
HAL Id: hal-03384306
https://hal.science/hal-03384306v1

Submitted on 9 Feb 2023 (v1), last revised 17 Jan 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partial neighborhood local searches
Sara Tari, Matthieu Basseur, Adrien Goëffon

To cite this version:
Sara Tari, Matthieu Basseur, Adrien Goëffon. Partial neighborhood local searches. International
Transactions in Operational Research, 2022, 29 (5), pp.2761-2788. �10.1111/itor.12983�. �hal-
03384306v1�

https://hal.science/hal-03384306v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Partial Neighborhood Local Searches

Sara Tari · Matthieu Basseur · Adrien
Goeffon

Received: date / Accepted: date

Abstract PNLS 3 mthodes + 2 state of the art : expe param + problmes
comportement-paysages

1 Introduction

In the field of combinatorial optimization, research can follow two conflictual
directions: on the one hand, problem-oriented approaches that exploit speci-
ficities of the studied problem, and generic approaches that try to provide
guidelines to establish solvers that can handle optimization problems in gen-
eral.

This observation can be done for exact algorithms as well as for heuris-
tic search algorithms. When it comes to search algorithms, problem-oriented
algorithms use the structure of a given problem to guide the search toward
high-quality solutions. In contrast, generic methods aim at finding guidelines
that can be applied to many combinatorial optimization problems.

Heuristics search algorithms mainly include metaheuristics that often con-
sist of navigating through the search space with a couple (neighborhood re-
lation, move strategy) and return the best-encountered solution at the end of
the search. The navigation process creates a sample of the search space where
solutions are examined, thus obtaining a good sample is crucial for such meth-
ods. Finding an appropriate neighborhood relation and an appropriate move
strategy is the key to find good solutions of the search space. The general
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principle of local search based metaheuristics is elementary since it mainly
consists of using a neighborhood relation and a move strategy.

As stated by Sörensen in [20], methods proposed in the field of metaheuris-
tics are more sophisticated than ever, especially since the dramatic increase
in the number of bio-inspired methods. While metaheuristics are meant to be
generic methods, a significant part of them is dedicated to solving a given
problem. Most of these methods mainly exploit problem specificities to navi-
gate through the search space and are still called metaheuristics. While such
methods can be particularly efficient to tackle problems, authors should not
label them as metaheuristics but more as metaheuristic-based methods. The
study of sophisticated methods involves the consideration of many parame-
ters, which interact in a complex way. Understanding the behavior of such
approaches is a complicated task.

Nevertheless, improving the understanding of metaheuristics can provide
insights on when and how to use them. Such knowledge is particularly crucial
to determine which approach is the most suited for a given problem. This is
particularly the case when the approaches are intended to be generic. Ana-
lyzing metaheuristics, instead of only proposing new methods without further
knowledge, is the primary key to better use such methods.

Metaheuristics are often based on a neighborhood relation that associates
a set of solutions to each solution of the search space. To analyze such meth-
ods, one can use the notion of fitness landscapes [25]. The concept of fitness
landscapes leads to an abstraction of the problem where the height of solu-
tions corresponds to their fitness, and the neighborhood relation defines the
connexions between solutions. This abstraction allows studying optimization
methods in a more general way by using landscape properties. One can es-
tablish correlations between the dynamics of methods and the properties of
landscapes to obtain insights on why the method is efficient or not. The prop-
erties that characterize fitness landscapes, among them some are recognized
to make the landscape challenging to tackle. Investigating methods with a
landscape approach can highlight tendencies that help to determine the type
of landscapes where some methods are expected to be efficient.

While fitness landscapes allow the study of any neighborhood-based search
method, investigating sophisticated search strategies without preliminary stud-
ies is particularly complicated. Indeed, many metaheuristics consist of assem-
bled mechanisms whose individual contribution and parameterization are chal-
lenging to measure. However, studying interactions between mechanisms re-
quire beforehand to understand precisely their individual behavior. For this
reason, there is a need to deconstruct metaheuristics to facilitate the under-
standing of what makes a search algorithm efficient. Even if advanced meta-
heuristics alternate different mechanisms to manage the balance between a
sufficient intensification of the search on promising areas of the search space
and a sufficient exploration of the search space, one can often achieve such a
balance with fewer mechanisms.

In a previous study [5], we highlighted the relevance of accepting a fixed
part of the less deteriorating neighboring solutions during the search process;
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the efficiency of strategies such as simulated annealing on many problems
supports this principle.

Here we are interested in more stochastic searches that reduce the ex-
ploratory effort of neighborhoods and increase the frequency of steps during
the search. We propose to consider Partial Neighborhood Local Search algo-
rithms (PLNS), which are based on random restriction of the neighborhood
at each step of the search. In particular, we investigate the Sample Walk
algorithm (SW) introduced in [23], which can be viewed as a local search trans-
position of a (1, λ)-ES. We also consider a previously described algorithm that
also falls into the scope of PNLS (ID Walk [16]). The two main contributions of
this work are the following. First, we perform a parameter sensitivity analysis
of PLNS methods, which only consists of determining the appropriate λ val-
ues. Then, we study the behavior of partial-neighborhood based methods on
different landscapes to highlight some relations between landscape properties
and PLNS efficiency.

The outline of the paper is as follows. In the next section, we present fitness
landscapes and related concepts. Section 3 presents the partial neighborhood
local searches we study in this work. The three last section are dedicated to em-
pirical analysis of fitness landscapes and PLNS algoritrhms. Exepriments are
realized on various bit-string and permutation landscapes derived from various
problems: NK landscapes and Unconstrained Binary Quadratic Programming
problem (binary string solution representation), as well as Quadratic Assign-
ment Problem and Flowshop Scheduling Problem (permutation solution rep-
resentation). In section 4, we report experiments that allow to characterize
landscapes according to indicators. In section 5, some experiments are con-
ducted in order to determine the adequate paramerization of the considered
algorithms. I particular attention is dedicated to PLNS methods and the sen-
sibility of the results to λ values. In section 6, we confront PLNS methods
with a tabu search and an iterated local search. The last section provides a
discussion on the current work, which leads us to propose future perspectives.

2 Fitness landscapes

Nowadays, fitness landscapes are used in various fields to apprehend the be-
havior of complex systems better. In evolutionary computation, such a model
can help to observe difficulties induced by a given problem when tackled with
an optimization method. Indeed, the difficulty of solving a problem is not only
determined by the instance of the problem but also depends on the consid-
ered method. In particular, as showed for some problems (e.g., flow-shop [15]),
choosing a relevant neighborhood operator is essential to ease the navigation of
search methods through the search space. Fitness landscapes are based on the
chosen neighborhood operator and allow the study of some methods following
landscape properties.
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2.1 Definitions

A fitness landscape is a triplet (X ,N , f) where X denotes the search space,
N : X → 2X a neighborhood function describing a set of neighbors associated
to each solution, and f the fitness function which assigns a score to each solu-
tion. Given a combinatorial problem instance (X , f), one can derive a fitness
landscape by adding a neighborhood structure. Neighborhood-based search
algorithms behavior can be analyzed by studying such derivated landscapes.

Therefore, several fitness landscapes can be defined for a given instance,
depending on the neighborhood definition possibilities. In some cases, one can
also use different solutions representations as well as different search spaces (for
instance, including non-feasible solutions or excluding some feasible solutions).
A primary interest of fitness landscapes in evolutionary computation is the
study of neighborhood-based optimization methods depending on landscapes’
properties. Most of these properties, such as the ones described in [13], can
influence the behavior of search algorithms. In this study, we mainly focus on
the dimension, the ruggedness, and the neutrality of landscapes.

The dimension of a landscape is determined by the size of the search space
and the connectivity between solutions. The size of the search space refers to
the number of candidate solutions and directly affects the difficulty of finding
a given solution. The connectivity corresponds to the (usually fixed) number
of neighbors of a solution.

The ruggedness of a landscape is a significant property that determines the
difficulty of optimizing the underlying problem using the considered neighbor-
hood operator. It mainly refers to the number of local optima, their distribu-
tion through the search space, and the size of their basins of attraction. The
basin of attraction [17] of a local optimum is the set of solutions that can lead
toward the considered local optimum through a basic hill-climbing algorithm.
A rugged landscape would have many local optima with small basins of at-
tractions. On the contrary, a smooth landscape would have few local optima
with large basins of attraction. A landscape with the maximal smoothness
only has one local optimum (which is the global optimum). The ruggedness of
a landscape can be evaluated by computing or estimating the number of local
optima and the size of their basins of attraction.

Ruggedness is also related to the epistasis phenomenon, that reflects the
degree of variable interdependency between genes [6]. When the interdepen-
dence between decision variables is high, it is difficult to estimate how the
value of a particular variable affects the solution fitness. Such a landscape has
high epistasis since the effect of a mutation depends on the presence of other
mutations. The ruggedness estimation, thanks to the epistasis phenomenon, is
discussed in the next section.

Neutrality occurs in a landscape when two neighboring solutions have the
same fitness value.

Some landscapes have a significant neutrality rate, and the presence of such
a feature can have a non-negligible effect on the number and distribution of
local optima. Indeed, landscapes with high levels of neutrality are generally
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hard to solve and induce questions about how to tackle neutral moves within
local search algorithms. In particular, many metaheuristics have a move policy
to navigate through plateaus (set of connected neutral neighbors) [14].

Neutrality can have a significant impact on the number and distribution
of local optima, and therefore on the ability of search algorithms to find good
solutions. Indeed, it has a smoothing effect that makes it more challenging
to guide the search towards good solutions, since their fitness does not allow
comparison. When it is not taken into account, neutrality can thus act as a
brake on search methods. The presence of plateaus (definition 1) in the land-
scape induces an additional difficulty for search algorithms that can wander in
these areas, which can lead to a large number of unnecessary evaluations and
prevent reaching better solutions. Note that the artificial addition of neutral-
ity in a rough landscape can, however, also help to direct the search towards
good solutions, in particular by preventing it from being trapped in some local
optima [1].

Definition 1 A plateau is a set of connected points of the same fitness and
corresponds to a related sub-graph induced by S ⊆ X , such that ∀(xi, xj) ∈
S2, f(xi) = f(xj).

Thus, on a landscape with a high level of neutrality, taking this characteristic
into account in order to limit the difficulties encountered during search is often
crucial. The quantification of this neutrality is an aspect that should not be
neglected when studying or proposing resolution methods.

