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Abstract

The articulatory-acoustic relationship is many-to-one and non lin-
ear and this is a great limitation for studying speech production. A
simplification is proposed to set a bijection between the vowel space
(f1, f2) and the parametric space of different vocal tract models. The
generic area function model is based on mixtures of cosines allowing
the generation of main vowels with two formulas. Then the mixture
function is transformed into a coordination function able to deal with
articulatory parameters. This is shown that the coordination function
acts similarly with the Fant’s model and with the 4-Tube DRM derived
from the generic model.

1 Introduction
Establishing a causal relationship between articulatory movements and speech
sounds is a major goal of the speech sciences. The main theoretical advances
were made during the 1960s, devoted to understanding the actual shapes of
the vocal tract (VT) in sound production. This led to the design of artic-
ulatory models as well as to the synthesis of speech sounds, but this effort
was slowed down by the complexity of this relationship. Even if we limit the
domain to vowels and their first two formants (f1, f2), this problem remains
poorly understood. This is due to the many-to-one relation between the very
large space of VT forms and the two-dimensional space of formants as well
as to the non-linearities. Starting from real VT forms, this problem is so
difficult that theoretical researches like [11, 1, 22] have failed to produce a
clear conclusion. De facto, there is no reliable inversion technique applicable
to any vocal tract, even with modern Bayesian or neural network approaches.
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We are therefore unable to clearly understand how speech evolved from the
shapes of the monkey vocal tract, or to understand how movements are gen-
erated by the brain to control the vocal tract. This lack of understanding is
at the root of long-standing conflicts such as the one examined and seemingly
closed by [6]. After the development of articulatory models such as Maeda’s
or Mermelstein’s, the community split into two approaches: those who work
directly with the area function to synthesize speech sounds and those who
work with human-like models controlled by articulatory parameters. Both
fields have thus seen many advances, but without much convergence. Until
today, only the first approach has allowed to realize a bijection between the
parametric space of the area function and the vowel space (f1, f2) [7, 18].
The aim of this paper is to revisit the roots in order to construct a link with
articulatory modelling and to see which causality and structure these models
share. First, the adopted technique avoids real VT data in order to per-
fectly control the area function. This allows for a generation of vowel spaces
that are formed from a seed of three well chosen vectors and not empirical
functions derived from data as in [18]. The simplest model, which we call
the generic model, allows the synthesis of 8 vowels with two concise formu-
las having 2 variables and length as the only static parameter. Since the
vowel space is filled from its periphery and not generated recurrently from
its center as in [7], the use of the sensitivity function [9] is avoided. Thus, we
free ourselves from any consideration of the validity of this principle and the
generic model can acquire the status of an independent mathematical object.
Moreover, the first generative function, which we call the three-phase mixing
function, is transformed into a more comprehensible coordination function.
This is the coordination of human-like articulators, which is tested with a
4-tube model controlled by articulatory parameters. The seed of this model
is created according to intuitive principles. Comparison with the DRM [13],
a well-known 4-tube model here derived from the generic model, provides
insight into the role played by the coordination function in reducing the
many-to-one relationship.

2 The three-phase mixing function
A generative function P (θ) is constructed with the principle of the Gibbs
triangle used in chemistry for the representation of ternary mixtures of com-
ponents [20]. The dimension of this graph is reduced to two because the
three proportions a, b and c are reduced to a constant K fixed at 1 and
the components are located at the three corners of the triangle. Since the
vowel space is also considered a triangle with the extreme vowels [u,a,i] at
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the corners (see [6]) and the neutral vowel [@] at the center, the generative
function of the vocal tract shapes takes three vectors corresponding to these
vowels as input and defines the neutral vowel as their average. While the
acoustic space is a triangle, the vocal tract shape space (VT) will be defined
as a circular domain with a center, this for each scalar value of a vector.
Each vector of a cycle including the three vectors {i, j,k} is given by the
three-phase mixing function according to its angle θ:

P (θ) =
1

3
(i + j + k) +

2

3
(i cos(θ − π

3
) + j cos(θ − π) + k cos(θ − 5π

3
))

