)p(m,m′)≥ E
[
ℓ(θ̂m∗ , θ∗)

]
+

M

n
,

with M =
1

2

∑

m∈M∗\m∗

K(m,m∗)p(m,m′)> 0 and this achieves the proof. �

PROOF OF THEOREM 5.1. We first verify conditions (C1) and (C2) of [8] that are suf-
ficient to imply Conditions (i), (ii) and (iii) of [24]. Condition (C1) requires that σ̂n the
largest eigenvalue of

(
−
(
∂2
θiθj

L̂(θ̂m)
)
i,j∈m

)−1
satisfies σ̂n

a.s.−→
n→+∞

0, which is satisfied

since it was already established that 1
n

(
∂2
θiθj

L̂(θ̂m)
)
i,j∈m

a.s.−→
n→+∞

Fm(θ∗m) and Fm(θ∗m) is a

negative definite matrix. Moreover, condition (C2) is also satisfied because θm ∈ Θm 7→(
∂2
θiθj

L̂(θm)
)
i,j∈m and θm ∈ Θm 7→

((
∂2
θiθj

L̂(θm)
)
i,j∈m

)−1
are continuous functions for

n large enough. Therefore, using hn = − 1
n L̂n, the assumptions of Theorem 1 of [24] are

satisfied and this implies that:

∫

Θm

bm(θ) exp
(
L̂n(θ)

)
dθ = exp

(
L̂n(θ̂m)

) (
2π
)|m|/2

× det
(
n
(
− 1

n
∂2
θiθj L̂(θ̂m)

)
i,j∈m

)−1/2(
bm(θ̂m) +O(n−1)

)
a.s.

As a consequence, we have:

Ŝ(m,X) =− log(|M|) + log
[∫

Θm

bm(θ) exp
(
L̂n(θ)

)
dθ
]

= L̂n(θ̂m)− log(n)

2
|m|+ log

(
bm(θ̂m)

)

+
log(2π)

2
|m| − 1

2
log
(
det
(
− F̂n(m)

))
− log(|M|) +O(n−1) a.s.

and Theorem 5.1 follows. �

Aknowledgments. This work has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement No
754362. We also thank Christian Francq for some really important suggestions.

REFERENCES

[1] AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. Proceedings

of the 2nd international symposium on information, Akademiai Kiado, Budapest. MR0483125
[2] ARLOT, S. and MASSART, P. (2009). Data-driven calibration of penalties for least-squares regression. Jour-

nal of Machine learning research 10 245–279.
[3] BARDET, J. M., DOUKHAN, P. and WINTENBERGER, O. (2020). Contrast estimation of general locally

stationary processes using coupling. Preprint arXiv:2005.07397.
[4] BARDET, J. M., KAMILA, K. and KENGNE, W. (2020). Consistent model selection criteria and goodness-

of-fit test for common time series models. Electronic Journal of Statistics 14 2009–2052.
[5] BARDET, J. M. and WINTENBERGER, O. (2009). Asymptotic normality of the quasi-maximum likelihood

estimator for multidimensional causal processes. The Annals of Statistics 37 2730–2759. MR2541445
[6] BOZDOGAN, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and

its analytical extensions. Psychometrika 52 345–370.



DATA-DRIVEN MODEL SELECTION FOR TIME SERIES 33

[7] CAVANAUGH, J. E. (1997). Unifying the derivations for the Akaike and corrected Akaike information cri-
teria. Statistics & Probability Letters 33 201–208. MR1458291

[8] CHEN, C.-F. (1985). On asymptotic normality of limiting density functions with Bayesian omplications. J.

R. Statist. Soc. B 47 540–546.
[9] DEDECKER, J. and DOUKHAN, P. (2003). A new covariance inequality and applications. Stochastic Pro-

cesses and Applications 106 63-80.
[10] DEDECKER, J., DOUKHAN, P., LANG, G., LEÓN, J. R., LOUHICHI, S. and PRIEUR, C. (2007). Weak

dependence: With Examples and Applications. Lecture Notes in Statistics 190, Springer-Verlag, New
York.