2.2 Landscape features

In this section, we describe the indicators used in this paper to characterize
landscapes. The ruggedness level of landscapes is a key aspect determining the
problems’ hardness. At the same time, ruggedness cannot be clearly described
using a single indicator [13]. Here, we will focus on the autocorrelation function,
the k-ruggedness, and the average distance between local optima. Moreover, we
also consider the neutral rate of landscapes since neutrality also induces a
significant impact on the behavior of search algorithms.

2.2.1 Autocorrelation function

The autocorrelation function introduced by Weinberger in [24] is a widely used
ruggedness indicator. It requires to perform several random walks (s0, s1, s2, . . .)
through the considered landscape. This indicator calculates the fitness corre-
lation between the solutions encountered during the random walk according
to their distances. In classical fitness landscapes derived from combinatorial
optimization problems, the correlation between two close solutions tends to
be high. In contrast, it tends to be close to zero on two distant solutions. The
rate of decay in function of the distance indicates the ruggedness rate of the
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considered landscape. More formally, the following autocorrelation function
ρ provides an estimation of the influence of the distance on the variation of
solution fitness between pairs of solutions within the walk:

ρ(l) =
< f(xt)f(xt+l) >x0,t − < f(xt) >

2
x0,t

< f(xt)2 >x0,t − < f(xt) >2
x0,t

(1)

x0 and t indicate that the average values are computed from the set of
starting solutions x0 and along the complete random walk.

The result is a plot of autocorrelation ρ(l) ∈ [−1, 1], where l ∈ {0, . . . , t}
is the step size of considered walks of length n. |ρ(l)| = 1 indicates a maximal
correlation whereas |ρ(l)| close to 0 indicates almost no correlation.

2.2.2 k-ruggedness

While the efficiency of metaheuristics is often influenced by deteriorating and
improving moves, the autocorrelation measure is based on fitness variation
and does not sufficiently consider sign epistasis. Consequently, we also use the
k-ruggedness indicator based upon the k-sign-epistasis principle introduced
hereafter.

Let s0 and sk two solutions distant from k with respect to the considered
neighborhood (e.g., the Hamming distance while considering binary strings
and the 1-flip operator). Let s′0 and s′k neighbors of respectively s0 and sk
resulting from the same move application (e.g., the same bit is flipped, con-
sidering binary strings and 1-flip). Moreover, the solutions s′0 and s′k have
to respect the constraints d(s0, s

′
k) = k + 1 and d(s′0, s

′
k) = k (consider-

ing binary strings and 1-flip, the flipped bit cannot differ in s0 and sk). The
k-sign-epistasis is defined as follow:

φ(s0, s
′
0, sk, s

′
k) = epis((f(s0)− f(s′0))× (f(sk)− f(s′k))) (2)

where epis(x) equals to 0 if x is positive, and 1 otherwise. The k-sign-
epistasis concept is somehow natural in binary string landscapes and is de-
picted in figure 1. However, applying this concept to other solution represen-
tations is more complicated and less intuitive since the landscape is then not
necessarily a hypercube.

1-ruggedness is called local ruggedness and refers to the 1-epistasis rate
on several pairs of mutations. k-ruggedness reflects a global ruggedness and
refers to the k-epistasis rates when the same mutation is applied to solutions
of distance k.

2.2.3 Average distance between local optima

The number of local optima is the primary aspect of characterizing the prob-
lem’s hardness and is strongly related to the two previous measures introduced.
These measures are useful for evaluating this aspect, but consider a uniform
repartition of ruggedness throughout the landscape. The study local optima
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Fig. 1 Illustration of k-sign-epistasis while applying a given mutation on two solutions
x0 and xk (x0 and xk are linked by a minimal set of solutions {x1 . . . xk−1}, such that
∀i ∈ [1..k], xi ∈ N (xi−1)).

repartition can also provide information on the difficulty of solving a given
landscape. Here we consider the average distance between local optima, a sim-
ple way to estimate when local optima are uniformly distributed of not. Let O
be a set of local optima found by executing a first improvement hill-climbing
algorithm. DLO is the average distance between two solutions of O.

Let Drand be the average distance between two random solutions of the
search space. If DLO and Drand are similar, then local optima are likely to be
uniformly distributed in the search space. Oppositely, the more DLO is smaller
than Drand, the more clustered are the local optima.

A known hypothesis related to the distribution of local optima in some
landscapes is that landscapes derived from specific combinatorial problems
have a central massif structure. The local optima of fitness landscapes having
a central massif (big valley) structure are clustered around a central global op-
timum (low DLO value). In such cases, there exist many local optima that are
easy to escape from, making the optimization of such landscapes less difficult.

2.2.4 Neutrality

Neutrality influences the behaviour of search methods, especially since it im-
plies situation where this is not possible to determine through fitness whether
a neighbouring solution is preferable to another. A combinatorial landscape
considered neutral is not a flat landscape, but rather a landscape where a
significant proportion of transitions between pairs of solutions are neutral.

Thus, on a landscape with strong neutrality, taking this characteristic into
account to limit the difficulties encountered during the search is often crucial.
The quantification of this neutrality is an aspect that should not be neglected
when studying or proposing resolution methods. Neutrality can be quantified
using various indicators, for example, through random walks or the identifi-
cation of neutral networks. In our work, we define the rate of neutrality (def-
inition 2), which corresponds to the average proportion of neutral neighbors
in a solution. The simplicity of the measurement makes it possible to easily
approximate its value by sampling the search space, even if it does not take
into account the distribution of neutrality in the landscapes, as is sometimes
the case [3].
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Definition 2 The neutral rate of a fitness landscape (X ,N , f), is defined as
follows:

υ(X ,N , f) =
#{(x, x′), x ∈ N (x′), f(x) = f(x′)}

#{(x, x′), x ∈ N (x′)}

2.3 From combinatorial optimization problems to fitness landscapes

Studying methods behavior is facilitated by the use of models allowing tunable
ruggedness, such as NK landscapes presented hereafter. Studies on artificial
landscapes with such features are essential to apprehend the link between
ruggedness and mechanisms efficiency better. The general aspect of such land-
scapes is limited since their ruggedness is uniformly distributed, unlike in real
problems. In light of this specific fact, conducting studies related to rugged-
ness on only NK landscapes should not be considered as sufficient. Tackling
landscapes derived from real problems can help to obtain better insights into
the behavior of the considered methods within such studies.

In the following, we first introduce NK landscapes, then we present three
different classes of problems and their associated landscapes: UBQP, FSP,
and QAP. We use these different classes of problems in the experiments of the
paper.

NK landscapes are a model of binary fitness landscapes introduced by
Kaufmann [10]. They are widely used when studying the link between rugged-
ness and methods behavior since their specificity is to have a tunable rugged-
ness. These landscapes have two parameters: N , which specifies the number
of variables, and K, which determines the level of variable interdependency
and directly influences the ruggedness rate. Setting K to zero leads to an en-
tirely smooth landscape with no variable interdependency, whereas setting K
to N − 1 leads to an entirely rugged (random) landscape.

The fitness function F of NK landscapes to be maximized is defined as
follows:

f(x) =
1

N

N∑
i=1

Ci(xi, Πi(x)) (3)

xi is the i-th bit of the solution x, Πi a subfunction which defines the
dependencies of bit i, with Πi(x) such that πj(i) ∈ {1, . . . , N} {i} and
| ∪Nj=1 πj(i)| = K, subfunction Ci : {0, 1}K+1 → [0, 1) defines the contribu-
tion value of xi w.r.t. its set of dependencies Πi(x). NK landscapes instances
are determined by the (K + 1)-uples (xi, xπ1(i), . . . , xπK(i)) and a matrix C of
fitness contribution which describes the 2N × (K + 1) possible contribution
values.

The neighborhood operator under consideration in the study is the one-
flip. Two solutions x and x′ are neighbors iff their Hamming distance is equal
to 1.

Various parameterizations of NK instances (N ∈ {128, 256, 512, 1024},
K ∈ {1, 2, 4, 6, 8, 10, 12}) will be considered in experiments in order to ob-
serve algorithms behavior in various contexts (size and ruggedness).
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The Unconstrained Binary Quadratic Programming problem (UBQP) is
an NP-hard problem [8], which can reformulate a vast scope of real-life prob-
lems in various fields. An instance of UBQP is composed of a matrix n× n of
constants which can be positive or negative. A solution is a binary vector x of
size n where xi ∈ {0, 1} corresponds to the i-th element of x. The objective
function f to be maximized is described as follows:

f(Π) =

n∑
i=1

n∑
j=1

qijxixj (4)

The neighborhood operator under consideration to define fitness landscapes
associated with the UBQP problem is the one-flip operator. Hence, each solu-
tion has a neighborhood of size n. We used an instance generator (proposed
and provided by Gintaras Palubeckis) to generate several instances of different
sizes and density. The density d defines the rate of values equal to zero in the
matrix Q.

The Flowshop Scheduling Problem (FSP) [21] is a widely studied schedul-
ing problem. Among the numerous FSP variants, we consider the permutation
flow-shop with total completion time minimization. An instance of FSP can be
composed by n jobs J1 to Jn to be scheduled, m machines where jobs must be
scheduled in a specific order m1 to mm, and a set of n×m tasks tij where tij
represents the processing time of the job Ji on the machine mj . Let us notice
that two jobs cannot be scheduled simultaneously on a machine. Moreover, on
the variant under consideration, all jobs must be scheduled in the same order
on each machine. A solution Π is then represented by a permutation of jobs
Each task is scheduled to the date sij .

The objective function Cmax, also called total completion time or makespan,
to be minimized is described as follows:

Cmax(x) = maxi∈[1,...,n]{sim + tim}

The search space Sn is the set of permutations of {1, . . . , n}, and is of size
n!. The most efficient neighborhood operator to solve this problem consists of
moving a job to a different position and is called insert operator Nins. This
operator allows the definition of the fitness landscape corresponding to the
triplet (Sn, Nins, Cmax). We select 6 representative instances with j ∈ {30, 50}
jobs and m ∈ {10, 15, 20} machines [22].

The Quadratic Assignment Problem (QAP) [11] is a permutation problem
considered as one of the most difficult to solve NP-hard problems [19]. QAP
consists of affecting n units to n locations in function of a distance matrix D
and flow between units matrix F. Let dij be the distance between locations i
and j, and frs the flow between units r and s. A permutation Π describes the
affectations of units to locations is a solution to this problem. The objective
function to be minimized then corresponds to the sum of distances multiplied
by the corresponding flows and is defined as follows:
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f(Π) =
∑n
i=1

∑n
j=1 dijfΠiΠj

where Πi represents the i-th element of the solution Π ∈ Sn. FSP and QAP
share common search spaces Sn. Here, the considered neighborhood operator
to solve QAP is the commonly used swap operator Nswap, which consists of
exchanging the location of two units. For each solution Π, the neighborhood
size remains the same: |Nswap| =

(
n
2

)
∀Π ∈ Sn. The associated landscape is

then defined by (Sn, Nswap, F ). We use 8 instances of size n ∈ [42, 90] from
the QAPLIB [7]. These instances come from two classes: lipa and sko. lipa
instances are asymmetric instances with known optimal solutions while sko

instances have rectangular distances and pseudorandom numbers as entries in
flow matrices.