(1)

The first property of this function is to verify P (π
3
) = i, P (π) = j and

P (5π
3

) = k and setting Ω = 1
3

(i + j + k), the Eq. (1) is rewritten:

P (θ) = Ω +
2

3
(i (cos θ cos

π

3
+ sin θ sin

π

3
)− j cos θ

+k (cos θ cos
5π

3
+ sin θ sin

5π

3
)),

(2a)

→ P (θ) = Ω +
2

3
(((i + k) cos

π

3
− j) cos θ + (i− k) sin

π

3
sin θ). (2b)

This function is used as a generator of closed-open tube shapes, considering
that {i, j,k} are the vectors defining the shapes of the tubes producing [u,a,i]
placed at given angles θ ∈ {π

3
, π, 5π

3
} of an equilateral triangle. The angle θ

varies from 0 to 2π in order to mix these components. Having a triangle on
one side and a circle on the other is a main support for this paper. The aim
is to address the nonlinear and multiple characteristics of the articulatory-
acoustic relationship and to obtain a bijection between a large space (f1, f2)
of formant frequencies and a domain included in the very large VT shape
space. This domain is constrained to incorporate the configurations of the 3
extreme vowels and to establish a continuity between them.

3 The generic vocal tract model
Following the distinction proposed by [19] between VT modeling approaches,
the objective here is to explore the formal counterpart of the empirical stud-
ies conducted by most researchers. The vectors {i, j,k} are chosen from a
theoretical point of view and not in close relation to real forms of VT. The
first objective is to establish a link between the physics of closed-open tubes
and the structure of the vowel space, and then to propose a unification of the
two approaches. [16] established from Ehrenfest’s theorem δfi

fi
= δEi

Ei
that for
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small perturbations of the neutral tube, the first 2 odd cosine Fourier coeffi-
cients of the area function are related to the resonant frequency variations:
δfi
fi

= −1
2
ai (a1 being the amplitude of cos(πx

L
) and a2 of cos(3πx

L
)). This has

a physical meaning independent of a specific transfer function between the
VT shape space and the acoustic space, and others [12, 11] have derived the
same relation from Webster’s Horn equation after [21]. Let us evaluate these
terms in the three-phase mixtures provided by Eq. 1. To simplify the math-
ematical expressions, cos(πx

L
) is renamed to v1 and cos(3πx

L
) to v2. Then

{i, j,k} are defined as {1 + v1 + v2,1 − 2v1,1 + v1 − v2}. These are the
simplest components compatible with the three-phase mixing function Eq. 1
and at the same time able to maximize and minimize the first two frequency
resonances by extrapolation of the Schroeder-Ehrenfest relation. First, this
function satisfies the condition Ω = 1

3
(i+ j + k) = 1. Then, these terms are

introduced in Eq. 2b to identify a1(θ) and a2(θ):

P (θ) = 1 +
2

3
((1 + v1 + v2 + 1 + v1 − v2) cos

π

3
− 1 + 2v1) cos θ

+
2

3
(1 + v1 + v2 − 1− v1 + v2) sin

π

3
sin θ,

(3a)

→ P (θ) = 1 + 2v1 cos θ +
4

3
v2 sin

π

3
sin θ, (3b)

then a1(θ) = 2 cos θ, a2(θ) =
4

3
sin

π

3
sin θwithP (θ) = 1 + a1(θ)v1 + a2(θ)v2.

(3c)

For main vowel synthesis, there is no other parameter than the length L given
in cm and the amplitude is already scaled in cm2. A suitable soft rectifier
Eq. 4b is applied to the continuous functions P (x, θ) arising from Eq. 3c
to obtain positive valued area functions A(x, θ). This is the only explicit
nonlinearity introduced in the model that can distort the Schroeder-Ehrenfest
relation away from the neutral tube. These are sampled to apply the transfer
function of a transmission line model. For the present simulations, we chose
the Badin and Fant model [2] defined as lossless. The choice of transmission
line model is not critical to reproduce the present results with these equations.
For the sampling rate, a large value of n ≥ 100 tubelets of length L

n
is

preferable to avoid the distortions introduced at this stage. The length L
is fixed at 17.5 cm for comparison with other works. The resulting concise
vowel equation is as follows:A(x, θ) = expif(1 + a1(θ) cos(

πx

L
) + a2(θ) cos(

3πx

L
)),

if (y < 1) then expif(y) = exp(y − 1) else expif(y) = y.

