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Abstract

Discrete supervised learning problems such as classification are often tackled by introducing a
continuous surrogate problem akin to regression. Bounding the original error, between estimate
and solution, by the surrogate error endows discrete problems with convergence rates already shown
for continuous instances. Yet, current approaches do not leverage the fact that discrete problems are
essentially predicting a discrete output when continuous problems are predicting a continuous value.
In this paper, we tackle this issue for general structured prediction problems, opening the way to
“super fast” rates, that is, convergence rates for the excess risk faster thann−1, where n is the number
of observations, with even exponential rates with the strongest assumptions. We first illustrate it
for predictors based on nearest neighbors, generalizing rates known for binary classification to
any discrete problem within the framework of structured prediction. We then consider kernel ridge
regression where we improve known rates inn−1/4 to arbitrarily fast rates, dependingon a parameter
characterizing the hardness of the problem, thus allowing, under smoothness assumptions, to bypass
the curse of dimensionality.
Keywords: Structured prediction, fast convergence rates, generalization bounds, low-density sepa-
ration, margin condition, local averaging method, nearest neighbors, kernel methods, kernel ridge
regression.

1. Introduction

Machine learning is raising high hopes to tackle a wide variety of prediction problems, such as
language translation, fraud detection, traffic routing, speech recognition, self-driving cars, DNA-
binding proteins, etc.. Its framework is appreciated as it removes humans from the burden to come
up with a set of precise rules to accomplish a complex task, such as recognizing a cat on an array
of pixels. Yet, it comes at a price, which is of forgetting about algorithm correctness, meaning that
machine learning algorithms can make mistakes, i.e., wrong predictions, which can have dramatic
implications, e.g., in medical applications. This motivates work on generalization error bounds,
quantifying how often one should expect errors.

Many of the problems discussed above are of discrete nature, in the sense that the number of
potential outputs is finite, or infinite countable. To learn such problems, a classical technique consists
in defining a continuous surrogate problem, which is easier to solve, and such that:

(1) an algorithm on the surrogate problem translates into an algorithm on the original problem;
(2) errors on the original problem are bounded by errors on the surrogate problem.

The first point refers to the concept of plug-in algorithms, while the second point to the notion of
calibration inequalities. For example, binary classification can be approached through regression by
estimating the conditional expectation of the output Y given an input X (Bartlett et al., 2006).

On the one hand, continuous surrogates for discrete problems are interesting, as they benefit from
functional analysis knowledge, when discrete problems are more combinatorial in nature. On the
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other hand, continuous surrogate can be deceptive, as they are asking to solve for more than needed.
Considering the example of binary classification, where Y ∈ {−1, 1}, one only has to predict the
sign of the conditional expectation, rather than its precise value. Interestingly, without modifying the
continuous surrogate approach, this last remark can be leveraged in order to tighten generalization
bounds derived through calibration inequalities (Audibert and Tsybakov, 2007). In this work, we
extend those considerations, known in binary classification (e.g., Koltchinskii and Beznosova, 2005;
Chaudhuri and Dasgupta, 2014), to generic discrete supervised learning problems, and show how it
can be applied to the kernel ridge regression algorithm introduced by Ciliberto et al. (2016).

1.1. Contributions

Our contributions are organized in the following order.
• In Section 2, we consider the general structured prediction from Ciliberto et al. (2020) and

derive refined calibration inequalities to leverage the fact that learning a mapping into a discrete
output space is easier than learning a mapping into a continuous space.

• In Section 3, we show how to exploit exponential concentration inequalities to turn them into
fast rates under a condition generalizing the Tsybakov margin condition.

• In Section 4, we apply Section 3 to local averaging methods with the particular example of
nearest neighbors. This leads to extending the rates known for regression and classification to
a wide variety of structured prediction problems, with rates that match minimax rates known
in binary classification.

• In Section 5, we show how Section 3 can be applied to kernel ridge regression. This allows
us to improve rates known in n−1/4 to arbitrarily fast rates depending on the hardness of the
associated discrete problem.

1.2. Related work

Surrogate framework. The surrogate problem we will consider to tackle structured prediction
finds its roots in the approximate Bayes rule proposed by Stone (1977), analyzed through the prism
of mean estimation as suggested by Friedman (1994) for classification, and analyzed by Ciliberto et al.
(2020) in the wide context of structured prediction. In particular, we will specify results on two
classes of surrogate estimators: local averaging methods, or kernel ridge regression.

Local averaging methods. Neighborhood methods were first studied by Fix and Hodges (1951) for
statistical testing through density estimation. Similarly Parzen–Rosenblatt window methods (Parzen,
1962; Rosenblatt, 1956) were developed. Those methods were cast in the context of regression as
nearest neighbors (Cover and Hart, 1967) and Nadayara-Watson estimators (Watson, 1962; Nadaraya,
1964). Stone (1977) was the first to derive consistency results for a large class of localized methods,
among which are nearest neighbors and some window estimators (Spiegelman and Sacks, 1980;
Devroye and Wagner, 1980). Rates were then derived, with minimax optimality (Stone, 1980; Yang,
1999). Several reviews can be found in the literature, such as Györfi et al. (2002); Tsybakov (2009);
Biau and Devroye (2015); Chen and Shah (2018).

Reproducing kernel ridge regression. The theory of real-valued reproducing kernel Hilbert
spaces was formalized by Aronszajn (1950), before finding applications in machine learning (e.g.,
Scholkopf and Smola, 2001). Minimax rates for kernel ridge regression were achieved by casting the
empirical solution estimate as a result of integral operator approximation (Smale and Zhou, 2007;
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Caponnetto and De Vito, 2006), allowing to control convergence through concentration inequalities
in Hilbert spaces (Yurinskii, 1970; Pinelis and Sakhanenko, 1986) and on self-adjoint operating on
Hilbert spaces (Minsker, 2017). First derived in L2-norm, rates were cast in L∞-norm through
interpolation inequalities (e.g., Fischer and Steinwart, 2020; Lin et al., 2020).

Tsybakov margin condition. Learning a mapping into a discrete output space is indeed easier
than learning a continuous mapping, as, for binary classification for example, one typically only
has to predict the sign of E[Y |X] rather than its precise value. As such, calibration inequalities
that relate the error on a discrete structured prediction problem to an error on a smooth surrogate
problem are often suboptimal. This phenomenon was exploited for density discrimination, a problem
consisting of testing if samples were drawn from one or the other of two potential distributions,
by Mammen and Tsybakov (1999), and for binary classification by Audibert and Tsybakov (2007).
Those works introduce a parameter α ∈ [0,∞) characterizing the hardness of the discrete problem,
and leverage concentration inequalities to accelerate rates known for regression by a power α + 1
(Audibert and Tsybakov, 2007), while rates plugged-in directly through calibration inequalities only
present an acceleration by a power 2(α + 1)/(α + 2) (see, e.g., Boucheron et al., 2005; Bartlett et al.,
2006; Bartlett and Mendelson, 2006; van Erven et al., 2015; Nowak-Vila et al., 2019).

2. Structured Prediction with Surrogate Control

In this section, we introduce the classical supervised learning problem, and a surrogate problem
that consists of conditional mean estimation. We recall a calibration inequality relating the original
problem to the surrogate one. We mention how empirical estimations of the conditional means
usually deviate from the real means following a sub-exponential tail bound, similarly to bounds
obtained through Bernstein inequality. We end this section by providing refined surrogate control,
that is the key towards “super fast” rates, that is, rates faster than 1/n.

2.1. Surrogate mean estimation

Consider a classic supervised learning problem, where given an input space X , an observation
space Y , a prediction space Z , a joint distribution ρ ∈ ∆X×Y and a loss function ℓ : Z ×Y → R+,
one would like to retrieve f∗ : X → Z minimizing the risk R.

f∗ ∈ argmin
f :X→Z

R(f) with R(f) = E(X,Y )∼ρ [ℓ(f(X), Y )] .

In practice, X , Y , Z and ℓ are givens of the problem, while ρ is unknown, yet partially observed
thanks to a datasetDn = (Xi, Yi)i≤n ∼ ρ⊗n, with data (Xi, Yi) sampled independently from ρ. Note
that in fully supervised learning, the observation space is the same as the prediction space Y = Z ,
yet we distinguish the two for our results to stand in more generic settings, such as instances of weak
supervision (Cabannes et al., 2020). In the following, we consider Z finite. In several cases, solving
the supervised learning problem can be done through solving a surrogate problem that is easier to
handle. Ciliberto et al. (2016) provide a setup that reduces a wide variety of structured prediction
problems (ℓ, ρ) to a problem of mean estimation. It works under the following assumption.

Assumption 1 (Bilinear loss decomposition) There exists an Hilbert space H and two mappings
ψ : Z → H, ϕ : Y → H such that

ℓ(z, y) = 〈ψ(z), ϕ(y)〉 .

3
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We will also assume that ψ is bounded (in norm) by a constant cψ .

This assumption is not really restrictive (Ciliberto et al., 2020). Among others, it works for any losses
on finite spaces, usually with spaces H whose dimensionality is only polylogarithmic with respect to
the cardinality of Z (Nowak-Vila et al., 2019). Under Assumption 1, solving the supervised learning
problem can be done through estimating the surrogate conditional mean g∗ : supp ρX → H, defined
as

g∗(x) = EY∼ρ|x [ϕ(Y )] , (1)

where we denote ρ|x the conditional law of (Y |X) under (X,Y ) ∼ ρ.

Lemma 1 (Ciliberto et al. (2016)) Given an estimate gn of g∗ in Eq. (1), consider the estimate
fn : X → Z of f∗, which is obtained from “decoding” gn as

fn(x) = argmin
z∈Z

〈ψ(z), gn(x)〉 . (2)

Then the excess risk is controlled through the surrogate error as

R(fn)−R(f∗) ≤ 2cψ ‖gn − g∗‖L1(X ,H,ρ) . (3)

Inequalities relating the original excess risk R(fn) − R(f∗) with a measure of error on a
surrogate problem are called calibration inequalities. They are useful when the measure of error
between gn and g∗ is easier to control than the one between fn and f∗.

Example 1 (Binary classification) Binary classification corresponds to Y = Z = {−1, 1} and
ℓ(z, y) = 1z 6=y (or equivalently ℓ(z, y) = 21z 6=y − 1). The classical surrogate consists of tak-
ing H = R, with ϕ = id and ψ = −id. In this setting, we have g∗(x) = Eρ[Y |X = x],
and the decoding fn(x) := sign gn(x), for any gn(x) ∈ H. In this case R(fn) − R(f∗) =
EX
[

1fn(X)6=f∗(X) |g∗(X)|
]

≤ 2 ‖gn − g∗‖L1 ≤ 2 ‖gn − g∗‖L2 . Note that in regression the excess
risk reads as the square of the L2 norm, explaining a loss of a power one half in convergence rates,
when going from regression to classification (e.g. Chen and Shah, 2018).

Differences between an empirical estimate and its population version are generally handled
through concentration inequalities. In this work, we will leverage concentration on ‖gn(x)− g(x)‖
that is uniform for x ∈ supp ρX , motivating the introduction of Assumption 2.

Assumption 2 (Exponential concentration inequality) Suppose that for n ∈ N, there exists two
reals Ln and Mn, such that the tails of ‖gn(x)− g(x)‖ can be controlled for any t > 0 as

sup
x∈supp ρX

PDn (‖gn(x)− g(x)‖ > t) ≤ exp

(

− Lnt
2

1 +Mnt

)

. (4)

Note that to satisfy Assumption 2, it is sufficient, yet not necessary, to have a uniform control on
gn − g∗, i.e., a control on the tail of ‖gn − g∗‖L∞ , since supx P (Ax > t) ≤ P (∪x {Ax > t}) =
P (supxAx > t) , with (Ax) a family of random variables indexed by x ∈ X .

Usually, in bounds like Eq. (4), Mn is a constant of the problem, while Ln depends on
the number of samples, therefore, we would like to give rates depending on Ln. Typically in
Bernstein inequalities (see Theorem 32 in Appendix), Ln = nσ−2 with σ2 a variance parameter and
Mn = cσ−2 with c a constant of the problem that does not depend on n.
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2.2. Refined Calibration

While it is sufficient to control the excess risk through a L1-norm control on g from Eq. (3), it is not
always necessary. In other words, the calibration bound in Lemma 1 is not always tight. Indeed, we
do not predict optimally, that is, {fn(x) 6= f∗(x)} only if gn(x) and g∗(x) do not lead to the same
decoding fn(x) and f∗(x). When Z is finite, this is characterized by gn(x) and g∗(x) not falling in
the same region Rz of H, where

Rz =
{

ξ ∈ H
∣

∣z ∈ argmin
z′∈Z

〈

ψ(z′), ξ
〉 }

.

To ensure that gn(x) and g∗(x) fall in the same region, one can ensure that gn(x) is closer to g∗(x)
than g∗(x) is of the frontier of those regions. Those frontiers are defined by points leading to at least
two minimizers in Eq. (2):

F =

{

ξ ∈ H
∣

∣

∣

∣

∣

∣ argmin
z∈Z

〈ψ(z), ξ〉
∣

∣ > 1

}

.

The introduction of F is motivated by the following geometric results.

Lemma 2 (Refined surrogate control) When Z is finite, for any x ∈ supp ρX ,

‖gn(x)− g∗(x)‖ < d(g∗(x), F ) ⇒ fn(x) = f∗(x),

with d the extension of the norm distance to sets as d(g∗(x), F ) = infξ∈F ‖g∗(x)− ξ‖. This result
allows to refine the calibration control from Lemma 1 as

R(fn)−R(f∗) ≤ 2cψ EX
[

1‖gn(X)−g∗(X)‖≥d(g∗(X),F ) ‖gn(X) − g∗(X)‖
]

. (5)

Example 2 (Binary classification) In binary classification (cf. Example 1), F = {0}, and, for any
x ∈ supp ρX , d(g∗(x), F ) = |g∗(x)|. Lemma 2 is based on the fact that f∗(x) 6= fn(x) implies that
sign g∗(x) 6= sign gn(x) which itself implies that |g∗(x)− gn(x)| = |g∗(x)|+ |gn(x)| ≥ |g∗(x)|.

To leverage Eq. (5), we need to control d(g∗(x), F ) below and ‖gn(x)− g∗(x)‖ above. While
upper bounds on ‖gn(x)− g∗(x)‖ are assumed to have been derived through concentration in-
equalities, lower bounds on d(g∗(x), F ) will be assumed as a given parameter of the problem, see
Eqs. (6) and (7).

Remark 3 (Scope of our work) While we derived the refined calibration inequality Eq. (5) for the
surrogate conditional mean g∗ and the associated pointwise metric ‖·‖H, similar inequality could be
obtained for other type of surrogate methods. This suggests that our work could be extended to any
smooth surrogate such as the ones considered by Nowak-Vila et al. (2020), as well as Fenchel-Young
losses (Blondel et al., 2020).