In the following, we use these four problems: two bitstring problems and
two permutation problems. Notice that the representations of permutations
lead to different landscapes for which some characterization indicators must
be redefined. This aspect will be discussed later in section 5.

3 Partial neighborhood local searches

3.1 Local search

Local search algorithms [9] are widely used metaheuristics. In their initial form,
such methods are particularly straightforward and therefore allow the addition
of a considerable number of mechanisms to enhance the search process and its
capacity to reach good solutions.

A local search algorithm explores the search space by navigating through
a set of solutions with respect to a neighborhood relation and an evaluation
function. Algorithm 1 describes a local search where x is the current solu-
tion, (N)(x) the neighborhood of x and x∗ an archive of the best-encountered
solution.

Such an algorithm is defined by the way to determine an initial solution,
a move policy (also called pivoting rule) and a stopping criterion. Many move
policies were defined in a general way, leading to well-known metaheuristics
such as simulated annealing or tabu search.

Partial neighborhood local searches (PNLS) constitute a simple instanci-
ation of local search algorithms. In the following, we first discuss about our
motivations then we describe PNLS with more details.

3.2 Motivations

Let us recall the aim of this study is to obtain insights to conceive local search
algorithms. More precisely, we focus on establishing links between optimization
problem structure and efficiency of local searches, not to tackle a particular
problem to beat records. It is useful to focus on basic methods to better isolate
and study some mechanisms used among search algorithms. In the case of local
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Algorithm 1 Local search algorithm
1: Choose x0 ∈ X (initialization)
2: x← x0
3: x∗ ← x
4: while stop criterion not reached do
5: Select a neighbor x′ ∈ N (x)
6: x← x′

7: if f(x) > f(x∗) then
8: x∗ ← x
9: end if

10: end while
11: return x∗

search algorithms, many studies focus on climbers since they do not require
many mechanisms and are widely used as a component within metaheuristics.
Moreover, a study [4] showed that despite their simplicity, climbers have a
high potential. In fact, such algorithms can often reach the global optimum
regardless the initial solution.

Some studies focusing on investigating climbers pivoting rules in accor-
dance to ruggedness showed that among widely used first and best improve-
ment, the first improvement is, in general, the most likely to reach high local
optima. For instance, Ochoa et Al. [18] showed, by exhaustive analysis on
small NK landscapes, that first improvement is efficient to climb significantly
rugged landscapes while best improvement leads to better local optima on both
highly smooth and highly rugged landscapes. Let us notice that difficult land-
scapes derived hard optimization problems are in general significantly rugged.
Furthermore, in [1], an empirical study of such pivoting rules on landscapes
derived from various optimization problems highlighted the interest of the first
improvement on significantly rugged large-sized landscapes. Another study [2]
investigated the worst improvement and showed it was more likely than first
and best improvement to lead toward good local optima on significantly rugged
landscapes.

The acceptance of neutral solutions can potentially avoid the termination of
the climbing process and drive toward higher local optima. Since improving the
current solution seems more natural, the selection of a neutral neighbor is often
only considered once a strict local optimum is reached. In [1] a stochastic hill-
climber which indifferently selects the first encountered improving or neutral
neighbor was investigated. Experiments on various landscapes show that such
a pivoting rule clearly outperforms climbers selecting improving neighbors as
a priority.

Since accepting neutral neighbors as well as improving ones during the
search process helps to reach higher pikes, the effect of adding artificial neu-
trality within climbers was studied in [5]. In the proposed method, artificial
neutrality is obtained by discretizing an adaptative fitness function within a
climber. The resulting climber outperforms classic hill-climbing process since
the search is less likely to be trapped in local optima. Intuitively, this per-
formance is linked to the addition of neutrality which tends to decrease the
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ruggedness rate within the landscape. However, adding too much neutrality
can lead to more difficult landscapes by creating plateaus and inducing an
increased number of moves. A too high value of artificial neutrality induces
too much diversification within the process by allowing the selection of weak
solutions, while an adequate rate of artificial neutrality helps to diversify the
search within climbers sufficiently.

Classic climbers are usually used as intensification mechanisms within so-
phisticated metaheuristics since they almost only perform pure intensification
during a search process. However, sophisticated metaheuristics using climbers
also own a diversification mechanism to achieve a right balance between inten-
sification and diversification during the search. In the climbing process men-
tioned above, the diversification mechanism is directly included. Although such
a method leads toward higher local optima compared to traditional climbers,
it remains a hill-climbing process. A climber is a restrictive local search which
necessarily induces a high amount of intensification and in this case, the sys-
tematic evaluation of the whole neighborhood at each step of the search. Be-
sides, the discretized evaluation function used in this method induces a mod-
ification of the landscape to perform the search; not altering the landscape to
study methods in function of ruggedness rates is more appropriate.

Here, we wonder how to simulate the mechanism induced by artificial neu-
trality in a less restrictive local search, without the systematic evaluation of
the whole neighborhood and with no landscape modification. In general, a
non-strict local search offers more possibilities to improve solutions than a
climber, and a local search performing fewer evaluations at each step induces
more steps and intuitively more diversification for the same cost credit. Indeed,
evaluating only a few neighbors promotes diversification by reducing the pos-
sibility to encounter a particularly good solution at the next step of the search.
Using this principle within a non-strict local search can help to manage the
balance between intensification and diversification with a single mechanism,
as opposed to local search algorithms requiring two separate mechanisms to
achieve this balance (for example, an Iterated Local Search).

3.3 Methods

Partial Neighborhood Local Search (PNLS) selects at each step of the search
a solution from a sample of neighbors whose (maximum) size, denoted as
λ, is configurable. The PLNS process is detailed in algorithm 2, and is a
possible instantiation of local search (see algorithm 1). Let us precise that
the λ neighboring solutions are not necessarily generated and evaluated. As
proposed later in the paper, variants can generate and evaluate a maximum
of λ neighbors at each step of the search.

PNLSs mainly manage the balance between intensification and diversifica-
tion through the value of λ. For instance, when λ = 1, the PNLSs correspond
to random walks and are then exclusively diversifying, whereas when λ = |N |
the search is particularly intensifying (particularly when the selection pro-
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Algorithm 2 Partial Neighborhood Local Search algorithm
1: Choose x0 ∈ X (initialization)
2: x← x0
3: x∗ ← x
4: while stop criterion not reached do
5: Nλ ← subset of λ random solutions of N (x)
6: Select a neighbor x′ ∈ Nλ
7: x← x′

8: if f(x) > f(x∗) then
9: x∗ ← x

10: end if
11: end while
12: return x∗

cess is based upon fitness values). The strategies used to select neighbors also
influence the balance between intensification and diversification.

In this paper, we study the impact of different selection strategies for
PLNSs. In particular, we propose the sampled walk algorithm (SW). SW is
particularly simple to implement, in particular since it applies the same se-
lection strategy to improving and deteriorating neighbors. We confront SW
with IDwalk or the intensification/diversification walk proposed in [16], which
is declined in two variants : IDbest and IDany. These two IDwalk variants are
intesresting since they can be classified as PNLS algorithms.

Then, we study three PLNSs algorithms that operate as follows:

– SW selects the solution with the best fitness from a sample of λ neighboring
solutions, whether it is improving or deteriorating;

– IDbest selects the first improving solution encountered. If no improving so-
lution is evaluated, then the best deteriorating neighbor among the sample
of neighbors λ is selected;

– IDany selects the first improving solution encountered. If no improving
solution is evaluated, then a neighbor is randomly selected from the sample
of λ neighbors.

Thus, the only difference between SW and IDbest belongs in the pivoting rule
applied to improving neighbors. SW selects the best improving neighbor among
κ ≤ λ, while IDbest selects the first encountered improving neighbour. Consid-
erering a fixed value of λ, the intensification rate is then naturally higher for
SW than for IDbest.

The difference between IDbest and IDany consists of the rule applied when
only deteriorating neighbors are evaluated. When the sample contains no im-
proving neighbor, IDbest selects the best solution the lambda neighbors (like
in SW process), whereas IDany selects it randomly, which induces a higher rate
of diversification intuitively when no improving solution is found.

The table 1 illustrates a step of the three PNLSs in an example. This
example shows the selection probabilities of each of the ten neighbors of a
solution for SW, IDbest and IDany. The fitness of the current solution is 100,
and the neighborhood contains fours improving neighbors (in a maximization
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Solution S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Fitness 120 112 108 103 98 95 91 88 84 80
SW (λ = 2) 9/45 8/45 7/45 6/45 5/45 4/45 3/45 2/45 1/45 0
IDB (λ = 2) 1/6 1/6 1/6 1/6 5/45 4/45 3/45 2/45 1/45 0
IDA (λ = 2) 1/6 1/6 1/6 1/6 1/18 1/18 1/18 1/18 1/18 1/18
SW (λ = 4) 84/210 56/210 35/210 20/210 10/210 4/210 1/210 0 0 0
IDB (λ = 4) 13/56 13/56 13/56 13/56 10/210 4/210 1/210 0 0 0
IDA (λ = 4) 13/56 13/56 13/56 13/56 1/84 1/84 1/84 1/84 1/84 1/84

Table 1 Illustration of the selection process of SW, IDbest and IDany , on a example of a
neighborhood of 10 solutions {S1, ..., S10}. The fitness of the current solution being 100,
S1, . . . , S4 are improving and S5, . . . , S10 are deteriorating. Values indicate the selection
probability of each couple {selection method, solution}.

context). The probabilities given corresponds to the exact values. For instance,
considering SW, S2 is selected when it is appears in the sample, but not S1.
The selection probabilities of each solution make it possible to identify the
differences between the PNLSs. First, SW promotes more intensification than
IDbest and also IDany, which is the least intensive strategy. Moreover, the
selection probabilities induced by SW perfectly respect the relation of order
of neighbors’ fitnesses.

In the next section, we perform an empirical comparison of the different
algorithms to observe the consequences, in terms of efficiency, induced by
the selection strategy and the sample size, that influences balances between
diversification and intensification.