(4a)

(4b)
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This equation associates the main vowels with θ angles corresponding to pairs
of Fourier coefficients a1 and a2. Fig. 1, the series of eight vowels [1, u, o, O, a,
E, e, i] is produced with θ ∈ {0, π

3
, π
2
, 2π

3
, π, 4π

3
, 3π

4
, 5π

3
} and with Fourier coeffi-

cients (partially) given by Eq. 3c (a1, a2) ∈ {(2, 0), (1, 1), (0, 1), (−1, 1), (−2, 0),
(−1,−1), (0,−1), (1,−1)}. It is logical to find for [u, a, i] the coefficients
given for the definition of {i, j,k}. Let us mention the analogy with an oc-
tatonic musical scale having W-H-H-W-W-H-H-W intervals which suggests
that a common structure to speech and music is revealed by this represen-
tation (see [15]). Eq. 1 has a second important property for the expression
of the structure of the vowel space which is the antisymmetry with respect
to Ω : we have P (θ + π) = 2 Ω − P (θ) then the coefficients of [E, 1, O] can
be directly deduced from those of [u, a, i] because ai(θ + π) = −ai(θ). The
extrema of the acoustic space are well reached in spite of the nonlinearities
transforming the circle into a triangular shape (Fig. 1): [1, a, o, e] correspond
well to {min(f1),max(f1),min(f2),max(f2)} and this is determined by the
values of ai. To generate the complete vowel space, the extension to a domain
is performed by multiplying a1(θ) and a2(θ) by a scalar ρ varying between 0
and 1. Thus, the central vowel [@] corresponds to ρ = 0 and except for this
point, a bijection is established between the surfaces P (ρ, θ) ↔ (ρ a1, ρ a2)
and this is observed between all of them and the vowel space (f1, f2).

4 The coordination function
Another more practical equation for n-tubes and articulatory modeling can
be rewritten from the three-phase mixing function (Eq. 1). Let us insist
that this is mathematically equivalent. This highlights the properties of the
resulting parameter vector P (θ) and its terms are significant: they express
the coordination between the parameters along the θ cycle. In other words,
for articulatory modeling, they explain how the phases and amplitudes of the
different parameters of a model are locked together in a continuous domain.
The area function is a side product that is analyzed section 5 to find a
link between these two classes of models. As developed in section 5, it is
also possible to apply it not only with the vectors {i, j,k}, but also with
their three dual vectors {Ω,Ψ1,Ψ2} appearing in this function. As it is a
rewriting, we give a priori the new form in which the two unknown terms
are identified from those of Eq. 2b with element wise operations (we already
know the third Ω = 1

3
(i + j + k)):

P (θ) = Ω + Ψ1 cos(Ψ2 − θ) (5a)
→ P (θ) = Ω + Ψ1 (cosΨ2 cos θ + sinΨ2 sin θ) (5b)
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After identification, we obtain: Ψ1 cosΨ2 = 2
3

((i+k) cos π
3
−j) and Ψ1 sinΨ2 =

2
3

(i−k) sin π
3
. The values of the vectors {Ψ1,Ψ2} are derived from those of

{i, j,k}: Ψ2 = atan(((i− k) sin
π

3
)/(

1

2
(i + k)− j)),

andP (π) = j → Ψ1 = (Ω− j) cos−1Ψ2.

