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Abstract

Last-mile collection and delivery services often rely on multi-echelon logistic systems
with many types of practical spatial, temporal, and resource constraints. We consider three
extensions of the basic 2-echelon vehicle routing problem that are of practical interest: First,
second-echelon vehicles need to simultaneously deliver and collect goods at customers within
their specified time window. Second, first-echelon vehicles are allowed to perform multiple
trips during the planning horizon. Third, the intermediate facilities, called satellites, al-
low temporary storage of goods, but the quantity that can be stored at a time is limited.
This paper integrates these complicating features in a single mathematical model. To solve
the problem, we design a decomposition-based matheuristic. It employs a reduced and re-
fined mixed-integer programming formulation and two echelon-specific large neighborhood
searches (LNS) to produce improving routes for the respective echelon. The most impor-
tant algorithmic component is the feasibility check of LNS that relies on a sequence of
constant-time and low-complexity tests. The final test allows re-scheduling of the opera-
tions taking place at a satellite. It adapts the double-justification algorithm known from
the scheduling literature. Extensive computational experiments systematically evaluate the
new components of the matheuristic and benchmark it against a recent exact method for a
related problem. Moreover, the impact of the main problem features such as the number
of satellites and their capacity as well as the integration of forward and reverse flows is
analyzed.

1 Introduction
In more and more cities, governmental regulations restrict the number and type of vehicles
allowed accessing city centers because of the intense inner-city traffic, narrow streets, and the
lack of adequate parking spaces (Muñuzuri et al., 2013). Coordinated urban deliveries can be
part of the solution to reduce traffic. We consider modern inner-city distributions systems that
rely on a two-echelon structure to reduce the nuisances associated with freight transportation
in urban areas while supporting their economic and social development (Crainic et al., 2009).

∗Corresponding author.
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One of the most common designs for handling and reducing the large number of freight
vehicles going into cities, often delivering small quantities per stop, is to consolidate this frag-
mented volume at urban distribution centers (UDCs) located in cities outskirts (Savelsbergh
and van Woensel, 2016). In the two-echelon vehicle routing problem (2E-VRP), customers are
supplied from the UDC through intermediary transfer and storage locations called satellites.
First-echelon vehicles transport goods from the UDC to satellites, at which second-echelon ve-
hicles collect the goods and deliver them to the customers. The flow of goods must respect
operation and load synchronization constraints (following the taxonomy of Drexl, 2012), i.e.,
one must decide on the assignment of each customer’s demand to a satellite and ensure that
incoming and outgoing quantities at each satellite coincide.

We have identified three extensions of the basic 2E-VRP as highly relevant. These are:
(i) the integration of reverse flows, (ii) the consideration of several timing aspects (including time
windows and the possibility to perform multiple trips with the same vehicle), and (iii) satellite
capacities. We elaborate their importance in the following.

To reduce traffic, pollution, and noise in city centers, a holistic view onto the logistics
system is required including the consideration of goods transportation into as well as out of
the city. Bektaş et al. (2017) point out that handling forward, reverse, and transiting flows is
a key activity within urban areas. In some fields of application, the consideration of forward
and reverse flows is therefore almost imperative. Examples include beverage-delivery services
(Bruck and Iori, 2017) and package and urban courier services (Wong, 2008), where reverse
quantities of some customers can easily exceed their forward quantities.

Typical fleets on the second echelon comprise small trucks (vans and light commercial vehi-
cles) as well as locally emission-free vehicles such as (battery) electric vehicles (Schneider et al.,
2014; Desaulniers et al., 2016) and cargo bikes (Elbert and Friedrich, 2020). These vehicles
typically have a much smaller capacity than the trucks used on the first echelon. As a result,
second-echelon routes are relatively short so that a vehicle can be cleared and replenished sev-
eral times over a day. With a limited fleet, the associated problem is therefore a multi-trip VRP
(Paradiso et al., 2020, stress its relevance for city logistics and last-mile delivery). Moreover,
when distances between UDC and satellites are short, multiple trips of the first-echelon vehicles
are also possible (see, e.g., Nolz et al., 2020).

In their review, Cuda et al. (2015) highlight the steadily increasing number of publications
on the 2E-VRP. They conclude that mostly, basic versions of the 2E-VRP have been studied
and that many practical issues, in particular temporal interdependencies are still to be further
investigated both in heuristic and exact approaches. Temporal interdependencies may refer to
the requirement that
(1) either first-echelon and second-echelon vehicles have to meet at the satellite in order to

directly transfer loads (no storage, exact operation synchronization as defined by Drexl,
2012)

(2) or satellite visits of first-echelon vehicles can precede those of second-echelon vehicles (stor-
age at satellites, operation synchronization with precedences, see also Drexl, 2012).

Furthermore, satellite capacities impose resource synchronization constraints (Drexl, 2012).
For case (1), Grangier et al. (2016) introduce the two-echelon multiple-trip vehicle routing

problem with satellite synchronization (2E-MTVRP-SS) which extends the basic variant by
customer time windows and multiple trips on the second echelon. In their variant, there are
no storage possibilities at the satellites. For case (2), it is obvious that modeling and solving
problems with satellite capacities is much more involved. Only very few works cover this aspect
(see literature review in Section 2).

In response to this research gap, we introduce a variant of the 2E-VRP with time windows
with a specific focus on incorporating the processes at the satellites in combination with the
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requirement to handle both forward and reverse flows (goods and returns). Overall, we extend
the 2E-MTVRP-SS of Grangier et al. (2016) by three aspects:

• First, customers can have a pickup demand introducing reverse flows into the two-echelon
system. As a consequence, second-echelon vehicles need to deliver goods and pick up goods
at customers within their specified time window. We assume that the delivery and pickup
are performed simultaneously. The pickup demand must be transported to a satellite and
from this satellite to the UDC by a first-echelon vehicle.

• Second, also first-echelon vehicles are allowed to perform multiple trips during the planning
horizon.

• Third, satellites allow a temporary storage of goods, but they feature a limited capacity
in terms of goods that can be stored at a time. The most prevalent situation is probably
that goods to be delivered (forward flow) and picked up (reverse flow) are stored together,
thus, they share and compete for the satellite capacity.

We introduce the two-echelon multiple-trip vehicle routing problem with capacitated satel-
lites and reverse flows (2E-MTVRP-CSRF) that addresses all three extensions together. The
2E-MTVRP-CSRF models the time and quantity dependencies at capacitated satellites in a
more precise manner than previous works. It is, therefore, obvious that for 2E-MTVRP-CSRF
instances of realistic size, the only viable solution approach is heuristic.

To solve the 2E-MTVRP-CSRF, we propose an algorithm that partially decomposes the
problem into three different subproblems. For two of them, we present two large neighborhood
search (LNS) algorithms, each of them optimizing one echelon while parts of the other echelon
are fixed. For the third subproblem, trips found in both LNS algorithms are recombined by
solving a restricted and refined version of a trip-based formulation of the 2E-MTVRP-CSRF
with a MIP-solver (MIP= mixed integer programming). Overall, the matheuristic controls
the interaction between the three subproblem solution methods, i.e., how much computational
effort is put into which subproblem and how (possibly infeasible or/and incomplete) solutions
are communicated between subproblems. The matheuristic benefits from the MIP-solver-based
component that has a global view on satellite-capacity constraints and on the spatial and time
synchronization between the first and second echelon.

Our computational studies reveal that the matheuristic can be helpful to quantify the
marginal value of satellite capacity, which is worth considering in regard to the high prices
per square meter in large cities. Moreover, the matheuristic can be used to estimate the value
of integrating forward and reverse flow, which reduces the routing costs by up to 40% in our
computational experiments.

The remainder of the paper is structured as follows. Section 2 reviews the 2E-VRP litera-
ture focusing on those variants with reverse flows, timing aspects including multiple trips, and
satellite capacities. In Section 3, we formally introduce the 2E-MTVRP-CSRF, detail feasibil-
ity conditions, and present the new trip-based formulation. Section 4 presents the matheuristic
algorithm. Computational results and managerial insights are presented in Section 5, before
final conclusions are drawn in Section 6.

2 Literature
The basic 2E-VRP assumes that all transfers between the first and second echelon are always
operable, e.g., justified when all transfers are performed during a fixed cut-off period so that all
first (second)-echelon vehicles must arrive (depart) before (after) that period. Hence, operation
synchronization is pure spatial in the basic version (see Drexl, 2012). The first study on the
2E-VRP was conducted by Gonzalez-Feliu et al. (2008) who introduced the problem into the
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literature. They proposed a commodity-flow model and a branch-and-cut algorithm that was
tested on instances with up to 50 customers and four satellites. The 2E-VRP was surveyed by
Cuda et al. (2015). More recent successful solution approaches are exact (Perboli et al., 2018;
Marques et al., 2020b) and heuristic (Breunig et al., 2016; Wang et al., 2017; Amarouche et al.,
2018).

The standard assumption for the 2E-VRP is that customers are served by a single visit so
that demands are not split on the second echelon. However, splitting a customer’s demand on
the first echelon is an option.

2.1 Reverse flows
Crainic et al. (2012) present the integration of forward and reverse flows in a two-echelon
distribution system as an important challenge. Belgin et al. (2018) were the first to solve a 2E-
VRP variant with forward and reverse flows so that a customer can have both a delivery and
a pickup demand. The vehicle routing problem at the second echelon is one with simultaneous
deliveries and pickups (Subramanian et al., 2013). Additionally, Belgin et al. model the satellite
capacity as the maximum total demand that can be served by the satellite during the planning
horizon (we also use the term total demand in the following to refer to the total delivery plus
pickup demand transferred at a satellite). The problem is solved heuristically by a variable
neighborhood descent (Hansen et al., 2009). Additionally, they present a two-index model and
computationally evaluate the effect of additional valid inequalities on lower bounds. Tests were
conducted on an instance set comprising up to 50 customers and five satellites.

2.2 Time windows and multiple trips
Crainic et al. (2009) were the first to consider timing aspects in 2E-VRP. The authors discuss
customer time windows and multiple trips on both echelons among other features of a general
two-tier city logistic systems. The work also presents several modeling ideas and describes
possible heuristics without computational testing.

Grangier et al. (2016) introduced the 2E-MTVRP-SS which features customer time windows,
multiple trips in the second echelon and exact synchronization between first and second echelon
vehicles at satellites. They present an LNS algorithm with a fast and sophisticated feasibility
check. Computational experiments were conducted on instances with up to eight satellites and
100 customers derived from the VRPTW benchmark instances of Solomon (1987).

Anderluh et al. (2017) extend the 2E-MTVRP-SS by allowing the first-echelon vehicle to
serve some customers. A two-phase greedy randomized adaptive search procedure with path
relinking was applied to solve the extended 2E-MTVRP-SS. Computational tests were conducted
on instances with up to 125 customers and 18 satellites.

Dellaert et al. (2019) suggest a two-path formulation for the single-trip multi-depot 2E-VRP
with time windows and exact synchronization (2E-VRPTW). They assume that the entire de-
mand delivered by a second-echelon vehicle must be provided by a single first-echelon trip. This
latter assumption is exploited in a branch-and-price (BP) algorithm that enumerates configura-
tions of first-echelon trips. The BP algorithm is capable of exactly solving some instances with
up to 100 customers and five satellites within the 3-hour time limit. Mhamedi et al. (2020)
developed a sophisticated branch-price-and-cut (BPC) algorithm for the 2E-VRPTW. The al-
gorithm performs well on the instances generated by Dellaert et al. (2019), computing 41 new
optimal solutions in the 3-hour time limit. Independently, Marques et al. (2020a) present BPC
algorithms for solving the 2E-VRPTW and the 2E-MTVRPTW. The latter is a relaxed variant
of the 2E-MTVRP-SS in which synchronization with precedences is required (instead of exact
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synchronization). They report optimal solutions for nine 2E-MTVRPTW instances and 54 of
the 2E-VRPTW instances.

The practical relevance of timing aspects has led to the introduction of several other 2E-
VRP variants covering new technologies and real-world features such as electric vehicles (Jie
et al., 2019), cargo bikes with swap containers (Mühlbauer and Fontaine, 2021), and multiple
commodities provided by different UDCs (Dellaert et al., 2021). Anderluh et al. (2020) analyzed
and discussed the impact of stochastic travel times on costs.

2.3 Satellite capacity
Two approaches for modeling the satellite capacities are common in the literature. In the first
approach, an upper bound on the number of second-echelon vehicles leaving the satellite is
imposed (first suggested by Crainic et al. (2009) and very recently employed by Mühlbauer
and Fontaine (2021)). The second approach limits the total demand that can be served by a
satellite (in the unit-demand case, this means limiting the number of served customers, see, e.g.,
Breunig et al., 2016; Belgin et al., 2018). Both approaches do not consider the dynamics over
the planning horizon, i.e., available capacities depending on the goods entering and leaving the
satellite over time.

To the best of our knowledge, only three works use a detailed time-dependent capacity
model. Li et al. (2018) study a 2E-VRP with customer time windows, a given assignment of
customers to satellites, and real-time transshipment capacities. The real-time transshipment
capacities define the currently available capacity of the satellite as the difference between the
maximum capacity and the quantity of goods currently waiting at a satellite to be collected by
a second-echelon vehicle. Additionally, the problem features split deliveries on the first echelon
and multiple trips on the second echelon. A MIP formulation is provided and a two-stage
heuristic based on variable neighborhood search (Hansen et al., 2009) is proposed. Small-scale
instances with up to three satellites and five customers per satellite were solved to optimality
with a MIP solver within a 4-hour time limit. The two-stage heuristic has been tested on
99 larger instances with up to 30 satellites and 30 customers per satellite. Li et al. (2020)
slightly extend the problem by varying the maximum transshipment capacity for each time
period.

Recently, Nolz et al. (2020) considered a two-echelon distribution with a single capacitated
satellite, customer time windows, and multiple trips on both echelons. They propose a new
MIP model and a three-phase heuristic method which uses population-based metaheuristics
and integer programs. Nolz et al. evaluate their methods on instances with up to 81 customers
generated from real-world data from the city of Vienna.