We compare the PNLSs with two classic local searches : an iterated local
search (ILS) and a taboo search (TS) to observe whether considering partial
neighborhoods is effective in achieving good solutions.

4 Landscape analysis through indicators

In this section we report the analysis of the landscapes derived from the prob-
lems introduced in section 2.3. The indicator used for the analysis are those
presented in section 2.2.

The results are reported in the tables 2, 3, ??, and ??. In these tables,
the two first columns report ρ(1) and 1-ruggedness estimated with a sample
of 100,000 solutions.

Starting from these solutions, 100,000 random walks have been performed
to estimate the autocorrelation function. Then we repor the length of the
steps (in %) when thresholds are reached. Here these thresholds are setted
to 0.8 and 0.5. When the threshold are quickly reached, it corresponds to
a low correlation between fitness correlation and distance between solution,
and then a landscape more difficult to explore efficiently using local searches.
Similarly, thresholds are used to report δ-epistasis (values 0.1 and 0,25). δ-
epistasis values have been estimated only for binary landscapes, since this
indicator is defined only in this context and can not be easyly adapted in a
permutation representation context.
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N K ρ(1) 1-rug.
ρ(l) δ-rug.

dLO(dRd) Neut.≤ 0.8 ≤ 0.5 ≥ 0.1 ≥0.25
128 1 0.9793 0.5% 8.0% 28.3% 15.7% 43.3% 24.5 (64) 0.00%
128 2 0.9745 1.2% 7.0% 22.0% 7.9% 22.9% 44.9 (64) 0.00%
128 4 0.9584 3.1% 4.7% 14.2% 3.1% 10.2% 60.9 (64) 0.00%
128 6 0.9449 5.2% 3.1% 10.2% 2.4% 7.1% 63.5 (64) 0.00%
128 8 0.9290 7.4% 3.1% 7.9% 1.6% 4.7% 63.9 (64) 0.00%
128 10 0.9140 9.6% 2.3% 7.0% 1.6% 3.9% 64.0 (64) 0.00%
128 12 0.8983 11.8% 2.3% 5.5% 0.8% 3.1% 64.0 (64) 0.00%
256 1 0.9899 0.3% 8.6% 27.4% 16.1% 43.9% 50.2 (128) 0.00%
256 2 0.9870 0.6% 6.7% 20.8% 7.5% 22.4% 93.7 (128) 0.00%
256 4 0.9808 1.5% 4.7% 14.5% 3.1% 10.2% 121.4 (128) 0.00%
256 6 0.9718 2.6% 3.5% 10.6% 1.9% 6.7% 126.7 (128) 0.00%
256 8 0.9659 4.1% 2.7% 8.2% 1.2% 4.7% 127.7 (128) 0.00%
256 10 0.9571 5.3% 2.3% 6.7% 1.2% 3.9% 127.0 (128) 0.00%
256 12 0.9488 6.5% 2.0% 5.5% 0.8% 3.1% 128.0 (128) 0.00%
512 1 0.9945 0.1% 8.4% 27.2% 16.7% 45.0% 101.7 (256) 0.00%
512 2 0.9937 0.3% 6.8% 22.1 % 7.0% 22.3% 187.4 (256) 0.00%
512 4 0.9894 0.8% 4.5% 14.2% 2.9% 10.4% 243.3 (256) 0.00%
512 6 0.9853 1.4% 3.3% 10.1% 1.8% 6.4% 253.3 (256) 0.00%
512 8 0.9823 2.1% 2.5% 8.2% 1.2% 4.7% 255.4 (256) 0.00%
512 10 0.9777 2.7% 2.2% 6.5% 0.9% 3.7% 255.8 (256) 0.00%
512 12 0.9747 3.6% 1.8% 5.7% 0.7% 3.1% 260.0 (256) 0.00%
1024 1 0.9977 0.1% 8.5% 27.0% 15.7% 42.7% 200.0 (512) 0.00%
1024 2 0.9970 0.2% 6.8% 22.1% 7.6% 23.6% 366.9 (512) 0.00%
1024 4 0.9951 0.4% 4.4% 14.3% 2.9% 10.1% 486.7 (512) 0.00%
1024 6 0.9929 0.7% 3.1% 10.2% 1.8% 6.5% 507.2 (512) 0.00%
1024 8 0.9912 1.1% 2.5% 7.8% 1.2% 4.8% 510.6 (512) 0.00%
1024 10 0.9897 1.4% 2.2% 6.5% 0.9% 3.7% 511.8 (512) 0.00%
1024 12 0.9870 1.8% 1.8% 5.5% 0.7% 3.1% 511.9 (512) 0.00%

Table 2 NK landscapes indicator values.

The three last columns of the tables report respectively the average distance
between local optima and the neutrality rate.

The average distance between local optima is computed from 1000 local
optima obtained with a first improvement hill-climber, and the value between
parenthesis correspond to the average distance between random solutions.

The neutrality rate is estimated using a sample of 100,000 random pairs of
neighboring solutions.

REFAIRE ET COMPLETER TOUS LES TABLEAUX ! —–¿ + Neut +
dist moyenne

Analyse:
The indicator values computed for each class of landscape brings us some

pieces of information. Some general observations are given below, and these
results are also used in the next sections to identify relations between algorithm
efficiency and landscapes properties.

– NK landscapes: The autocorrelation function and δ-ruggedness are strongly
correlated with the values of K. On the less rugged landscapes, the average
distance between local optima is low. This is particularly visible when we
compare the values with the average distance between random solutions.
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UBQP
ρ(1) 1-rug.

ρ(l) δ-rug.
dLO(dRd) neut.

n d ≤ 0.8 ≤ 0.5 ≥ 0.1 ≥0.25
128 25 0.9798 2.3% 7.8% 27.3% 5.5% 27.6% 0.098% 26.3 (64)
128 50 0.9782 3.1% 8.6% 25.8% 4.7% 27.6% 0.060% 24.2 (64)
128 75 0.9791 3.6% 8.6% 25.8% 5.5% 30.7% 0.046% 21.5 (64)
128 100 0.9779 4.3% 8.6% 26.1% 5.5% 29.9% 0.041% 23.6 (64)
256 25 0.9894 1.5% 8.6% 26.6% 5.1% 28.6% 0.060% 52.2 (128)
256 50 0.9899 2.1% 8.6% 27.7% 5.5% 29.8% 0.037% 28.5 (128)
256 75 0.9895 2.7% 9.0% 27.3% 5.5% 31.8% 0.032% 30.8 (128)
256 100 0.9880 2.8% 8.6% 26.6% 5.1% 29.0% 0.027% 42.0 (128)
512 10 0.9946 0.6% 8.4% 27.2% 5.5% 32.5% 0.064% 59.4 (256)
512 50 0.9942 1.5% 8.2% 27.5% 5.1% 29.5% 0.028% 63.5 (256)
512 75 0.9940 1.8% 8.6% 26.6% 4.9% 29.3% 0.022% 59.3 (256)
512 100 0.9949 2.3% 8.6% 29.3% 5.5% 32.5% 0.019% 59.9 (256)
1024 10 0.9990 0.6% 8.2% 26.0% 5.2% 30.5% 0.046% 156.1 (512)
1024 50 0.9973 1.0% 8.4% 27.0% 4.9% 27.9% 0.019% 157.6 (512)
1024 75 0.9969 1.1% 8.3% 27.8% 4.9% 28.1% 0.019% 130.1 (512)
1024 100 0.9973 1.5% 8.0% 25.9% 5.2% 28.0% 0.015% 133.2 (512)
2048 10 0.9984 0.3% 8.5% 26.4% 5.2% 29.5% 0.038% 269.7 (1024)
2048 25 0.9985 0.7% 8.0% 27.6% 5.0% 27.6% 0.022% 230.7 (1024)
2048 50 0.9987 0.9% 8.5% 26.6% 5.0% 29.2% 0.013% 238.1 (1024)
2048 100 0.9990 1.0% 8.8% 27.7% 4.8% 27.7% 0.011% 307.2 (1024)
4096 10 0.9994 0.2% 8.8% 28.2% 4.7% 28.8% 0.027% 536.1 (2048)
4096 25 0.9992 0.5% 8.5% 26.3% 5.0% 28.9% 0.013% 512.0 (2048)
4096 50 0.9989 0.5% 8.5% 27.2% 4.7% 28.5% 0.010% 483.5 (2048)
4096 100 0.9983 0.7% 8.2% 26.7% 5.7% 30.0% 0.007% 486.6 (2048)

Table 3 UBQP landscapes indicator values. INVERSER LES VALEURS DES DEUX
DERNIERES COLONNES.

Inst. ρ(1) 1-rug. neut. moy(dist) Rd moy(dist) LO

F
S

P

30 10 0.9343 9.99% 12.1% 21.6 20.7
30 15 0.9181 10.59% 9.1% 21.6 19.0
30 20 0.9152 11.47% 5.7% 21.6 19.5
50 10 0.9526 7.63% 13.5% 38.7 37.3
50 15 0.9504 8.37% 9.0% 38.7 35.8
50 20 0.9478 9.06% 7.2% 38.7 35.7

Table 4 FSP landscapes indicator values. FUSIONNER 2 DER COL et INVERSER AVEC
LA NEUT.

Inst. ρ(1) 1-rug. neut. moy(dist) Rd. moy(dist) LO.

Q
A

P

lipa70a 0.9430 5.16% 0.7% 65.2 65.0
lipa80a 0.9508 4.54% 0.6% 75.0 74.9
lipa90a 0.9549 4.09% 0.6% 84.9 84.8
sko42 0.9136 9.61% 1.0% 37.7 36.6
sko49 0.9245 8.78% 0.9% 44.5 43.5
sko56 0.9339 8.04% 0.7% 51.4 50.1
sko64 0.9412 7.50% 0.7% 59.2 58.0
sko72 0.9522 6.90% 0.6% 67.1 65.7

Table 5 QAP landscapes indicator values.FUSIONNER 2 DER COL et INVERSER AVEC
LA NEUT.
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NK landscapes contains no significant neutrality (note that some modified
NK landscapes with neutrality are proposed in the literature).

– UBQP landscapes: A COMPLETER 1rug/drug != auto , dist OL
– FSP landscapes: A COMPLETER rug, neut¡=¿-M
– QAP landscapes: A COMPLETER QAP: rug, neut

5 Evaluating PNLS parameterization

The experiments proposed seek to compare five algorithms: three PNLS (SW,
IDbest, and IDany and two state-of-the-art algorithms (ILS and TS).