[11] DEDECKER, J. and PRIEUR, C. (2004). Coupling for τ−Dependent Sequences and Applications. Journal

of Theoretical Probability 17 861-885.
[12] DING, J., TAROKH, V. and YANG, Y. (2018). Model Selection Techniques: An Overview. IEEE Signal

Processing Magazine 35 16–34.
[13] DING, Z., GRANGER, C. and ENGLE, R. F. (1993). A long memory property of stock market returns and a

new model. Journal of empirical finance 1 83–106.
[14] DOUKHAN, P. and WINTENBERGER, O. (2008). Weakly dependent chains with infinite memory. Stochastic

Processes and their Applications 118 1997–2013. MR2462284
[15] FINDLEY, D. F. and WEI, C. Z. (2002). AIC, overfitting principles, and the boundedness of moments of

inverse matrices for vector autotregressions and related models. Journal of Multivariate Analysis 83

415–450.
[16] FRANCQ, C. and ZAKOIAN, J. M. (2010). GARCH models: structure, statistical inference and financial

applications. John Wiley & Sons. MR3185978
[17] HANNAN, E. J. and QUINN, B. G. (1979). The Determination of the Order of an Autoregression. Journal

of the Royal Statistical Society. Series B (Methodological) 41 190–195.
[18] HSU, H. L., ING, C. K. and TONG, H. (2019). On model selection from a finite family of possibly mis-

specified time series models. The Annals of Statistics 47 1061–1087.
[19] HURVICH, C. M. and TSAI, C. L. (1989). Regression and time series model selection in small samples.

Biometrika 76 297–307. MR1016020
[20] ING, C. K., SIN, C. Y. and YU, S. H. (2012). Model selection for integrated autoregressive processes of

infinite order. Journal of Multivariate Analysis 106 57–71. MR2887680
[21] ING, C. K. and WEI, C. Z. (2005). Order selection for same-realization predictions in autoregressive pro-

cesses. The Annals of Statistics 33 2423–2474. MR2211091
[22] KARAGRIGORIOU, A. (1997). Asymptotic efficiency of the order selection of a nongaussian AR process.

Statistica Sinica 407–423.
[23] KASHYAP, R. L. (1982). Optimal choice of AR and MA parts in autoregressive moving average models.

IEEE Transactions on Pattern Analysis and Machine Intelligence 4 99–104.
[24] KASS, R. E., TIERNEY, L. and KADANE, J. B. (1990). The Validity of Posterior Expansions Based on

Laplace’s Method. Essays in Honor of George Barnard, eds. S. Geisser, J. S. Hodges, S. J. Press, and

A. Zellner, Amsterdam: North-Holland 473–188.
[25] KENGNE, W. (2021). Strongly consistent model selection for general causal time series. Statistics & Prob-

ability Letters 171 109000.
[26] LI, K. C. (1987). Asymptotic optimality for C_p,C_L, cross-validation and generalized cross-validation:

Discrete index set. The Annals of Statistics 15 958–975. MR902239
[27] LING, S. and MCALEER, M. (2003). Asymptotic theory for a vector ARMA-GARCH model. Econometric

theory 19 280–310. MR1966031
[28] LV, J. and LIU, J. S. (2014). Model selection principles in misspecified models. Journal of the Royal Sta-

tistical Society: Series B 76 141–167. MR3153937
[29] MALLOWS, C. L. (1973). Some comments on Cp. Technometrics 15 661–675.
[30] MASSART, P. (2007). Concentration inequalities and model selection. Springer. MR2319879
[31] MCQUARRIE, A. and TSAI, C. L. (1998). Regression and Time Series Model Selection. World Scientific

Pub Co Inc. MR1641582
[32] PAPANGELOU, F. (1994). On a distributional bound arising in autoregressive model fitting. Journal of ap-

plied probability 31 401–408.
[33] RAO, C. R., WU, Y., KONISHI, S. and MUKERJEE, R. (2001). On model selection. Lecture Notes-

Monograph Series 1–64.
[34] SCHWARZ, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 461–464. MR468014
[35] SCLOVE, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis.

Psychometrika 52 333–343.
[36] SHAO, J. (1997). An asymptotic theory for linear model selection. Statistica sinica 221–242.
[37] SHIBATA, R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters

of a linear process. The Annals of Statistics 147–164. MR557560