(6a)

(6b)

The antisymmetry with respect to Ω is easily proved in this second form:
we have P (θ + π) = 2 Ω − P (θ) since cos(Ψ2 − (θ + π)) = −cos(Ψ2 − θ).
In particular, the effect of each scalar parameter included in P at each θ
is easy to identify as agonist or antagonist and this is useful for controlling
articulatory models. The variations of each parameter along the cycle can
be coded according to a rule for assigning a parameter extremum to a phase.
For example, the length variation is coded as L = L + ∆L cos(π

3
− θ) for

having a maximum L + ∆L for the phase π
3
of vowel [u]. Thus, the direct

method is the conversion of the known vectors of the parameters of [u,a,i]
with Eq. 6a and 6b. As before, the coordination function is extended to a
domain by multiplying the amplitude Ψ1 by ρ :

P (ρ, θ) = Ω + ρΨ1 cos(Ψ2 − θ) (7)

This formula is easy to use and if applied to real VT data published by
[18], it generates a mapping from 3 vectors corresponding to extreme vowels
including the length component.

5 Comparison of two 4-tube models
While the generic model has 2 degrees of freedom to generate a large vowel
space (f1, f2), the 4-tube models [17, 8] require 3 homogeneous parameters
with {Xc, Ac, Al} (constriction position and area, lips area). It has been
shown that anthropomorphic models also require at least these parameters
for inversion [5]. On the other hand, with Monte Carlo simulations with
4-tube with a total length set at 17.5 cm, [6] noticed that the vowel space is
maximized with 7 parameters and that having N > 4 sections is unneces-
sary. This maximized vowel space was defined as the articulatory potential
of a closed-open tube having a given length. The generic model has some-
what smaller (f1, f2) (Fig. 1) and we suspect that the extra 5 of parameters
are the source of the undesirable many to one relationship, partly due to
the fact that the 4-tube cut is determined by 3 of them. Note that the
third formant is not incorporated into the current definition of vowel space.
Therefore, to obtain its control, the generic model must be defined with
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cos(5πx
L

) terms leading to an additive parameter. This would be consistent
with {Xc, Ac, Al} but this improvement is to be developed later. We de-
rive from the generic model the well-known 4-tube DRM having an optimal
cut [14] and compare it with a circularized Fant model with 4 parameters
{Xc, Ac, Al, L}. The goal of the DRM is to propose a division into 8 re-
gions and a rule to vary their areas by knowing the direction of variation
of each of the first 3 formants. For the 2 formants only, we limit ourselves
to 4 regions and the cut of the closed-open tube is done at {L

6
, L
2
, 5L

6
} from

glottis to lips. The parameters of the DRM are the areas of each section
named {A1, A2, A3, A4} while the corresponding values of the generic model
are the Pi values before rectification. Since the cutting is done at zero cross-
ings of the v1 and v2 components, these values are taken in the generic
model at the x ∈ {0, L

3
, 2L

3
, L} points to compute Pi. Moreover, the values

of {P1, P2} are antisymmetric by construction from the generic model with
those of {P3, P4}. This is an internal antisymmetry about the midpoint L

2
,

well described by [14] and not to be confused with that created by the coor-
dination function, although it has common effects. Because vi(0) = −vi(L)
and vi(L3 ) = −vi(L− L

3
) = −vi(2L3 ) we obtain P3 = 2− P2 and P4 = 2− P1

from Eq. 3c. What is called the reduction is the systematic calculation of
{P3, P4} from {P1, P2} so that this property explicitly reduces the number of
free parameters to 2. When this reduction is not applied, the coordination
function preserves the internal antisymmetry introduced by the components
v1 and v2. This is because their amplitudes respect ai(θ+π) = −ai(θ) along
the cycle as seen in section 3. There is an equivalence between the explicit
reduction and the coordination and this is encoded in Ψ1 and Ψ2. We find
here the main property of the coordination function which consists in rely-
ing on the odd cosine Fourier components. With the generic model and the
present DRM reduction, these 2 components are controlled variables so that
only two degrees of freedom are needed to determine the variations of (f1, f2)
away from the neutral tube, even if they are non linear. This is a baseline for
observing the effect of the coordination function when the v1 and v2 com-
ponents and many others are not controlled. Its configuration for {P1, P2}
after the transformation {i, j,k} → {Ω,Ψ1,Ψ2} is detailed in Table 1. Fol-
lowing the same notation as for the generic model, for {P3, P4}, we have
Ψ1(

2L
3

) = −Ψ1(
L
3
), Ψ2(

2L
3

) = Ψ2(
L
3
) and Ψ1(L) = −Ψ1(0), Ψ2(L) = Ψ2(0).