More generally, time-dependent satellite capacity involves synchronizing routes on shared
renewable capacitated resources. To our knowledge, this type of synchronization problem has
received little attention in the literature. Most resource constrained routing and scheduling
problems stem from sharing vehicles or personnel that need to be routed and scheduled to
perform different tasks (Paraskevopoulos et al., 2017; Castillo-Salazar et al., 2016; Fikar and
Hirsch, 2017). Several cases are related to loading or unloading unary resources in applications
such as forestry (El Hachemi et al., 2011, 2013), construction (Schmid et al., 2009), and public
work (Grimault et al., 2017). Grangier et al. (2019) consider a VRP with cross-docking with
a limited number of docks that can be used simultaneously. Froger et al. (2017) integrate a
limited number of chargers at charging stations in electric VRPs. In the two latter contributions,
each vehicle consumes one unit of the resource per time unit. We are not aware of works that
investigate the synchronization of a renewable resource that depends on a transferred quantity,
in particular, in a problem with forward and reverse flows.
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3 Problem statement
We define the 2E-MTVRP-CSRF by formally describing customers, satellites, fleet, trips, routes,
and satellite capacities. The three latter aspects require a detailed explanation provided in
Sections 3.1, 3.2, and 3.3. An integer (linear) programming model for the 2E-MTVRP-CSRF
is then presented in Section 3.4.

Let N denote the set of customers, where each customer i ∈ N has a delivery (=forward
a.k.a. linehaul) demand qfw

i , or a pickup (=reverse a.k.a. backhaul) demand qrv
i , or both. Both

demands have to be fulfilled by a single visit of a second-echelon vehicle. For the visit of
customer i ∈ N , a vehicle can wait at the customer before actually providing service, which
must start within the time window [ai, bi].

Let S denote the set of satellites. We assume that all satellites s ∈ S are available over the
entire planning horizon T = {0, . . . , t̄}, i.e., [as, bs] = [0, t̄]. Moreover, each satellite s ∈ S has a
limited capacity Csat

s and a constant transfer time ps required for transferring goods from one
echelon to the other. The interpretation of the satellite capacity and transfer time is further
discussed in Section 3.3.

A homogeneous fleet F 1 of first-echelon vehicles is stationed at the UDC o1. Likewise, a
homogeneous fleet F 2 of second-echelon vehicles is housed at the second-echelon depot o2. All
vehicles must start and end their routes at their depot o1 and o2, respectively. They are allowed
to perform multiple trips. Each first(second)-echelon vehicle has a capacity of Q1 (Q2) that has
to be shared by forward and reverse demands when transported together.

The objective of the 2E-MTVRP-CSRF is to find cost-minimal sets of feasible first-echelon
and second-echelon trips (formally defined in Section 3.1) such that the following constraints
hold:
(F1) All customers are visited exactly once by exactly one second-echelon trip.
(F2) The set of first(second)-echelon trips can be combined to at most |F 1| (|F 2|) feasible

first(second)-echelon routes.
(F3) The forward flow of goods is conserved at each satellite s ∈ S and each point in time t ∈ T,

i.e., the forward flow that has reached satellite s by first-echelon trips until time t− ps is
at least as large as the forward demands leaving satellite s on second-echelon trips until
time t.

(F4) Likewise, the reverse flow of goods is conserved at each satellite s ∈ S and each point in
time t ∈ T, i.e., the collected demands reaching satellite s on second-echelon trips arriving
until time t is at least as large as the reverse flow that has left from the satellite s by
first-echelon trips starting until time t+ ps.

(F5) The capacities of all satellites are never exceeded, i.e., at any point in time, the quantity
of goods stored or processed at a satellite is not larger than the satellite capacity.

Note that flow conservation via (F3) and (F4) allows a customer’s demand (either forward or
reverse demand) to be split on the first echelon using two or more trips with possibly different
vehicles, while this demand cannot be split on the second echelon.

3.1 Trips
Next, we define feasible trips and routes in both echelons with the help of two directed graphs.
For the first echelon, let G1 = (V 1, A1) be the complete digraph with vertex set V 1 = S ∪ {o1}
and arc set A1. Each arc (i, j) ∈ A1 is associated with a non-negative travel time t1ij and a
non-negative travel cost c1ij .

A first-echelon trip h = (P, T, L) consists of a closed directed walk P = (i0, i1, . . . , in, in+1)
in G1 with i0 = in+1 = o1 and i1, . . . , in ∈ S, a time schedule T = (T0, T1, . . . , Tn, Tn+1) ∈ Tn+2,
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and a loading plan ((Lfw
1 , Lrv

1 ), . . . , (Lfw
n , Lrv

n )) ∈ ([0, Q1]∩Z)2×n. The attribute Tk ∈ T models
the start of the service/operation at vertex ik for k ∈ {0, 1, . . . , n+1}. Moreover, the attributes
Lfw
k and Lrv

k are the quantities dropped off and collected, respectively, at satellite ik for k ∈
{1, 2, . . . , n}.

Each pair (ik, Tk) of vertex and time is denoted as first-echelon satellite visit. Note that
consecutive visits to the same satellite are allowed within a walk.

A first-echelon trip h = (P, T, L) is feasible if the following three conditions hold:
(Tr1) all vertices are visited within the planning horizon:

Tk ∈ [0, t̄] for all k ∈ {0, 1, . . . , n+ 1},

(Tr2) the time schedule is consistent with respect to travel and transfer times:

Tk + t1ik,ik+1
+ pik ≤ Tk+1 for all k ∈ {0, 1, . . . , n},

where we assume a transfer time po1 = 0 for the UDC,
(Tr3) and the load at each vertex does not exceed the capacity of a first-echelon truck:

n∑
k=l+1

Lfw
k +

l∑
k=1

Lrv
k ≤ Q1 for all l ∈ {0, 1, . . . , n}.

The cost c1h of the first-echelon trip h is given by
∑n

k=0 c
1
ik,ik+1

.
Similarly, for the second echelon, let G2 = (V 2, A2) be the simple and complete digraph

with vertex set V 2 = S ∪ N ∪ {o2} and arc set A2. Each arc (i, j) ∈ A2 is associated with a
non-negative travel time t2ij and a non-negative travel cost c2ij . Service times at customers are
integrated into travel times.

A second-echelon trip h = (P, T ) comprises a (closed or open) walk P = (i0, i1, . . . , in, in+1)
in G2 with i0, in+1 ∈ S ∪ {o2}, i1, . . . , in ∈ N , and a time schedule (T0, . . . , Tn+1) ∈ Tn+2.

The second-echelon trip h = (P, T ) is feasible if the following five conditions hold:
(Tr4) the vertices are served within their time windows:

Tk ∈ [aik , bik ] for all k ∈ {0, 1, . . . n+ 1},

(Tr5) the time schedule respects travel times:

Tk + t2ik,ik+1
≤ Tk+1 for all k ∈ {0, 1, . . . , n},

(Tr6) the vehicle capacity is respected at each vertex on the trip:

n∑
k=l+1

qfw
ik

+
l∑

k=1

qrv
ik
≤ Q2 for all l ∈ {0, 1, . . . n},

(Tr7) if i0 = o2, then qfw
ik

= 0 must hold for all k ∈ {1, 2, . . . , n}, and
(Tr8) if in+1 = o2, then qrv

ik
= 0 must hold for all k ∈ {1, 2, . . . , n}.

The latter two conditions (Tr7) and (Tr8) impose that trips that start (end) at the depot o2
cannot serve customers that have a positive forward (reverse) demand. The cost c2h of the
second-echelon trip h is given by c2h =

∑n
k=0 c

2
ik,ik+1

.
Note that second-echelon vehicles and trips can start and end at different satellites. In

particular, second-echelon trips that do not visit any customers are allowed (i.e., n = 0). These
transfer trips model that a vehicle can change the starting satellite for its next trip.
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3.2 Routes
A first(second)-echelon route R is a sequence (h1, . . . , hm) of m ≥ 1 feasible first(second)-echelon
trips. For j ∈ {1, 2, . . . ,m}, we denote the associated walks by Pj = (ij0, ij1, . . . , ij,nj , ij,nj+1)
and the time schedules by Tj = (Tj0, Tj1, . . . , Tj,nj , Tj,nj+1).

A first-echelon route is feasible if
(R1) two consecutive trips hj and hj+1 do not overlap in time:

Tj,nj+1 ≤ Tj+1,0 for all j ∈ {1, . . . ,m− 1}.

A second-echelon route is feasible if the following three conditions hold:
(R2) it starts and ends at the second-echelon depot:

o2 = i1,0 = im,nm+1,

(R3) consecutive trips have an identical end and start satellite:

ij,nj+1 = ij+1,0 ∈ S for all j ∈ {1, 2, . . . ,m− 1},

(R4) consecutive trips do not overlap in time:

Tj,nj+1 + pij,nj+1 ≤ Tj+1,0 for all j ∈ {1, 2, . . . ,m− 1}.

In particular, the transfer time pij,nj+1 in (R4) for ij,nj+1 ∈ S ∪ {o2} can be used to model a
mandatory time period needed to clear and load a second-echelon vehicle.

3.3 Flow conservation and satellite capacity
In this section, we show how to check whether a given set of feasible first-echelon and second-
echelon routes, including the quantities dropped off and collected by them over time, respect
the forward and reverse flows and whether the quantities stored at a satellite exceed the satellite
capacity. This shows how the feasibility conditions (F3)–(F5) can be tested.

For that purpose, we denote by Ω1 the set of all feasible first-echelon trips and by Ω2 the set
of all feasible second-echelon trips. We introduce additional attributes for a first-echelon trip
h = (P, T, L) ∈ Ω1:

• the quantity dropped off by the trip h at satellite s ∈ S at time t ∈ T:

γfw
h,s,t =

{
Lfw
k , there exists an index k ∈ {1, 2, . . . , n} with ik = s and Tk = t

0, otherwise,

• the quantity that trip h collects at satellite s ∈ S at time t ∈ T:

γrv
h,s,t =

{
Lrv
k , there exists an index k ∈ {1, 2, . . . , n} with ik = s and Tk = t

0, otherwise.

Similarly, we define for a second-echelon trip h = (P, T ) ∈ Ω2:
• the quantity that trip h collects from satellite s ∈ S at time t ∈ T:

γfw
h,s,t =

{ ∑n
k=1 q

fw
ik
, i0 = s and T0 = t

0, otherwise,

• the quantity that trip h drops off at satellite s ∈ S at time t ∈ T:

γrv
h,s,t =

{ ∑n
k=1 q

rv
ik
, in+1 = s and Tn+1 = t

0, otherwise.
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We also define the load profile Λs
t of a satellite s ∈ S as the quantity processed and stored at

satellite s at time t ∈ T.
Before we formalize the feasibility conditions (F3)–(F5), we explain them with the help of

an example.

Example 1 Figure 1 shows a solution for an instance of the 2E-MTVRP-CSRF with two
satellites, eight customers, one first-echelon vehicle, and two second-echelon vehicles. Forward
and/or reverse demands of each customer are depicted next to the corresponding vertex. We
assume that the customers have non-restricting time windows and that travel times and travel
costs coincide (depicted on the arcs). Moreover, the capacity of both satellites is Csat

s = 10 and
the transfer time is ps = 1.

The first-echelon route performs two trips (in blue), while the two second-echelon routes
perform four (in red) and three trips (in green). Table 1 shows a feasible time schedule and
loading plan for the three routes.

o1

o2

s1 s2

1

2fw
2

1fw, 3rv

3

2fw

4
2rv

5
5fw

6
2rv

7
3rv

8

4rv

3

2

2

3
3

1 1
1

121

1

1

2

2

1

1

1

3
1

first-echelon route
1st second-echelon route
2nd second-echelon route
1st trip of a vehicle
2nd trip of a vehicle
3rd trip of a vehicle
4th trip of a vehicle

Figure 1: 2E-MTVRP-CSRF solution used in Example 1

Note that consecutive second-echelon trips must respect the transfer time ps = 1 so that
departure and arrival must differ by at least one time unit. On a first-echelon satellite visit, a
first-echelon vehicle must stay at a satellite for at least ps = 1 time unit, however, there is no
dedicated minimum timespan between consecutive first-echelon trips at the UDC o1. To fulfill the
feasibility conditions (F3)–(F5), waiting is mandatory at three vertices due to interdependencies:
Trip h′2 has to wait for 1 time unit before starting at satellite s1, because there is no forward
demand ready before time 4, i.e., when the dropped off forward demand of trip h1 has been
processed. The corresponding entries are marked in blue. Similarly, trip hf2 has to wait for
2 time units at s1, because it has to collect the reverse demand dropped off by trip h23 at time 13,
which is ready for collection at time 14 (red entries). Last, trip h′′2 must wait for 2 time units
before unloading at s1, because there is no free capacity to store its reverse demand. Indeed, the
trip has to wait for trip h′3 to free up capacity at s1 (green entries).