The local searches considered require a single parameter (excluding the
stop criterion), and their mode of operation is reduced to elementary pivot
rules. Their simplicity makes it possible to understand better the differences
in behavior induced through experimentation. The small number of parameters
of each variant makes it possible to observe better the differences caused by
their variation. The main parameter of each variant mostly influences the
balance between intensification and diversification during the search.

5.1 Experimental protocol

In this section, we first describe which value has been used for parameterization
analysis. Then, we describe how the experimental study will be performed in
the rest of the paper.

5.1.1 Parameter values tested

ILSF uses the first improvement pivoting rule and performsM random moves
when a local optimum is reached. The first improvement pivoting rule is widely
used and leads toward good quality local optima in a significantly reduced
number of evaluations compared to other pivoting rules such as the best im-
provement pivoting rule.

For each problem, we performed a set of experiments, using different M
values. The most effective parameterization has been used for comparison be-
tween algorithms. The values tested are reported in table 6.

Since ILSF uses the first improvement rule, the entire neighborhood is not
systematically evaluated. Although ILSF partially evaluate the neighbourhood
at each step of the search, it can not be included in PNLS. Indeed, SW and
IDwalk systematically reduce the maximum size of the neighbourhood via the
λ parameter (unless λ = |N |), which is not the case for ILSF . During the
descent phases, ILSF can evaluate the entire neighborhood, and the size of
the sample to be evaluated cannot be determined a priori.

TS uses a list of bits of size L, which is sufficient to ensure a minimal
distance between solutions along the walk. Indeed, we use a landscape-oriented
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Problem L values tested M values tested
NK {5, 10, 15, 20} {5, 10, 15, 20}
UBQP {5, 10, 15, 20, 30, 40, 50, 60} {5, 10, 15, 20, 30, 40, 50, 60, 70, 80}
QAP {8, 12, 16, 20, 24, 28, 32} {5, 10, 15, 20, 30, 40, 50, 60, 70, 80}
FSP {4, 6, 8, 10, 12, 14, 16, 18} {5, 10, 15, 20, 30, 40, 50, 60, 70, 80}

Table 6 Values tested for L (tabu list size in TS) andM (number of perturbations in ILS).

approach, and it implies to use a distance-based list rather than a solution-
based list. The pivoting rule used is based upon the best improvement pivoting
rule, which is the most commonly used within tabu searches.

TS does not evaluate the solutions (or moves) in the tabu list, therefore,
selects a solution in a reduced neighborhood of the current solution. Even
if TS evaluates a fixed number of neighbors at each step (except when the
tabu list does not yet contain L moves), the solutions not to be evaluated are
determined by the last movements made, not by a stochastic process.

As realized for ILSF , the most effective parameterization has been used for
comparison between algorithms (see table 6).

Each PNLS tested here requires only one parameter (λ). For each method,
we consider several λ values to study their influence on their dynamics. Ideally,
all possible values should be examined, but this would lead to a particularly
high number of executions. Although automatic parameterization methods ex-
ist (for example i-race [12]), we have chosen not to use them in this study:
they are often effective in leading the search for good solutions without con-
sidering the constraints of parameter setting, but determining an appropriate
parameter value in this way would limit our observations.

Indeed, even if a given parameter value allows the search to reach good
solutions quickly, it can prevent a longer process from finding better solutions
(often due to an inadequate balance between intensification and diversifica-
tion). Also, this automatic setting could be seen as an additional mechanism
for local searches.

It should be remembered that we are seeking to obtain a better under-
standing of the impact of different components of PNLS and that the more
numerous they are, the more complicated their analysis is.

The first part of experiments reported in the next section is then dedicated
to analyse the impact of λ values on PNLS efficiency.

5.1.2 Stop criterion

The criteria is determined by a maximum number of solution evaluations.
This number is set arbitrary at 100 million in our experiments, a deliberately
high budget so that a sufficient convergence can be observed on the different
landscapes. The best fitness achieved for a reduced budget is also extracted
from the information collected during the execution of the methods. In this
work, we observe the behavior of the five algorithms after 1 million and 100
million evaluations.
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5.1.3 Experimental setup

For each triplet (landscape, method, λ), 100 runs were performed from the
same initial set of 100 randomly generated solutions to reduce the stochastic
bias. We recall that several parameter values are tested for each method, in-
ducing a too high number of runs to report all results. We thus only report
the best average obtained from 100 runs for each couple (landscape, method)
for 1 million and 100 million of evaluations.

Doing so allow us to perform a statiscal analysis to compare methods. In
the following, we consider that a method A statistically dominates a method B
on a set of 100 runs when 1

2100

∑S
i=0

(
100
S
)
> 0.95, ie. S > 58 w.r.t. a binomial

test (with a p-value greater than 0.95). For each instance, we also report the
difference (in %) between each method and the best average fitness obtained.

5.2 PNLS Parameter sensitivity analysis

We test several λ parameter values for each PNLS (i.e. SW , IDbest, and IDany).
We first describe how we determine the values tested. Then we report visual-
ization of the parameter sensitivity through figures reporting tradeoffs between
algorithm efficiency and λ values. Last, we summarize and discuss the best λ
values determined by our experiments.

5.2.1 Panel of λ values

Binary landscapes: we consider all powers of 2 between 1 and the size of
the neighborhood (λ = 2k, k ∈ {1, 2, . . . , log2(|N |}). On NK landscapes, we
additionally consider values of λ in steps of 4 between the two tested values of
λ that frame the value leading to the best average fitness, to more accurately
determine the relevant parameter values according to roughness. For example,
if λ = 32 leads to the best fitness average, we consider all intermediate values
in steps of 4 between 16 and 64 (excluded). We consider the intermediate
values in steps of 8 on landscapes where N = 1024.

Permutation landscapes: the values of λ used correspond to different

ratios of the size of the neighborhood, as follow : λ ∈ { |N |16,
|N |15
, . . . , |N |2, |N |}.

5.2.2 Parameter sensitivity analysis

Considering several parameter values makes it possible to compare local searches
more fairly, limiting the risk that one of them is more efficient because it is
better configured. It also allows to observe the evolution of the capacity of
a given local search to reach good solutions according to the setting. This
analysis could help us to determine the degree of sensitivity of methods to
parameterization. It can also provide guidelines to design useful automatic
parameterization based on landscapes.
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Fig. 2 Fitness variation during executions with different λ values: NK landscapes with
N = 1024 and N = 1024.

For the algorithms studied here, observing this evolution provides informa-
tion on how to set an appropriate balance between intensification and diversi-
fication on a given landscape. This section presents and discusses the evolution
of the average fitness of methods according to their parameter setting on NK
landscapes.

The figure 2 illustrates average fitness obtained with respect to the set-
tings of SW, IDbest and IDany on several NK landscapes during executions of
100 million evaluations. The values of λ reported here are powers of two, which
excludes the values tested in a second step, although they are considered in
the rest of the section. The fitness averages obtained by SW and IDbest evolve
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similarly: their efficiency is very close, at least when the values of the (maxi-
mum) size of the neighborhood to be evaluated are powers of two. These two
PNLSs differ only in the pivotal rule applied when at least one improving
neighbor is encountered. This similarity could explain that these two variants
do not present significantly different dynamics on NK landscapes. Compared
to SW and IDbest, IDany behavior evolves differently depending on the value
of λ. When this value is high, IDany is more effective in finding good solu-
tions. Remember that when IDany does not find any improving solutions, it
randomly selects one of the λ solutions evaluated, which leads to a greater
diversification than the other two PNLSs, and influences the most appropriate
number of neighbors to evaluate. Indeed, selecting a deteriorating neighbor
without maximizing its fitness implies a significant degradation of the quality
of the current solution. After such a movement, the research process requires a
higher rate of intensification and thus a low rate of diversification. Considering
more neighbors increases the likelihood of meeting an improved neighbor, es-
pecially when the search reaches higher solutions in the fitness landscape, and
then limits diversification rates, which encourages more search in good areas
of the landscape. When epistasis is low, the range of λ values that lead to the
best solutions on average is larger. For the three PNLSs, a positive correlation
exists between the evolution of the value zones leading to the best average
fitness and the value of K (and therefore the roughness rates).

5.2.3 Summary of best sample sizes for PLNS

The parameter values that lead local search to the best average fitness on
each landscape for 1 and 100 million evaluations are reported and discussed in
the following. We note the best parameter value differently for each method :
respectively λSW , λIDb, λIDa, M, L for SW, IDbest, IDany, IDany, ILS and tt
TS.

NK landscapes: The table 7 presents the most appropriate λ values found
on NK landscapes and 1 million evaluations. The statistical analysis of the
results is not always significant for this experiment. Then, when several λ
values lead to results that are not comparable statistically, the least value is
reported.

In general, the most effective setting for SW and IDbest is similar on the
considered landscape. For these two PNLSs, the most appropriate number
of neighbors to evaluate (at most) at each step increases with the roughness
levels (K). This result suggests that SW and IDbest require a higher level of
intensification on rougher landscapes.

The ideal number of neighbours to evaluate (λIDa) for IDany is higher than
for the other two PNLSs, which is consistent with the higher diversification
rates it induces.

The values of λIDa are more stable for N ∈ {512, 1024} and generally
increase with the epistasis factor (and therefore roughness), indicating a higher
need for intensification on such landscapes.
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N K λSW λIDb λIDa M L N K λSW λIDb λIDa M L
128 1 8 8 40 15 15 256 1 16 16 88 15 20
128 2 12 16 72 15 15 256 2 16 16 88 10 15
128 4 16 16 56 5 5 256 4 16 16 72 5 5
128 6 16 20 80 5 5 256 6 24 24 64 5 5
128 8 24 24 64 5 5 256 8 32 32 88 5 5
128 10 32 28 112 5 5 256 10 36 40 112 5 5
128 12 32 36 64 5 5 256 12 48 48 152 5 5
512 1 24 24 128 20 50 1024 1 24 24 128 15 50
512 2 24 24 128 15 50 1024 2 24 24 128 20 50
512 4 24 24 128 15 50 1024 4 24 24 128 20 50
512 6 24 32 128 10 40 1024 6 24 32 128 20 50
512 8 32 40 128 10 20 1024 8 40 40 128 15 40
512 10 48 48 128 5 15 1024 10 48 56 128 15 30
512 12 64 64 256 5 10 1024 12 56 64 256 10 20

Table 7 Parameter values that leads to bests average fitness. 100 executions of 1 million
evaluations are done for each couple (landscape, method) on NK landscapes.