2.3. Geometric understanding

In this subsection, we detail how to understand geometrically Lemma 2. While the introduction
of ϕ and ψ could seem arbitrary, it can be thought in a more intrinsic manner by considering the
embedding ϕ(y) = δy belonging to the Banach space H of signed measured, g∗(x) = ρ|x, with the
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bracket operator, for µ ∈ H and z ∈ Z , 〈z, µ〉 =
∫

Y ℓ(z, y)µ(dy), and the distance between signed
measures being d(µ1, µ2) = supz∈Z 〈z, µ1 − µ2〉. Note that Lemma 2 is a pointwise result, holding
for any x ∈ X , that is integrated over X afterwards. Therefore, it is enough to consider X = {x}
and remove the dependency in X to understand it. The simplex ∆Y naturally splits into decision
region Rz for z ∈ Z as illustrated on Figure 1. The main idea of Lemma 2 is that one does not have
to precisely estimate g∗(x) = ρ|x but only has to make sure that gn(x) falls in the same region on
Figure 1.

a

b

c

F

Ra

Rb

Rc

a

b

c

µ⋆ µn

Figure 1: Illustration of Lemma 2. Simplex ∆Y , for Y = Z = {a, b, c} and ℓ a symmetric loss defined
as ℓ(a, b) = ℓ(a, c) = 1 and ℓ(b, c) = 2, while ℓ(z, z) = 0. This leads to the decision regions Rz

represented in colors. Given x ∈ X , if g∗(x) corresponds to a distribution µ∗ := ρ|x falling in Ra, and
if gn(x) represented by µ̂ falls closer to µ∗ than the distance between µ∗ and the decision frontier F
(represented by a circle on the right figure), then µ̂ is also in Ra, and therefore f∗(x) = fn(x) = a.

3. Rate acceleration under margin condition

In this section, we introduce a condition that g∗ is not too often close to the decision frontier F .
It generalizes the so-called “Tsybakov margin condition” known for classification. Under this
condition, we proves rates that generalize the results of Audibert and Tsybakov (2007) from binary
classification to generic structured prediction problems, which opens the way to “super fast” rates in
structured prediction.

3.1. No density separation

To get fast convergence rates, one has to make assumptions on the problem. A classical assumption
is that g∗ is smooth enough in order to get concentration bounds similar to Assumption 2 when
considering a specific class of estimates gn. In our decoding setting (Lemma 1), learning is made
easy when it is easy to estimate in which region Rz the optimal g∗ will fall in. This is in particular
the case, when there is a margin t0 > 0, for which, for no point x ∈ supp ρX , g∗(x) falls at distance
t0 of the decision frontier F , motivating the following definition.

Assumption 3 (No-density separation) A surrogate solution g∗ will be said to satisfy the no-
density separation, if there exists a t0 > 0, such that

PX(d(g
∗(X), F ) < t0) = 0. (6)

This condition is alternatively called the hard margin condition, or sometimes “Massart’s noise
condition” for binary classification (Massart and Nédélec, 2006).
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x

E[Y |X = x]

−1

1
g∗(x)
f∗(x)

x

E[Y |X = x]

−1

1

f∗(x)
g∗(x)

t0

Figure 2: Illustration of Remark 4. We represent two instances of binary classification (see Examples 1
and 2). On the left example,when ρX is such that there is no mass where the sign of g∗ changes, classes are
separated in X , yet the no-density separation is not verified. On the right, classes are not separated in X ,
but the problem satisfies the no-density separation as there is no x such that d(g∗(x), F ) = |g∗(x)| < t0.
Note that when ρX is uniform, the left problem satisfies a milder separation condition, introduced
thereafter and called the 1-low-density separation.

Remark 4 (Separation in Y and separation in X ) It is important to realize that Eq. (6) is a
condition of separation in ∆Y that should hold for all x ∈ X , but it does not state any separation
between classes in X for f∗ : X → Z . To visualize it, consider the classification problem where
X = [−1, 1], Y = Z = {−1, 1} and ℓ(z, y) = 1z 6=y.

• A situation where ρX is uniform on X and E[Y |X = x] = 2 · 1x∈pN+{a | |a|<p/4} − 1, for
p = 1/50, satisfies separation in ∆Y (Eq. (6)), but classes are not separated in X .

• A situation where ρ is uniform on [−1,−.5] ∪ [.5, 1], with E[Y |X = x] = sign(x)(1 − |x|)p,
for p > 0, satisfies a separation of classes in X but does not satisfy Eq. (6).

Note that continuity of g∗ and the no-density separation in Eq. (6) imply separation of classes in X .
Note also that to get concentration inequality such as Eq. (4), one usually supposes that g∗ is smooth.
We refer the curious reader to Section 2.4 in Steinwart and Scovel (2007) for separation in X .

The introduction of Assumption 3 is motivated by the following result.

Theorem 5 (Rates under no-density separation) When ℓ is bounded by ℓ∞ (i.e., ℓ(z, y) ≤ ℓ∞
for any (z, y) ∈ Z ×Y) and satisfies Assumption 1, and Z is finite, under the no-density separation
Assumption 3, and the concentration Assumption 2, the excess risk is controlled

EDn R(fn)−R(f∗) ≤ ℓ∞ exp

(

− Lnt
2
0

1 +Mnt0

)

.

Proof Because we make a mistake only when d(g∗(x), F ) ≥ ‖gn(x)− g∗(x)‖, we make no mistake
when ‖gn(x)− g∗(x)‖ < t0; otherwise we can consider the worse error we are going to pay, that
is ℓ∞, leading to

R(fn)−R(f∗) ≤ ℓ∞ PX(‖gn(x)− g∗(x)‖ > t0).

Taking the expectation with respect to Dn and using the fact that EA PB(Z) = EA EB [1Z ] =
EB EA[1Z ] = EB PA(Z), and plug-in the concentration inequality Eq. (4), we get the result.

Example 3 (Image classification) In image classification, one can arguably assume that the class
of an image is a deterministic function of this image. With the 0-1 loss, it implies that the image
classification problem verifies the no-density separation. The same holds for any discrete problem
where the label is a deterministic function of the input. Based on Theorem 5 and Eq. (4) in which
M is generally a constant when L is proportional to the number of data, it is reasonable to ask for
exponential convergences rates on such problems.
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3.2. Low density separation

While we presented the no-density separation first for readability, it is a strong assumption. Recall
our example, Remark 4, with E[Y |X = x] = sign(x)(1 − |x|)p, only around x = 1 and x = −1 is
d(g∗(x), F ) not bounded away from zero. While the neighborhood of those points should be studied
carefully, the error on all other points x ∈ [−1 + t, 1 − t] can be controlled with exponential rates.
The low-density separation, also known as the Tsybakov margin condition in binary classification,
will allow a refined control to get fast rates in such a setting.

Assumption 4 (Low-density separation) A surrogate solution g∗ is said to satisfy the low-density
separation, if there exists cα > 0, and α > 0, such that for any t > 0

PX(d(g
∗(X), F ) < t) ≤ cαt

α. (7)

This condition is alternatively called the margin condition.

The low-density separation spans all situations from the hard margin condition, that can be seen as
α = +∞, to situations without any margin assumption corresponding to α = 0. The coefficient α
is an intrinsic measure of the easiness of finding f∗ in the problem (ℓ, ρ). For example, the setting
described in the last paragraph corresponds to the case α = 1/p. We discuss the equivalence of
Assumption 4 to definitions appearing in the literature in Remark 7.

Theorem 6 (Optimal rates under low density separation) Under refined calibration in Eq. (5),
concentration (Assumption 2), and low-density separation (Assumption 4), the risk is controlled as

EDn R(fn)−R(f∗) ≤ 2cψcαc

(

Mα+1
n L−(α+1)

n + L
−α+1

2
n

)

,

for c a constant that only depends on α, that can be expressed through the Gamma function evaluated
in quantity depending on α, meaning that when α is big, c behaves like αα. Note that it is not possible
to derive a better bound only given Eqs. (4), (5) and (7).

Proof [Sketch for Theorem 6, details in Appendix A.5] Based on the refined calibration inequality
in Eq. (5), and using that E[X] =

∫∞
0 P(X > t) dt, it is possible to show that the expectation of the

excess risk behave like
∫ ∞

0
PX(d(g

∗(x), F ) < t) sup
x

PDn(‖gn(x)− g∗(x)‖ > t) dt.

Based on Assumptions 2 and 4, the integrand behaves like tα exp(−Lnt2/(1 +Mnt)). A change
of variable and the study of the Gamma function leads to the result. We provide all the details in
Appendix A.5. Note that while we stated Theorem 6 under an exponential inequality of Bernstein
type (Assumption 2), similar theorems can be derived for any type of exponential concentration
inequality, as stated in Lemma 19 in Appendix A.6.

Theorem 6 is to put in perspective with the work of Nowak-Vila et al. (2019) which considers
the same setup as ours, yet only succeeds to derive acceleration by a power 2(α+1)/(α+2), while
we got an acceleration by a power (α+ 1)/2 as already mentioned in the related work section. This
gain will appear more clearly in Theorem 15.
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Remark 7 (Independence to the decomposition of ℓ) While we have stated results based on the
quantity d(g∗(x), F ), generalization of the Tsybakov margin condition has also been expressed
through the quantity inf z 6=z∗ EY∼ρ|x ℓ(z, Y )−EY∼ρ|x ℓ(z

∗, Y ) instead ofd(g∗(x), F ) (Nowak-Vila et al.,
2019). We show in Appendix A.3 that the two definitions of the margin condition are equivalent.

Remark 8 (Scope of our work) Our work relies on pointwise exponential concentration inequali-
ties (Assumption 2) which are specially designed to work well with the Tsybakov margin condition.
It is natural for localized averaging method such as nearest neighbors, or for surrogate methods
leading to L∞ concentration. For surrogate methods leading to concentration of other quantities,
it is possible to use similar tricks under different “margin” conditions (e.g. Steinwart and Scovel
(2007) for a margin condition designed for the Hinge loss). Note that L2 concentration on gn towards
g∗ (such as the one derived by Marteau-Ferey et al. (2019) for logistic regression) could also be
turned into fast convergence of fn towards f∗, since, in essence, for points x ∈ X where ρ(dx) is
high, the quantity g∗(x)− gn(x) will have a non-negligible contribution to ‖g∗ − gn‖L2 – allowing
to cast concentration in L2 to concentration pointwise in x – and for points x ∈ X where ρ(dx)
is negligible, it is acceptable to pay the worst error, since it will have a small contribution on the
excess of risk. Finally, note that it is also possible to let the right hand-side term in Eq. (4) depends
on x, and to modify Theorem 5 with L = E[L(X)].

3.3. The importance of constants

In this subsection, we discuss on the importance of constants when providing learning rates. As-
sumption 3 corresponds to asking for g∗(x) never to enter a neighborhood of F defined through t0.
Similarly, when X is parameterized such that ρX is uniform, the parameter α in Assumption 4
corresponds to the speed at which g∗(x) “get through” the decision frontier F . In order to have
a higher α and optimize the dependency in n in the bound of Theorem 6, it is natural to think
of infinitesimal perturbations of g∗ to make it cross the boundary orthogonally (or even jump
over it and satisfy the no-density seperation). To give a precise example, in binary classification,
let us artificially add smoothness to the function g∗(x) = xq when approaching zero. Consider
g∗ : [0, 1] → [−1, 1], x → cq−pxp1x<c + xq1x≥c, and x uniform, and p < q. In this setting, α can
be taken anywhere in [0, p−1). Naively, we could ask for the biggest possible α in order to have the
best dependency in n in the learning rates given by Theorem 6. While this approach will higher
α, it will also higher cα, compensating the gain one could expect from such a strategy. Indeed, for
α ∈ [0, p−1], at best, we can take cα = 1α<q−1 + c1−qα1α≥q−1 . This shows the importance to
optimize both α and cαc to minimize the lower bound appearing in Theorem 6 when given a fixed
number of sample n.

In a word, while we only give results that are optimized in n, when n is fixed, better bounds
could be given by optimizing parameters and constants simultaneously. For example, when X = Rd

and g∗ belongs to the Sobolev space Hm for all m ∈ [0,m∗], and satisfies Assumption 4 for all
α ∈ [0, α∗], we expect the best bound, that could be derived from our proof technique, to be of form

EDn R(fn)−R(f∗) ≤ min
m≤m∗,α<α∗

ααcαcψ ‖g∗‖Hm n−
m(α+1)

2d .

Yet, for simplicity, we will express those bounds as bn−
m∗(α∗+1)

2d , for b a big constant.

9
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4. Application to nearest neighbors

In this section, we consider the Bayes approximate risk estimator proposed by Stone (1977), with
weights given by nearest neighbors (Cover and Hart, 1967). We prove, under regularity assumptions,
concentration inequalities similar to Eq. (4), which allow us to derive exponential and polynomial
rates. Given samples (Xi, Yi) ∼ ρ⊗n, k ∈ N and a metric d on X , the estimator is

gn(x) =

n
∑

i=1

αi(x)ϕ(Yi), with αi(x) =







k−1 if
∑n

j=1 1d(x,Xj)≤d(x,Xi) < k

0 if
∑n

j=1 1d(x,Xj)<d(x,Xi) ≥ k

(pk)−1 else, with p =
∑n

j=1 1d(x,Xj)=d(x,Xi).

(8)

To study the convergence of gn, we introduce the noise free estimator g∗n =
∑n

i=1 αi(x)g
∗(Xi).

This will allow to separate the error due to the randomness of the labels Yi ∼ ρ|Xi
, and the error

due to the difference between g∗(x) and the averaging of g∗ on the neighbors of x defining gn. To
control the fist error, we need a bounded moment condition on ϕ(Y ). We reuse an assumption from
Bernstein (1924), that is classic in machine learning (e.g., Caponnetto and De Vito, 2006; Lin et al.,
2020).

Assumption 5 (Sub-exponential moment of ρ|x) Suppose that there exists σ2,M > 0 such that
for any x ∈ supp ρX , for any m ≥ 2, we have

EY∼ρ|x [‖ϕ(Y )− g∗(x)‖m] ≤ 1

2
m!σ2Mm−2.

Example 4 (Moment bound on ϕ(Y )) Assumption 5 is a classical assumption that is notably
satisfied when ϕ(Y ) is bounded by M , with σ2 its variance, or when (ϕ(Y ) |X) is Gaussian
with covariance bounded by a constant independent of X (see a proof of this standard result by
Fischer and Steinwart, 2020).