Figure 2a shows that these waiting times are necessary to ensure feasibility regarding flows
and capacities. The figure visualizes the load profile of satellite s1. Forward quantities are
depicted in red and reverse quantities in blue. Striped areas indicate that the quantities are
transferred to the satellite but not processed so that they are not ready to be collected yet.
Processed goods are shown in solid. All quantities resulting from first-echelon operations are
depicted with arrows on the top of the diagram and all second-echelon operations at the bottom.
Regarding the three waiting times, we can see from the figure that:
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first-echelon
route (h1, h2)

trip index j 1 2

vertex ik o1 s1 s2 o1 o1 s1 o1

schedule Tk 0 3 6 9 9 14 18
quantity γfw

hj ,ik,Tk
– 10 0 – – 0 –

γrv
hj ,ik,Tk

– 0 5 – – 9 –

second-echelon
route (h′

1, h
′
2, h

′
3)

j 1 2 3

vertex ik o2 s1 s1 3 4 s1 s1 5 o2

schedule Tk 0 2 4 6 7 8 9 12 14
quantity γfw

h′
j ,ik,Tk

0 – 2 – – – 5 – –
γrv
h′
j ,ik,Tk

– 0 – – – 2 – – 0

second-echelon
route
(h′′

1 , h
′′
2 , h

′′
3 , h

′′
4 )

j 1 2 3 4

vertex ik o2 6 7 s2 s2 8 s1 s1 1 2 s1 s1 o2

schedule Tk 0 1 2 3 4 5 9 10 11 12 13 14 17
quantity γfw

h′′
j ,ik,Tk

0 – – – 0 – – 3 – – – 0 –
γrv
h′′
j ,ik,Tk

– – – 5 – – 4 – – – 3 – 0

Table 1: Time schedule and loading plan of the routes used in Example 1

• There is no forward quantity ready to collect at the satellite before time 4.
• The 9 units of reverse demand collected at time 14 cannot be collected earlier, since the

last 3 units dropped off are not ready at an earlier point in time.
• The 4 units of reverse demand dropped off at time 9 cannot be dropped off earlier due to

the satellite capacity.
Conditions (F3)–(F5) are fulfilled, because for each point in time the stored quantity is not
greater than the satellites capacity Csat = 10 and because both the available forward quantities
and available reverse quantities are non-negative (see Figure 2b).

□

3.4 Trip-based formulation
The integer programming (IP) model of the 2E-MTVRP-CSRF presented next can be char-
acterized as a trip-based formulation, since there are variables for all feasible trips. Clearly,
both sets Ω1 and Ω2 are finite but typically extremely large, because trips are defined as com-
binations of a walk, time schedule, and loading plan (the latter only in case of first-echelon
trips). Even if not directly solvable, the model serves two purposes: First, it precisely defines
the 2E-MTVRP-CSRF. Second, one component of the matheuristic explained in Section 4 uses
a MIP solver with a restricted and refined version of the model.

For the IP model, we describe a first-echelon trip h = (P, T, L) ∈ Ω1 with the additional
attribute βh,t ∈ {0, 1}, which indicates whether trip h takes place at time t ∈ T:

βh,t =

{
1, if T0 ≤ t ≤ Tn+1

0, otherwise.

In a similar manner, a second-echelon trip h = (P, T ) has the additional attribute αh,i ∈ {0, 1},
which indicates whether trip h visits customer i ∈ N :

αh,i =

{
1, there exists an index k ∈ {1, 2, . . . , n} with ik = i
0, otherwise.
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(b) Satellite load profile Λs1 , profile of forward demands, and profile of reverse demands

Figure 2: Quantities and load profiles of satellite s1 in Example 1

Additionally, it is convenient to define two subsets of second-echelon trips for satellites s ∈ S
and times t ∈ T:

Ω2+
s,t = {h ∈ Ω2 : T0 = t and i0 = s} and Ω2−

s,t = {h ∈ Ω2 : Tn+1 = t and in+1 = s}

The sets Ω2+
s,t (Ω2−

s,t ) comprise those second-echelon trips that leave from (arrive at) satellite s
at time t.

The model for the 2E-MTVRP-CSRF uses two types of variables: integer variables x1h for
h ∈ Ω1 count the number of times that trip h is performed (note that two or more first-echelon
vehicles can perform an identical trip), and binary variables x2h indicate whether trip h ∈ Ω2 is
performed. The model reads as follows:

z(x) = min
∑
h∈Ω1

c1hx
1
h +

∑
h∈Ω2

c2hx
2
h (1a)

subject to
∑
h∈Ω2

αh,ix
2
h = 1 ∀i ∈ N (1b)

∑
h∈Ω1

βh,tx
1
h ≤ |F 1| ∀t ∈ T (1c)
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∑
t∈T

∑
h∈Ω2+

o2,t

x2h =
∑
t∈T

∑
h∈Ω2−

o2,t

x2h = |F 2| (1d)

∑
t′≤t−ps

∑
h∈Ω2−

s,t′

x2h −
∑
t′≤t

∑
h∈Ω2+

s,t′

x2h ≥ 0 ∀s ∈ S, t ∈ T (1e)

∑
t′≤t−ps

∑
h∈Ω1

γfw
h,s,t′x

1
h −

∑
t′≤t

∑
h∈Ω2

γfw
h,s,t′x

2
h ≥ 0 ∀s ∈ S, t ∈ T (1f)

∑
t′≥t+ps

∑
h∈Ω1

γrv
h,s,t′x

1
h −

∑
t′≥t

∑
h∈Ω2

γrv
h,s,t′x

2
h ≥ 0 ∀s ∈ S, t ∈ T (1g)

∑
t′≤t

∑
h∈Ω1

γfw
h,s,t′x

1
h −

∑
t′≤t

∑
h∈Ω2

γfw
h,s,t′x

2
h

+
∑
t′>t

∑
h∈Ω1

γrv
h,s,t′x

1
h −

∑
t′>t

∑
h∈Ω2

γrv
h,s,t′x

2
h ≤ Csat

s ∀s ∈ S, t ∈ T (1h)

x1h ∈ N0 ∀h ∈ Ω1 (1i)
x2h ∈ {0, 1} ∀h ∈ Ω2 (1j)

The objective (1a) minimizes the routing costs of the chosen first-echelon and second-echelon
trips. Constraints (1b) enforce that every customer is served by a second-echelon trip, i.e.,
condition (F1). Constraints (1c) and (1d) are the fleet-size constraints, i.e., condition (F2).
Constraints (1e) guarantee feasible combinations of second-echelon trips, i.e., they ensure for
every satellite and point in time that the number of second-echelon trips that have already left a
satellite can never exceed the number of second-echelon trips that have arrived and are ready to
leave again. The coupling between the first and second echelon is enforced via constraints (1f)–
(1h). Forward flow conservation, i.e., condition (F3), is guaranteed by constraints (1f), and
reverse flow conservation, i.e., condition (F4), by constraints (1g). The satellite capacity con-
straints (1h) limit the quantity of goods that can simultaneously be processed and stored at each
satellite, see condition (F5). Note that the third term counts quantities that will be collected by
first-echelon vehicles and the fourth term quantities that are dropped off by second-echelon vehi-
cles after time t at the satellite. The domains of the trip variables are defined by constraints (1i)
and (1j).

For the flow conservation, i.e., constraints (1f) and (1g), it is always feasible to increase the
quantities that first-echelon trips drop off and collect at satellites. By doing so, more flexibility
is granted to schedule second-echelon trips. However, increasing first-echelon quantities may
violate the satellite-capacity constraints (1h). We will exploit these observations in Section 4.3
when solving the model with a proper subset of all feasible trips. A restricted and refined model
will allow the increase of first-echelon quantities to grant more flexibility to the second echelon,
while the resulting surplus at the first echelon does not burden the satellite-capacity constraints.

4 Solution method
This section presents the matheuristic for the 2E-MTVRP-CSRF. It follows the fix-and-optimize
paradigm (Helber and Sahling, 2010) with the fundamental idea that the 2E-MTVRP-CSRF
can be decomposed in different ways, where parts of the solution are fixed while the remainder
is exactly or heuristically optimized.
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4.1 Overview of the decomposition
An overview of the decomposition that we use is provided in Table 2. The first subproblem,
denoted by SP1, optimizes the first echelon while the second is fixed. Contrarily, the second
subproblem, denoted by SP2, optimizes the second echelon while the first is partly fixed. We
refer to the two LNS algorithms that solve the two subproblems as LNS1 and LNS2. In addition,
a MIP solver is used with a refined version of model (1) restricted to trips taken from trip pools
generated by the two LNS algorithms.

SP1 SP2 MIP
Input: solution (x1, x2) solution (x1, x2) Ω̄1, Ω̄2

first-echelon trips [⋆] [+] [⋆, set of]
· walks [⋆] [fixed] [fixed]
· schedules [⋆] [fixed] [fixed]
· loading plans [⋆] [⋆] [fixed]
first-echelon routes [⋆] [+] [impl. result]
second-echelon trips [fixed] [⋆] [⋆, set of]
· walks [fixed] [⋆] [fixed]
· schedules [fixed] [⋆] [fixed]
second-echelon routes [fixed] [⋆] [impl. result]
Solution method: LNS1 LNS2 MIP solver

Output: solution (x′
1
, x′

2
) solution (x′

1
, x′

2
) solution (x′

1
, x′

2
)

trips H2 trips H1

[⋆]: modifies; [+]: partially modifies; [fixed]: does not modify; [⋆, set of]: selects a solution from sets of trips; [impl.
result]: implicit result, i.e., routes are not constructed, but it is guaranteed that trips can be combined into routes

respecting the fleet-size constraint

Table 2: Overview of the decomposition used in the matheuristic (Algorithm 1)

Algorithm 1 shows how the three subproblems and corresponding solution methods interact
in the matheuristic that we characterize as an iterative two-stage heuristic (ITSH). ITSH starts
with the construction of an initial solution x = (x1, x2) and empty trip pools Ω̄1 and Ω̄2 (Steps 1
and 2). The current solution is improved by repeating the main loop (Steps 4–12) until the
given time limit Γtot is reached. In each iteration, SP2 is optimized first with LNS2 (Step 4),
and all generated second-echelon trips are added to Ω̄2 (Step 5). Next, SP1 is optimized with
LNS1 (Step 6) and all generated first-echelons trips are added to Ω̄1 (Step 7). If LNS1 and LNS2

fail to improve the best-found solution and the MIP execution condition is satisfied, the refined
version of formulation (1) is solved using only (modified) trips from the trip pools Ω̄1 and Ω̄2

(Step 11). To keep the size of the MIP reasonable, the trip pools are re-initialized (Step 9)
every time a new best solution is found and after each call to the MIP solver.

Details on the two LNS algorithms follow in Section 4.2. As the feasibility check for inser-
tion steps used in the two LNS algorithms is of high importance for the efficiency of the overall
matheuristic, we present its details starting with the precedence-graph-based solution represen-
tation in Section 4.2.1, a higher-level description of LNS1 and LNS2 is given in Sections 4.2.2
and 4.2.4, and in-depth discussions of the sequence of tests performed when checking feasibility
in Sections 4.2.3 and 4.2.5, respectively. The MIP component, its parameters, execution con-
ditions, how it communicates with the LNS, and the update of the trip pools is described in
Section 4.3.
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Algorithm 1: Iterative Two-Stage Heuristic (ITSH)
1 (x1, x2)← initialization
2 Ω̄1 ← ∅, Ω̄2 ← ∅
3 repeat
4 (x1, x2,H2)← LNS2(x1, x2)
5 Ω̄2 ← Ω̄2 ∪H2

6 (x1, x2,H1)← LNS1(x1, x2)
7 Ω̄1 ← Ω̄1 ∪H1

8 if the best solution has been improved then
9 (Ω̄1, Ω̄2)← re-initialize(Ω̄1, Ω̄2)

10 else if the MIP execution conditions are satisfied then
11 (x1, x2)← MIP(Ω̄1, Ω̄2)
12 (Ω̄1, Ω̄2)← re-initialize(Ω̄1, Ω̄2)

13 until time limit Γtot exceeded
14 return (x1, x2)← the best-found feasible solution

4.2 LNS algorithms
In the LNS metaheuristic, first proposed by Shaw (1998) in a constraint programming con-
text, the current solution is iteratively destroyed and subsequently repaired until a stopping
criterion is reached. LNS algorithms have been shown to be successful in optimizing routes
and trips, especially for VRP variants that only comprise standard resource constraints such as
route length, capacity, and time-window constraints (Pisinger and Ropke, 2019). Even more
complicated inter-route constraints (an overview is provided in Irnich et al., 2014, Section 1.3.5)
can be integrated easily, as long as the removal of a customer is always feasible and an efficient
feasibility test for the insertion of customers is available (see, e.g., Grangier et al., 2016).

Our LNS algorithms switch between large destruction steps and small destruction steps.
Small destruction steps are performed in most iterations to locally and quickly improve solutions
(Christiaens and Vanden Berghe, 2020). If the best solution has not been improved for several
iterations, a large destruction step is performed for diversification. This small-and-large strategy
has been proved highly successful on variants of the generalized vehicle routing problem with
time windows (Dumez et al., 2021). A short synopsis of the types of operators used in our
LNS algorithms is provided in Table 3 indicating whether the operator is used in LNS1 and
LNS2 and who first introduced it. For the sake of brevity, a pseudocode of the LNS and more
details of the destroy and repair operators as well as the acceptance criterion are provided in
Appendix A.1 and the construction of a starting solution in Appendix A.2. Note that so-called
incomplete solutions are explored during LNS. For that purpose, a solution features a request
bank of non-served customers which are penalized in the objective function (Ropke and Pisinger,
2006a).

4.2.1 Solution representation

Ordinary LNS algorithms for standard VRPs remove customers and re-insert them trying to
obtain a feasible and improving solution. The situation for the 2E-MTVRP-CSRF is much more
involved because there are no customers on the first echelon and already the removal of customers
can make a feasible solution infeasible w.r.t. the satellite capacity if the corresponding quantities
are removed arbitrarily from first-echelon satellite visits. Moreover, re-inserting a customer
modifies at least the schedule and quantities of the affected second-echelon trip. Besides, it may
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Type Operator name LNS1 LNS2 Source
D

es
tr

oy
op

er
at

or
s

sm
al

l
route split string removal ✓ ✓ Christiaens and Vanden Berghe (2020)
satellite split string removal ✓ ✓ introduced in this paper
distance related removal ✓ Ropke and Pisinger (2006b)
bundle removal ✓ introduced in this paper
cluster removal ✓ Pisinger and Ropke (2007)

la
rg

e

random customer removal ✓ Ropke and Pisinger (2006b)
random bundle removal ✓ introduced in this paper
worst bundle removal ✓ introduced in this paper
historical knowledge node removal ✓ Demir et al. (2012)
trip and route removal ✓ ✓ Nagata and Bräysy (2009)

R
ep

ai
r

op
er

at
or

s random order best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)
largest first best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)
farthest first best insertion ✓ Christiaens and Vanden Berghe (2020)
closest first best insertion ✓ Christiaens and Vanden Berghe (2020)
earliest first best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)
latest first best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)
narrow first best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)

Table 3: Destroy and Repair Operators.

trigger additional necessary modifications on the schedule and loading plan of other trips and
routes. Because of these complications, we introduce an additional representation of possibly
incomplete solutions. Our new solution representation is based on a precedence graph and it
helps to properly describe interdependencies between objects of both echelons that can be fixed,
removed, re-inserted, or modified. In particular, it supports fast feasibility tests and allows us
to perform modifications on the schedule and loading plan of the solution’s trips and routes.