The most appropriate number of perturbations M applied between the
intensifying phases (descents) of ILS is higher on smooth landscapes. A greater
number of random moves leads to a higher level of diversification in the search
process. Performing more random moves allows the search to move away from
the last local optima encountered and to be more likely to escape from their
basin of attraction, allowing the search to explore new areas of the landscape.
Like M, the length of the tabu list that leads to the best averages is lower
on rough landscapes. On smooth landscapes, L increases with N : the most
appropriate length of the tabu list increases with the size of NK landscapes.
For these landscapes, the list contains tabu bits whose value cannot change.
This ensures a distance of L between two solutions separated by L steps.
A higher value implies a greater distance between the solutions encountered
during the search, and thus a greater diversification.

For a budget of 100 million evaluations, the settings leading each method
to the best average fitness are given in the table 8. The evolution of these
settings according to ruggedness for SW and IDbest varies slightly between 1
million evaluations (table 7) and 100 million evaluations. Globally, the most
appropriate values of λ remain almost unchanged when we consider 1 mil-
lion or 100 million evaluations. The value slightly increases with the number
of evaluations allowed to the search on large NK landscapes. This result is
understandable since when more solution evaluation can be done, the diversi-
fying effort can be increased. Some similar observations are usually reported in
evolutionary algorithms while they consider the tradeoff between computation
time allowed and selection pressure.

The most appropriate number of perturbations M to be applied between
descent phases for ILS decreases on most landscapes when the number of so-
lution evaluations increases, except on very smooth landscapes (when K = 1).
In general, it would seem that for this type of landscape, a high rate of di-
versification should be maintained. Perhaps such a diversification allows to
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N K λSW λIDb λIDa M L N K λSW λIDb λIDa M L
128 1 8 8 16 5 20 256 1 16 16 96 15 20
128 2 12 16 40 10 20 256 2 24 24 96 5 20
128 4 16 16 40 5 20 256 4 20 20 192 5 20
128 6 16 16 56 5 15 256 6 24 24 184 5 20
128 8 20 20 72 5 15 256 8 32 32 112 5 15
128 10 24 32 120 5 10 256 10 36 40 184 5 15
128 12 28 36 96 5 10 256 12 44 52 184 5 15
512 1 16 16 256 20 50 1024 1 16 16 256 15 50
512 2 16 24 128 5 50 1024 2 24 24 256 5 50
512 4 24 24 128 5 50 1024 4 24 24 256 5 50
512 6 24 32 256 5 30 1024 6 32 32 256 5 50
512 8 40 40 256 5 30 1024 8 40 48 256 5 40
512 10 56 48 256 5 20 1024 10 56 64 256 10 30
512 12 64 64 256 5 15 1024 12 72 80 256 5 20

Table 8 Parameter values leading to the best average fitness over 100 executions for each
pair (landscape, method) on NK landscapes and 100 million evaluations.

transit between huge basins of attraction. For rougher landscapes, the best
value tested is generally the smallest considered (M = 5): few disturbances
are sufficient to increase the possibility of achieving new good optima (the
number of local optima being higher, and their basin of attraction smaller).
For a budget of 100 million evaluations, the settings leading each method to
the best average fitness are given in the table 8. The evolution of these settings
according to ruggedness for SW and IDbest varies slightly between 1 million eval-
uations (table 7) and 100 million evaluations. Globally, the most appropriate
values of λ remain almost unchanged when we consider 1 million or 100 mil-
lion evaluations. The value slightly increases with the number of evaluations
allowed to the search on large NK landscapes. This result is understandable
since when more solution evaluation can be performed, the diversifying effort
can be increased. Some similar observations are usually reported in evolution-
ary algorithms while they consider the tradeoff between computation time
allowed and selection pressure.

The value of the tabu list size L that leads to the best results is generally
higher for a budget of 100 million evaluations. Also, a higher value also seems
more appropriate on smooth landscapes. Tabu search requires more diversifi-
cation on smooth landscapes to achieve good results. This result is probably
due to the larger size of the attraction areas. More diversification is also needed
when the search is longer because intensifying deeply in a restricted area lim-
its the exploration of the landscape and then does not likely lead to better
solutions.

UBQP landscapes: The best settings for each local search are presented
in the table 9. With a budget of 1 million evaluations, average values are gen-
erally stable for most landscapes. Only λSW fluctuates over three landscapes.
On other landscapes, SW and IDbest systematically maximize their performance
on similar settings.
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UBQP Parameter Parameter
Inst. λSW λIDb λIDa M L Inst. λSW λIDb λIDa M L

1
m

.

2048 10 128 128 256 50 60 4096 10 64 128 256 50 60
2048 25 128 128 256 50 60 4096 25 128 128 256 50 60
2048 50 128 128 256 50 60 4096 50 128 128 256 50 60
2048 100 64 128 256 50 60 4096 100 64 128 256 50 60
Inst. λSW λIDb λIDa M L Inst. λSW λIDb λIDa M L

1
0
0

m
. 2048 10 128 128 128 50 40 4096 10 128 128 256 50 60

2048 25 128 128 128 50 30 4096 25 128 128 256 50 50
2048 50 128 128 128 50 30 4096 50 128 128 256 50 50
2048 100 128 128 128 50 40 4096 100 128 128 256 50 50

Table 9 Parameter values leading to the best average fitness over 100 executions for each
pair (landscape, method) on UBQP landscapes for a budget of 1 million (top) and 100
million (bottom) evaluations.

For ILS, the most appropriate number of perturbations to be applied after
each descent is systematically high. This result is partly related to the large size
of the landscapes and their smooth structure, where applying a large number
of perturbations seems to be a good strategy to escape from the (probably
large) basins of attraction of the local optima encountered. This analysis also
applies to the length of the tabu list L, which need to be large enough to
ensure a sufficient diversification during the search.

When we consider a budget of 100 million evaluations, the best settings
remain stable for each method on every UBQP landscape. On the contrary, the
most appropriate parameter values of TS vary significantly between 1 million
and 100 million evaluation. The L length of the list seems to depend partially
on the size of the landscape and is smaller for 100 million evaluations, leading
to a high level of intensification during the search.

QAP landscapes: The results are presented in table 10. For a budget of
1 million evaluations on lipa landscapes, the sample size of neighbors that
allow SW and IDbest to obtain their best average fitness are approximatively
equivalent. For IDbest, this size is generally larger, which can be explained
by the selection of the first improved neighbor encountered, which leads to
a less intensifying search than SW which select the best-encountered neighbor
(considering a fixed sample size value). On landscapes sko, the sample of
neighbours that leads to best results of SW and IDbest is genrally smaller. The
value of λ that maximizes their performance is not only related to the size of
the landscapes.

As with the previous classes of landscapes tested, IDany usually requires a
very large sample of neighbors to obtain its best average fitness. On some land-
scapes, mainly lipa, the sample corresponds to the entire neighborhood of the
current solution, indicating that IDany requires a strong intensification effort
to be effective. In such cases, this PNLS corresponds to ILS, which applies a
random move to escape local optima. The pivoting rule applied to deteriorat-
ing neighbors affects the balance between intensification and diversification,
so that the sample size needs to be very large for IDany to be effective.
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QAP Parameter QAP Parameter
Inst. λSW λIDb λIDa M L Inst. λSW λIDb λIDa M L

1
m

.

lipa70a 345 345 1207 5 8 sko49 106 106 1176 5 16
lipa80a 451 526 3106 5 8 sko56 8 118 770 5 24
lipa90a 445 572 4005 5 8 sko64 8 134 672 5 24
sko42 78 86 861 5 20 sko72 2 170 852 5 32
Inst. λSW λIDb λIDa M L Inst. λSW λIDb λIDa M L

1
0
0

m
. lipa70a 8 185 1207 5 24 sko49 130 147 1176 5 16

lipa80a 8 243 3160 5 12 sko56 32 128 1540 5 24
lipa90a 16 250 4005 5 24 sko64 8 224 2016 5 24
sko42 78 128 861 5 16 sko72 2 170 2556 5 24

Table 10 Parameter values leading to the best average fitness over 100 executions for each
pair (landscape, method) on QAP landscapes (1 and 100 million evaluations).

The ideal number of perturbations among those considered for ILS is sys-
tematically M = 5, which indicates that the diversification provided by this
mechanism needs to be limited. Lower values should be considered and may
be more appropriate to maximize the effectiveness of this method. The most
suitable length of the tabu list L is smaller on lipa landscapes, which leads to
a higher intensification than on sko landscapes. The length of the list increases
accordingly with the size of the landscapes.

For a budget of 100 million evaluations, SW and IDbest require a smaller λ
value than for 1 million evaluations. this obsrvation is particularlyvisible on
lipa andscapes. The value of λ for IDbest does not change for landscapes lipa
but increases for sko, indicating a stronger need for intensification to achieve
good solutions on these landscapes. The most appropriate sample size value
for IDany does not evolve among lipa landscapes with this larger number of
evaluations. This size increases on larger sko landscapes, indicating a limited
need for diversification to conduct the search towards good solutions.

The most appropriate number of perturbations among values tested for
ILS is stable (M = 5). Compared to previous values, the length of the tabu
list leading to the best solutions on average increases for lipa landscapes and
remains relatively stable on sko landscapes. Increasing the diversification of
tabu search leads to better solutions when the number of evaluations is higher
on lipa landscapes.

FSP landscapes: The best settings obtained are reported in table 11.
With a budget of 1 million evaluations, the values of λSW and λIDb leading to
the best average fitness are close, with λIDb consistently higher. The maximum
sample size to be evaluated is positively correlated with the number of ma-
chines, and thus negatively correlated with the neutrality rates. In landscapes
with a significant level of neutrality, a small λ value is sufficient to allow quick
navigation in plateaus, each step requiring only a few solution evaluations.

As already observed on other landscapes, IDany requires a larger neighbor-
hood sample than the two other PNLSs. Likely to IDany and SW, this value is
negatively correlated with the neutrality rate. The iterated local search sys-
tematically requires the lowest number of perturbations tested in the experi-
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FSP Parameter FSP Parameter
Inst. λSW λIDb λIDa M L Inst. λSW λIDb λIDa M L

1
m

. 30 10 01 58 54 217 5 10 50 10 01 153 153 408 5 18
30 15 01 96 108 435 5 6 50 15 01 153 163 612 5 16
30 20 01 87 108 435 5 6 50 20 01 188 175 1225 5 14
Inst. λSW λIDb λIDa M L Inst. λSW λIDb λIDa M L

1
0
0

m
. 30 10 01 145 145 435 5 12 50 10 01 188 153 350 5 16

30 15 01 145 145 435 5 12 50 15 01 272 245 2450 5 12
30 20 01 174 145 435 5 12 50 20 01 408 350 2450 5 12

Table 11 Parameter values leading to the best average fitness over 100 executions for each
pair (landscape, method) on FSP landscapes. Results for 1 million (top) and 100 million
(bottom) evaluations).

ments. The most appropriate length of the tabu list decreases with the number
of machines, meaning that TS requires more diversification when landscape
neutrality is high. Forcing a greater distance between solutions by increasing
the length of the L tabu list limits the risk of cycling during the search, but
increases the probability that the search will get stuck on plateaus.

