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Lake Baikal is the deepest (~1.6 km) and most voluminous freshwater reservoir on Earth. Compared to 

plankton, its benthos remains poorly explored. Here, we ask whether latitude and/or depth determine 

benthic microbial community structure and how Baikal communities compare to those of other 25 

freshwater, brackish and marine sediments. To answer, we collected sediment upper layers (0-1 cm) 

across a ~600 km North-South transect covering the three basins of the lake and from littoral to 

bathybenthic depths (0.5 to 1450 m). Metabarcoding of 16S and 18S rRNA genes revealed communities 

with high richness and evenness where rare operational taxonomic units (OTUs) collectively dominated. 

Archaea represented up to 25% or prokaryotic sequences. Baikal sediments harbored typically marine 30 

eukaryotic and prokaryotic OTUs recently identified in some lakes (diplonemids, Bolidophyceae, 

Mamiellales, SAR202, marine-like Synechococcus, Pelagibacterales) but also SAR324, Syndiniales and 

Radiolaria. We hypothesize that, beyond the salinity barrier, adaptation to oligotrophy explains the 

presence of these otherwise typically marine lineages. Baikal core benthic communities were relatively 

stable across sites and seemed not determined by depth or latitude. Comparative analyses with other 35 

freshwater, brackish and marine prokaryotic sediment communities confirmed the distinctness of Baikal 

benthos, which include elements of similarity to marine and hydrothermally-influenced systems. 

 

Keywords: Lake Baikal; benthos; 16S/18S rRNA metabarcoding; archaea; bacteria; protist; marine-

freshwater transition 40 
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Lake Baikal in Southern Siberia is the oldest (~30 Myr), deepest (~1650 m maximum and 750 m and 45 

average depth), and largest (by volume, ~23000 km3) freshwater lake on Earth. This unique ecosystem 

is akin, in several respects, to sea environments [1]. Its surface freezes in winter, which triggers coastal 

downwelling and deep-water ventilation. Consequently, its water body remains cold (~4°C), oxygen-

rich and ultra-oligotrophic [2]. Deep, cold and associated with a rifting zone, Lake Baikal host methane 

hydrates [3]. Geographically, the Academician Ridge and the Selenga river delta delimitate three basins: 50 

Northern, Central, and Southern [1]. Lake Baikal hosts many endemic metazoan species [2]. Molecular 

analyses of prokaryotic (e.g.[4-6]) and microbial eukaryotic (e.g.[7-9]) diversity have been mostly 

carried out in plankton. Comparatively, benthic microbial communities remain poorly known, with few 

studies of archaea and bacteria in bottom, often seepage-influenced, sediments [10] and of sediment-

associated eukaryotes [7]. Here, we asked how benthic communities vary spatially along latitudinal and 55 

vertical gradients in Lake Baikal and how they compare to those of other freshwater, brackish and 

marine ecosystems. To answer, we carried out a comparative study of Baikal benthic prokaryotic and 

eukaryotic microbial communities across a ~600 km latitudinal North-South gradient traversing the 

three lake basins and from surface (littoral sediment) to the greatest depths (>1400 m) using a 

metabarcoding approach (Fig.1A; Supplementary Text). We purified DNA from the upper sediment 60 

layer (ca. 0-1 cm) and massively sequenced amplicons of 16S (V4-V5 region) and 18S (V4 region) rRNA 

genes. High-quality reads clustered in 33943 prokaryotic and 3351 eukaryotic SWARM-derived 

operational taxonomic units (OTUs), which did not reach saturation in accumulation curves 

(Supplementary Fig.1; Supplementary Text). Computed from rarefied sequence matrices, eukaryotic 

and, especially, prokaryotic communities exhibited high richness, diversity and evenness scores 65 

(Supplementary Tables 1-2). Therefore, Baikal sediments seem to harbor complex communities with 

no clear dominant species.  