A first fundamental simplification in our LNS algorithms is that customer demands are never
split over several first-echelon satellite visits. However, the problem definition and model (1)
allow demand splits on the first echelon. Given this simplification, we can introduce, for each
customer i ∈ N , a forward first-echelon customer (FEC) ifw if the forward demand qfw

i is positive
and a reverse FEC irv if the reverse demand qrv

i is positive. First-echelon customers are not real
customers, but they constitute the transportation tasks for the first-echelon given that the real
customer is served at the second echelon. FECs are introduced to link the first echelon with
the second echelon, they are removed, re-inserted, and re-assigned in the course of both LNS
algorithms thereby ensuring that removals preserve the feasibility of a solution.

Moreover, to link first-echelon satellite visits and FECs, we define a bundle as a pair (s, I)
of a satellite s ∈ S and a subset I of FECs. Each first-echelon satellite visit to s constitutes a
bundle (s, I) and exactly the demand of FECs in I are transferred at satellite s during this first-
echelon satellite visit. In the following, inserting (removing) a FEC into (from) a bundle (s, I)
means that the FEC is added to (removed from) the set I. Moreover, if a FEC is re-assigned,
it means that the FEC is removed from one bundle and inserted into another bundle.

The following precedence graph Gx
P = (V x

P , A
x
P ) allows us to represent any possibly incom-

plete solution x. The vertices V x
P are:

1. copies of the UDC representing departure and arrival of each first-echelon trip,
2. bundles indicating that the subset of FECs is jointly transferred at the associated first-

echelon satellite visit,
3. copies of satellites and of the second-echelon depot representing departure and arrival of

second-echelon trips, and
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4. customers.
Accordingly, we group these vertices into levels 1 to 4. The arcs Ax

P result from
(a) first-echelon routes (connections between vertices of levels 1 and 2),
(b) second-echelon routes (connections between vertices of levels 3 and 4), and
(c) linking FECs (included in a bundle) with copies of satellites, i.e., departures and arrivals of

second-echelon trips (connections between vertices of levels 2 and 3).

Example 2 Figure 3 shows an incomplete solution for a small instance with only one satellite s
with capacity Csat = 3 and five customers 1, 2, . . . , 5. The capacity of first- and second-echelon
vehicles is Q1 = 4 and Q2 = 2, respectively. For the sake of simplicity, we assume that the
second-echelon depot o2 is identical to the satellite s, that customers have non-restricting time
windows, that the travel times between all pairs of locations as well as transfer times at the
satellite are equal to one time unit, and that the customer service duration is zero. The length
of the planning horizon is t̄ = 9 time units.

The first-echelon vehicle (colored red) performs two back-and-forth trips between the depot
and the satellite. The demands of customers 1, 2, and 5 are dropped during the first visit at
the satellite and the demand of customer 4 is collected at the second visit. The blue-colored
second-echelon vehicle serves customers 1 and 2 during its first trip and customer 5 during its
second trip. The brown-colored second-echelon vehicle serves customer 4 during its only trip.
Customer 3 is not served.

In the graphical representation in Figure 3a, solid lines represent the first trip and dashed
lines the second trip of a vehicle. The time schedule of all routes is depicted in Figure 3b. The
last row of the table shows the load profile Λs of the satellite s. Recall that the load profile
describes the quantity processed and stored at satellite s over time t, i.e., each visit of a vehicle
changes the value by the quantities collected or dropped-off. Finally, the precedence graph of the
incomplete solution is shown in Figure 3c. □

Note first that there is a natural one-to-one correspondence between the vertices of the
routes of a solution x and the vertices V x

P . The structural feasibility conditions (F1), (F2),
(Tr7), (Tr8), (R2), and (R3) are ensured by the structure of the precedence graph Gx

P . For
example, (F1) is fulfilled if all customers have ingoing and outgoing arcs in the precedence
graph, and if all FECs are present in exactly one bundle. For the fleet-size condition (F2), not
more than |F 1| (|F 2|) chains of arcs are allowed at levels 1 and 2 (levels 3 and 4). Time windows
and processing times can be added to the vertices and arcs of the precedence graph Gx

P as shown
in Tables 4a and 4b. We interpret these attributes in the same way as the time resource in
resource constrained project scheduling (see, e.g., Brucker and Knust, 2012).

Proposition 1 Let x be a solution without splitting of customer demands on the first echelon.
The schedule (Tv)v∈V x

P
of the solution x fulfills all temporal constraints, i.e., (F3), (F4), (Tr1),

(Tr2), (Tr4), (Tr5), (R1), and (R4), if and only if the same schedule is feasible for the associated
precedence graph Gx

P with respect to time windows and processing times as defined in Table 4.

Feasibility checking for a precedence graph is a known problem in deterministic project
scheduling that can be efficiently solved, e.g., with the same computations as in the critical
path method or PERT (Miller, 1963). To make the situation perfectly fit, the reader may
add two artificial vertices for the start and the end of the project to the precedence graph.
These two vertices are connected by an arc having processing time t̄. For each vertex v with
time window [av, bv], the time-window constraint translates to two additional arcs: From the
start vertex to vertex v with processing time av and from vertex v to the end vertex with
processing time bv. Using forward (backward) propagation of times, the earliest (latest) time
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(a) Graphical representation

Time 0 1 2 3 4 5 6 7 8 9

1st-echelon route o1 s o1 o1 s o1

2nd-echelon routes s 1 2 s s 5 s

s 4 s

Satellite load profile Λs 0 3 1 2 – – 0 – – –

(b) Representation with routes, trips, and satellite load profile
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Customers
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s
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s

(c) Representation with precedence graph

Figure 3: Three representations of the same incomplete solution of Example 2, customer 3 is
not served

can be computed for each vertex v ∈ V x
P . If the difference between latest and earliest time

is non-negative at each vertex, the precedence graph Gx
P is feasible and x fulfills all temporal

constraints by Proposition 1.
For a given topological ordering of the vertices V x

P (note that the precedence graph is acyclic),
the computational effort of the temporal feasibility check is O(|Ax

P |) = O(|N |).
The concept of earliest and latest service times has been introduced in the VRP context by

Savelsbergh (1992) using the name forward time slack to describe the maximum possible delay
w.r.t. the as-early-as-possible schedule of a route (computed in forward direction; explaining the
name). For all vertices in a route of the 2E-MTVRP-CSRF, the earliest feasible service time
route-EST and the latest feasible service time route-LST are computed disregarding potential
interdependencies between routes.

To take into account such interdependencies, Masson et al. (2013) generalize the work of
Savelsbergh to develop constant-time feasibility checks for the pickup-and-delivery problem with
transfers. They introduce a generalized forward time slack for precedence graphs. The concept
has been extended to the 2E-VRP by Grangier et al. (2016). The calculated times are called
solution earliest service time (solution-EST) and solution latest service time (solution-LST).

The capacity constraints of the vehicles, i.e., conditions (Tr3) and (Tr6), can be tested
directly per trip (and not per route). Recall that on the first (second) echelon, these trips
can (must) simultaneously drop off (deliver) and collect (pick up) in a single visit. For the
insertion of customers and FECs, the feasibility check of Dell’Amico et al. (2006) is linear in
the length of the trip (when computed from scratch), and constant-time feasibility checks rely
on pre-computed auxiliary information (Irnich, 2007).

Therefore, we assume that checking feasibility w.r.t. the capacity of the vehicles does not
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Level Vertex Time window
1 o1 [0, t̄]
2 (o2, I) [0, t̄]

(s, I) [as, bs]
3 o2 [0, t̄]

s [as, bs]
4 i [ai, bi]

(a) Time windows; s ∈ S ∪{o2} is a satel-
lite, i ∈ N a customer, and I is a subset
of FECs

Connecting Arc Processing
Levels Time
1 and 1 (o1, o1) 0
1 and 2 (o1, (s, I)) to1s + ps

((s, I), o1) tso1 + ps
2 and 2 (s1, s2) ts1s2 + ps1
2 and 3 ((s, I), s) ps

(s, (s, I)) ps
3 and 4 (i, s) tis

(s, i) tsi
4 and 4 (i1, i2) ti1i2

(b) Processing times; s, s1, s2 ∈ S∪{o2} are satellites
or the second-echelon depot, and i, i1, i2 ∈ N are
customers

Table 4: Time windows and processing times of the precedence graph

need to be discussed in the following.
The crucial point that remains is checking feasibility regarding the satellite capacities, i.e.,

condition (F5). Recall that if the load profile Λs of a satellite s ∈ S is always not greater than
the satellite capacity Csat

s , then condition (F5) is fulfilled for satellite s. As a consequence, the
feasibility of the load profile depends on the schedule of the routes. Considering the complexity
of the resulting integrated scheduling and routing problem, we apply a heuristic feasibility
evaluation procedure. This type of approach was successfully used by Masson et al. (2014)
to test feasibility in the dial-a-ride problem with transfers and by Grangier et al. (2019) in
the VRP with cross-docking and resource constraints. In the latter case, it was shown that a
heuristic feasibility test allows many more LNS iterations in the same timespan, leading to a
better overall performance than an LNS equipped with an exact feasibility test using constraint
programming.

To employ such a fast heuristic feasibility check, we should not alter the sequence of opera-
tions (i.e., arrivals and departures of vehicles) at each satellite s if the current solution x fulfills
condition (F5), because this conserves the same increases and decreases in the profile Λs. As a
result, all schedules maintaining the sequence of operations also maintain Λs ≤ Csat

s . Moreover,
the evaluation of the satellite load profile for an insertion is straightforward in this case. This
idea is exploited in both LNS algorithms. In addition, LNS2 embeds another heuristic feasibility
check that allows to alter the sequence of operations when an insertion is infeasible with the
current sequence.

4.2.2 LNS for the first echelon

LNS1 operates on the first echelon routes of the solution while the second echelon is fixed (see
Table 2), i.e., second-echelon routes remain unchanged. In particular, the levels 3 and 4 of the
precedence graph remain fixed including their current schedule times. To this end, we reduce
the time windows of the vertices of Gx

P belonging to levels 3 and 4 to the current schedule times
of the given solution x, while the remaining vertices keep their time windows as indicated in
Table 4a.

The destroy operators in LNS1 first select and remove FECs from the current solution x
and put them into the request bank. Additionally, bundles without any FEC are removed. If
this removal results in an empty first-echelon trip, the trip is removed, too (i.e., the two copies
of the UDC are removed). To compute the load profile of an incomplete solution, we only take
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into account the demands of second-echelon customers if their FECs are served. Thereby, the
incomplete solution obtained after removing FECs is always feasible. However, these customers
remain in their second-echelon trips until the end of the insertion process. If finally FECs cannot
be feasibly inserted, the corresponding customers are removed from their second-echelon trips.

The repair operators are all list operators, i.e., they consider one FEC in the request bank
at a time and insert it into a bundle. The insertion of a forward FEC ifw into a bundle (s, I)
creates an additional arc in the precedence graph from the bundle (s, I) to the start of the
second-echelon trip that serves customer i. Likewise, the insertion of a reverse FEC irv into
a bundle (s, I) creates an additional arc in the precedence graph from the end of the second-
echelon trip that serves customer i to the bundle (s, I). Additionally, depending on the insertion
type, arcs of first-echelon routes are modified in the precedence graph. We consider three types
of insertions of a FEC into a bundle:

• Insertion into an existing bundle: In the precedence graph, the FEC is inserted into an
existing bundle.

• Insertion by creation of a new bundle: A new bundle is added to an existing trip and
route arcs are changed appropriately. The FEC is inserted into the new bundle.

• Insertion by creation of a new trip with a single bundle: A new first-echelon trip with a
single bundle is added to an existing route. In the precedence graph, arcs are changed to
insert the trip into the route and the FEC is inserted into the new bundle.

For each insertion type, all possible insertion positions are evaluated in LNS1 according to the
evaluation process described next.

4.2.3 Insertions and feasibility tests in the LNS for the first echelon

The repair operators consider all insertion positions for each unassigned FEC in each LNS
iteration. Consequently, a fast and efficient feasibility evaluation is required for the numerous
potential insertions. Figure 4 provides an overview of the feasibility evaluation procedure of
LNS1. The heuristic nature of the evaluation lies in rejecting solutions of unknown feasibility
status because of their costs or because of an otherwise too time-consuming re-scheduling and
re-evaluation.

insertions NC1 sort SC1
fix

rejected

feasible

Figure 4: Sequence of necessary and sufficient conditions in the feasibility test of LNS1

The necessary condition NC1 tests for all insertion types and positions of a FEC the vehicle
capacity of the affected trip and identifies infeasible insertion with respect to route-EST and
route-LST. All potential insertions passing NC1 are evaluated in terms of cost and sorted in
non-decreasing order of their cost, before the more elaborate feasibility tests are performed. The
entire feasibility evaluation terminates as soon as one insertion is proven feasible. By avoiding
tests of costly solutions, the sorting procedure implicitly rejects solutions that are found but
have not been checked yet because of their higher cost compared to a cheaper feasible solution
considered before.