The values of the parameter λ of the methods IDSw and IDbest leading to
the best average fitness are generally higher considering 100 million evaluations
than while considering 1 million. With this large budget, the value of λ is
globally stable according to the different numbers of machines m for instances
of size j = 30. When j = 50, the value λ increases with the number of machines.
This different evolution is probably due to the larger size of the landscapes,
which makes the search convergence slower. To achieve better solutions, on
average, with 100 million evaluations, IDany requires a sample size greater or
equal to that used when the budget equals to 1 million evaluations. As with
the other two PNLSs, the sample size is stable when j = 30, and also when
j = 50.

The results of this section show that among the PNLSs, SW and IDbest
often require similar settings to maximize their effectiveness. The ideal size
of the neighborhood sample seems to be partly correlated with ruggedness.
IDany requires a larger sample size than the other two PNLSs, which is related
to the higher diversification induced by the random selection of deteriorating
neighbors. In general, there are slight variations in the ideal settings for the
two budgets studied. The convergence levels at which the results are examined
mostly vary according to the landscape properties and especially its size and
ruggedness.

6 Empirical comparison of PNLSs

This section is dedicated to compare PNLS algorithms with ILSF and TS. Each
method is executed using the parameter value found in the experiments re-
ported in the previous section. We also use the experimental protocol decribed
in the previous section.

******AJOUTER LEGENDE DOM STAT**** (cf these)
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N K SW IDB IDA TS ILS SW IDB IDA TS ILS
128 1
128 2
128 4
128 6
128 8
128 10
128 12
256 1
256 2
256 4
256 6
256 8
256 10
256 12
512 1
512 2
512 4
512 6
512 8
512 10
512 12
1024 1
1024 2
1024 4
1024 6
1024 8
1024 10
1024 12

moymax SW IDB IDA TS ILS
0.7245 0.04 0.06 0.01 1.35 0.00
0.7415 0.00 0.05 0.38 1.20 0.33
0.7922 0.03 0.10 0.00 4.94 0.13
0.7915 0.00 0.12 0.36 4.97 0.62
0.7883 0.00 0.08 0.58 4.05 1.19
0.7796 0.00 0.16 0.56 2.75 1.36
0.7689 0.00 0.27 1.03 2.13 1.63
0.7210 0.00 0.04 0.55 1.28 0.49
0.7430 0.00 0.08 0.68 3.00 0.68
0.7877 0.00 0.14 0.40 4.91 0.49
0.7921 0.05 0.00 0.68 2.33 0.58
0.7819 0.00 0.23 0.47 1.22 0.75
0.7741 0.00 0.33 0.63 0.65 1.07
0.7633 0.00 0.10 0.56 0.57 1.11
0.7044 0.00 0.08 0.59 0.52 0.51
0.7448 0.00 0.05 0.71 1.92 0.64
0.7751 0.00 0.12 0.84 1.31 0.72
0.7825 0.00 0.22 0.75 1.37 0.80
0.7781 0.00 0.36 0.76 1.18 0.86
0.7684 0.00 0.24 0.55 0.82 0.62
0.7581 0.00 0.05 2.89 0.59 0.38
0.7127 0.00 0.12 1.10 1.07 1.09
0.7474 0.00 0.13 1.29 2.70 1.19
0.7749 0.00 0.24 1.28 3.22 1.33
0.7762 0.00 0.23 0.90 2.57 0.04
0.7711 0.00 0.22 0.75 2.15 1.39
0.7625 0.00 0.26 0.55 1.73 0.67
0.7535 0.00 0.15 0.64 1.41 0.93

Table 12 Comparison of three PNLS variants, TS and ILS with a budget of 1 million
evaluations on NK landscapes. Left: statistical dominances between methods; right: best
average fitness achieved and deviations to this fitness for each method (in %).

6.0.1 Binary landscapes

We present the statistical dominance relations between the local search vari-
ants and their average fitness for 1 million evaluations on NK landscapes in
the table 12. SW almost systematically obtains the best average fitness on these
landscapes and dominates other local searches in most cases. Although IDbest
is to SW in its behavior and ability to find good solutions, it is regularly dom-
inated by the latter. IDany is particularly efficient on two landscapes of small
size (N = 128). On other landscapes, it is systematically dominated by the
other PNLSs. Nevertheless, IDany regularly dominates at least TS or ILSF . TS
is the least effective local search most of the time, even if it dominates ILS on
a few landscapes. ILS often statistically dominates TS but rarely the PNLS
variants. For instance, ILSF is the most efficient local search on the easiest NK
landscape in our sample (N = 128, K = 1), where it systematically achieves
the best local optimum encountered, which is not the case for PNLS variants.

The results for a budget of 100 million evaluations are presented in table
13. The ability of SW and IDbest to achieve good solutions on average is more
similar than after 1 million evaluations. In some cases, SW is dominated by
IDbest or at least IDbest leads to better solutions on average, especially on the
smallest landscapes. As landscape size increases, SW is less often dominated by
IDbest. Interestingly, on the largest landscapes, IDbest is systematically domi-
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nated by SW. This result is probably due to the fixed budget for each method.
Indeed, considering the results for a lower budget (where SW dominates IDbest)
in most cases, it seems that despite a similar behavior of the two PNLSs, SW
reaches good solutions more quickly (on average). This method converges to-
wards good solutions more quickly on NK landscapes. With a large number of
evaluations with respect to the size of the treated landscape, SW and IDbest seem
to converge towards solutions of close quality. Remember that these two meth-
ods mostly vary in their move policy, only when selecting improving moves:
SW select the best-improving neighbor from the sample, while IDbest select the
first encountered improving neighbor of the sample. Although the effectiveness
of these rules is correlated with the roughness on NK landscapes for descents,
there does not seem to be a correlation between the comparative efficiency
of these two partial neighborhood-based methods and the roughness levels of
landscapes. It is possible that the often slightly larger most appropriate sample
size of the neighborhood for IDbest counterbalance the differences induced by
its selection strategy, which is naturally less intensifying than SW. For SW and
IDbest, the strategy for selecting deteriorating neighbors is to choose the best
from the sample, which results in a reduced rate of diversification compared
to other methods. The possibility of selecting deteriorating neighbours at each
step of the search could partially explain the change in the relative effective-
ness of these strategies for PNLSs compared to other local search based on
descents, such as TS and ILS. For SW and IDbest, the diversification rate de-
pends mainly on the sample size, which tends to increase with K.We present
the statistical dominance relations between the local search variants and their
average fitness for 1 million evaluations on NK landscapes in the table 12.
SW almost systematically obtains the best average fitness on these landscapes
and dominates other local searches in most cases. Although IDbest is to SW

in its behavior and ability to find good solutions, it is regularly dominated
by the latter. IDany is particularly efficient on two landscapes of small size
(N = 128). On other landscapes, it is systematically dominated by the other
PNLSs. Nevertheless, IDany regularly dominates at least TS or ILS. TS is the
least effective local search most of the time, even if it dominates ILS on a few
landscapes. ILS often statistically dominates TS but rarely the PNLS variants.
For instance, ILS is the most efficient local search on the easiest NK landscape
in our sample (N = 128, K = 1), where it systematically achieves the best
local optimum encountered, which is not the case for PNLS variants.

A higher budget does not significantly increase the effectiveness of IDany
compared to other local searches. It is the least efficient variant among the
PNLSs, which must be due to the excessive diversification induced by the
strategy while selecting deteriorating neighbors (i.e., randomly). On NK land-
scapes, convergence seem particularly slow and could be a consequence of a
too low intensification around areas of interest of the landscapes. Indeed, in
such areas, only a few improving movements are generally possible, and IDany
would tend to make too many random movements, moving away from these
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N K SW IDB IDA TS ILS SW IDB IDA TS ILS
128 1
128 2
128 4
128 6
128 8
128 10
128 12
256 1
256 2
256 4
256 6
256 8
256 10
256 12
512 1
512 2
512 4
512 6
512 8
512 10
512 12
1024 1
1024 2
1024 4
1024 6
1024 8
1024 10
1024 12

moymax SW IDB IDA TS ILS
0.7245 0.00 0.00 0.00 1.10 0.00
0.7424 0.00 0.00 0.04 0.74 0.02
0.7959 0.00 0.00 0.00 0.08 0.00
0.8004 0.00 0.01 0.11 0.67 0.12
0.8021 0.00 0.06 0.45 1.22 0.89
0.7936 0.00 0.16 0.49 1.36 1.11
0.7819 0.00 0.03 0.44 1.15 1.22
0.7220 0.01 0.00 0.29 1.41 0.27
0.7444 0.04 0.00 0.24 2.61 0.25
0.7933 0.00 0.00 0.92 1.39 0.20
0.8045 0.14 0.00 1.52 0.31 0.47
0.7961 0.12 0.00 0.57 0.83 0.86
0.7862 0.00 0.02 2.49 1.05 1.01
0.7754 0.02 0.00 2.56 1.25 1.17
0.7078 0.00 0.03 0.57 1.00 0.54
0.7509 0.00 0.00 0.77 2.57 0.74
0.7860 0.00 0.04 0.75 0.19 0.69
0.7989 0.00 0.06 0.57 0.30 0.61
0.7939 0.00 0.05 0.56 1.13 0.67
0.7829 0.00 0.05 0.49 0.86 0.62
0.7720 0.00 0.01 0.49 0.80 0.64
0.7163 0.00 0.03 1.11 1.56 1.05
0.7522 0.00 0.01 1.26 3.30 1.26
0.7878 0.00 0.07 0.99 2.84 1.03
0.7949 0.00 0.07 0.70 0.63 0.74
0.7901 0.00 0.17 0.54 0.65 0.65
0.7793 0.00 0.09 0.46 0.68 0.52
0.7694 0.00 0.06 0.39 0.53 0.49

Table 13 Comparison of three PNLS variants, TS and ILSF with a budget of 100 million
evaluations on NK landscapes.

promising areas. Despite this, this characteristic allows IDany to be effective
in so-called easier instances.