To control the second error, we notice, for x ∈ suppρX , that the quantity ‖g∗(x)− g∗n(x)‖
behaves like supx′∈B(x,r) ‖g∗(x)− g∗(x′)‖, with r such that ρX (B(x, r)) ≈ k/n, such a r modeling
the distance between x and its k-th neighbor. This motivates the following assumption.

Assumption 6 (Modified Lipschitz condition (Chaudhuri and Dasgupta, 2014)) g∗ is said to
verify the β-Modified Lispchitz condition if there exists cβ > 0 such that for any x, x′ ∈ supp ρX

∥

∥g∗(x)− g∗(x′)
∥

∥ ≤ cβρX (B(x, d(x, x′)))β ,

where d is the distance on X , and B(x, t) ⊂ X the ball of center x and radius t.

Typically the β that appears in Assumption 6 is linked with the dimension of a subset of X
containing most the mass of ρX (see below). This will slow the rates accordingly to this dimension
parameter, a property referred to as the curse of dimensionality.

Example 5 (Classical assumptions) When X = Rd, if g is β′-Hölder continuous, and ρX is
regular in the sense that, there exists a constant c and t∗ > 0 such that for x ∈ suppρX and any
t ∈ [0, t∗], ρX (B(x, t)) ≥ cλ(B(x, t)), with λ the Lebesgue measure on X , then g satisfies the
modified Lipschitz condition with β = β′/d. The condition on ρX is usually split in a condition of
minimal mass of ρX , and a condition of regular boundaries of supp ρX (e.g., Audibert and Tsybakov,
2007). We provide more details in Appendix B.1.
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We now state convergence results, respectively proven in Appendices B.2, B.3 and B.4, in which
the constant values b1 to b6 appear explicitly. Note that results provided by Lemma 9 are already
known in the literature (Györfi et al., 2002), while Theorems 10 and 11 were only known in binary
classification, but we generalize them to any discrete structured prediction problem. It should be
noted that rates in Theorem 11 match the minimax rates derived by Audibert and Tsybakov (2007)
in the case of binary classification.

Lemma 9 (Nearest neighbors concentration) Under Assumptions 5 and 6, there exist constants
b1, b2, b3 > 0, such that for any x ∈ supp ρX and any t > 0,

PDn (‖gn(x)− g∗n(x)‖ > t) ≤ 2 exp

(

− b1kt
2

1 + b2t

)

.

And for t > (k/2n)β , when ρX is continuous1

PDn (‖g∗n(x)− g∗(x)‖ > t) ≤ exp
(

−b3nt
1
β

)

.

Theorem 10 (Nearest neighbors fast rates under no-density assumption) When ℓ is bounded
by ℓ∞, satisfies Assumption 1, and Z is finite, under the no-density separation, Assumption 3, and
Assumptions 5 and 6, there exist two constants b4, b5 > 0 that do not depend on n or k such that for
any n ∈ N∗ and any k such that (k/2n)β < t0, we have

EDn R(fn)−R(f∗) ≤ 2ℓ∞ exp(−b4k) + ℓ∞ exp(−b5n). (9)

Theorem 11 (Nearest neighbors fast rates under low-density assumption) When ℓ satisfies As-
sumption 1, and Z is finite, under the low-density separation, Assumption 4, and Assumptions 5 and

6, considering the scheme kn =
⌊

k0n
2β

2β+1

⌋

, for any k0 > 0, there exists a constant b6 > 0 that does

not depend on n such that for any n ∈ N∗,

EDn R(fn)−R(f∗) ≤ b6n
−β(α+1)

2β+1 . (10)

Remark 12 (Scope of our work) The same type of argument works for other local averaging meth-
ods, such as Nadaraya-Watson (Nadaraya, 1964; Watson, 1962), local polynomials (Cleveland,
1979; Audibert and Tsybakov, 2007) or decision trees (Breiman et al., 1984).

5. Application to reproducing kernel ridge regression

In this section, we consider the kernel ridge regression estimate gn of g∗ first proposed by
Ciliberto et al. (2016), and we prove, under regularity assumptions, uniform concentration inequal-
ities similar to Eq. (4), which allow us to derive super fast rates at the end of the section. Given a
symmetric, positive semi-definite kernel k : X × X → R+, the kernel ridge regression estimation
gn of g∗ is defined similarly to Eq. (8) yet with weights α(x) ∈ Rn defined as

α(x) = (K̂ + λ)−1K̂x, K̂ =

(

1

n
k(Xi,Xj)

)

i,j≤n
∈ Rn×n, K̂x =

(

1

n
k(x,Xi)

)

i≤n
∈ Rn.

1. Note that this topological assumption ease derivations but is not fundamental for such non-asymptotic results.
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Figure 3: Empirical convergence rates. We consider binary classification, with X = [−1, 1], g∗(x) =

sign(x)∗|x| 1
α , forα ∈ {.1, 1} and ρX uniform. We plot in solid the logarithm of the excess risk averaged

over 100 trials against the logarithm of the number of samples for n ∈ [10, 106], and plot in dashed the
expected slope of those curves due to Theorem 11 (i.e., we fit the constant C in the rate Cn−γ with γ
obtained from the bound in Eq. (10)).

To state regularity assumptions, we introduce a minimal setup linked to the reproducing kernel k.
To keep the exposition clear, we relegate technicalities in Appendix C. We define the operator K
operating on functions f ∈ L2(X ,H, ρX ) and KX operating on f ∈ L2(X ,R, ρX ), both defined as

(Kf)(x′) =
∫

X
k(x′, x)f(x) dρX (x).

Inheriting from the symmetry and positive semi-definiteness of k, K is self-adjoint with spectrum
in R+. To study the convergence of gn to g∗, it is useful to introduce the approximate orthogonal

projection on imK
1
2 , defined for λ > 0 as

gλ = K(K + λ)−1g∗.

We introduce three assumptions linked with the regularity of the problem, referred to as the capacity
condition, interpolation inequality and source condition. Those are classical assumption to prove
uniform rates of the kernel ridge regression estimates. They could be found, in particular, by
Fischer and Steinwart (2020) under the respective names of (EVD), (EMB) and (SRC), but also by
Pillaud-Vivien et al. (2018); Lin et al. (2020). Our assumptions differ in that they are expressed
for vector-valued functions, which usually generate compactness issues (Caponnetto and De Vito,
2006). However, when Z is finite, H is finite dimensional, and K can be shown to be a compact
operator, thus allowing to consider fractional power without definition issues.

Assumption 7 (Capacity condition) Suppose Tr (Kσ
X ) < +∞ for σ ∈ [0, 1].

Assumption 8 (Interpolation inequality) Assume the existence of p ∈ [0, 12 ], cp > 0 such that

∀ g ∈ (kerK)⊥ , ‖Kpg‖L∞ ≤ cp ‖g‖L2 .

Assumption 9 (Source condition) Suppose g∗ ∈ imKq for q ∈ (p, 1].

12
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When q = 1/2, the source condition is often expressed as g∗ belonging to the reproducing kernel
Hilbert space associated to the kernel k. Note that when k is bounded, Assumptions 7 and 8 hold
with σ = 1 and p = 1/2. In those assumptions, for p and σ the smaller, and for q the bigger, the
faster the convergence rates will be.

Example 6 (Classical assumptions) For Assumption 8 to hold, minimal mass and regular support
of ρ, similarly to Example 5, are often assumed, as well as regularity of functions in imKp, in
coherence with Remark 8. For Assumption 9 to hold, it is classical to assume regularity of g∗,
matching the regularity of function spaces derived from the kernel k. The value of σ in Assumption
7 often comes has a bonus of regularity assumptions on ρ and specificity of the RKHS implied by
k. See Example 2 by Pillaud-Vivien et al. (2018) and Section 4 by Fischer and Steinwart (2020) as
well as references therein for concrete examples.

We now state convergence results respectively proven in Appendices C.5 and C.6, C.7, and C.8.
Lemma 13 is a generalization to vector-valued functions of kernel ridge regression uniform conver-
gence rates known for real-valued function (see Fischer and Steinwart, 2020). Note that a similar
result to Theorem 14 was provided for binary classification by Koltchinskii and Beznosova (2005),
but we generalize exponential rates with kernel ridge regression to any discrete structured prediction
problem. Theorem 15 is new, even in the context of binary classification. It states that, while, up
to now, only rates in n−1/4 were known for fn (Ciliberto et al., 2020), one can indeed hope for
arbitrarily fast rates, depending on the hardness of the problem, read in the value of α ∈ [0,∞).

Lemma 13 (Reproducing kernel concentration) Under Assumptions 7, 8 and 9, for any λ > 0,

‖gλ − g∗‖L∞ ≤ b1λ
q−p.

With b1 = cp ‖K−qg∗‖L2 . Moreover, when the kernel k is bounded and under Assumption 5, there
exists three constants b2, b3, b4, b5 > 0 that does not depend nor on λ nor on n such that

P (‖gn − gλ‖∞ > t) ≤ b2λ
−σ exp

(

−b3nλ2p
)

+ 4exp

(

−nλ
2p+σt2

b4 + b5t

)

.

As long as b3n ≥ λ−p, and λ ≤ min
(

‖K‖op , 1
)

.

Theorem 14 (Kernel ridge regression fast rates under no-density assumption) When the loss ℓ
is bounded, satisfies Assumption 1 and Z is finite, under the t0-no-density separation condition, and
Assumptions 5, when k is bounded, if λn = λ, for any λ > 0 such that ‖g∗ − gλ‖L∞ < t0, then
there exist two constants b6, b7 > 0 such that, for any n ∈ N∗,

EDn R(fn)−R(f∗) ≤ b6 exp(−b7n), (11)

with fn given by the kernel ridge regression surrogate estimate.

Theorem 15 (Kernel ridge regression fast rates under low-density assumption) When ℓ satis-
fies Assumption 1, is bounded and Z is finite, under the α-low-density separation condition, and

Assumptions 5, 7, 8 and 9, if λn = λ0n
− 1

2q+σ , for any λ0 > 0, there exists b8 > 0, such that for any
n ∈ N∗,

EDn R(fn)−R(f∗) ≤ b8n
− (q−p)(1+α)

2q+σ . (12)
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6. Conclusion

In this paper, we have shown how, for discrete problems, to leverage exponential concentration
inequalities derived on continuous surrogate problems, in order to derive faster rates than rates
directly obtained through calibration inequalities. Those rates are arbitrarily fast, depending on a
parameter characterizing the hardness of the discrete problem. We have shown how this method
directly applies to local averaging methods and to kernel ridge regression, which allowed us to derive
“super fast” rates for any discrete structured prediction problem.

This opens the way to several follow-up, such as
• Applicative follow-up, consisting of tackling concrete problem instances, such as predicting

properties of DNA-sequence (Jaakkola et al., 2000), e.g., gene mutations responsible for
diseases, with well-designed kernels on DNA in order to higher the exponent appearing in
Theorem 15.

• Computational follow-up, pushing our analysis further to understand how to design better
algorithms on discrete problems. For example, by adding a regularization pushing gn away
from the decision frontier F , and adding a term in 1‖gn(x)−g∗(x)‖>d(gn(x),F ) in Eq. (5) for the
analysis.

• Theoretical follow-up, to widen our analysis to other types of smooth surrogates, and to
parametric methods, such as deep learning models, assuming that functions are parameterized
by a parameter θ, that some analysis gives concentration on θn− θ∗ similar to Eq. (4) and that
calibration inequalities relate the error on θ with the error between fn = fθn and f∗ = fθ∗ .
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Appendix A. Fast rates

In the following, we consider X and Y to be Polish spaces, i.e., separable completely metrizable
topological spaces, in order to define the distribution ρ. We also consider Z endowed with a topology
that makes it compact, and that makes z → EY∼µ ℓ(z, Y ) continuous for any µ ∈ ∆Y , in order to
have minimizer well defined. For a Polish space A, we denote by ∆A the simplex formed by the
set of Borel probability measures on this space. For ρ ∈ ∆X×Y , we denote by ρ|x the conditional
distribution of Y given x, and by ρX the marginal distribution over X . We suppose H separable
Hilbert and that the mapping ϕ is measurable in order to define the pushforward measure ϕ∗ρ|x.
We assume that, for ρX -almost every x, (ϕ(Y )|X = x) has a second moment, in order to consider
the conditional mean g∗(x) as the solution of the well defined problem consisting of minimizing
‖ξ − ϕ(Y )‖2 for ξ ∈ H. We consider ψ to be continuous, in order to have the decoding problem
well posed.

A.1. Proof of Lemma 1

With the notation of Lemma 1, for x ∈ supp ρX

EY∼ρ|x [ℓ(fn(x), Y )− ℓ(f∗(x), Y )] = 〈ψ(fn(x))− ψ(f∗(x)), g∗(x)〉H
= 〈ψ(fn(x)), gn(x)〉+ 〈ψ(fn(x)), g∗(x)− gn(x)〉 − 〈ψ(f∗(x)), g∗(x)〉
≤ 〈ψ(f∗(x)), gn(x)〉 + 〈ψ(fn(x)), g∗(x)− gn(x)〉 − 〈ψ(f∗(x)), g∗(x)〉
= 〈ψ(fn(x)) − ψ(f∗(x)), g∗(x)− gn(x)〉
≤ ‖ψ(fn(x))− ψ(f∗(x))‖H ‖g∗(x)− gn(x)‖H
≤ 2cψ ‖g∗(x)− gn(x)‖H ,

where the inequality 〈ψ(fn(x)), gn(x)〉 ≤ 〈ψ(f∗(x)), gn(x)〉 is due to the fact that fn(x) minimizes
the functional z → 〈ψ(z), gn(x)〉. Integrating over X leads to the results in Lemma 1.

A.2. Proof of Lemma 2

The first part of the lemma is a geometrical result stating that to go from two elements ξ1 and ξ2
in ∆ϕ(Y), leading to two different decoding, one has to pass by a point ξ1/2 ∈ F , where there
is at least two possible decodings. Let make it clearer. Consider x ∈ supp ρX and suppose that
fn(x) 6= f∗(x), define the path

ζ : [0, 1] → ∆ϕ(Y)

λ → λgn(x) + (1− λ)g∗(x).

Consider d : ∆ϕ(Y) → Z the decoding function used to retrieve f∗ and fn, from g∗ and gn, satisfying
d(ξ) ∈ argminz∈Z 〈ψ(z), ξ〉. Consider the path d ◦ ζ : [0, 1] → Z , it goes from ζ(0) = f∗(x) to
ζ(1) = fn(x). Consider λ∞ the supremum of (d ◦ ζ)−1(f∗(x)). We will show that ζ(λ∞) ∈ F ,
this will lead to

‖gn(x)− g∗(x)‖ = ‖gn(x)− ζ(λ∞)‖+ ‖ζ(λ∞)− g∗(x)‖ ≥ ‖ζ(λ∞)− g∗(x)‖ ≥ d(g∗(x), F ),

and to Lemma 2 by contraposition.
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To show that ζ(λ∞) ∈ F , we will show that f∗(x) ∈ argminz 〈ψ(z), ζ(λ∞)〉 6⊂ {f∗(x)} . By
definition of the supremum, there exists a sequence (λp)p∈N converging to λ∞ such that

f∗(x) ∈ argmin
z

〈ψ(z), λpgn(x) + (1− λp)g
∗(x)〉 ,

meaning that for all z 6= f∗(x)

〈ψ(f∗(x)), λpgn(x) + (1− λp)g
∗(x)〉 ≤ 〈ψ(z), λpgn(x) + (1 − λp)g

∗(x)〉 .