Archaea reached up to 25% relative abundance and, on average, 20% of the OTUs (Supplementary 

Fig.2). They encompassed diverse phyla, consistent with recent studies of seepage areas [10], with 

DPANN (Woesearchaeota and Pacearchaeota, now included in Nanoarchaeota) and TACK 70 

(Nitrososphaeria-Thaumarchaeota and, in some samples Bathyarchaeota) being the most abundant, 

followed by Euryarchaeota (Thermoprofundales/Marine Benthic Group-D and locally 

Methanofastidiosales/WS2A) (Fig.1A; Supplementary Figs.3-4; Supplementary Table 3). Free-living 

Thermoprofundales and Thaumarchaeota might be potential hosts for the parasitic/symbiotic DPANN 

[11]. Bacteria comprised a wide variety of phyla likely involved in complex N, S and C cycling. PVC 75 

members (Verrucomicrobia and Planctomycetes) and Acidobacteriota were the most relatively 

abundant, followed by FCB (notably Bacteroidota, Latescibacteria, Gemmatimonadota), 

Proteobacteria, Chloroflexi and Nitrospinota (Fig.1A; Supplementary Fig.5). Proteobacteria (ca. 15%) 
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were little abundant compared to lake or marine surficial sediments, but akin subseafloor sediments 

[12]. Some biomass-degrading lineages, e.g. Phycisphaerae [13], Ignavibacteria [14] or Latescibacteria 80 

[15], suggest the contribution of thermophilic or seepage-associated microbes to Baikal benthic 

communities, possibly along faulting zones. Benthic protists were dominated by Stramenopiles and 

Alveolata (Fig.1A). Alveolates comprised mostly ciliates, dinoflagellates and Syndiniales (Supplementary 

Table 4). Stramenopiles included heterotrophic lineages (labyrinthulids, amphifilidae/thraustochytrid-

like, oomycetes, MAST) and ochrophyte algae (chrysophytes, diatoms), which sediment from the water 85 

column [16]. Compared to prokaryotes, benthic protists were rare in seeping zones (BK22S), as 

obtaining amplicons was difficult. The abundance (percentage of reads) and diversity (percentage of 

OTUs) patterns of rare versus abundant OTUs across phyla were rather similar for eukaryotes and rare 

prokaryotic OTUs, whereas the diversity of abundant prokaryotic OTUs was remarkably constant across 

sites (Supplementary Figs.6-7), suggesting a relatively stable core of dominant OTUs. 90 

To see whether the depth and/or the latitude determined benthic microbial community structure, 

we performed an NMDS analysis based on dissimilarity matrices of OTU frequencies. However, we 

observed no obvious pattern discriminating samples according to basin or depth (Fig.1B). Although two 

samples of intermediate depth (100-800 m) appeared to segregate on along axis 1, surface (<100 m) 

and deep (>800 m) samples appeared mixed. This pattern was almost superimposable to that observed 95 

for prokaryotic OTUs, whereas eukaryotic OTUs seemed to segregate better surface from deep samples 

(Supplementary Fig.8). PERMANOVA analyses confirmed no significant discrimination of prokaryotic 

and eukaryotic communities at the OTU level by latitude and only marginal significance for depth 

(prokaryotes, R2=0.23, p=0.01; eukaryotes, R2=0.19, p=0.07) (Supplementary Table 5). Since this 

marginal effect of depth might be due to the large collective dominance of rare OTUs (~40% prokaryotic 100 

and ~85% eukaryotic OTUs; Fig.1C, upper-right inset), we also carried out NMDS and PERMANOVA 

analyses on i) dissimilarity matrices at high-rank taxon, rather than OTU, level, ii) Jaccard distance 

matrix, iii) Unifrac distance matrix and iv) Null model Raup-Crick index. Again, prokaryotic and 

eukaryotic communities did not segregate by depth (Supplementary Figs.9-12). Phyla and depth 

categories did not significantly correlate for eukaryotes and only marginally for prokaryotes 105 

(Supplementary Tables 5-6). This situation contrasts with that of stratified plankton communities [8] 

and might be due to similar sediment environmental conditions, notably temperature, across lake 

depths. We detected a core of 44 prokaryotic OTUs shared by all the sediment samples that 

represented between ~15% and ~40% of prokaryotic abundance (Fig.1C). Their phylogenetic affiliation 

fitted the overall prokaryotic phyla distribution, suggesting that, accompanying widely diverse rare 110 

OTUs, there is a stable core of benthic prokaryotic communities across basins and depths in Lake Baikal. 
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At odds with the idea that marine-freshwater transitions rare [17], we identified 332 OTUs belonging 

to typical marine taxa across the lake (Fig.2A; Supplementary Table 7). Several of them belonged to 

groups already observed in freshwater systems, such as MAST clades, relatively abundant in Baikal, but 

also rarer diplonemids, Radiolaria (for which we identified several OTUs; Supplementary Fig.13), 115 

Mamiellales, Bolidophyceae and, among bacteria, marine-like Synechococcus, SAR202 Chloroflexi and 

Pelagibacterales. Some of them were recently observed in Lake Baikal [8, 9, 18]. Others have never 

been reported in freshwater ecosystems, such as diverse Syndiniales and SAR324 Deltaproteobacteria, 

metabolically flexible sulphur metabolizers often associated with submarine hydrothermal plumes [19]. 