When considering the insertion of a FEC, the time schedule of the first-echelon route and
satellite capacity of the satellite s serving the customer must be tested. Let x− be the current
incomplete solution, and let (Tv)v∈V x−

P
denote the time schedule. The sufficient condition SC1

fix

checks whether the considered insertion into x− can be performed
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• without changing the sequence of operations at any satellite s as given in x− and
• without modifying the bundles for currently assigned FECs.

Under these assumptions, SC1
fix checks the temporal feasibility and satellite capacity. We

discuss these two checks now:

Schedule checking: First, SC1
fix evaluates whether performing the considered insertion re-

spects the solution-LST when starting from the solution-EST (for all pairs of predecessors and
successors in G

x−
PF ). If it is not the case, then SC1

fix rejects the considered insertion. The
temporal feasibility check uses generalized forward time slacks in the precedence graph with
fixed sequence Gx−

PF . In this augmented precedence graph G
x−
PF , additional arcs guarantee that

the current sequences of operations taking place at all satellites s ∈ S are maintained. (For a
visualization, the later Example 3 shows such an augmented precedence graph G

x−
PF for LNS2

in Figure 6a.) Hence, the additional arcs (v, w) connect every two vertices v and w ∈ V x−
P with

Tv < Tw referring to the same satellite s (vertices of levels 2 and 3). (Note that the transitive
reduction of the pairs/relation (v, w) suffices.) In case that Tv = Tw holds for two vertices v
and w, we add a arc only in one direction: second-level arrivals are connected to the bundle,
and bundles are connected to second-level departures (other ties are broken arbitrarily). All
these additional arcs (v, w) have a processing time of 0. Note that neither the precedence graph
nor the precedence graph with fixed sequence can be decomposed by satellite because trips can
connect any pair of satellites.

Capacity checking: Second, the satellite-capacity constraint of the affected satellite is tested.
This check can be performed efficiently due to the fixed sequence of operations at the satellite.
Recall that the sequence of operations was feasible w.r.t. (F5) before the insertion.

We distinguish two cases:
• When a forward FEC is inserted, we need to compute the resulting satellite load profile

for all relevant points in time between the bundle that contains the inserted FEC and the
start of the second-echelon trip that serves the corresponding customer.

• Likewise, when a reverse FEC is inserted, we need to compute the resulting satellite load
profile for all relevant points in time between the end of the second-echelon trip that serves
the corresponding customer and the bundle that contains the inserted FEC.

If the satellite capacity is violated, the considered insertion is rejected (although it might
be feasible for another sequence of operations). Otherwise, the insertion is feasible w.r.t. the
satellite capacity. The insertion is conducted in this case. The times of newly created vertices
(bundles and visits to the UDC) are set to the solution-EST of the precedence graph with fixed
sequence, thereby, updating solution-EST and solution-LST of all other vertices.

If LNS1 terminates and some forward (reverse) FEC cannot be feasibly inserted, then these
FECs, the corresponding reverse (forward) FECs, and the corresponding second-echelon cus-
tomers are removed from the solution. They are all put into the request bank for further
consideration in LNS2. Note that these removals maintain the feasibility of the solution w.r.t.
condition (F5).

4.2.4 LNS for the second echelon

LNS2 works on the second echelon and fixes parts of the first-echelon solution (see Table 2), i.e.,
the arcs and current schedule times at levels 1 and 2 of the precedence graph remain fixed. To
this end, time windows of the vertices V x

P belonging to levels 1 and 2 are reduced to the current
schedule times of the given solution x, while the remaining vertices keep their time windows as
indicated in Table 4a. However, bundles can be modified at level 2 of the precedence graph,
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i.e., FECs can be re-assigned. In all LNS2 destroy operators, when a customer is removed from
a second-echelon route, its FECs are also removed from their corresponding bundles and they
are put together into the request bank. This combined removal ensures that a feasible solution
remains feasible. Conversely, in repair operators, an insertion of a customer i into a second-
echelon trip (s, . . . , s′) includes inserting ifw into a suitable bundle of satellite s and inserting irv
into a suitable bundle of satellite s′. As in LNS1, all repair operators are list operators, hence,
they consider one customer and his FECs at a time.

LNS2 employs three types of insertions of a customer i into a second-echelon route: For all
three insertion types, all possible insertion positions are evaluated according to the feasibility
test procedure explained afterwards. The feasibility test process also determines how FECs are
assigned to bundles and adds the corresponding arcs to the precedence graph. Accordingly,
we explain here only the changes on the precedence graph regarding the second echelon routes
(levels 3 and 4).

• Insertion into an existing trip: This inserts the customer vertex i between two vertices of
an existing second-echelon trip in the precedence graph.

• Insertion by creation of a new trip: This insertion creates a new trip in an existing second-
echelon route. The trip comprises an origin satellite, the customer i, and a destination
satellite. Arcs in the precedence graph are changed appropriately to connect the new trip
with the route.

• Insertion by trip split (Grangier et al., 2016): This splits an existing trip in two by adding
a destination satellite vertex for the end of the first part of the trip and (the same) satellite
vertex as a start of the second half of the trip between any two consecutive vertices in the
trip. All insertion positions for customer i in any of the two new trips are considered. All
FECs associated with customers in the trip might need to be re-assigned to a bundle at
the inserted satellite (together with the arcs connecting levels 2 and 3).

4.2.5 Insertions and feasibility tests in the LNS for the second echelon

Figure 5 provides an overview of the feasibility evaluation procedure of LNS2. For a given
customer, the condition NC2 checks necessary conditions for all insertion types and positions.
All insertions that pass NC2 are sorted in non-decreasing order of their cost. Their feasibility
is tested in this order and the procedure stops as soon as one insertion is proven feasible by one
of the two sufficient conditions SC2

fix and SC2
DJ . SC2

fix tests if the insertion can be performed
without changing the order of operations at the satellites similar to SC1

fix. If SC2
fix fails, the

solution is re-scheduled with the double-justification algorithm (Wiest, 1964) in SC2
DJ .

Double justification is a two-phase algorithm shown to be effective in improving solutions
of resource-constrained project scheduling problems (Valls et al., 2005). If SC2

DJ also fails the
insertion is rejected. Note that the complete procedure is heuristic, i.e., the feasibility status of
rejected insertions is unknown.

insertions NC2 sort SC2
fix SC2

DJ

rejected

feasible

Figure 5: Sequence of necessary and sufficient conditions in the feasibility tests of LNS2
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Let x− be the current incomplete solution, let (Tv)v∈V x−
P

denote its schedule, and let i ∈ N
be the customer chosen by the repair operator to get inserted next. The necessary condition
NC2 first tests, for all insertion types and positions of customer i, the vehicle capacity of the
affected second-echelon trip and uses standard forward time slacks (Savelsbergh, 1992) for the
affected second-echelon route to identify insertions that violates route-EST and route-LST. The
FECs of customer i are not inserted yet and, therefore, the capacity is not checked for first-
echelon trips. Overall, NC2 can be evaluated in constant time, after an O(|V |) pre-processing.
As in LNS1, all potential insertions passing NC2 are evaluated in terms of cost, sorted in non-
decreasing order, and the entire feasibility evaluation terminates as soon as one insertion is
proven feasible.

The sufficient condition SC2
fix follows the same idea as its counterpart SC1

fix, i.e., to main-
tain the sequence of operations at the satellites. However, the situation is more complicated
here, because we need to insert the customer into the second-echelon trip and insert the cor-
responding FECs into a bundle. First, the insertion of customer i into second-echelon trip h
is checked for temporal feasibility with the help of the precedence graph. Infeasible insertions
are directly handed over to SC2

DJ . If the insertion of customer i is feasible w.r.t. the temporal
constraints, the next step is to insert the FECs of i. Let h be the second-echelon trip that
customer i is inserted in, let T1 be its starting time at satellite s1, and let T2 be its ending time
at satellite s2:

• The forward FEC ifw is added to the latest bundle (s1, I) with T(s1,I)+ps1 ≤ T1 such that
the capacity of the corresponding first-echelon vehicle is respected.

• Likewise, the reverse FEC irv is added to the earliest bundle (s2, I
′) with T(s2,I′) ≥ T2+ps2

such that the first-echelon vehicle capacity is respected.
In both cases, first-echelon vehicle capacity is checked in constant time. If no suitable bundle
can be found in at least one of the two cases, SC2

fix fails and the insertion is handed over
to SC2

DJ .
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(a) Precedence graph with fixed sequence Gx−
PF ; augmented arcs are

depicted as dashed arcs; recall that they have a processing time of 0.
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qfw
1 = 1

2

qfw
2 = 1

3

qfw
3 = 1

4

qrv
4 = 1

5

qfw
5 = 1

(b) Graphical representation of the
solution after the insertion of cus-
tomer 3.

Figure 6: Insertion of customer 3 into the second-echelon trip (s, 4, s), continued from Exam-
ple 2; the new solution is temporal feasible

Example 3 (continued from Example 2) In this example, we illustrate the feasibility checks
that are performed when testing whether customer 3 can be inserted into the trip (s, 4, s) of the
incomplete solution x− that was discussed in Example 2 and visualized in Figure 3.

Figure 6a depicts the precedence graph with fixed sequence Gx−
PF associated with the incomplete

solution x−. Next to each vertex, the resulting solution-EST and solution-LST are shown as a
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time interval. Recall that:
• First-echelon routes are fixed in time, i.e., solution-EST equals solution-LST for the

vertices at level 2 (values are set to those of the time schedule shown in Table 3b).
• Augmented arcs connect subsequent operations at the satellite s according to their time

schedule in x−. Note that the bundle (s, 4rv) (level 2) and the satellite departure of the
second-echelon trip (s, 5, s) (level 3) both take place at time 6. Hence, they are connected
from the bundle (s, 4rv) to the departure from s (depicted as a vertical, dashed, downward
directed arc).

• Recall that processing times of solid (=route) arcs are all 1, while those of dashed (=aug-
mented) arcs are all 0.

At this point, NC2 has already verified that the new second-echelon trip (s, 3, 4, s) is feasible
regarding the vehicle capacity and the route forward time slack. Next, SC2

fix compares the
solution-EST 1 of the departure of trip (s, 4, s) and the solution-LST 4 of customer 4 and we
see that a 1-time-unit detour to visit customer 3 does not violate temporal constraints in the
precedence graph. The tentative insertion of customer 3 produces the new second-echelon trip
h = (s, 3, 4, s) (depicted in Figure 6b) with new solution-EST and solution-LST values [1, 2],
[2, 3], [3, 4], and [4, 5] for the respective vertices. The first test of SC2

fix is passed.
Next, the associated FEC 3fw must be integrated into the solution, too. It is only possible

to insert the FEC 3fw into the bundle (s, {1fw, 2fw, 5fw}) and connect it with the departure of
the second-echelon trip h. The solution-EST of this bundle is 1 and the (new) solution-LST
of the start of this trip is 2, allowing a processing time of 1 unit in-between. Moreover, the
additional quantity qfw

3 =1 does not violate the first-echelon vehicle capacity of 4 units. The
only other bundle (s, {4rv}) has a solution-EST of 6 so that the insertion would violate the
temporal constraint. As a result, the departure of the new trip h must be delayed to time 2 in
the as-early-as-possible schedule of the new (tentative) solution x′ shown in Table 5a. At this
point, we have shown that the insertion results in a new solution x′ that respects all temporal
constraints. □

The next aspect to be tested is the feasibility of the satellite load profile. For the feasibility
test, the satellite capacity is evaluated for all operations occurring between times T(s,I) and T1
and/or between times T2 and T(s′,I′). If SC2

fix fails, the next test SC2
DJ allows to change the

sequence of operations at the satellite to restore feasibility. In that process, FECs can also be
re-assigned.

Example 4 (continued from Example 3) We reconsider the tentative solution x′ (see Figure 6b)
with the inserted customer 3 and the as-early-as-possible schedule computed over the precedence
graph with fixed sequence Gx′

PF . This graph is not identical to Gx−
PF depicted in Figure 6a; it has

three additional arcs, namely arc (s, 3) where s is the copy of the satellite representing the start
of the new trip (s, 3, 4, s), arc (3, 4), and arc ((s, {1fw, 2fw, 3fw, 5fw}), s) where the head vertex is
the same copy of the satellite. The computed time schedule is presented in Table 5a. The table
also includes the bundles and the resulting satellite load profile. As all four forward FECs are
simultaneously dropped at satellite s at time 3, the tentative solution x′ is infeasible w.r.t. the
satellite capacity Csat = 3. □

Now we describe the procedure SC2
DJ , which is the most elaborate but potent insertion test:

To allow changes in the sequence of operations, SC2
DJ works on the precedence graph Gx

P . First,
customer i is inserted into Gx

P without checking temporal feasibility. Its FECs are inserted as
in SC2

fix, but tolerating capacity violations of first-echelon vehicles. Note that these insertions
may cause violations of flow-conservation and satellite-capacity constraints.
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Time 0 1 2 3 4 5 6 7 8 9

1st-echelon route o1 s o1 o1 s o1

{1fw, 2fw, {4rv}

3fw, 5fw}

2nd-echelon routes s 1 2 s s 5 s

s 3 4 s

Satellite load profile Λs 0 4 1 – – 2 0 0 – –

(a) Time schedule directly after the tentative insertion of customer 3

Time o1 1 2 3 4 5 6 7 8 9

1st-echelon route o1 s o1 o1 s o1

{1fw, 2fw, 3fw} {4rv, 5fw}

2nd-echelon routes s 1 2 s s 5 s

s 3 4 s

Satellite load profile Λs 0 3 2 0 – 1 1 0 – –

(b) As-late-as-possible time schedule, not violating the satellite-capacity constraint

Time 0 1 2 3 4 5 6 7 8 9

1st-echelon route o1 s o1 o1 s o1

{1fw, 2fw, 3fw} {4rv, 5fw}

2nd-echelon routes s 1 2 s s 5 s

s 3 4 s

Satellite load profile Λs 0 3 0 – – 1 1 0 – –

(c) As-early-as-possible time schedule, not violating the satellite-capacity constraint

Table 5: Time schedules used in Examples 4 and 5
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Second, a possibly infeasible time schedule (T init
v )v∈V x

P
has to be determined to be repaired

afterwards. The time of the inserted customer i is scheduled as early as possible after its
predecessor in the route. This time is propagated to all its successors in the route. For all other
vertices v, the time is kept, i.e., T init

v = Tv.
Third, to restore feasibility, we adapt the double-justification algorithm as follows: Starting

from the constructed schedule (T init
v )v∈V x

P
the first phase of double justification iteratively re-

schedules FECs and all vertices on levels 3 and 4 as late as possible to obtain a new schedule
(T late

v )v∈V x
P

. This is accomplished by considering the vertices v iteratively in non-increasing
order of their current time T init

v (times of bundles in level 2 are fully fixed). At the end of the
first phase, a new schedule (T late

v )v∈V x
P

has been constructed. In the second phase, all vertices v
are iteratively re-scheduled as early as possible in non-decreasing order of their new times T late

v .
In both phases, all constraints are checked when re-scheduling a vertex and violations are not
allowed to increase.