By continuity of the scalar product, it means that it holds for p = ∞, which means f∗(x) ∈
argminz 〈ψ(z), ζ(λ∞)〉. Now, suppose that argminz 〈ψ(z), ζ(λ∞)〉 = {f∗(x)}, this means that
for all z 6= f∗(x),

〈ψ(f∗(x)), λ∞gn(x) + (1− λ∞)g∗(x)〉 < 〈ψ(z), λ∞gn(x) + (1− λ∞)g∗(x)〉 .

By continuity of this function accordingly to λ, this means that this still holds for λ∞+εz for εz > 0.
Taking ε = infz∈Z εz , it means that λ∞ + ε ∈ (d ◦ ζ)−1(f∗(x)). When Z is finite, ε > 0, which
contradict the definition of λ∞. Therefore ζ(λ∞) ∈ F .

The second part of Lemma 2 follows from derivations in Appendix A.1.

Remark 16 (Extension to discrete cases) Note that the same argument can be generalized to
discrete problems – which could be defined as Z endowed with a topology that makes z →
EY∼µ[ℓ(z, Y )] continuous with respect to z, and Z\{z} locally compact for any z ∈ Z – that
are not degenerate, in the sense that ρX almost all x ∈ X , there exists t > 0 such that the cardinality
of the set defined as

{

z
∣

∣EY∼ρ|x[ℓ(z, Y )]− infz′∈Y EY∼ρ|x[ℓ(z
′, Y )] < t

}

if finite. This holds for
classification with infinite countable classes, but it does not for regression on the set of rational
numbers.

Remark 17 (Extension to general cases) To remove the condition Z finite, one can change the
definition of d(g∗(x), F ) to infξ∈H;{f∗(x)}6=argmin〈ψ(z),ξ〉 ‖ξ − g∗(x)‖ , in order to make Lemma 2
hold for any Z .

A.3. Equivalence between generalizations of the Tsybakov margin condition

While we state the margin condition with d(g∗(x), F ), it could also be stated with d(g∗(x), F ∩
Conv(ϕ(Y))) or with, which is the quantity considered by (Nowak-Vila et al., 2019),

γ(x) = inf
z 6=z∗

EY∼ρ|x ℓ(z, Y )− EY∼ρ|x ℓ(z
∗, Y ) = inf

z 6=z∗
〈ψ(z) − ψ(z∗), g∗(x)〉 .

Indeed, when Z is finite and ℓ is proper in the sense that ℓ(·, y) = ℓ(·, z) implies z = y, and
that there is no z that minimizes a linear combination of (ℓ(·, y))y∈Y without minimizing a convex
combination of the same family, we have the existence of two constants such that

cγ(x) ≤ d(g∗(x), F ∩ Conv(ϕ(Y))) ≤ d(g∗(x), F ) ≤ c′γ(x).
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A.3.1. Mildness of our condition

Let z′ be the argmin defining γ, geometric properties of the scalar product imply the existence of a
ξ ∈ (ϕ(z′)− ϕ(z∗))⊥ such that

〈

ϕ(z′)− ϕ(z∗), g∗(x)
〉

=
∥

∥ϕ(z′)− ϕ(z∗)
∥

∥ ‖g∗(x)− ξ‖ .

Therefore
〈

ϕ(z′)− ϕ(z∗), g∗(x)
〉

≥ min
y,y′

∥

∥ϕ(y) − ϕ(y′)
∥

∥ ‖g∗(x)− ξ‖ .

Note that, by definition of ξ, 〈ξ, ϕ(z′)〉 = 〈ξ, ϕ(z∗)〉. If ξ ∈ Rz∗ then ξ ∈ F , otherwise ξ /∈ Rz∗ and
then, there exists a point between ξ and g∗(x) that belongs to the decision frontier (see Appendix
A.2 for a proof - for which we need some regularity assumption such as Z finite). In every case,

‖g∗(x)− ξ‖ ≥ d(g∗(x), F ).

This implies the existence of c′.

A.3.2. Strength of our condition

For any gn such that fn(x) = z, we have

〈ψ(z) − ψ(z∗), g∗(x)〉 = 〈ψ(z), g∗(x)− gn(x)〉+ 〈ψ(z), gn(x)〉 − 〈ψ(z∗), g∗(x)〉
≤ 〈ψ(z), g∗(x)− gn(x)〉+ 〈ψ(z∗), gn(x)〉 − 〈ψ(z∗), g∗(x)〉
≤ 2cψ ‖g∗(x)− gn(x)‖ .

If we take the infimum on both sides we have

d(g∗(x), F ) = inf
gn(x)/∈Rf∗(x)

‖gn(x)− g∗(x)‖ ≥ 1

2cψ
inf
z 6=z∗

〈ψ(z) − ψ(z∗), g∗(x)〉 ,

where the left equality is provided, when Z is finite, by a similar reasoning to the one in Appendix
A.2. This implies the existence of c. Note also that if the loss is proper in the sense that if z
minimizes 〈ψ(z), ξ〉 for a ξ ∈ H, there exists a ξ ∈ Convϕ(Y) such that z minimizes 〈ψ(z), ξ〉, we
can consider gn(x) ∈ Conv(ϕ(Y)), and therefore restrict F to F ∩ Convϕ(Y). Finally we have
shown that, when Z finite and ℓ proper

cγ(x) ≤ d(g∗(x), F ∩ Conv(ϕ(Y))) ≤ d(g∗(x), F ) ≤ c′γ(x).

This explains why we would consider γ(x), d(g∗(x), F ∩Conv(ϕ(Y))) or d(g∗(x), F ) to define the
margin condition, it will only change the value of constants in Assumptions 3 and 4.

A.4. Refinement of Theorem 5

It is possible to refine Theorem 5 to remove the condition that the loss ℓ is bounded. In the following,
we omit the dependency of Ln and Mn to n.
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Lemma 18 (Refinement of Theorem 5) Under refined calibration (5), concentration, Assumption
2, and no-density separation, Assumption 3, the risk is controlled as

EDn R(fn)−R(f∗) ≤ 4cψL
−1/2 exp

(

− t
2
0L

2

)1/2

+ 4cψML−1 exp

(

− t0L

2M

)

.

Note that it is not possible to derive a better bound only given Eqs. (4), (5) and (6). Yet when ℓ is
bounded by ℓ∞, we have

EDn R(fn)−R(f∗) ≤ ℓ∞ exp

(

− Lt20
1 +Mt0

)

.

Proof Using the calibration inequality along with the no-density separation one, we get

R(fn)−R(f∗) ≤ 2cψ EX
[

1‖gn(X)−g∗(X)‖≥t0 ‖gn(X)− g∗(X)‖
]

= 2cψ

∫ ∞

t0

PX (‖gn(X)− g∗(X)‖ ≥ t) dt.

Taking the expectation over Dn and using concentration inequality we have

EDn R(fn)−R(f∗) ≤ 2cψ

∫ ∞

t0

PX,Dn (‖gn(X) − g∗(X)‖ ≥ t) dt

≤ 2cψ

∫ ∞

t0

exp

(

− Lt2

1 +Mt

)

dt.

We only need to study the integral
∫∞
t0

exp
(

− Lt2

1+Mt

)

dt.We first clean the dependency on t insider

the exponential using that

1

2

(

exp(−Lt2) + exp

(

−Lt
M

))

≤ exp

(

− Lt2

1 +Mt

)

≤ exp

(

−Lt
2

2

)

+ exp

(

− Lt

2M

)

.

We are left with the study of
∫∞
t0

exp(−Atp) dt, for p ∈ {1, 2} and A > 0. The case p = 1, directly

leads to A−1 exp(−At0), explaining the part in L/M . The case p = 2 is similar to the Gaussian
integral, and can be handle with the following tricks

∫ ∞

t0

exp(−At2) dt = 1

2

∫

(−∞,−t0]∪[t0,∞)
exp(−At2) dt

=
1

2

(

∫

((−∞,−t0]∪[t0,∞))2
exp(−A ‖x‖2)) dx

)1/2

.

This last integral corresponds to integrate the function x → exp(−A ‖x‖2) for x ∈ R2 on the
domain ((−∞,−t0]∪ [t0,∞))2. This function being positive and the domain being included in the
domain {‖x‖ ≥ t0} and containing the domain

{

‖x‖ ≥
√
2t0
}

, we get

∫ ∞

{‖x‖≥√
2t0}

exp(−A ‖x‖2) dx ≤
(

2

∫ ∞

t0

exp(−At2) dt
)2

≤
∫ ∞

{‖x‖≥t0}
exp(−A ‖x‖2) dx.
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Using polar coordinate we get

∫ ∞

{‖x‖≥t0}
exp(−A ‖x‖2) dx = 2π

∫ ∞

t0

r exp(−Ar2) dr = πA−1 exp(−At20).

Therefore

2−1√πA−1/2 exp(−A2t20)1/2 ≤
∫ ∞

t0

exp(−At2) dt ≤ 2−1√πA−1/2 exp(−At20)1/2.

This explain the rates in L.

A.5. Proof of Theorem 6

Using the calibration and Bernstein inequalities we get, omitting the dependency of Ln and Mn to
n,

EDn R(fn)−R(f∗) ≤ 2cψ EDn,X

[

1d(gn(X),g∗(X))≥d(g∗(X),F ) ‖gn(X)− g∗(X)‖
]

= 2cψ

∫ ∞

0
PDn,X

(

1d(gn(X),g∗(X))≥d(g∗(X),F ) ‖gn(X)− g∗(X)‖ ≥ t
)

dt

= 2cψ

∫ ∞

0
EX PDn (‖gn(X)− g∗(X)‖ ≥ max {t, d(g∗(X), F )}) dt

≤ 2cψ

∫ ∞

0
EX exp

(

− Lmax {t, d(g∗(X), F )}2

1 +M max {t, d(g∗(X), F )}2

)

dt

= 2cψ

∫ ∞

0
EX

[

1d(g∗(X),F )<t exp

(

− Lt2

1 +Mt

)]

dt

+ 2cψ

∫ ∞

0
EX

[

1d(g∗(X),F )≥t exp

(

−L d(g∗(X), F )2

1 +Md(g∗(X), F )

)]

dt

= 2cψ

∫ ∞

0
PX (d(g∗(X), F ) < t) exp

(

− Lt2

1 +Mt

)

dt

+ 2cψ EX

[

d(g∗(X), F ) exp

(

− Ld(g∗(X), F )2

1 +Md(g∗(X), F )

)]

.

Let begin by working on the first term. We have, using the low-density separation hypothesis

∫ ∞

0
PX (d(g∗(X), F ) < t) exp

(

− Lt2

1 +Mt

)

dt ≤ cα

∫ ∞

0
tα exp(− Lt2

1 +Mt
) dt.

Recall the expression of the Gamma integral

∫ ∞

0
tα exp(−Lt) dt = Γ(α+ 1)

Lα+1
and

∫ ∞

0
tα exp(−Lt2) dt = Γ

(

α+1
2

)

2L
α+1
2

.

Let briefly talk about optimality. Up to now, we have only used three inequality: calibration,
concentration exponential inequality and low-density separation. Therefore, when those inequalities
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hold as equalities, we get an lower bound of order on the excess of risk as

EDn R(fn)−R(f∗) ≥ 2cψcα

∫ ∞

0
tα exp(− Lt2

1 +Mt
) dt

≥ 2cψcα

∫ ∞

0

1

2
tα
(

exp(−Lt2) + exp

(

−Lt
M

))

dt

= 2cψcα

(

Γ
(

α+1
2

)

4
L−α+1

2 +
Γ(α+ 1)

2
Mα+1L−(α+1)

)

.

For the upper bound, using that exp(−a/1 + b) ≤ exp(−a/2) + exp(−a/2b), we get
∫ ∞

0
tα exp(− Lt2

1 +Mt
) dt ≤

∫ ∞

0
tα exp(−Lt

2

2
) dt+

∫ ∞

0
tα exp(− Lt

2M
) dt

= 2
α−1
2 Γ

(

α+ 1

2

)

L−α+1
2 + 2α+1Γ(α+ 1)Mα+1L−(α+1).

Let study the second term in the excess of risk inequality. To enhance readability, write
η(X) = d(g∗(X), F ). We will first dissociate the two parts in the exponential with

EX

[

η(X) exp

(

− Lη(X)2

1 +Mη(X)

)]

≤ EX

[

η(X)

(

exp

(

−Lη(X)2

2

)

+ exp

(

−Lη(X)

2M

))

.

]

We are left with studying E[η(X) exp(−Aη(X)p)], for A > 0 and p ∈ {1, 2}. The function
t → t exp(−Atp) achieves its maximum in t0 = (pA)−1/p, it is increasing before and decreasing
after. Notice that the quantity

P(η(X) < t0)EX [η(X) exp(−Aη(X)p) | η(X) < t0] ≤ cαt
α+1
0 exp(−Atp0)

= cαp
−α+1

p exp(−p−1/p)A
−α+1

p ,

is exactly of the same order as the control we had on the first term in the excess of risk decomposition.
This suggests to consider the following decomposition

EX [η(X) exp(−Aη(X)p)] = P(η(X) < t0)EX [η(X) exp(−Aη(X)p) | η(X) < t0]

+
∞
∑

i=0

P(2it0 ≤ η(X) < 2i+1t0)EX
[

η(X) exp(−Aη(X)p)
∣

∣ 2it0 ≤ η(X) < 2i+1t0
]

≤ cαt
α+1
o exp(−Atp0) +

∞
∑

i=0

cα2
α(2it0)

α+1 exp(−Atp0(2i)p)

= cαt
α+1
o

(

exp(−p−1/p) +

∞
∑

i=0

2α2i(α+1) exp(−p−1/p2ip)

)

.

The convergence of the last series, ensures the existence of a constant c such that

EX

[

η(X) exp

(

− Lη(X)2

1 +Mη(X)

)]

≤ c

(

(

L

2M

)−(α+1)

+

(

L

2

)−α+1
2

)

.

Adding everything together, we get the existence of two constants c′, c′′, such that

EDn R(fn)−R(f∗) ≤ 2cψcα

(

c′Mα+1L−(α+1) + c′′L−α+1
2

)

.