This is easy to check that P3 = 2 − P2 and P4 = 2 − P1 as for the reduc-
tion. The version of Fant’s model that was implemented by [3] is embedded
in the coordination function format. Its main difference is that a constant
length section is sliding (Fig. 3a) whereas the DRM is a piston model with a
fixed cut: it varies the areas of sections only. The advantage pointed out by
[4] is to represent the tongue movements by variations of {Xc, Ac} and this
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has been considered until now as a divergence between these two classes of
models. However, the geometry of this model does not have the symmetries
introduced by the cut and at the same time it reduces the antisymmetry of
the area function. This does not mean that the latter is unrecoverable or that
it has no role. Indeed, the vocal tract does not function as a piston model
but there is no evidence that they have nothing in common as defended by
[4]. To equalize their number of parameters to 4, we also vary the length
L in the Fant model. We have seen in section 4 how to find {Ω,Ψ1,Ψ2}
for this parameter. The principle is the same for the 3 others: (1) choice
of the offset (2) fixing the variation amplitude around the offset before soft
rectification (3) assigning an extremum of each parameter to a vowel phase.
For example Table 2, Xc is maximal for [i] so that the configuration acquires
a large posterior Helmholtz cavity specific to this vowel [6]. Note that the
language adopted to specify configurations is different in articulatory mod-
eling because it is goal-oriented and qualitative. Based on the geometry of
the model, the coordination function specifies how the parameters are cy-
cled. Here, variations in {Xc, Ac} correspond to an anatomically relevant
rotation of the tongue in the mouth. This is also easy to recover {i, j,k}
from {Ω,Ψ1,Ψ2}. At this point, the coordination function is fully compat-
ible with both classes of models. Nevertheless, there is a reconstruction step
to have a sampled P (i, ρ, θ) which is described in the captions of Table 1 and
2. Then, soft rectification is applied with Eq. 4b, changing the DCT spec-
trum for both models. Remarkably, a small amount of even components are
introduced into the area function of the DRM. The transmission line model
is set lossless for the DRM and lossy for the Fant model. The models are first
simulated at ρ = 1 and θ varying from 0 to 2π with the coordination function
(labelled C2 in Fig. 2 and 3). Both vowel spaces have a similar structure
with the 8 vowels placed comparatively (Fig.2,3b). The size of the vowel
space for Fant’s model appears to be reduced. The two 4-tube models are
simulated under 2 conditions: (1) C1, with their 4 parameters uncorrelated
and uniformly distributed within Ω±Ψ1 (2) C2 using the coordination func-
tion with ρ = 1 together with (ρ, θ) randomnesses. We observe Fig.2 that for
the DRM, the space (f1, f2) is identically covered except at the corners of the
uniform distribution. For Fant’s model, more points of C1 escape from the
C2 space but this is globally confined. Then C2 does not decrease so much
the articulatory potential of Fant’s model as defined by C1. We evaluate the
two cosine Fourier coefficients of the area function which are here the most
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informative components of the DCT spectrum:
ã1(ρ, θ) =

2

n

n∑
i=1

A(i, ρ, θ) cos(
πi

n
),

ã2(ρ, θ) =
2

n

n∑
i=1

A(i, ρ, θ) cos(
3πi

n
).