SC2
DJ succeeds if the final schedule is temporal feasible and respects the capacities of satel-

lites and first-echelon vehicles. The run-time complexity of SC2
DJ is O(|Ax

P |) (same as for
SC2

fix), but it is considerably slower than SC2
fix in practice.

While re-scheduling vertices of levels 3 and 4 is straightforward, next we outline how FECs
are re-assigned. In the following, let h denote the second-echelon trip serving customer j,
starting at satellite s1 at time T1, and ending at satellite s2 at time T2. FECs in the same
bundle are re-assigned in an arbitrary order, but forward FECs are re-assigned before reverse
FECs in the first phase. Contrary, in the second phase, reverse FECs are re-assigned before
forward FECs.

• In the first phase, a forward FEC jfw is assigned to the latest bundle (s1, I) with T(s1,I)+
ps ≤ T1 such that the first-echelon vehicle capacity is respected.

• To re-assign a reverse FEC jrv in the first phase, the bundles at the satellite s2 are
considered in non-decreasing order of their time Tv, starting from the time of the current
bundle of jrv. The procedure stops as soon as the remaining satellite capacity at the
current bundle is lower than qrv

j . Then, jrv is assigned to the latest evaluated bundle that
respects the first-echelon vehicle capacity.

• To re-assign a forward FEC jfw in the second phase, the bundles at the satellite of s1 are
considered in non-increasing order of their time Tv, starting from the time of the current
bundle of jfw. The procedure stops as soon as the remaining satellite capacity at the
current bundle is lower than qfw

j . Then, jfw is assigned to the earliest evaluated bundle
that respects the first-echelon vehicle capacity.

• In the second phase, a reverse FEC jrv is assigned to the earliest bundle (s2, I) with
T(s2,I) ≥ T2 + ps such that the first-echelon vehicle capacity is respected.

Example 5 Table 5b presents the time schedule of solution x′ in Figure 6b after the first phase of
the double justification algorithm. During the as-late-as-possible scheduling, the second-echelon
trip (s, 5, s) is shifted first by one time unit. Next, second-echelon trip (s, 1, 2, s) is also postponed
from 2 to 3. Last, the forward FEC 5fw is re-assigned from the first bundle to the second which
is possible due to the postponement of trip (s, 5, s). Thereby, the load profile becomes feasible.

Table 5c presents the time schedule after the second phase (left-alignment) of the double-
justification. Here, only the second-echelon trip (s, 1, 2, s) is shifted back to start time 2 keeping
a feasible satellite load profile. □

4.3 Mixed integer program (MIP)
The MIP component of ITSH is called in Step 11 of Algorithm 1 to assemble trips generated in
several iterations of LNS1 and LNS2. It is able to provide a potentially cheaper solution in which
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some customer demands are split in the first echelon (we analyze the benefit from split solutions
in Section 5.2). In this section, we explain how the MIP interacts with the LNS components:
First, we describe the MIP execution conditions that determine when and how often the MIP
is solved. Second, we explain why the MIP that is solved is a restricted and refined version of
model (1). Third, we explain how the trip pools are filled and filtered. Finally, we describe
how the MIP solution is fed-back into the ITSH framework as a current solution for the next
LNS iterations.

MIP execution strategy The trip pool management is important for the overall effectiveness
of the ITSH algorithm. With trip pools Ω̄1 and Ω̄2 containing too many trips, the MIP solver
may consume too much computation time. Note that we warm-start the solver with the best-
known solution, however, improving it and proving optimality is often computationally costly.
Conversely, if the pools are too small, the solver may fail to recombine trips into an improving
or even overall feasible solution. To controll the pool size and the computation time granted to
the MIP component, ITSH uses a MIP time limit, an adaptive MIP execution condition, and a
pool re-initialization policy.
MIP time limit: For every MIP (re-)optimization, an instance-size-dependent time budget ΓMIP
bounds the MIP computation time. Preliminary experiments have shown that solving the MIP
tends to be much harder when no solution serving all customers has been found yet. Thus,
the value of ΓMIP is increased by 10 seconds for each unserved customer (second echelon) and
by 5 seconds for each unserved FEC (first echelon) in the current best-known solution. The
additional time budget helps to find feasible solutions.
MIP execution conditions: The MIP is executed every η ITSH iterations, when the LNS2-
LNS1-sequence has failed to improve the best-known feasible solution. Initially, we set η = 1
and adjust it after each MIP execution depending on the solver result:

• η is increased by 1, if the MIP solution is proven optimal within the time limit, or if the
best-known feasible solution is improved in two successive MIP executions.

• η is decreased by 1 (if η ≥ 2), if the MIP solver fails to solve the root node within the
time budget or fails to improve the best-known feasible solution twice in a row.

Pool re-initialization policy: A pool re-initialization consists in clearing the trips pools Ω̄1

and Ω̄2 keeping only the trips of the best-known solution. In ITSH, this is done at the end of
the LNS2-LNS1-sequence if the best-known feasible solution has been improved, and every time
the MIP is solved.

Restricted and refined MIP The sets of all possible trips Ω1 and Ω2 in model (1) are
replaced by smaller subsets Ω̄1 and Ω̄2, denoted as trip pools. This restriction has several
consequences:

First, the restricted model can be infeasible. To ensure the computation of an incomplete
solution, we introduce auxiliary variables σi acting as a penalty for not serving customers i ∈ N .
In the refined model’s objective function, these variables are penalized with a high penalty
cost M .

Second, in a first-echelon trip, the quantities dropped off or collected at each first-echelon
satellite visit are given and cannot be altered in model (1). Hence, a first-echelon trip that drops
off or collects more than the forward/reverse demand of the second echelon cannot be used in
a solution if its loading plan produces some violation of the satellite-capacity constraint. To
enable the use of such trips, we introduce additional slack and surplus variables for a potential
surplus at the first echelon. More precisely, the variables ufw

s,t (urv
s,t) decreases the quantity of
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goods dropped off (collected) by first-echelon vehicles visiting the satellite s at time t in the
reformulated flow-conservation (1f)–(1g) and satellite-capacity constraints (1h).

Third, in model (1), fleet-size, flow-conservation, and satellite-capacity constraints (1c),
(1e)–(1h) are defined for each point in time t ∈ T. In the refined MIP, we reduce the number of
these constraints (without sacrificing correctness) by identifying times t at which a particular
constraint is dominated.

Fourth, preliminary experiments have revealed that prioritizing decisions on whether a satel-
lite is in use can accelerate the MIP solution. For this purpose, we introduce binary indicator
variables ζs for all s ∈ S. Additional constraints enforce that no first-echelon and no second-
echelon trip visiting satellite s can be selected if ζs = 0. The solver is configured to prioritize
branching on the ζ-variables.

Appendix A.3 provides the complete restricted and refined formulation including precise
definitions of its index sets, additional variables, and non-redundant constraints.

Pool accumulation and update All trips generated by the LNS algorithms are added
to the trip pools Ω̄1 and Ω̄2 (Step 17 of Algorithm 2 in Appendix A.1). To foster a better
synchronization between echelons, we create additional trip variables from existing ones having
identical walks but different time schedules. Recall that, for each generated trip, four time
schedules can be computed: route-EST, route-LST, solution-EST, and solution-LST. We always
generate a trip variable with the solution-EST schedule. If η was not decreased after the last
call to the MIP-solver, we create for each second-echelon trip additionally a trip variable with
either the route-EST time schedule or the route-LST time schedule, selected at random with
probability 50%.

We also modify the loading plan of all generated first-echelon trips to grant more flexibility
by building new trips with loading plans that try to fully utilize the vehicle capacity, i.e., with∑n

k=1 L
fw
k =

∑n
k=1 L

rv
k = Q1. To meet this condition, the missing forward and reverse quantities

of each first-echelon trip are computed and distributed among all first-echelon satellite visits
such that the vehicle capacity is never exceeded: For a trip h, the average increase in forward
and reverse demand is calculated as zfw = (Q1 −

∑n
k=1 L

fw
k )/n and zrv = (Q1 −

∑n
k=1 L

rv
k )/n,

respectively. We then iteratively increase Lfw
k by zfw and Lrv

k by zrv for k = 1, . . . , n. If these
increases violates the vehicle capacity, we decrease until feasibility is restored. Afterward, Lfw

1

is increased until condition
∑n

k=1 L
fw
k = Q1 is met. Similarly, Lrv

n is increased until condition∑n
k=1 L

rv
k = Q1 is met. Note that the loading plan of a first-echelon trip always remains feasible

if we increase the dropped off amount at the first visited satellite and the collected amount at
the last visited satellite to meet the condition

∑n
k=1 L

fw
k =

∑n
k=1 L

rv
k = Q1.

Communication of a MIP solution to the LNS Communicating the solution of the
refined MIP to both LNS algorithms consists of the following tasks:
(1) Assemble the chosen trips into routes: This is done by solving a simple assignment problem

(like in vehicle scheduling).
(2) Correct the quantities dropped off and collected at each first-echelon satellite visit: The

value of the auxiliary u-variable is subtracted from the quantities dropped off or collected
by first-echelon trips at their corresponding first-echelon satellite visit. In case a u-variable
can affect several of the chosen first-level trips, the surplus quantity is substracted from the
corresponding first-echelon satellite visits such that all quantities remain non-negative.

(3) Assign FECs to first-echelon satellite visits: A generalized assignment problem is solved
with the MIP solver to assign the FECs to first-echelon satellite visits that provide the
corrected quantities dropped off and collected. If no complete feasible assignment exists, we
assign as many FECs as possible. Customers whose FEC(s) are unassigned are removed and
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placed in the request bank. If such a possibly incomplete assignment violates the satellite-
capacity constraints, we iteratively remove customers and their FECs until feasibility is
restored. Removed customers are stored together with their FECs in the request bank.

5 Computational results
In this section, we report the results of computational experiments. The algorithm is coded
in C++ and compiled with g++ 5.4.0 and option 03. We use the MIP solver IBM Ilog
CPLEX 20.1.0 (IBM, 2020). Options ‘branch up first’ and ‘emphasize finding high quality
feasible solutions earlier’ are activated. The experiments were performed on a PC running
Linux, Ubuntu 20.04.2 LTS, equipped with an Intel Xeon Gold 6230 clocked at 2.10GHz using
a single thread per instance.

Section 5.1 describes the new instances that we used in the experiments. The LNS and
MIP components are evaluated in Section 5.2. In Section 5.3, we compare our algorithm on
2E-VRPTW instances of Marques et al. (2020a). Finally, the sensitivity analyses of Section 5.4
provide some managerial insights.

5.1 Instances
Since there are no 2E-MTVRP-CSRF instances publicly available (with reverse flow, satellite
capacities, and multiple first-echelon trips), we have generated new ones with the following
properties:

• The instances have a Euclidean representation over a [0, 100] × [0, 100] grid. Customers
are placed randomly with a uniform distribution on the grid, while the UDC is located
at (50, 100). The second-echelon depot and all satellites are randomly placed in [20, 80]×
[20, 80] with a pairwise minimum distance of 20.

• The planning horizon is T = {0, 1, . . . , 600}. Customer time windows are assigned with
equal probability: early [0, 300], late [300, 600], or two hours during the day as [60 +
120ψ, 180 + 120ψ] with ψ ∈ {0, 1, 2, 3}. The customer service duration is 5 minutes, and
all satellites have a transfer time of 15 minutes.

• Customers have either only forward demand, only reverse demand, or both, with proba-
bility 50%, 25%, and 25%, respectively. This demand is uniformly drawn from {1, 2, 3, 4}.
The first(second)-echelon vehicle capacity is set to 75 (10).

We systematically vary the following parameters to obtain 36 instance groups:
• The number of customers is either 50 or 100. The 50-customer instances have a fleet of

a single first-echelon vehicle and 5 second-echelon vehicles, and 100-customer instances
have a fleet of 2 first-echelon vehicles and 10 second-echelon vehicles.

• The number of satellites is 2, 4, or 8.
• For all satellites, the satellite capacity is set to the same value Csat ∈
{20, 25, 35, 50, 70, 500}. Since 500 is an upper bound for the total demand, this value
represents uncapacitated satellites, i.e., Csat =∞.

We have generated 10 instances per group resulting in 360 2E-MTVRP-CSRF instances that
are available at https://logistik.bwl.uni-mainz.de/research/benchmarks/.