This ends the proof by considering c = max (c′, c′′).
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A.6. Refinement of Theorem 6

Some convergence analyses lead to exponential inequalities that are not of Bernstein type, indeed,
our result still holds in those settings, as mentioned by the following lemma. In the following, we
omit the dependency of Ln and Mn to n.

Lemma 19 (Refinement of Theorem 6) Under the assumptions of Theorem 6, if the concentration
is not given by Assumption 2 but given, for some positive constants (ai, bi, pi)i≤m, by, for all
x ∈ supp ρX and t > 0,

PDn(‖gn(x)− g∗(x)‖ > t) ≤
n
∑

i=1

ai exp(−bitpi).

Then the excess of risk is controlled by

EDn R(fn)−R(f∗) ≤ c

n
∑

i=1

aib
−α+1

pi

i ,

for a constant c that does not depend on (ai, bi)i≤m.

Proof First of all, remark that the proof of Theorem 6 is linear in PDn(‖gn(x)− g∗(x)‖ > t),
therefore we only need to prove this lemma for (a, b, p), for which we proceed as in Theorem 6

EDn R(fn)−R(f∗) ≤ 2cψ EDn,X

[

1‖gn(X)−g(X)‖≥d(g(X),F ) ‖gn(X) − g(X)‖
]

= 2cψ

∫ ∞

0
PDn,X

(

1‖gn(X)−g(X)‖≥d(g(X),F ) ‖gn(X)− g(X)‖ ≥ t
)

dt

= 2cψ

∫ ∞

0
EX PDn (‖gn(X) − g(X)‖ ≥ max {t, d(g(X), F )}) dt

≤ 2cψa

∫ ∞

0
EX exp (−bmax {t, d(g(X), F )}p) dt

= 2cψa

∫ ∞

0
EX
[

1d(g(X),F )<t exp (−btp)
]

dt

+ 2cψa

∫ ∞

0
EX
[

1d(g(X),F )≥t exp (−bd(g(X), F )p)
]

dt

= 2cψa

∫ ∞

0
PX (d(g(X), F ) < t) exp (−btp) dt

+ 2cψaEX [d(g(X), F ) exp (−bd(g(X), F )p)] .

Let begin by working on the first term. We have, using the low-density separation hypothesis
∫ ∞

0
PX (d(g(X), F ) < t) exp

(

−bt2
)

dt ≤ cα

∫ ∞

0
tβ exp(−btp) dt.

= b−
1+β

p cα

∫ ∞

0
(b1/pt)β exp(−(b1/pt)p) d(b1/pt).

= b
− 1+β

p cα

∫ ∞

0
tβ exp(−tp) dt = cαΓ(β, p)b

− 1+β

p .
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Let study the second term in the excess of risk inequality. To enhance readability, write η(X) =
d(g(X), F ). We are left with studying E[η(X) exp(−bη(X)p)]. The function t → t exp(−btp)
achieves it maximum in t0 = (pb)−1/p, it is increasing before and decreasing after. Notice that the
quantity

P(η(X) < t0)EX [η(X) exp(−bη(X)p) | η(X) < t0] ≤ cαt
β+1
0 exp(−btp0)

= cαp
−β+1

p exp(−p−1/p)b−
β+1
p ,

is exactly of the same order as the control we had on the first term in the excess of risk decomposition.
This suggests to consider the following decomposition

EX [η(X) exp(−bη(X)p)] = P(η(X) < t0)EX [η(X) exp(−bη(X)p) | η(X) < t0]

+
∞
∑

i=0

P(2it0 ≤ η(X) < 2i+1t0)EX
[

η(X) exp(−bη(X)p)
∣

∣ 2it0 ≤ η(X) < 2i+1t0
]

≤ cαt
β+1
o exp(−btp0) +

∞
∑

i=0

cα2
β(2it0)

β+1 exp(−btp0(2i)p)

= cαt
β+1
o

(

exp(−p−1/p) +
∞
∑

i=0

2β2i(β+1) exp(−p−1/p2ip)

)

.

The convergence of the last series ensures the existence of a constant c′ such that

EX [η(X) exp(−bη(X)p)] ≤ c′b−
β+1
p .

Adding everything together ends the proof of this lemma. Note that we have the same type of
optimality as the one stated in Theorem 6.

Because we use concentration inequalities for terms that are not necessarily centered, we usually
get that Eq. (4) only holds for t > ε0 where, typically ε0 = ‖EDn gn(x)− g∗(x)‖, we can bypass
this problem by adding in 1t<ε0 in the probability, motivating the study leading to the following
lemma.

Lemma 20 (Handling bias in concentration inequality) Under the assumptions of Theorem 6, if
the concentration is not given by Assumption 2 but given, for a ε0 > 0, by, for all x ∈ supp ρX and
t > 0,

PDn(‖gn(x)− g∗(x)‖ > t) ≤ 1t<ε0 .

Then the excess of risk is controlled by

EDn R(fn)−R(f∗) ≤ 2cψcαε
α+1
0 .

Proof We retake the beginning of the proof of Theorem 6, and change its ending with

EDn R(fn)−R(f∗) ≤ 2cψ EDn,X

[

1‖gn(X)−g(X)‖≥d(g(X),F ) ‖gn(X)− g(X)‖
]

= 2cψ

∫ ∞

0
PDn,X

(

1‖gn(X)−g(X)‖≥d(g(X),F ) ‖gn(X) − g(X)‖ ≥ t
)

dt

= 2cψ

∫ ∞

0
EX PDn (‖gn(X)− g(X)‖ ≥ max {t, d(g(X), F )}) dt

≤ 2cψ

∫ ∞

0
EX 1t<ε01d(g(X),F )<ε0 dt = 2cψε0 PX (d(g(X), F ) < ε0) dt.
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This leads to the result after applying the α-margin condition.

Appendix B. Nearest neighbors

B.1. Usual assumptions to derive nearest neighbors convergence rates

Assumption 6 can be seen as the backbone that allow to control ‖g∗n(x)− g∗(x)‖ in a uniform
manner. This assumption that relates the regularity of g∗ with the density of ρX has been historically
approached in the following manner. Assume that g∗ is β′-Hölder, that is, for any x, x′ ∈ suppρX

∥

∥g∗(x)− g∗(x′)
∥

∥ ≤ a1d(x, x
′)β

′

.

Suppose that X = Rd, that ρX is continuous against λ, the Lebesgue measure, with minimal mass
in the sense that there exists a pmin > 0 such that dρX

dλ (X ) does not intersect (0, pmin), and that
supp ρX has regular boundaries in the sense that there exist a2, t0 > 0 such that for any x ∈ supp ρX
and t ∈ (0, t0)

λ (B(x, t) ∩ suppρX ) ≥ a2λ (B(x, t)) .
For example an orthant satisfies this property with a2 = 2−d and t0 = ∞, and B(0, 1) satisfies this
property with a2 = λ (B(0, 1) ∩ B(1, 1)) /λ (B(0, 1)) and t0 = 1. In such a setting, we get

∥

∥g∗(x)− g∗(x′)
∥

∥ ≤ a1d(x, x
′)β

′

= a1

(

λ(B(x, d(x, x′)))
λ(B(0, 1))

)
β′

d

.

Where d(x, x′) < t0, we have

λ(B(x, d(x, x′))) ≤ a−1
2 λ

(

B(x, d(x, x′)) ∩ supp ρX
)

≤ a−1
2 p−1

minρX (B(x, d(x, x′)))β .

This means that for any x ∈ supp ρX and x′ ∈ B(x, t0) we have, with β = β′

d and the constant

a3 = a1a
−β
2 p−βminλ(B(0, 1))−β

∥

∥g∗(x)− g∗(x′)
∥

∥ ≤ a3ρX (B(x, d(x, x′)))β .

While, we actually do not need the bound to hold for d(x, x′) > t0 in the following proof, to
check the veracity of our remark on Assumption 6, one can verify that under our assumptions on
ρX , supp ρX is bounded, and therefore g∗ is too. And if g∗ is bounded by cϕ, by considering

a′3 = max
(

2cϕa
−β
2 p−βmint

−β′

0 , a3

)

, this bound holds for any x, x′ ∈ suppρX .

B.2. Proof of Lemma 9

Control of the variance term. For x ∈ ρX , the variance term can be written

‖gn(x)− g∗n(x)‖ =

∥

∥

∥

∥

∥

1

k

k
∑

i=1

ϕ(Y(i))− E
[

Y(i)
∣

∣X(i)

]

∥

∥

∥

∥

∥

.

Where the index (i) is such that X(i) is the i-th nearest neighbor of x in (Xi)i≤n. Since, given
(Xi)i≤n, the (Yi)i 6=n are independent, distributed according to ⊗i≤nρ|Xi

, we can use a concentration
inequality to control it. We recall Bernstein concentration inequality in such spaces, derived by
Yurinskii (1970), we will use the formulation of Corollary 1 from Pinelis and Sakhanenko (1986).
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Theorem 21 (Concentration in Hilbert space (Pinelis and Sakhanenko, 1986)) Let denote byA
a Hilbert space and by (ξi) a sequence of independent random vectors on A such that E[ξi] = 0,
and that there exists M,σ2 > 0 such that for any m ≥ 2

n
∑

i=1

E [‖ξi‖m] ≤
1

2
m!σ2Mm−2.

Then for any t > 0

P(

∥

∥

∥

∥

∥

n
∑

i=1

ξi

∥

∥

∥

∥

∥

≥ t) ≤ 2 exp

(

− t2

2σ2 + 2tM

)

.

This explain Assumption 5, allowing, because there is only k ξi active in
∑n

i=1 αi(x)ξi, to get

PDn (‖gn(x)− g∗n(x)‖ > t) ≤ 2 exp

(

− kt2

2σ2 + 2Mt

)

.

Control of the bias term. Under the Modified Lipschitz condition, Assumption 6,

‖g∗n(x)− gn(x)‖ =

∥

∥

∥

∥

∥

n
∑

i=1

αi(x) (gn(x)− g∗(Xi))

∥

∥

∥

∥

∥

≤
n
∑

i=1

αi(x) ‖gn(x)− g∗(Xi)‖

≤ cβ

n
∑

i=1

αi(x)ρX (B(x, d(x,Xi)))
β ≤ cβρX (B(x, d(x,Xk(x))))

β .

When ρX is continuous, it follows from the probability integral transform (also known as universality
of the uniform) that ρX (B(x, d(x,Xk(x)))) behaves like the k-th order statistics of a sample (Ui)i≤n
of n uniform distributions on [0, 1]. Therefore, for any s ∈ [0, 1]

PDn (ρX (B(x, d(x,Xk(x)))) > s) = P

(

n
∑

i=1

1Ui<s ≤ k

)

.

Recall the multiplicative Chernoff bound, stating that for (Zi)i≤n n independent random variables
in {0, 1}, if Z =

∑n
i=1 Zi, and µ = E[Z], for any δ > 0

P (Z ≤ (1− δ)µ) ≤ exp

(

−δ
2µ

2

)

.

Since, for s ∈ [0, 1], E[1Ui<s] = P(Ui < s) = s, we get, when k ≤ ns/2

P

(

n
∑

i=1

1Ui<s ≤ k

)

≤ exp

(

−(ns− k)2

2ns

)

≤ exp
(

−ns
8

)

.

With s = c−1
β t

1
β , we get

PDn (‖g∗n(x)− gn(x)‖ > t) ≤ exp

(

−nt
1
β

8cβ

)

.

Remark that when g∗ is β′ Hölder, we get the same result with ρX (B(x, t)) instead of t
1
β by

considering 1Xi∈B(x,t) instead of 1Ui≤t. Note that there is way to bound a Binomial distribution
with a Gaussian for t smaller than the mean of the binomial distribution, which would allow to get a
bound that holds for any t > 0 (Slud, 1977).
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B.3. Proof of Theorem 10

Using the proof of Theorem 5, we get

EDn R(fn)−R(f∗) ≤ ℓ∞ PDn (‖g(x) − g∗n(x)‖ > t0) .

Because ‖gn(x)− g∗(x)‖ > t0 implies that either ‖gn(x)− g∗n(x)‖ > t0/2 or ‖g∗n(x)− g∗(x)‖ >
t0/2, we get using Lemma 9

PDn (‖g(x)− g∗n(x)‖ > t0) ≤ 2 exp

(

− b1kt
2
0

4 + 2b2t0

)

+ exp

(

−2
− 1

β b3nt
1
β

0

)

+ 1t0>(k/2n)β .

This explains the result of Theorem 10.

B.4. Proof of Theorem 11

First of all for t > 0, and x ∈ supp ρX , because ‖gn(x)− g∗(x)‖ > t implies that either
‖gn(x)− g∗n(x)‖ > t/2 or ‖g∗n(x)− g∗(x)‖ > t/2, we have the inclusion of events:

{Dn | ‖gn(x)− g∗(x)‖ > t} ⊂ {Dn | ‖gn(x)− g∗(x)‖ > t/2} ∪ {Dn | ‖gn(x)− g∗(x)‖ > t/2} ,

which translates in term of probability as

PDn (‖gn(x)− g∗(x)‖ > 2t) ≤ PDn (‖gn(x)− g∗(x)‖ > t) + PDn (‖gn(x)− g∗(x)‖ > t) .

≤ 2 exp

(

− b1kt
2

1 + b2t

)

+ exp
(

−b3nt
1
β

)

+ 1
t<( k

2n )
β .

Using the refinements of Theorem 6 exposed in Appendix A.6, we get that there exists a constant
c > 0 that does not depend on k or n such that

EDn Rfn −R(f∗) ≤ c
(

k−
α+1
2 + n−β(α+1) + (nk−1)β(α+1)

)

.

We optimize this last quantity with respect to k by taking k = nγ , and choosing γ such that
γ = 2(1− γ)β leading to γ = 2β/(2β+1) and to rates in n to the power minus β(α+1)/(2β +1).

B.5. Numerical Experiments

Interestingly, on numerical simulations such as the one presented on Figure 3, we observed two
regimes. A first regime where bound are meaningless because of constants being too big, and where
the error decreases independently of the exponent expected through Theorem 11, and a final regime
where rates corresponds to the bond given by the theorem. Note that when α >> 1, with our
computation parameter, we do not get to really illustrate convergence rates, as this final regime get
place for bigger n than what we have considered (nmax = 106), this being partly due to the constant
cβ in Assumption 6 being big for the g∗ we considered. Furthermore, note that, for example, if a
problem satisfied Assumption 3 with a really small t0, we expect that exponential convergence rates
are only going to be observed for n > N , with N really big, and for which the excess of risk is
already really small.
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Figure 4: Supplement to Figure 3. We precise the error is evaluated on 100 points forming a regular
partition of X = [−1, 1], and the expectation EDn

is approximated by considering 100 datasets. The
violet curve is cropped at n ≈ 105, because the error was null afterwards with our evaluation parameters
(only 100 points to evaluate the error), forbidding us to consider the logarithm of the excess of risk.