(8a)

(8b)

For each of the models, the formants (f1n, f2n) of the neutral position P (0, 0)
are calculated. Let remark this is not an uniform area function for the
Fant’s model. Fig.4 the deviations from the neutral position in relative val-
ues df1 = (f1 − f1n)/f1 and df2 = (f2 − f2n)/f2 are plotted as a function
of (ã1, ã2). This shows that C2 is represented by surfaces whereas C1 is
represented by disparate dots distant from these surfaces. Considering that
(ã1, ã2) reflects control parameters the key point is that we observe for C1
the many to one relationship whereas it disappears for C2: the intrinsic di-
mension is reduced at 2 for both models. Note, however, that there is a slight
departure from the bijectivity between [a] and [O] for Fant’s model, but that
this does not affect the validity of this observation. For DRM, we have seen
that the dimension can be explicitly reduced due to internal antisymmetry.
Here, the only reason to have a many-to-one relationship is the decorrelation
between the areas Ai. The coordination function only generates the inter-
nal antisymmetry as does the explicit reduction. Moreover, the variations of
(f1, f2) according to (ã1, ã2) from one model to another are well correlated in
the C2 condition. For the Fant model, the coordination function generates a
geometrically consistent set of configurations that are antisymmetric because
(ã1, ã2) vary circularly. Despite the weaker internal antisymmetry and then
weaker values of (ã1, ã2), the two vowel spaces acquire a similar structure.
The first explanation for the disparity of theC1 points in Fig.4a, which is the
signature of the many-to-one relation, is the growth of the even cosine Fourier
coefficients associated with a degree of internal symmetry. [16] showed as a
corollary that these coefficients have no first order effect on (f1, f2) and we
extrapolate here by assuming that they have a small effect in the range of
odd coefficients. After [12], [22] tried to disentangle them using constraints,
knowing they cannot be evaluated from the formants fi. Then, the decorre-
lation between areas Ai in DRM C1 is a source of many-to-one relationship
as shown in Fig.4a. A remaining question is the relationship between the
resonant frequencies and the cosine Fourier coefficients. It turns out that for
the generic model as well as for the reduced DRM, this presents a quadratic
term biasing the Schroeder-Ehrenfest relation only for df1. The variations
away from the neutral tube are approximated fairly well by df1 = − ã1

2
− ã22

4
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and df2 = − ã2
2

(this estimate is plotted Fig. 2). This has the main effect
of transforming a circular shape into a triangular shape, providing physical
support for the common shape of the vowel space. This cannot be due to soft
rectification because it does not produce such a bias but it is an interference
in the transfer function. It is well known for the DRM that variations of
A2 modify f1 and f2 in opposite directions and here we quantify this effect.
This depends on the specific cut {L

6
, L
2
, 5L

6
} of the reduced DRM and any

perturbation of it will change (ã1, ã2) and invalidate the previous estimate.
In the Fant model, the Xc parameter controlling the length of the sections is
involved, precluding the fit between (ã1, ã2) and (f1, f2). We conclude that
implicit nonlinearities are difficult to analyze, emphasizing the value of hav-
ing the simplest models in hand as a baseline. Moreover, even coefficients
linked with symmetric configurations are enhanced in the Fant model and
this is combined with length variations for explaining the many-to-one rela-
tionship observed inC1. All these factors are present with real VT forms and
this makes the existence of an analytical solution doubtful. In this context,
the coordination function has the main property of generating for the non-
optimal VT forms the regular relation existing with the generic model and
the reduced DRM. In other words, the coordination function is an optimal
way to exploit the articulatory potential of a vocal tract to create a vowel
space as well as to generate a one-to-one correspondence. The residue of C1
points (Fig. 3b) with better contrast might be unrecoverable. Following this
reasoning, most of the points produced with 7 parameters [6, Fig. 4 with
L = 17.5 cm] and especially those located in the crown outside the DRM
C2 could be excluded from the definition of the articulatory potential of a
closed-open tube. It appears that these points are outside the human vowel
space, with the exception of [i] which is outside of the DRM C2. This sug-
gests that the third parameter we have discarded has a role for this vowel
and is a call to extend the present analysis.