For the 2E-VRPTW benchmark, distances are rounded up to two digits as done by Grangier
et al. (2016). For the 2E-MTVRP-CSRF benchmark, travel times (in minutes) and distances
(=routing costs) are computed as Euclidean distances rounded up to the next integer value
(zero digits) as done for the instances described by Marques et al. (2020a).
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5.2 Evaluation of algorithmic components
First, we evaluate different configurations of the MIP component of the matheuristic. We limit
the test instance set to the 60 instances with a tight satellite capacity of Csat = 25 (recall that
25 is one third of the capacity of a first-echelon and 2.5 times the capacity of a second-echelon
vehicle). Most of these instances are feasible, but the determination of a feasible solution is
non-trivial. The overall time limit is 700(2000) seconds for 50(100)-customer instances and
the MIP solver has a time budget ΓMIP = 60(150) seconds in each iteration. We compare
the performance of the complete configuration (ITSH ; as presented in Section 4.3) with the
following restricted configurations:

• noMIP: the MIP is not used.
• noAdaptTime: the time budget of the MIP is not dynamically adapted, instead it is fixed

to the default value ΓMIP.
• noVAR-u: the additional u-variables are not used. Nonetheless, the penalty variables σ

are necessary during early stages and, thus, kept in the MIP model.
• noSplit: the MIP decomposition allows the split of a customer’s demand over different

first-echelon satellite visits. Here, solutions of the MIP that split a customer’s demand on
the first echelon are considered infeasible.

Table 6 presents the results, where for each instance, the best solution found out of 5 runs is
considered. Each line corresponds to a group of 10 instances defined by the number |N | of
customers and the number |S| of satellites. For each configuration, the entry #f is the number
of instances for which a feasible solution has been computed with the configuration. For each
of these feasible solutions, we compare their cost to the cost of the respective best solution
found by ITSH. While ITSH provides the reference solutions (average costs are presented in
column ‘cost’), the average percentage gap to the ITSH solution, computed as 100 · (zconf −
zITSH)/zITSH , is presented in columns ‘Gap’ for all four configurations.

ITSH noMIP noAdaptTime noVAR-u noSplit
|N | |S| #inst #f cost #f Gap #f Gap #f Gap #f Gap
50 2 10 10 1 965.0 8 2.01 10 0.65 9 −1.03 10 0.71

4 10 10 1 725.7 9 2.36 10 0.65 10 2.36 10 0.83
8 10 10 1 663.1 10 2.54 10 0.35 10 1.24 10 0.09

Total 30 30 1 784.6 27 2.33 30 0.55 29 0.92 30 0.55
100 2 10 9 3 402.1 6 3.23 8 3.66 6 2.54 9 0.14

4 10 10 3 021.8 9 2.22 9 0.63 10 0.91 10 0.33
8 10 10 2 572.0 10 3.94 10 −0.21 10 1.66 10 0.03

Total 30 29 2 984.7 25 3.15 27 1.30 26 1.61 29 0.17

Table 6: Comparison of different MIP configurations

The complete configuration ITSH computes feasible solutions for 59 of the 60 instances,
which is better than any restricted configuration. The solutions computed with configuration
ITSH are on average better than the solutions computed with any other configuration. The
MIP is an essential component of the matheuristic, in particular, when equipped with the
adaptive time budget (average gap of approximately 2.7% over all instances). Moreover, using
the additional u-variables improve the quality of the solutions. Last, the split of customer
demands seems to have only a small impact on the solution quality. This was expected, since
the largest gain from the split delivery VRP compared to the VRP occurs when the customer
demands are close to half of the vehicle capacity (Archetti and Speranza, 2008), while, in our
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case, customer demands are much smaller than the first-echelon vehicle capacity.
Second, we evaluate the impact of the multi-level feasibility checking strategy for the second-

echelon LNS presented in Section 4.2.5. Recall that only LNS2 uses two sufficient feasibility
checks. Figure 7 visualizes the number of potential insertions filtered by the insertion feasibility
check. We consider an instance with 50 customers, two satellites, and satellite capacity 25. The
run of ITSH includes more than 17M insertion attempts. Most infeasible insertions (>16M) are
detected by NC2 and directly rejected. The subsequent sort of the insertions further reduces
the number of calls to SC2

fix from 1.42M to 654k. Then, SC2
fix identifies approximately half

(29k) of the feasible insertions performed. Finally, the very time-consuming re-scheduling with
SC2

DJ identifies the other half (27k).

insertions NC2 sort SC2
fix SC2

DJ

rejected

feasible

17.67M 1.42M 654k

29k

625k

27k

16.25M 598k766k

Figure 7: Example of the usage of the feasibility tests

We now analyze the impact of SC2
fix and SC2

DJ . For this experiment, we use a restricted
test set consisting of the 30 instances with 100 customers and a satellite capacity of 25:

• When SC2
fix is deactivated, the average cost of a solution increases by 1.8%. The impact

on the cost is even more striking given that approximately 90% of the computation time is
consumed by the MIP solver. A single evaluation of SC2

DJ takes approximately 450 times
more time than the evaluation of SC2

fix. Hence, SC2
fix is a very powerful acceleration

procedure to detect feasible insertions fast.
• When SC2

DJ is deactivated in LNS2, many feasible insertions remain undetected because
all undecided insertions after SC2

fix are rejected. As a result, not a single feasible solution
has been determined with ITSH. The solution process is stuck producing only new solu-
tions similar to the initial infeasible solution. Recall that SC2

fix assumes that the order
of operations taking place at each satellite cannot change. Without SC2

DJ , the order of
second-echelon arrivals and departures is fixed relative to the current first-echelon satellite
visits, which strongly constrains the insertion of vertices into alternative positions.

5.3 Comparison on 2E-MTVRPTW benchmark
We compare the matheuristic (the configuration ITSH) with state-of-the-art algorithms for the
2E-VRPTW. For the 2E-MTVRP-SS, Grangier et al. (2016) modified and extended instances
from the well-known benchmark set of Solomon by placing the UDC to the coordinate (50,150)
and adding eight satellites. Customer time windows are shifted to account for first-echelon and
satellite processes. We cannot compare our results with those of Grangier et al. (2016), who
considered exact synchronization at satellites between first-echelon and second-echelon vehicles.
Recently, Marques et al. (2020a) extended this benchmark set by creating smaller instances with
25, 50, and 75 customers. They consider only the first customers in the respective 100-customer
instance. The smaller instances have four to six satellites.

We can directly compare our method with the results of the branch-price-and-cut (BPC)
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algorithm of Marques et al. (2020a) for the 2E-MTVRPTW. To do so, the capacity of satellites
is assumed infinite and we minimize the vehicle-related cost that includes a fixed cost of 50
(25) per first(second)-echelon vehicle. For a fair comparison, we only consider the instances for
which Marques et al. report a feasible solution value, because we use their number of vehicles
as our fleet-size limit.

Table 7 summarizes the comparison with the exact BPC algorithm proposed by Marques
et al. (2020a) that was run with a 10-hour time limit.

|N | = 25 |N | = 50 |N | = 75 |N | = 100
Γtot = 30 Γtot = 120 Γtot = 500 Γtot = 800

BPC BPC BPC BPC
Group # time Gap # time Gap # time Gap # time Gap
c100 0/9 23 0.50 0/9 161 0.29 3/8 9 621 1.01 0/7 16 503 1.91
r100 0/12 62 0.15 0/12 882 1.13 2/10 27 049 0.97 0/3 19 970 0.41
rc100 0/8 10 0.55 0/8 89 1.10 0/7 23 168 1.07 3/4 36 092 −0.75
c200 0/8 585 0.39 1/8 8 294 2.41 0/4 7 809 2.35 0/1 15 935 0.44
r200 0/8 5 169 3.34 0/1 1 714 0.07
rc200 0/8 356 5.16 0/6 7 847 2.12

All 0/53 942 1.54 1/44 2 907 1.30 5/29 18 932 1.19 3/15 22 382 0.80

Table 7: Performance of the matheuristic ITSH on the 2E-VRPTW instances compared to the
BPC algorithm of Marques et al. (2020a)

The two numbers x/y in columns headed ‘#’ are the number y of instances considered and
the number x of new best solutions computed with ITSH. If no feasible solution was provided
by the BPC algorithm, the cells are left blank. Our algorithm has a fixed time budget Γtot
(in seconds) controlled by the number |N | of customers (see entries Γtot in the second line of
the table’s header; associated CPLEX time limits ΓMIP are set to 2, 10, 40, and 60 seconds,
respectively). In contrast, run times of the BPC algorithm vary, average times (in seconds)
are presented in columns ‘BPC time’. Moreover, the table shows the average gaps (‘Gaps’; in
percent) between the best solutions found by our algorithm (five independent runs per instance)
and the best solutions found by Marques et al. (2020a). Detailed instance-by-instance results
can be found in Appendix A.4.

The matheuristic ITSH delivers feasible solutions to all instances for which the BPC algo-
rithm also computes feasible solutions. Moreover, ITSH finds nine new best solutions for the
benchmark set (leading to a negative gap in the group rc100 with |N | = 100). We interpret the
results in the following way: Instances with more customers, wider time windows and longer
routes (series 2) are more difficult for the BPC algorithm. As a heuristic, ITSH can provide
good feasible solutions with average gaps that may even decrease for instances with more cus-
tomers. However, some larger gaps (up to 6.41% for a 25-customer instance in group rc200)
show that ITSH can still fail to reach some close-to-optimal solution values, while proven optima
are computed by the BPC algorithm in several hours of computation time.

5.4 Sensitivity analyses
We now provide sensitivity analyses that show the impact of capacitated satellites and reverse
flows on costs. All results are based on the best solution computed with the complete ITSH
configuration in five independent runs for each instance.
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Cost of satellites capacity Figure 8 depicts the impact of satellites capacity for 50- and
100-customer instances. In both subfigures, the average increase in overall routing cost (in
percent) relative to the respective uncapacitated instance (with Csat = ∞) is displayed for
groups of instances differing in the capacity of the satellites. Three plots distinguish results for
2, 4, and 8 satellites. To put the provided capacities in perspective, the average total forward
demand is 94 (188) and the average total reverse demand is 64 (124) on the instances with
50 (100) customers.
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Figure 8: Average cost increase (in percent) compared to the respective instance with infinite
satellite capacity

As expected, the average cost increase diminishes with larger satellite capacities. Moreover,
the more satellites available, the smaller the cost increase (with the exception that 4 and 8 satel-
lites make nearly no difference for the 50-customer instances). The cost increase is substantially
smaller for the 50-customer than for the 100-customer instances which can be explained by the
fact that the capacity of a satellite is identical in contrast to the approximately doubled total
demand. No feasible solutions could be found for some instances with two satellites and a
capacity of 20 and 25 due to the (overly) restrictive capacity. We disregard these instances.

The convex shape of the curves indicates that the value of additional capacity units is
decreasing with the absolute capacity: For the 100-customer instances, five additional units
for extending the capacity from 20 to 25 have a much higher impact (8.08%) than the 20-unit
increase for extending the capacity from 50 to 70 (1.96%). As an extreme example, the difference
between the satellite capacity of 70 and uncapacitated satellites becomes negligible (0.32%).

It is interesting to see that doubling the satellite capacity leads to a substantially larger
cost decrease than doubling the number of satellites. Nevertheless, a small number and size of
satellites can be a reasonable design given the outstanding prices of space in some cities (e.g.,
£14355/m2/year in London, Furmanik, 2019).

Gain of simultaneously handling forward and reverse flows To quantify the gain that
results from the integration of forward and reverse flows, we create twin instances, i.e., for
each original instance (with both forward and reverse demands), the first twin has only forward
demands and the second twin has only reverse demands. We denote by ci the cost of a best
solution found by ITSH for the original instances and by cfw (crv) the cost found for the new
instances with only forward (reverse) demands. In Table 8, the average gain of the integrated
approach, computed as (cfw + crv − ci)/ci, is shown grouped by the number of customers and
satellites as well as satellite capacity. Note that the comparison underestimates the cost of the
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non-integrated problems, since both new twin instances (only forward or only reverse flows)
can use the complete satellite capacity, while forward and reverse flows of the original instance
compete for satellite capacity. As a result, the non-integrated solution with cost cfw+crv would
be even more expensive when the same capacity were shared and allocated. However, any other
a priori assignment of satellite capacities (e.g., half of the satellite capacity for each direction)
would also be questionable.

Satellite capacity Csat

|N | |S| 20 25 35 50 70 ∞

50 2 23.55 27.99 33.08 35.74 36.89 37.33
4 30.80 34.07 35.85 36.50 37.45 37.83
8 31.50 33.12 35.09 36.08 36.21 36.59

Total 29.55 31.73 34.67 36.11 36.85 37.25

100 2 11.27 22.75 31.04 37.55 39.74 40.38
4 22.47 27.02 32.98 36.05 39.00 39.13
8 33.74 37.16 39.53 42.19 42.95 43.24

Total 25.30 29.19 34.52 38.60 40.56 40.92

Table 8: Average gain resulting from simultaneously handling forward and reverse flows

Some general statements can be made: The gain from the integration tends to increase
with the total space provided by all satellites and the total quantity of goods to transport.
It increases from 11% for instances with two small satellites and 100 customers, to 43% for
instances with eight uncapacitated satellites and 100 customers. On the one hand, the gain
consistently increases with the satellite capacity. On the other hand, the gain tends to increase
with the number of satellites, but this trend is not consistent for the 50-customer instances and
|S| = 4 or 8. We attribute this behavior to the fact that instances with eight satellites are
much more difficult for the matheuristic compared to those with only four satellites, since in
the former not all satellites have to be used.

6 Conclusion
Two-echelon distribution systems are a cornerstone of city logistics. In this paper, we study
important functionalities of two-echelon systems that are rarely addressed in route planning
algorithms: forward and reverse flows, multiple vehicle trips, and storage capacities at satellites.
We introduce the 2-echelon multi-trip vehicle routing problem with capacitated satellites and
reverse flows (2E-MTVRP-CSRF) to integrate these new features into one new problem, for
which we provided a trip-based integer programming formulation.