Appendix C. Kernel proofs

In this section, we study L∞ convergence rates of the kernel ridge regression estimate. We use the
L2-proof scheme of Caponnetto and De Vito (2006) with the remark of Ciliberto et al. (2016) to
factorize the action of K on L2(X ,H, ρX ) through its action on L2(X ,R, ρX ). We retake the work
of Pillaud-Vivien et al. (2018) to relax the source condition, and use Fischer and Steinwart (2020)
to cast in L∞ thanks to interpolation inequality. While those results, leading to Lemma 13, are not
new, we present them entirely to provide the reader with self-contained materials.

C.1. Construction of reproducing kernel Hilbert space (RKHS)

In the following, we suppose k bounded by κ2.

Vector-valued RKHS. To study the estimator gn, it is useful to introduce the reproducing kernel
Hilbert space G associated with k and H (Aronszajn, 1950). To define G, define the atoms kx : H →
G and the scalar product, for x, x′ ∈ X and ξ, ξ′ ∈ H as

〈

kxξ, kx′ξ
′〉
G =

〈

ξ,Γ(x, x′)ξ′
〉

= k(x, x′)
〈

ξ, ξ′
〉

H .

Where Γ is the vector valued kernel inherit from k as Γ(x, x′) = k(x, x′)IH (Schwartz, 1964). G
is defined as the closure, under the metric induced by this scalar product, of the span of the atoms
kxξ for x ∈ X and ξ ∈ H. Note that kx is linear, and continuous of norm ‖kx‖op =

√

k(x, x).
When k(·, x) is square integrable for all x ∈ supp ρX , G is homomorphic to a functional space
in L2(X ,H, ρX ) through the linear mapping S that associates the atom kxξ in G to the function
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k(·, x)ξ in L2, defined formally as

S : G → L2

γ → x→ k⋆xγ.

While intrinsically similar, it is useful to distinguish between G and imS ⊂ L2. Note that S is
continuous, since on atom kxξ, ‖Skxξ‖L2 ≤ ‖kx(·)‖L2 ‖ξ‖H ≤ k(x, x) ‖ξ‖H = ‖kxξ‖G . The fact
that S is a bounded operator justifies the introduction of the following operators.

Central operators. In the following, we will make an extensive use of S⋆ : L2(X ,H, ρX ) → G
the adjoint of S, defined as S⋆g = EρX [kXg(X)]; the covariance operator Σ : G → G, defined as
Σ := S⋆S = EρX [kXk

⋆
X ]; and its action on L2, K : L2(X ,H, ρX ) → L2(X ,H, ρX ), defined as

Kg := SS⋆g = EX [k(·,X)g(X)]. Finally, we have define the four central operators

Sγ = k⋆(·)γ, S⋆g = EρX [kXg(X)]

Σ := S⋆S = EρX [kXk
⋆
X ], Kg := SS⋆g = EX [k(·,X)g(X)].

(13)

It should be noted that this construction is usually avoided since, based on the fact that the Frobenius
norm of K behave like dim(H), meaning that when H is infinite dimensional, K is not a compact
operator. However, since we consider Z finite, we can always consider H = R#Z with ϕ(y) =
(ℓ(z, y)z∈Z and ψ(z) = (1z=z′)z′∈Z , and moreover, we will see that a way can be worked out, even
when H is infinite dimensional, which was already shown by Ciliberto et al. (2016).

Relation between real-valued versus vector-valued RKHS.

Usually convergence in RKHS are studied for real-valued function. We need convergence results for
vector-valued function. As mentioned above, we only need the results for Euclidean space, however,
we will do it for function that are maps going into potentially infinite dimensional Hilbert space.
Indeed, this does not lead to major complication. We provide here one way to get around this issue.
An alternative formal way to proceed can be found (Ciliberto et al., 2016).

Real-valued RKHS. We build the real-valued RKHS GX as the closure of the span of the atoms
k̄x for x ∈ X , under the metric induced by the scalar product

〈

k̄x, k̄x′
〉

= k(x, x′). Similarly, we
build S̄, S̄⋆, Σ̄ and K̄ . We shall see that the action of Σ on G can be factorized through its actions
Σ̄ on GX .

Algebraic equivalences. Based on the fact that
∥

∥k̄x
∥

∥

GX
= ‖kx‖op =

√

k(x, x), it is possible to

build an isometry that match k̄x in GX to kx in the space of continuous linear operator from H to G.
With (ēi)i∈N an orthogonal basis of GX , and (fj)j∈N an orthogonal basis of H, we get an orthogonal
basis (eifj)i,j∈N of G. This is exaclty the construction G = GX ⊗H of (Ciliberto et al., 2016).

Note that for µ1, µ2 two measures on X , we can check that

‖EX∼µ1 [kXk
⋆
X ]EX0∼µ2 [kX0 ]‖2op =

∥

∥EX∼µ1 [k̄X k̄
⋆
X ]EX0∼µ2 [k̄X0 ]

∥

∥

2

GX

= EX,X′∼µ1;X,X′∼µ2 [k(X0,X)k(X,X ′)k(X ′,X ′
0)].

This explains that we will allow ourselves to write derivations of the type
∥

∥

∥
(Σ + λ)−

1
2 kxgn(x)

∥

∥

∥

G
≤
∥

∥

∥
(Σ̄ + λ)−

1
2 k̄x

∥

∥

∥

GX

‖gn(x)‖H .
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Note also that for g :=
∑

ij cijeifj ∈ G, with
∑

ij c
2
ij = 1, c̄i := (cij)j∈N ∈ ℓ2, Ā an self-adjoint

operator on GX and A its version on G, we have

‖Ag‖2G =
∑

ijk

cijckj
〈

Āēi, Āēk
〉

G =
∑

ij

〈c̄i, c̄j〉ℓ2
〈

Āēi, Āēk
〉

GX

≤
∑

ij

‖c̄i‖ℓ2 ‖c̄j‖ℓ2
〈

Āēi, Āēk
〉

GX
=

∥

∥

∥

∥

∥

Ā
∑

i

‖c̄i‖ℓ2 ēi
∥

∥

∥

∥

∥

2

GX

≤
∥

∥Ā
∥

∥

2

op
,

which explains why we will consider derivations of the type
∥

∥

∥(Σ + λ)
1
2 (Σ̂ + λ)−1(Σ + λ)

1
2

∥

∥

∥

op
≤
∥

∥

∥(Σ̄ + λ)
1
2 ( ˆ̄Σ + λ)−1(Σ̄ + λ)

1
2

∥

∥

∥

op
.

Finally, notice that because of the same consideration, if (ūi)i∈N ∈ GN
X diagonalize Ā, (uifj)i,j≤N ∈

GN×N h GN diagonalize A in G. This justifies the consideration of fractional operators Ap for
p ∈ R+, such as in Assumptions 8 and 9. Based on those equivalence, we will forget the bar
notations, we incite the careful and attentive reader to recover them.

C.2. Estimate gn as an empirical approximate projection on RKHS

To obtain bounds like Eq. (4), it is sufficient to control the convergence of gn to g∗ inL∞. Assumption
8 allow us to cast in L2 the study of the convergence in L∞. The convergence of gn towards g∗ can
be split in two terms, a term expressing the convergence of gλ towards g∗ that is based on geometrical
properties and a term expressing the convergence of gn towards gλ, that is based on concentration
inequalities in G, such as the ones given by Pinelis and Sakhanenko (1986); Minsker (2017). For
this last term, we need to characterize gn and gλ with the following lemma.

Lemma 22 (Approximation of integral operators) gn can be understood as the empirical approx-
imation of gλ since

gn = S(Eρ̂[kXk
⋆
X ] + λ)−1 Eρ̂[kXϕ(Y )], gλ = S(Eρ[kXk

⋆
X ] + λ)−1 Eρ[kXϕ(Y )],

with ρ̂ = 1
n

∑n
i=1 δXi

⊗ δYi ,

Proof Indeed, the expression of gn and its convergences towards g∗ will be understood thanks
to the operator S and its derivatives. When imS is closed in L2, on can defined the orthogonal
projection of g∗ to imS, with the L2 metric as πimS(g

∗) = S(S⋆S)†S⋆g∗. When imS is not closed,
or equivalently when Σ has positive eigen values converging to zero, one can define approximate
orthogonal projection, through eigen value thresholding or Tikhonov regularization. This last choice
leads to the estimate

gλ = S(Σ + λ)−1S⋆g∗ = S(S⋆S + λ)−1S⋆g∗ = SS⋆(SS⋆ + λ)−1g∗ = K(K + λ)−1g∗.

Note that, because of the Bayes optimum characterization of g∗, S⋆g∗ = Eρ[kXϕ(Y )]. This explains
the characterization of gλ.

Interestingly, the approximation of ρ by ρ̂ can be thought with the approximation ofL2(X ,H, ρX )
by ℓ2(Hn) ≃ L2(X ,H, ρ̂X ) where for Ξ = (ξi), Z = (ζi) ∈ Hn,

〈Ξ, Z〉ℓ2 =
1

n

n
∑

i=1

〈ξi, ζi〉H ,
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and with the empirical probability measure ρ̂ = 1
n

∑n
i=1 δxi ⊗ δyi . We redefine the natural homo-

morphism of G into ℓ2 with
Ŝ : G → ℓ2

γ →
(

k⋆xiγ
)

i≤n .

We check that its adjoint is, for Ξ ∈ Hn and γ ∈ G

〈

Ŝ⋆Ξ, γ
〉

G
=
〈

Ξ, Ŝγ
〉

ℓ2
=

1

n

n
∑

i=1

〈

ξi, k
⋆
xiγ
〉

H =

〈

1

n

n
∑

i=1

kxiξi, γ

〉

G
.

Similarly we define K̂ : Hn → Hn and Σ̂ : G → G, with

K̂Ξ = ŜŜ⋆Ξ =

(

1

n

n
∑

i=1

k(xj , xi)ξi

)

j≤n
, Σ̂ =

1

n

n
∑

i=1

kxi ⊗ kxi = Eρ̂X [kXk
⋆
X ].

Finally we define Φ̂ = (ϕ(y)i)i≤n ∈ Hn, so that

Ŝ⋆g∗ := Eρ̂[ϕ(Y ) · kX ] = Ŝ⋆Φ̂.

Finally we can express gn as

gn = S(Σ̂ + λ)−1Ŝ⋆Φ̂ = S(Ŝ⋆Ŝ + λ)−1Ŝ⋆Φ̂ = SŜ⋆(ŜŜ⋆ + λ)−1Φ̂ = SŜ⋆(K̂ + λ)−1Φ̂.

This explains the equivalence between gn defined at the beginning of Section 5 and the gn expressed
in the lemma, that will be used for derivations of theorems.

C.3. Linear algebra and equivalent assumptions to Assumptions 7, 8

To proceed with the study of the convergence of gn towards gλ in L2, it is helpful to pass by G. To
do so, we need to express Assumptions 7 and 8 in G, which we can do using the following linear
algebra property.

Lemma 23 (Linear algebra on compact operators) There exist (ui)i∈N an orthogonal basis of
GX , (vi)i∈N an orthogonal basis of L2(X ,R, ρX ), and (λi)i∈N a decreasing sequence of positive
real number such that

S =
∑

i∈N
λ
1/2
i uiv

⋆
i , S⋆ =

∑

i∈N
λ
1/2
i viu

⋆
i , Σ =

∑

i∈N
λiuiu

⋆
i , K =

∑

i∈N
λiviv

⋆
i , (14)

where the convergence of series as to be understood with the operator norms. Moreover, we have
that, if the kernel k is bounded by κ2,

∑

i∈N
λi ≤ κ2 < +∞.

Therefore, K and Σ are trace-class, and S and S⋆ are Hilbert-Schmidt.
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Proof First of all notice that Σ = EX [kX ⊗ kX ] and that ‖kx ⊗ kx‖op(GX ) = ‖kx‖GX
= k(x, x) ≤

κ2. Therefore Σ is a nuclear operator, so it is trace class and so it is compact.
The first point results from diagonalization of kernel operator, known as Mercer’s Theorem

(Mercer, 1909; Steinwart and Scovel, 2012). Σ is a compact operator, therefore, the Spectral Theo-
rem gives the existence of a sequence (λi) ∈ RN and a orthonormal basis (ui) ∈ GN

X of GX such
that

Σ =
∑

i∈N
λiuiu

⋆
i ,

where the convergence has to be understood with the operator norm. Because Σ is of the form S⋆S,
one can consider (λi) a decreasing sequence of positive eigen value. Then, by defining, for all i ∈ N

with λi > 0,
vi = λ

−1/2
i Sui

we check that (vi) are orthonormal, and we complete them to form an orthonormal basis of
(L2(X ,R, ρX )). Finally we check that

S =
∑

i∈N
λ
1/2
i viu

⋆
i ,

and that the other equalities hold too.
To check the second assertion, we use that kxk⋆x is rank one when operating on GX and therefore

TrΣ = Tr (EX [kXk
⋆
X ]) = EX [Tr (kXk

⋆
X)] = EX

[

‖kXk⋆X‖op(GX )

]

= EX

[

‖kX‖GX

]

= EX [k(x, x)] ≤ κ2.

This shows that S and S⋆ are Hilbert-Schmidt operators and that K is also trace class.

This allow us to cast in GX the assumptions expressed in L2.

Lemma 24 (Equivalence of capacity condition) For σ ∈ (0, 1], it is equivalent to suppose that
• TrL2(X ,H,ρX )(K

σ) < +∞.
• TrGX

(Σσ) < +∞.
•
∑

i∈N λ
σ
i < +∞.

In Assumption 7, the smaller σ, the faster the λi decrease, the easier is will be to approximate
Σ based on approximation of ρ. This appears explicitly in Theorem 31. Indeed, for σ = 0, the
condition should be defined as Σ of finite rank. Note that when k is bounded, we know that Σ is
trace class, and therefore, Assumption 7 holds with σ = 1.

Lemma 25 (Interpolation inequality in RKHS) Assumption 8 implies that

∀ γ ∈ G, ‖Sγ‖L∞ ≤ cp

∥

∥

∥
Σ

1
2
−pγ

∥

∥

∥

G
. (15)

Proof We begin by showing the property for γ ∈ GX . When γ =
∑

i∈N civi with
∑

i∈N c
2
i < +∞,

denote g =
∑

i∈N λ
1
2
−p

i ciui, we have g ∈ L2, therefore, using Assumption 8,

‖Sγ‖L∞ = ‖Kpg‖L∞ ≤ cp ‖g‖L2 = cp

∥

∥

∥Σ
1
2
−pγ

∥

∥

∥

GX

.
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This ends the proof for GX . Note also that when the result of the Lemma holds, then Assumption 8

holds for any g ∈ imL2(X ,R,ρX )K
1
2
−p.