To eliminate potential cross-contamination with marine samples during collection, handling or 120 

sequencing, we mined for other typical abundant marine taxa in our datasets. We detected neither 

thraustochytrids nor Prochlorococcus and Alteromonas (Fig.2A), reinforcing the conclusion that Baikal 

‘marine’ OTUs are indeed autochthonous. Our study confirms and extends the presence of several 

typically marine prokaryotes and eukaryotes at low abundances in Lake Baikal, reinforcing the idea that 

transition frequency between marine and freshwater habitats is underestimated [20]. This opens 125 

questions about the specific molecular adaptations to the very low salinity of Lake Baikal salinity (0.0 

PSU) and suggests that oligotrophy and deep waters might be more important drivers than salinity for 

these lineages. 

How do benthic Baikal communities compare to those of other aquatic ecosystems? Does the 

presence of Baikal marine taxa indicate intermediate ecological features between freshwater and 130 

marine environments? To answer, we retrieved 16S rRNA gene metabarcoding data from other 

freshwater, brackish and marine sediment samples (Supplementary Text; Supplementary Tables 8-9). 

An NMDS plot based on the high-rank taxa dissimilarity matrix showed that Lake Baikal sediment 

samples clustered away from other samples, albeit closer to freshwater systems (Fig.2B). PERMANOVA 

analyses revealed a significant effect of the size and salinity category (R2 = 0.45; p-value = 10-4) 135 

(Supplementary Table 5), partly driven by Acidobacteriota, PVC, Nitrospirota and Chloroflexi (Fig.2B-C). 

Therefore, the comparison of communities associated to upper-layer sediment in Lake Baikal and other 

benthic ecosystems across different depth and salinity ranges set it apart from other freshwater and 

marine systems. 

 140 
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Figure Legends 

Fig.1. Sampling points and overall prokaryotic and eukaryotic diversity in Baikal sediments. A, 

Bathymetric map of Lake Baikal showing the sampling sites and depths along the three major basins of 

the lake extending along the North-South latitude axis (left panel). Relative abundance of clean merged 

reads (CMRs) representing the major prokaryotic and eukaryotic taxa for each sampling location. The 215 

asterisk shows the average diversity derived from two replicates from the same sampling site, after 

nested PCR amplification. B, Non-metric multidimensional scaling (NMDS) of Bray-Curtis dissimilarities 

based on OTU frequencies of both prokaryotic and eukaryotic OTUs. Each point represents a different 

sample. Ellipses enclose all points per depth category: shallow (<100 m), medium (100-800 m), deep 

(>800 m). Samples from the different Baikal basins are indicated with different marker shapes. NMDS 220 

for only prokaryotic and eukaryotic communities are presented in Supplementary Figure 8. C, UpSetR 

plot (central panel) showing the number, phylogenetic affiliation (taxa indicated in bold in A) and 

relative abundance of OTUs within the core prokaryotic community shared by all Baikal sediment 

samples (left bar) or all the sediment samples but one (light grey dot; bars on the right). The bottom-

left histogram shows the relative proportion (CMRs) of the prokaryotic core community in the total 225 

prokaryotic community of each sediment sample. The upper right inset shows the total number of 

shared prokaryotic and eukaryotic OTUs per groups of sediment samples. 

 

Fig.2. Marine signature taxa and comparison of Lake Baikal with other freshwater, brackish and marine 

sediment communities. A, Presence (light blue) / absence (white) matrix of typical marine taxa 230 

identified in Lake Baikal sediments. Each row represents a sampling location and each column a taxon. 

The barcharts represent the sum of the detected CMRs (dark red) and OTUs (light red) per typical 

marine taxon (top) and sampling location (right). B, NMDS of sediment samples based on Bray-Curtis 

dissimilarities of bacterial high-rank taxa. Colored ellipses and symbols correspond to Baikal (light blue 

squares), other freshwater sediments (light green squares), brackish (red dots) and marine (dark blue 235 

triangles) sediment samples. C, Diversity barchart displaying the relative abundance of bacterial 

sequences in the different sediment samples (left) and the dendrogram (right) resulting from the 

corresponding clustering analysis based on the Bray-Curtis dissimilarity. Dendrogram leaves represent 

the NMDS points depicted in (B). 
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