6 Conclusion
After [7], we showed that the vowel space can be described as a pre-existing
mathematical object. After [4], this has the disadvantage that it bears little
resemblance to the human VT. To resolve this contradiction, a Platonic pro-
posal is to consider that humans have discovered how to make vowels with
their non-optimal vocal tract by using the coordination function. The first
way of coding {Ω,Ψ1,Ψ2} from {i, j,k} as in Table 1 is abstract but the
second Table 2 is on the contrary adapted to think about this evolutionary
process because it is geometrically constrained. This means that the acous-
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tic contrast dfi is determined by the volume [Ω±Ψ1] which is indexed by
(ã1, ã2). For example, a restriction of the interval of Xc related to the abil-
ity to rotate the tongue in the mouth has a roughly proportional effect on
(ã1, ã2) and then on the size of the space (f1, f2). For monkeys, this capacity
is strongly reduced because they have a fixed larynx and a small pharyngeal
cavity. The anatomical ranges observed by [10] are quite small and this pro-
vides a new objective criterion for judging whether they are truly "speech
ready".
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7 Figures and Tables

Parameter x i(x) j(x) k(x) Ω(x) Ψ1(x) Ψ2(x)
P1 0 3 −1 1 1 2 cos−1(atan(2

3
sin π

3
)) atan(2

3
sin π

3
)

P2 L/3 0.5 0 2.5 1 cos−1(atan(−4
3
sin π

3
)) atan(−4

3
sin π

3
)

Table 1: Setup of the coordination function (Eq. 7) for the 2 first parameters
of the DRM controlling the areas of the two first sections from glottis and
the two others are set in the text. The model is derived from {i, j,k} of the
generic model at given points x. The reconstruction of the 4-tube P (i, ρ, θ)
function is realized with n = 120 tubelets having length L

n
with L = 17.5 cm.

The proportion of n composing each of the 4 sections is {n
6
, n
3
, n
3
, n
6
} and the

value of P (i, ρ, θ) for each is {P1, P2, P3, P4}.

Parameter Ω Ψ1 Ψ2

Xc Lc/2 0.3 (Lc − l) 5Π/3
Ac −1.5A 2A Π
Al A/2 −A Π/3
L L ∆L Π/3

Table 2: Specification of {Ω,Ψ1,Ψ2} of Eq. 7 for the 4 parameters of the
Fant model with the rules described in the text. For parameters {Ac, Al, L}
the underlying geometrical parameters are: A = 1 cm2, L = 17.5 cm and
∆L = 1.5 cm. The length of sections is defined in number of tubelets so that
for Xc the underlying geometrical parameters are proportions of n = 200:
Lc = 0.9 and l = 0.3. The reconstruction of the 4-tube P (i, ρ, θ) function is
realized after rounding, merging and before applying the soft rectification.
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Figure 1: The vowel space of the generic vocal tract model and its 8 char-
acteristic vowels. The area functions are plotted for each vowel with, at the
top, the pairs (a1, a2) of cosine Fourier coefficients which are introduced in
the vowel equation (Eq. 4ab).
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Figure 2: Simulation in condition C1 together with the vowel space C2 with
ρ = 1 obtained with the coordination function. All (non figured) points ofC2
are inside of this. The spaces derived from the Schroeder-Ehrenfest relation
and Fourier coefficients before and after rectification ("SE" from (a1, a2) and
(ã1, ã2)) and the biased relation ("est" from (ã1, ã2)) are plotted relative to
the neutral reference (f1n, f2n).
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Figure 3: (a) The design of the Fant model redrawn from [3, Fig. 1] and
the definition of geometrical parameters used in Table 2 (b) Simulation in
condition C1 together with the vowel space C2 with ρ = 1 obtained with
the coordination function. All (non figured) points of C2 are inside of this.
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Figure 4: Simulations of dfi in condition C1 and C2: (a) DRM (b) Fant
model. Abscissa: Fourier cosine coefficients of the area function. Ordinate:
Deviations from neutral in relative values dfi = (fi−fin)/fin for the two first
formants. The circled gray surfaces represent the configurations produced
by the coordination function in C2 and the dots represent C1 which is a
simulation of the 4 parameters of each model but uncorrelated in the same
domain of variation Ω±Ψ1.
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