Let switch to G now. Let γ ∈ G, and denote g = Sγ. Suppose that g achieve it maximum in
x∞, define the direction ξ = g(x∞)/‖g(x∞)‖

H
, and define gξ : x→ 〈g(x), ξ〉H ∈ L2(X ,R, ρX ), and

γξ =
∑

j∈N 〈gξ, vi〉L2 ui ∈ GX . We have

‖Sγ‖L∞ = ‖Sγξ‖L∞ ≤ cp

∥

∥

∥
Σ

1
2
−pγξ

∥

∥

∥

GX

≤ cp

∥

∥

∥
Σ

1
2
−pγ

∥

∥

∥

G
.

When g does not achieve its maximum, one can do a similar reasoning by considering a basis (fi)i∈N
of H and decomposition γ on the basis (uifj)i,j∈N, before summing the directions.

In Assumption 8, the bigger 1/2− p the more we are able to control our problem in G, the better.
Note that this reformulation of the interpolation inequality allow to generalized it for p smaller than
zero. Note that when k is bounded, ‖(Sγ)(x)‖H = ‖k⋆Xγ‖H ≤ ‖kX‖op ‖γ‖G =

√

k(x, x) ‖γ‖G ,
hence Assumption 8 holds with p = 1/2.

C.4. Linear algebra with atoms kx and useful inequalities

From the study of the convergence of gn to gλ will emerge two quantities linked to eigen values of
Σ and the position of kx regarding eigen spaces, that are

N (λ) = Tr
(

(Σ + λ)−1Σ
)

, N∞(λ) = sup
x∈supp ρX

∥

∥

∥(Σ + λ)−
1
2 kx

∥

∥

∥

op
. (16)

While those quantity could be bounded with brute force consideration, Assumptions 7 and 8 will
help to control them more subtly.

Proposition 26 (Characterization of capacity condition) The property
∑

i∈N λ
σ
i < +∞, can be

rephrased in term of eigen values of Σ as the existence of a a1 > 0 such that, for all i > 0,

λi ≤ a1(i+ 1)−
1
σ . (17)

Proof Denote by ui and Sn the respective quantities λσi and
∑n

i=1 ui. Because Sn converge, it is a
Cauchy sequence, so there exitsN such that for any p > q > N , Sp−Sq =

∑p
i=q+1 ui ≤ 1. In partic-

ular, considering p = 2q, and because (λi) is decreasing, we have qu2q ≤
∑2q

i=q+1 ui ≤ 1.Therefore,

we have that for all i > 2N , ui ≤ 3(i + 1)−1, considering (a1)
σ = 3 + maxi≤2N {(i+ 1)ui}, we

get the desired result.

Proposition 27 (Characterization of N ) When Tr (Kσ) < +∞, with a2 =
∫∞
0

a1

a1+t
1
σ
dt,

∀ λ > 0, N (λ, r) ≤ a2λ
−σ. (18)

Proof Expressed with eigenvalues, we have

N (λ) = Tr
(

(Σ + λ)−1Σ
)

=
∑

i∈N

λi
λi + λ

.
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Using that λi ≤ a1(i + 1)−
1
σ , that x → x

x+a is increasing with respect to x for any a > 0 and the
series-integral comparison, we get for σ ∈ (0, 1]

N (λ) ≤
∑

i∈N

a1(i+ 1)−
1
σ

a1(i+ 1)−σ + λ
≤
∫ ∞

0

a1t
− 1

σ

a1t
− 1

σ + λ
dt =

∫ ∞

0

a1

a1 + λt
1
σ

dt

= λ−σ
∫ ∞

0

a1

a1 + (λσt)
1
σ

d(λσt) = a2λ
−σ,

where we check the convergence of the integral.

Indeed, Assumption 8 has a profound linear algebra meaning, it is a condition on ρX -almost
all the vector kx ∈ GX not to be excessively supported on the eigenvector corresponding to small
eigenvalue of Σ.

Proposition 28 (Characterization of interpolation condition) The interpolation Assumption 8 im-
plies that, for all i ∈ N

sup
x∈ρX

∣

∣

∣
〈kx, ui〉GX

∣

∣

∣
≤ cpλ

1
2
−p

i . (19)

Proof Consider the decomposition of kx ∈ GX according to the eigen vectors of Σ, with ai(x) =
〈kx, ui〉. The interpolation condition Assumption 8, expressed in GX with Lemma 25, leads to for
any γX ∈ GX , and SγX : X → R,

|(SγX )(x)| =
∣

∣

∣〈kx, γX 〉GX

∣

∣

∣ ≤ ‖SγX ‖L∞ ≤ cp

∥

∥

∥Σ
1
2
−pγX

∥

∥

∥

GX

This implies that

〈kx, γX 〉2GX
=

(

∑

i∈N
〈kx, ui〉 〈γX , ui〉

)2

≤ c2p

∥

∥

∥
Σ

1
2
−pγX

∥

∥

∥

2

GX

= c2p
∑

i∈N
λ1−2p
i 〈γX , ui〉2 .

Taking γX = ui, we get that

|〈kx, ui〉| ≤ cpλ
1
2
−p

i .

This result relates the interpolation condition to the fact that kx is not excessively supported on the
eigenvectors corresponding to vanishing eigenvalues of Σ.

Proposition 29 (Characterization of N∞(λ, r)) Under the interpolation condition, Assumption 8,

we have with a3 = cp(2p)
−p(1− 2p)

1
2
−p, or a3 = cp when p = 1/2,

N∞(λ) ≤ a3λ
−p. (20)

Proof First of all, notice that
∥

∥

∥(Σ + λ)−
1
2kx

∥

∥

∥

GX

= sup
‖γX ‖

X
=1

〈

γX , (Σ + λ)−
1
2 kx

〉

GX

= sup
c;
∑

i∈N
c2i=1

∑

i∈N

ci 〈kx, ui〉
(λ+ λi)

1
2

≤ cp sup
c;
∑

i∈Nc2
i
=1

∑

i∈N

ciλ
1
2
−p

i

(λ+ λi)
1
2

≤ sup
t∈R+

cp
t
1
2
−p

(λ+ t)
1
2

.
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When p ∈ (0, 1/2), this last function is zero in zero and in infinity, therefore its maximum t0 verifies,
taking the derivative of its logarithm,

1/2 − p

t0
=

1

2(t0 + λ)
⇒ t0 =

(1− 2p)λ

2p
⇒ sup

t∈R+

t
1
2
−p

(λ+ t)
1
2

= (2p)−p(1− 2p)
1
2
−pλ−p.

The cases p ∈ {0, 1} are easy to treat.

In the previous analysis, one fact does not appear, it is that Σ and kx are linked to one another,
since Σ = EX [kXk

⋆
X ]. The following remark builds on it to relates N and N∞.

Remark 30 (Relation between interpolation and capacity condition) The capacity and interpo-
lation condition are related by the fact that it unreasonable not to consider that p ≤ σ/2.

Proof Because kxk⋆x is of rank one in GX , we have

N (λ) = Tr
(

(Σ + λ)−1Σ
)

= EX
[

Tr
(

(Σ + λ)−1kXk
⋆
X

)]

= EX
[

Tr
(

k⋆X(Σ + λ)−1kX
)]

= EX

[

∥

∥k⋆X(Σ + λ)−1kX
∥

∥

op

]

= EX

[

∥

∥

∥(Σ + λ)−
1
2kX

∥

∥

∥

2

GX

]

.

So indeed, N (λ) is the expectation of the square
∥

∥

∥
(Σ + λ)−

1
2 kX

∥

∥

∥

GX

, whenN∞(λ) is the supremum

of this last quantity. Therefore

N (λ) ≤ N∞(λ)2

Supposing that the dependency in λ proved above are tight, we should have σ ≥ 2p, which is the
statement of this remark. We refer the reader to Lemma 6.2. of Fischer and Steinwart (2020) for
more consideration to relates σ and p (reading p and α/2 with their notations)

C.5. Geometrical control of the residual ‖gλ − g∗‖L∞

The proof of the first assertion in Lemma 13 follows from, using Assumption 9, with g0 ∈ K−qg∗,

gλ − g∗ = (K(K + λ)−1 − I)g∗ = −λ(K + λ)−1g∗ = −λ(K + λ)−1Kqg0

= −λKp(K + λ)−1Kq−pg0.

Then using Assumption 8,

‖g∗ − gλ‖∞ ≤ cpλ
∥

∥Kq−p(K + λ)−1
∥

∥

op
‖g0‖L2

≤ cpλ
∥

∥K(K + λ)−1
∥

∥

q−p
op

∥

∥(K + λ)−1
∥

∥

1+p−q
op

‖g0‖L2

≤ cpλ1
q−pλ−(1+p−q) ‖g0‖L2 = b1λ

q−p,

where we have used that
∥

∥K(K + λ)−1
∥

∥

op
= ‖K‖

op/(‖K‖
op

+ λ) ≤ 1 and that
∥

∥(K + λ)−1
∥

∥ ≤ λ−1.
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C.6. Convergence of ‖gn − gλ‖ through concentration inequality

For the proof of the second assertion in Lemma 13, we will put ourselves in G. For this, we define
in G

γ = Eρ[kXϕ(Y )], γλ = (Σ + λ)−1γ, γ̂ = Eρ̂[kXϕ(Y )], (21)

so that gλ = Sγλ, and gn = S(Σ̂ + λ)−1γ̂.

C.6.1. Decomposition into a matrix and a vector term

We begin by expressing gn − gλ in G with

gn − gλ = S
(

(Σ̂ + λ)−1γ̂ − (Σ + λ)−1γ
)

= S
(

(Σ̂ + λ)−1(γ̂ − γ) + ((Σ̂ + λ)−1 − (Σ + λ)−1)γ)
)

= S
(

(Σ̂ + λ)−1(γ̂ − γ) + (Σ̂ + λ)−1(Σ − Σ̂)(Σ + λ)−1γ)
)

= S
(

(Σ̂ + λ)−1((γ̂ − Σ̂γλ)− (γ −Σγλ))
)

,

where we have used that A−1 −B−1 = A−1(B−A)B−1. Therefore, using the expression, Lemma
25, of Assumption 8 in G, we get

‖gn − gλ‖L∞ ≤ cp

∥

∥

∥
Σ

1
2
−p(Σ̂ + λ)−1(Σ + λ)

1
2
+p
∥

∥

∥

op
× · · ·

∥

∥

∥(Σ + λ)−( 1
2
+p)((γ̂ − Σ̂γλ)− (γ − Σγλ))

∥

∥

∥

G
.

On the one hand, we have concentration of matrix term towards Σ
1
2
−p(Σ + λ)−(

1
2
−p) � I . On the

other hand, we have concentration of the vector γ̂− Σ̂γλ towards γ−Σγλ. Indeed the concentration
of the matrix term is hard to prove (it is only a conjecture), therefore we will go for an other
decomposition, that will result in similar rates when p ≥ 0, that is

‖gn − gλ‖L∞ ≤ cp

∥

∥

∥
Σ

1
2
−p(Σ + λ)−

1
2

∥

∥

∥

op
A(λ)B(λ)

A(λ) =
∥

∥

∥
(Σ + λ)

1
2 (Σ̂ + λ)−1(Σ + λ)

1
2

∥

∥

∥

op
,

B(λ) =
∥

∥

∥
(Σ + λ)−

1
2 ((γ̂ − Σ̂γλ)− (γ − Σγλ))

∥

∥

∥

G
.

(22)

Recall the definition of the following important quantity that are going to pop up from the analysis

N (λ) = Tr
(

(Σ + λ)−1Σ
)

, N∞(λ) = sup
x∈supp ρX

∥

∥

∥
(Σ + λ)−

1
2 kx

∥

∥

∥

op
. (16)

C.6.2. Extra matrix term

We control the extra matrix term with
∥

∥

∥Σ
1
2
−p(Σ + λ)−

1
2

∥

∥

∥

op
=
∥

∥

∥Σ
1
2
−p(Σ + λ)−(

1
2
−p)
∥

∥

∥

op

∥

∥(Σ + λ)−p
∥

∥

op
≤ λ−p.

Using that
∥

∥(Σ + λ)−1
∥

∥

op
≤ λ−1 and that

∥

∥(Σ + λ)−1Σ
∥

∥

op
≤ ‖Σ‖

op/(‖Σ‖
op

+ λ) ≤ 1.
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C.6.3. Matrix concentration

Let us make explicit the concentration in the matrix term with

(Σ + λ)
1
2 (Σ̂ + λ)−1(Σ + λ)

1
2 = I + (Σ + λ)

1
2

(

(Σ̂ + λ)−1 − (Σ + λ)−1
)

(Σ + λ)
1
2

= I + (Σ + λ)
1
2 (Σ̂ + λ)−1

(

Σ− Σ̂
)

(Σ + λ)−1(Σ + λ)
1
2 .

From here, notice the following implications (that are actually equivalence)

Σ− Σ̂ � t(Σ + λ) ⇒ Σ̂ + λ � (1− t)(Σ + λ)

⇒ (Σ̂ + λ)−1 � (1− t)−1(Σ + λ)−1.

⇒ (Σ̂ + λ)−1 − (Σ + λ)−1 � t(1− t)−1(Σ + λ)−1.

⇒ (Σ + λ)
1
2

(

(Σ̂ + λ)−1 − (Σ + λ)−1
)

(Σ + λ)
1
2 � t(1− t)−1

⇒ (Σ + λ)
1
2 (Σ̂ + λ)−1(Σ + λ)

1
2 � (1− t)−1.

The probability of the event Σ− Σ̂ � t(Σ + λ), can be studied through the probability of the event

(Σ + λ)−
1
2 (Σ − Σ̂)(Σ + λ)−

1
2 � t, which can be studied through concentration of self adjoint

operators. Finally, we have shown that

∥

∥

∥(Σ + λ)−
1
2 (Σ− Σ̂)(Σ + λ)−

1
2

∥

∥

∥

op
≤ t ⇒ A(λ) ≤ 1

1− t
. (23)

The best result that we are aware of, for covariance matrix inequality, is the extension to self-adjoint
Hilbert-Schmidt operators provided by Minsker (2017) in Section 3.2 of its concentration inequality
on random matrices Theorem 3.1. It can be formulated as the following.