TS is often statistically dominated, and leads to the lowest average fitness
values. It is also the only local search tested that does not systematically lead to
the best local optimum encountered for the easiest landscape. This local search
is the least stochastic, which naturally leads to less diversification, even with a
longer tabu list. It may become trapped more often in areas of the landscape
of low interest. ILSF tends to be more efficient on smooth landscapes than on
rough landscapes where it is dominated many times. This result could be due
partially to its parameter configuration: on rougher NK landscapes, the value
chosen corresponds to the lowest tested. Since the parameter directly controls
the number of random moves to be applied to escape a local optimum, this
value could be too high for rough landscapes. It would drive too far away from
previously discovered promising areas.

We provide the statistical dominances between the methods as well as the
averages fitness obtained on UBQP landscapes in the table 14. For a budget of
1 million evaluations, ILSF leads globally to the best solutions on landscapes
of size N = 2048. On larger landscapes (n = 4096), the most effective method
is IDbest. At least one of these two aforementioned local searches systematically
dominates SW. On these landscapes, when the density parameter is minimal
or maximal, the ability to achieve good solutions of SW is equivalent to that



30 Sara Tari et al.

UBQP SW IDB IDA TS ILS SW IDB IDA TS ILS

1
m
.

2048 10
2048 25
2048 50
2048 100
4096 10
4096 25
4096 50
4096 100

1
0
0
m
.

2048 10
2048 25
2048 50
2048 100
4096 10
4096 25
4096 50
4096 100

moymax SW IDB IDA TS ILS
1002458.6 0.06 0.03 0.21 24.30 0.00
1638960.1 0.05 0.00 0.14 24.59 0.00
2394696.1 0.05 0.03 0.18 24.37 0.00
3090605.8 0.07 0.00 0.21 24.11 0.02
2799531.5 0.05 0.00 0.15 72.81 0.07
4580315.7 0.24 0.00 0.12 71.54 0.03
6510686.5 0.21 0.00 0.11 71.39 0.08
9064548.5 0.05 0.00 0.13 71.76 0.06

1004293.5 0.03 0.02 0.05 0.00 0.00
1641192.6 0.02 0.02 0.05 0.00 0.00
2398443.3 0.03 0.03 0.05 0.00 0.01
3099318.7 0.04 0.03 0.07 0.00 0.02
2808263.7 0.07 0.03 0.05 0.00 0.02
4595741.7 0.06 0.06 0.05 0.00 0.05
6527995.0 0.06 0.05 0.06 0.00 0.04
9093039.3 0.07 0.07 0.07 0.00 0.06

Table 14 Comparison of three PNLS variants, TS and ILSF with a budget of 1 and 100
million evaluations on UBQP landscapes.

of ILS. On the other two landscapes of this size, SW is less effective and is
statistically dominated by IDany.

Considering a budget of 1 million evaluations, TS is particularly ineffective
in achieving good solutions for UBQP. Let us notice that in our study, UBQP
landscapes instances are significantly larger than NK landscapes instances.
The low quality of the solutions returned by TS is probably due to the budget
limited to 1 million evaluations, certainly too small compared to the size of
the landscapes. TS is the local search that evaluates the largest number of
neighbors at each step, as it never randomly determines the sample of the
neighborhood to be evaluated. As a result, TS perform fewer steps than other
local searches for the same budget and converges more slowly towards good
solutions. Indeed, when the budget is set at 100 million evaluations, TS is the
search that achieves the best solutions on the largest landscapes.

Considering PNLS variants, IDbest tends to outperforms SW which tends to
outperforms IDany, for 1 million evaluations as well as for 100 million evalua-
tions.

******* Parler rugosite locale/globale UBQP ****** ******* ajouter para-
graphe + tableaux/figures ******

6.1 Permutation landscapes

We present the statistical dominances between the proposed local searches
and their average fitness on FSP landscapes in the table 15. For a budget
of 1 million evaluations, SW and IDbest lead to solutions of equivalent quality,
with a slight advantage for IDbest. IDany is generally the least effective PNLS
variant, except on the largest landscape with the highest rate of neutrality
(j = 50, m = 10). Also, when j = 50, IDany leads to statistically better
solutions than ILS and TS. TS regularly dominates ILS, which corresponds to
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FSP SW IDB IDA TS ILS SW IDB IDA TS ILS

1
m
.

30 10
30 15
30 20
50 10
50 15
50 20

1
0
0
m
.

30 10
30 15
30 20
50 10
50 15
50 20

moymin SW IDB IDA TS ILS
1994.6 0.00 0.01 0.14 0.28 0.64
2419.6 0.04 0.00 0.34 0.43 0.50
2750.3 0.05 0.00 0.35 0.50 0.79
3033.7 0.29 0.24 0.00 0.96 0.68
3400.1 0.02 0.00 0.16 0.84 1.03
3903.9 0.01 0.00 0.26 0.68 1.00

1985.4 0.00 0.01 0.05 0.28 0.34
2400.1 0.00 0.00 0.21 0.67 0.47
2742.9 0.00 0.00 0.15 0.39 0.34
3025.0 0.19 0.18 0.00 0.19 0.34
3357.2 0.00 0.03 0.57 0.53 1.52
3879.5 0.11 0.00 0.20 0.30 0.95

Table 15 Comparison of three PNLS variants, TS and ILS with a budget of 1 and 100
million evaluations on FSP landscapes.

local research leading to the worst solutions on these landscapes. Anyway, the
main information is the global superiority of SW and IDbest variants over the
other competing local searches.

The relative effectiveness of methods does not change significantly after
100 million evaluations. SW and IDbest are never dominated and are therefore
not statistically comparable with each other. IDany is the worst PNLS variant,
but it regularly dominates SW and ILS, especially over the smallest landscapes
considered. When j = 50, the ability of TS to achieve good solutions is close
to that of IDany. The three PNLS variants systematically dominate ILS. This
result could be resulting from the significant rate of neutrality that prevents
strict descents of ILS from reaching good solutions. On these landscapes con-
taining plateaus, PNLSs are probably less constrained by neutrality, which
would partially explain their greater effectiveness. Unlike ILS, if a non-strict
local optimum is met, a neutral neighbor can be selected with PNLS variants.
This case probably occurs more regularly for SW and IDbest than for IDany
due to their deteriorating neighbor selection strategy. This observation would
contribute in part to the improved capacity of SW and IDbest to achieve good
solutions.

The table 16 shows the statistical dominance between the local searches
proposed and their average fitness attained over QAP landscapes. Besides, we
give the global optima of the lipa instances, as well as the best known local
optima for sko the instances in the table 17. This table also indicates, for each
couple (landscape, method), the number of times the best fitness is met. On
lipa landscapes and 1 million evaluations, SW and IDbest statistically dominate
the other methods. TS dominates IDany, which sometimes dominates ILS. On
sko landscapes, IDany allows reaching better solutions than the other local
search variants. On the smallest landscapes, the efficiency of IDbest and IDany
is similar. On the largest landscapes, ILS is the second most effective local
search (outperformed by IDany. Finally, TS is the least effective on landscapes
sko.
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QAP SW IDB IDA TS ILS SW IDB IDA TS ILS

1
m
.

lipa70a
lipa80a
lipa90a
sko42
sko49
sko56
sko64
sko72

1
0
0
m
.

lipa70a
lipa80a
lipa90a
sko42
sko49
sko56
sko64
sko72

moymin SW IDB IDA TS ILS
170906.5 0.00 0.00 0.08 0.04 0.09
254767.7 0.00 0.02 0.05 0.03 0.07
362688.1 0.02 0.00 0.06 0.05 0.07
15856.6 0.08 0.00 0.00 0.33 0.18
23459.5 0.07 0.00 0.05 0.36 0.16
34616.6 0.17 0.13 0.00 0.51 0.07
48730.8 0.15 0.08 0.00 0.61 0.01
66614.0 0.14 0.10 0.00 0.77 0.02

169755.0 0.00 0.00 0.12 0.15 0.73
253429.6 0.02 0.00 0.50 0.33 0.57
361253.4 0.06 0.00 0.38 0.28 0.43
15812.1 0.06 0.02 0.00 0.04 0.45
23391.5 0.01 0.00 0.07 0.03 0.42
34474.2 0.09 0.08 0.00 0.13 0.36
48516.9 0.05 0.05 0.00 0.08 0.28
66337.5 0.06 0.04 0.00 0.10 0.24

Table 16 Comparison of three PNLS variants, TS and ILS with a budget of 1 and 100
million evaluations on QAP landscapes.

The relative effectiveness of local search on the instances lipa slightly
changes for a budget of 100 million evaluations in comparison to the results
observed for 1 million evaluations. In general, IDbest is the local search which
reaches a global optimum in most cases, closely followed by SW. IDany and
IDbest are generally the most effective local searches on landscapes sko, fol-
lowed respectively by SW, TS, ILS.

lipa landscapes are known to be easier to solve than sko landscapes. In-
deed, the global optimum is known for lipa instances but not for sko instances.
Also, the number of times the methods reach the best known optimum is much
lower on landscapes sko. However, it should be noted that the methods exam-
ined correspond to the variant (in terms of parameter setting) that leads to
the best average fitness. Thus, for other parameter values that lead to lower
average fitness, it remains possible that the best solutions are reached more
often.

PNLSs are consistently more effective than ILS and TS on NK, QAP, and
FSP landscapes for the two budgets tested (1 million and 100 million evalu-
ations). On UBQP landscapes, PNLSs are effective for a low budget because
the partial neighborhood allows them to reach good solutions quickly. With
a larger budget, TS performs better, partially because of its higher level of
intensification. Among the proposed PNLSs, SW and IDbest often have equiv-
alent effectiveness. The strategy of selecting deteriorating neighbors of IDany
induces a strong diversification that regularly prevents it from converging suffi-
ciently towards good solutions. Nevertheless, this strategy is suitable for some
landscapes.

7 Discussion

A DEVELOPPER
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lipa Optimum SW IDB IDA ILS TS sko Optimum SW IDB IDA ILS TS

70a 169755 100 100 81 2 12 42 15812 60 53 99 2 51
80a 253195 80 84 1 0 4 49 23386 22 42 1 0 12
90a 360630 54 65 1 0 0 56 34458 3 0 4 0 1

64 48498 0 32 10 0 2
72 66256 0 0 0 0 1

Table 17 Fitness of the global optima on lipa instances, Fitness of the best known on
sko instances, and number of executions for which these fitness are obtained with each local
search variant.

SW paysages Param (facile?) rug/taille/(eval)
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