Theorem 31 (Concentration of self-adjoint operators (Minsker, 2017)) Let denote by (ξi)i≤n a
sequence of independent self-adjoint operator acting on an separable Hilbert space A, such that
ker(E[ξi]) = A, that are bounded by a constant M ∈ R, in the sense ‖ξi‖op ≤ M , with finite

variance σ2 =
∥

∥E
∑n

i=1 ξ
2
i

∥

∥

op
. For any t > 0 such that 6t2 ≥ (σ2 + Mt/3),

P





∥

∥

∥

∥

∥

n
∑

i=1

ξi

∥

∥

∥

∥

∥

op

> t



 ≤ 14 r

(

n
∑

i=1

E ξ2i

)

exp

(

− t2

2σ2 + 2tM/3

)

,

with r(ξ) = Tr ξ/‖ξ‖
op

.

Let us define ξ that goes from X to the space of self-adjoint operator action on GX as

ξ(x) = (Σ + λ)−
1
2kxk

⋆
x(Σ + λ)−

1
2 . (24)

We have that (Σ + λ)−
1
2 (Σ − Σ̂)(Σ + λ)−

1
2 = Eρ[ξ(X)] − 1

n

∑n
i=1 ξ(xi). To apply operator

concentration, we need to bound ξ and its variance.
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Bound on ξ. To bound ξ we proceed with, because kxk⋆x is of rank one,

‖ξ(x)‖op =
∥

∥

∥(Σ + λ)−
1
2 kxk

⋆
x(Σ + λ)−

1
2

∥

∥

∥

op
= Tr

(

(Σ + λ)−
1
2kxk

⋆
x(Σ + λ)−

1
2

)

= Tr
(

k⋆x(Σ + λ)−1kx
)

=
∥

∥

∥
(Σ + λ)−

1
2kx

∥

∥

∥

2

GX

≤ N∞(λ)2.

Variance of ξ. For the variance of ξ we proceed by noticing that

E ξ(X) = EX(Σ + λ)−
1
2kXk

⋆
X(Σ + λ)−

1
2 = (Σ + λ)−

1
2 EX [kXk

⋆
X ] (Σ + λ)−

1
2

= (Σ + λ)−
1
2Σ(Σ + λ)−

1
2 = (Σ + λ)−1Σ.

Hence

E ξ(X)2 � sup
x∈X

‖ξ(x)‖op E[ξ(X)] � N∞(λ)2(Σ + λ)−1Σ.

And as a consequence
∥

∥E ξ(x)2
∥

∥ ≤ N∞(λ)2,

where we have used that
∥

∥(Σ + λ)−1Σ
∥

∥

op
= ‖Σ‖

op/(‖Σ‖
op

+ λ) ≤ 1.

Concentration bound on ξ. Using the self-adjoint concentration theorem, we get for any t > 0,
such that 6nt2 ≥ N∞(λ)2(1 + t/3),

PDn

(

‖Eρ̂[ξ]− Eρ[ξ]‖op > t
)

≤ 14
‖Σ‖op + λ

‖Σ‖op
N (λ) exp

(

− nt2

2N∞(λ)2(1 + t/3)

)

.

Therefore, using the contraposition of the prior implication, we get

PDn

(

A(λ) >
1

1− t

)

≤ 14
‖Σ‖op + λ

‖Σ‖op
N (λ) exp

(

− nt2

2N∞(λ)2(1 + t/3)

)

. (25)

C.6.4. Decomposition of vector term in a variance and a bias term

Let switch to the vector term, consider ξ : X × Y → G, defined as

ξ = (Σ + λ)−
1
2 kx(ϕ(y)− k⋆xγλ).

It allows to express in simple form the vector term as

B(λ) =
∥

∥

∥

∥

∥

1

n

n
∑

i=1

ξ(Xi, Yi)− E(X,Y )∼ρ[ξ(X,Y )]

∥

∥

∥

∥

∥

.

We can study this term through concentration inequality in G. To proceed we will dissociate the
variability due to Y to the one due to X, recalling that gλ(x) = k⋆xγλ and going for the following
decomposition

ξ(x, y) = ξv(x, y) + ξb(x)

ξv(x, y) = (Σ + λ)−
1
2 kx(ϕ(y) − g∗(x)),

ξb(x) = (Σ + λ)−
1
2 kx(g

∗(x)− gλ(x)),

(26)
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which corresponds to the decomposition

B(λ) ≤ Bv(λ) + Bb(λ)
Bv(λ) = ‖Eρ̂[ξv(X,Y )]− Eρ[ξv(X,Y )]‖
Bb(λ) = ‖Eρ̂[ξb(X,Y )]− Eρ[ξb(X,Y )]‖ .

(27)

The first term is due to the error because of having observed ϕ(y) rather than g∗(x), often called
“variance”, and the second term is due to the aiming for gλ instead of g∗ often called “bias”.

C.6.5. Control of the variance

To control the variance term, we will use the Bernstein inequality stated Theorem 21.

Bound on the moment of ξv. First of all notice that

‖ξv(x, y)‖G ≤
∥

∥

∥(Σ + λ)−
1
2 kx

∥

∥

∥

op
‖ϕ(y) − g∗(x)‖H .

Therefore, under Assumption 5, for m ≥ 2:

E(X,Y )∼ρ [‖ξv(X,Y )‖m] ≤ EX∼ρX

[

∥

∥

∥(Σ + λ)−
1
2kx

∥

∥

∥

m

op
EY∼ρ|X [‖ϕ(y) − g∗(x)‖mH]

]

≤ 1

2
m!σ2Mm−2 EX∼ρX

[

∥

∥

∥
(Σ + λ)−

1
2kx

∥

∥

∥

m

op

]

.

We bound the last term with

EX∼ρX

[

∥

∥

∥(Σ + λ)−
1
2 kx

∥

∥

∥

m

op

]

≤ sup
x∈supp ρX

∥

∥

∥(Σ + λ)−
1
2kx

∥

∥

∥

m−2

op
EX∼ρX

[

∥

∥

∥(Σ + λ)−
1
2 kx

∥

∥

∥

2

op

]

= N∞(λ)(m−2)N (λ).

Concentration on ξv. Applying Theorem 21, we get, for any t > 0, that

P (Bv(λ) > t) ≤ 2 exp

(

− nt2

2σ2N (λ) + 2MN∞(λ)t

)

. (28)

C.6.6. Control of the bias

To control the bias, we recall a simpler version of Bernstein concentration inequality, that is a
corollary of Theorem 21.

Theorem 32 (Concentration in Hilbert space (Pinelis and Sakhanenko, 1986)) Let denote byA
a Hilbert space and by (ξi) a sequence of independent random vectors on A such that E[ξi] = 0,
that are bounded by a constant M , with finite variance σ2 = E[

∑n
i=1 ‖ξi‖2]. For any t > 0,

P(

∥

∥

∥

∥

∥

n
∑

i=1

ξi

∥

∥

∥

∥

∥

≥ t) ≤ 2 exp

(

− t2

2σ2 + 2tM/3

)

.
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Bound on ξb. We have

‖ξb(x)‖G ≤ sup
x∈supp ρX

∥

∥

∥
(Σ + λ)−

1
2kx

∥

∥

∥

op
‖gλ(x)− g∗(x)‖H ≤ N∞(λ) ‖gλ − g∗‖∞ .

Therefore, with Appendix C.5, we get

‖ξb(x)‖G ≤ b1λ
q−pN∞(λ).

Variance of ξb. For the variance we proceed with

‖ξb(x)‖2G ≤ N∞(λ)2 ‖gλ(x)− g∗(x)‖2H .

Therefore
E[‖ξb(X)‖2] ≤ N∞(λ)2 ‖gλ − g∗‖2L2 .

Using the derivations made in Appendix C.5, we have, using that q ≤ 1,

‖gλ − g∗‖L2 = λ
∥

∥(K + λ)−1Kqg0
∥

∥

L2 ≤ λ
∥

∥

∥(K + λ)−(1−q)
∥

∥

∥

op

∥

∥(K + λ)−qKq
∥

∥

op
‖g0‖L2

≤ λq ‖g0‖L2 .

Concentration on ξb. Adding everything together, we get

P (Bb(λ) > t) ≤ 2 exp



− nt2

2
(

λ2qN∞(λ)2 ‖g0‖2L2 + b1λq−pN∞(λ)t/3
)



 . (29)

Note that based on the bound on the variance, we would like N∞(λ)2λ2q ≈ λ2(q−p) to be smaller
than N (λ) ≈ λ−σ. It is the case since q > p.

C.6.7. Union bound

To control ‖gn − gλ‖L∞ ≤ cpλ
−pA(λ)(Bv(λ) + Bb(λ)), we need to perform a union bound on

the control of A and the control of B := Bv + Bb, we use that for any t > 0 and 0 < s < 1,
cpλ

−pAB > t implies A > 1/(1 − s) or B > (1− s)tλp/cp. Similarly Bv + Bb > t, implies that either
Bv > t/2, either Bb > t/2. Therefore, we have, the following inclusion of events (with respect to Dn)

{‖gn − gλ‖L∞ > t} ⊂
{

A >
1

1− s

}

∪
{

Bv >
(1− s)tλp

2cp

}

∪
{

Bb >
(1− s)tλp

2cp

}

.

In term of probability this leads to

PDn (‖gn − gλ‖L∞ > t) ≤ PDn

(

A >
1

1− s

)

+ PDn

(

B >
(1− s)tλp

cp

)

. (30)

Looking closer it is the term in B that will be the more problematic, therefore we would like s to
be small. It we take s to be a constant with respect to t, we will get something that behaves like
P(B > tλp), which is the best we can hope for (this also explain why we divide B > t in Bv > t/2
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or Bb > t/2). We will consider s = 1/2. We express concentration based on the expression of N and
N∞, assuming λ ≤ ‖Σ‖op, and n > a23λ

−2p

PDn(A > 2) ≤ 28a2λ
−σ exp(−nλ

2p

10a23
).

Similarly we get, when λ ≤ 1, using that λ−σ ≥ 1

PDn(Bv > t/4) ≤ 2 exp

(

− nλσt2

32σ2a2 + 8Ma3λ−pt

)

.

For the bias term, we can proceed at a brutal bounding, based on the fact that for λ ≤ 1, λq−p ≤
1 ≤ λ−σ, to get

PDn(Bb > t/4) ≤ 2 exp

(

− nλσt2

32a23 ‖g0‖L2 + 8b1a3λ−pt/3

)

.

With b4 = max(32σ2a2, 32a
2
3 ‖g0‖L2) and b5 = max(8Ma3, 8b1a3/3), we get the following union

bound

PDn

(

B >
tλp

2

)

≤ 4 exp

(

−nλ
2p+σt2

b4 + b5t

)

.

We proceed with the union bound on ‖gn − gλ‖L∞ as

PDn(‖gn − gλ‖L∞ > t) ≤ b2λ
−σ exp(−b3nλ2p) + 4 exp

(

−nλ
2p+σt2

b4 + b5t

)

,

with b2 = 28a2 and b−1
3 = 10a23, as long as b3n > λ−2p, and λ ≤ max(1, ‖K‖op).

C.6.8. Refinement of Lemma 13

Remark that the uniform control in Lemma 13 is more than we need, we only need control for each
x as described in Assumption 2. Indeed, if p(x) is such that there exists a constant c̃p (that does not
depend on x or λ), such that for any i ∈ N

〈kx, ui〉GX
≤ c̃pλ

p(x)
i ,

then considering that

gn(x)− gλ(x) = k⋆x(γn − γλ) = k⋆x (Σ + λ)−
1
2 (Σ + λ)

1
2 (γn − γλ) ,

we can get improve the results of Lemma 13 by replacing p by p(x). While we considered p =
supx∈ρX p(x) as a consequence of our proof scheme, one can expect to end up with the EX [λ

p(X)]
instead of λp when deriving the proof of Theorems 14 and 15 (for which one has to refine Theorem
Theorem 6 in order to integrate dependency of L to x, similarly to what is done in Lemma 18),
which will lead to better rates. Yet, because of complexity of expressing a quantity of the type
EX [ϕ(p(X))], for some function ϕ, we decided not to present this improved version in the paper.
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C.7. Proof of Theorem 14

Based on on the proof of Theorem 5, we know that

EDn R(fn)−R(f∗) ≤ ℓ∞ PDn (‖gn − g∗‖∞ > t0) .

Now we use that

PDn (‖gn − g∗‖∞ > t0) ≤ PDn (‖gn − gλ‖∞ > t0 − ‖gλ − g∗‖∞) .

The result follows from derivations in Appendix C.6, where we used that when k is bounded,
Assumptions 7 and 8 are verified with σ = 1 and p = 1/2. Note that we do not need the source
assumption, since we can bound directly ‖gλ − g∗‖L2 ≤ ‖gλ − g∗‖L∞ < t0 while retaking the
proof in Appendix C.6. Moreover, the results of this last proof holds under the condition nλb3 > 1,
but, since EDn R(fn)−R(f∗) ≤ ℓ∞, we can augment the constant b6 so that the result in Theorem
14 still holds for any n ∈ N∗.

C.8. Proof of Theorem 15

We can rephrase Lemma 13, using a union bound

PDn(‖gn − g∗‖ > t) ≤ PDn(‖gn − gλ‖ > t/2) + PDn(‖gλ − g∗‖ > t/2)

≤ b2λ
−σ exp

(

−b3nλ2p
)

+ 4exp

(

− nλ2p+σt2

4b4 + 2b5t

)

+ 1t≤2λq−p .

Using variant of Theorem 6 presented in Appendix A.6, we get

R(fn)−R(f∗) ≤ ℓ∞b2λ
−σ exp

(

−b3nλ2p
)

+ 2cψcα2
α+1λ(q−p)(α+1)

+ 2cψcαc

(

b
α+1
2

4 (nλ2p+σ)−
α+1
2 + bα+1

5 (nλ2p+σ)−(α+1)

)

.

As long as λ ≤ max(‖K‖op , 1) and n ≥ (b3λ
2p)−1. We optimize those rates with λ = λ0n

−γ , and
γ satisfying

2γ(q − p) = 1− γ(2p + σ) ⇒ γ = (2q + σ)−1.

This leads to, for n after a certain N ∈ N∗

R(fn)−R(f∗) ≤ ℓ∞b2λ
−σ
0 n

σ
2q+σ exp

(

−b3nλ2p0 n
2(q−p)+σ

2q+σ

)

+ 2cψcα2
α+1λ

(q−p)(α+1)
0 n

− (q−p)(α+1)
2q+σ

+ 2cψcαc

(

b
α+1
2

4 λ
(2p+σ)α+1

2
0 n−

(q−p)(α+1)
2q+σ + bα+1

5 λ
(2p+σ)α+1
0 n−

2(q−p)(α+1)
2q+σ

)

≤ b8n
− 2(q−p)(α+1)

2q+σ .

Since ℓ is bounded, R(fn) − R(f∗) ≤ ℓ∞, and we can always higher b8, in order to have the
inequality for any n ∈ N∗.
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