To solve the 2E-MTVRP-CSRF, we design a decomposition-based matheuristic denoted as
iterative two-stage heuristic (ITSH). ITSH uses two echelon-tailored LNS algorithms, each of
them optimizing one echelon while (a major part of) the other echelon is fixed. To efficiently
test the feasibility of insertions, both LNS algorithms rely on a sequence of constant-time and
low-complexity tests. A first sufficient test fixes the order of operations at satellites to allow
a fast evaluation, while the final test employs the double-justification algorithm to allow a re-
scheduling of the order. Additionally, a MIP solver is used with a restricted and refined version
of a trip-based formulation to recombine trips generated in different LNS iterations. Thanks
to its more global vision of the synchronization constraints between both echelons, the MIP
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component is able to improve the solutions proposed by the LNS1 and LNS2 algorithms. ITSH
uses adaptive mechanisms to efficiently share the computation time between the search for new
trips and the combination of existing trips.

The computational study evaluates the ITSH matheuristic and analyze the impact of the
main problem features. We find that:

• ITSH provides competitive results on instances of the 2E-MTVRPTW in comparison to
the exact algorithm of Marques et al. (2020a).

• The combination of heuristic and exact components is a key success factor of the algorithm.
• Routing costs are sensitive to the satellite capacity. For example, on the 100-customer

instances with two satellites, reducing a large satellite capacity of 70 units to a tight
capacity of 20 units results in a 30% cost increase on average.

• Doubling the capacity of well-located satellites leads to a much larger decrease in the
routing costs than doubling the number of satellites.

• Integrating forward and backward flows can generate considerable savings (approximately
40% on average for 100-customer instances and uncapacitated satellites). These savings
decrease with tighter satellite capacities but remain substantial (always more than 10%).

Given the complexity of the 2E-MTVRP-CSRF, there are many avenues for future research
trying to improve and accelerate the solution, whether exact or heuristic. In particular, the
feasibility problem related to the satellite capacity with forward and reverse flows is a challenging
scheduling problem. For future studies, different backhauling policies (mixed deliveries, strict
backhauling etc.) could be compared at the second echelon. Furthermore, customer visits by
first-echelon vehicles could be integrated to better reflect practices evolving in the field (Nolz
et al., 2020).
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A Appendix
A.1 Large Neighborhood Search (LNS)
In this section, we detail LNS1 and LNS2 algorithms. They are both based on Algorithm 2 but
differ in the LNS operators and parameters used.

Acceptance criterion Both LNS algorithms use a record-to-record acceptance criterion with
modified cost as proposed in (Pisinger and Ropke, 2007):

f ′(x) = z(x) ·
(
1 + β · B(x)

|N |

)
, (2)

where z(x) is the objective function as defined in (1a), B(x) is the number of unserved
customers and FECs (request bank), and β a penalty factor. In LNS1, we replace additionally
z(x) by z′(x) to mitigate undesired solutions in which a first-echelon vehicle successively visits
the same satellite, i.e., utilizing it as a waiting station. The modified objective function z′(x) is
equal to z(x) plus a penalty for successive visits of first-echelon vehicles to the same satellite.

LNS Algorithm The algorithm starts from an initial solution x, obtained as described in
Section A.2. x∗ denotes the best solution found that is returned at the end of the algorithm.
The pool Ω̄ stores all trips constructed in the course of the algorithm. The index i counts the
number of iterations performed since the best-found solution x∗ was improved or since the last
large destruction happened. A large destruction step is performed if i is equal to the parameter
ω. Similarly, the index i′ counts the number of large destruction steps performed since the
last feasible solution was found and index j counts the overall number of large destruction steps
conducted. We denote by Σ− the set of destroy operators and by Σ+ the set of repair operators.
Σ−|local denotes the set of local destroy operators, i.e., operators used for small destruction steps.

LNS stops after a predefined number ζ of large destruction steps or if no feasible solution
(serving all customers/FECs) has been found during the last ζ ′ large destruction steps (Step 4).
In order to accelerate the interactions between the two LNS, we chose ζ ′ ≪ ζ to find a feasible
solution faster during the early stages of ITSH.

In each iteration, a repair operator is randomly selected in Σ+ (Step 5). Depending on the
value of i, either a small destruction step (Steps 7–9) or a large destruction step (Steps 11–15)
is conducted. In the former case, a copy x′ of the current solution is created, a local destroy
operator is selected in Σ−|local, and the destruction size is randomly selected in [δsmall,∆small].
If a large destruction step is conducted, a copy x′ of the best-found solution x∗ is created, the
destroy operator is randomly selected in Σ−, and the destruction size in [δlarge,∆large]. Either
way, the selected operators, σ− and σ+, are then applied to the copied solution x′ at Step 16.

In Step 17, the trips of the newly generated solution are added to the trip pool Ω̄. After a
large destruction step, solution x′ is always accepted as the new current solution x on Step 20.
If a small destruction step was conducted, the new solution x′ is accepted as the new current
solution x only if its modified cost is less than ϵ percent worse than the modified cost of the
best-found solution x∗ (Step 23), calculated with equation (2). In Steps 26–28, the best-found
solution is updated.

Operators Below, we briefly describe all LNS operators used. Symbols [1], [2] and [1,2]
identify the operators used only in LNS1, or LNS2, or both. All operators are chosen with the
same probability in LNS1 and LNS2. During a large destruction, there is 20% chance of taking
a local destroy operator. The local destroy operators are:
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Algorithm 2: LNS with large and small destruction
1 x, x∗ ← initial solution
2 pool of trips Ω̄← ∅
3 i, i′, j ← 0
4 while j < ζ and i′ < ζ ′ do
5 randomly select a repair operator σ+ ∈ Σ+

6 if i < ω then
7 x′ ← x
8 randomly select a destroy operator σ− ∈ Σ−|local
9 randomly select a destruction size Φ ∈ [δsmall,∆small]

10 else
11 x′ ← x∗

12 randomly select a destroy operator σ− ∈ Σ−

13 randomly select a destruction size Φ ∈ [δlarge,∆large]
14 j ← j + 1
15 i′ ← i′ + 1

16 x′ ← σ+(σ−(x′,Φ))
17 store the trips of x′ into the pool Ω̄
18 if x′ is feasible then
19 i′ ← 0

20 if i = ω then
21 x← x′

22 i← 0

23 else if f ′(x′) < (1 + ϵ) · f ′(x∗) then
24 x← x′

25 i← i+ 1

26 if f ′(x′) < f ′(x∗) then
27 x∗ ← x′

28 i← 0

29 return x∗
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[1,2] Route (split) string removal (Christiaens and Vanden Berghe, 2020): Removes sequences
of FECs/customers in different routes of the considered solution. We also implement the
split version of this operator, which conserve a sub-string of vertices in the middle of the
string to be removed.

[1,2] Satellite (split) string removal: This operator is equivalent to the route (split) string
removal on consecutive operations at a satellite. In LNS2, if a FEC is removed, the
associate customer is removed from its second-echelon trip.

[2] Distance related removal (Ropke and Pisinger, 2006b): Removes customers that are close
to each other with respect to the Euclidean distance.

[2] Bundle removal: Randomly selects a bundle and removes it together with the correspond-
ing customers in the second-echelon.

[2] Cluster removal (Pisinger and Ropke, 2007): Removes customers that are served by the
same trip. A trip is randomly selected and Kruskal’s algorithm is run on the arcs of this
trip until two clusters remain. One cluster is randomly chosen and all its customers are
removed from the solution.

The large destroy operators are:

[2] Random customer removal (Ropke and Pisinger, 2006b): Randomly removes customers.

[1] Random bundle removal: Randomly selects bundles and removes them. It is equivalent
to random removal applied to bundles.

[1] Worst bundle removal (derived from worst removal, Ropke and Pisinger (2006a)): Itera-
tively removes the bundle whose removal decreases the objective function the most.

[2] Historical knowledge node removal (Demir et al., 2012): The minimum cost of each cus-
tomer is recorded over all past LNS iterations. The cost of a customer i in a solution x
is the difference f(x)− f(x′), where x′ is x without the visit of customer i. The operator
iteratively removes the customers with the largest difference between their current cost
and their lowest cost. It can be seen as a history-biased worst removal.

[1,2] Trip removal and Route removal (Nagata and Bräysy, 2009): Removes a randomly selected
trip/route.

Following Christiaens and Vanden Berghe (2020), the used repair operators are all list
heuristics. In these operators, unserved FECs/customers are first sorted according to one of
the following simple rules and then inserted one by one with the procedure described in Sec-
tions 4.2.2 and 4.2.4. For each iteration, one rule is selected at random with identical selection
probabilities.

[1,2] Random order: FECs/customers are ordered at random.

[1,2] Largest first: FECs/customers are sorted in non-increasing order of their total demand
quantity.

[2] Farthest first: Customers are sorted in non-increasing order of their distance to the nearest
satellite.

[2] Closest first: Customers are sorted in non-decreasing order of their distance to the nearest
satellite.
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[1,2] Earliest first: FECs/customers are sorted in non-decreasing order of their ready date/start
of their time window. The ready date of all forward FECs is 0 and the ready date of a
reverse FECs is the end of the second-echelon trip that serves their customer.

[1,2] Latest first: FECs/customers are sorted in non-increasing order of their ready-date/start
of their time window.

[1,2] Narrow first: FECs/customers are sorted in non-decreasing order of time window width.

LNS parameters The numeric parameters for both LNS1 and LNS2 are summarized in
Table 9. The values of these parameters were obtained from preliminary experiments on 2E-
MTVRP-CSRF and 2E-MTVRPTW instances.

Parameter Notation LNS1 LNS2

Large destruction frequency ω 9|N |0.75 9|N |1.0
Number of large destructions ζ 30 5
Number of large destructions without improvement ζ ′ 5 1
Minimal size of small destructions δsmall 1% 1%
Maximal size of small destructions ∆small 15% 10%
Minimal size of large destructions δlarge 20% 10%
Maximal size of large destructions ∆large 100% 30%
Penalty for unserved FEC /customer β 10 25
Range of acceptance ϵ 2% 2%
Penalty for successive visits to the same satellite - 1 1

Table 9: LNS parameters

A.2 Initial solution
During the first iteration of ITSH (Algorithm 1), LNS2 is called first in Step 4. In order to get
initial (fixed) first-echelon routes, we create four single-trip routes per satellite s. These routes
just contain a single visit to the satellite s and the satellite visits of different routes are evenly
spread over the time horizon. This procedure is repeated F 1 times for each satellite. Clearly
these are far too many routes but in this way, the second-echelon routes can rely on nearly
unlimited supply at each satellite but still needs to synchronize with the given visit times.

To initialize the second-echelon routes, each customer demand is assigned to its nearest
satellite. The available second-echelon vehicles are then assigned to satellites such that the
proportion of vehicles assigned to a satellite is proportional to the proportion of customer
demands assigned to it. Each second-echelon vehicle route is initialized with an empty trip
from the second-echelon depot to its assigned satellite, an empty trip starting and ending at
this satellite and finally, an empty trip from its satellite back to the depot. Initially, all customers
and their FECs are put into the request banks.

When LNS1 is called for the first time in Step 6, the first-echelon routes are initialized with
an empty trip starting and ending at the UDC. Initially, all FECs are put into the request bank.

A.3 Restricted and refined MIP
Let Ω̄1 be the set of first-echelon trips and let Ω̄2 be the set of second-echelon trips generated in
the course of the LNS algorithms, modified according to Section 4.3. The restricted and refined
model uses the following additional variables:
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σi ≥ 0 : Penalty variable for not serving customer i ∈ N .
ufw
s,t ≥ 0 : Counts the surplus amount of forward demand that is not dropped off at satellite

s ∈ S at time t by first-echelon trips.
urv
s,t ≥ 0 : Counts the surplus amount of reverse demand that is not collected at satellite s ∈ S

at time t by first-echelon trips.
ζs ∈ {0, 1} : Indicates whether satellite s ∈ S is utilized.

Moreover, we remove constraints (1c)–(1h) for those time periods in which the constraints
are dominated.

• A ≤-constraint for a time period t is deemed dominated if the ≤-constraint for time period
t+1 is identical or tighter, i.e., the left-hand side contains the same or more positive and
the same or less negative terms.

• A ≥-constraint is identical or tighter if the left-hand side contains the same or less positive
and the same or more negative terms.

For example, for constraints (1f) for satellite s ∈ S, it suffices to consider only those points in
time at which a second-echelon trip starts.Therefore, we introduce the following sets of time
periods:

• T1,start := {t ∈ T : ∃h = (P, T, L) ∈ Ω̄1 with s0 = s and T0 = t}, the time periods at
which a first-echelon trips starts from the UDC o1.

• T1,visit
s := {t ∈ T : ∃h = (P, T, L) ∈ Ω̄1 with s = ik ∈ P and Tik = t}, the time periods at

which a first-echelon trip visits a satellite s ∈ S.
• T2,start

s := {t ∈ T : HΩ̄2+
s,t ̸= ∅}, the time periods at which a second-echelon trip starts at

a satellite s ∈ S.
• T2,end

s := {t ∈ T : HΩ̄2−
s,t ̸= ∅}, the time periods at which a second-echelon trip ends at a

satellite s ∈ S.

The restricted and refined model reads as follows:

min
∑
h∈Ω̄1

c1hx
1
h +

∑
h∈Ω̄2

c2hx
2
h +

∑
i∈N

Mσi (3a)

s.t.
∑
h∈Ω̄2

αh,ix
2
h + σi = 1 ∀i ∈ N (3b)

∑
h∈Ω̄1

βh,tx
1
h ≤ |F 1| ∀t ∈ T1,start (3c)

∑
t∈T

∑
h∈HΩ̄2+

o2,t

x2h =
∑
t∈T

∑
h∈HΩ̄2−

o2,t

x2h = |F 2| (3d)

∑
t′≤t−ps

∑
h∈HΩ̄2−

s,t′

x2h −
∑
t′≤t

∑
h∈HΩ̄2+

s,t′

x2h ≤ 0 ∀s ∈ S, t ∈ T2,start
s (3e)

∑
t′≤t−ps

(
∑
h∈Ω̄1

γfw
h,s,t′x

1
h − ufw

s,t′)−
∑
t′≤t

∑
h∈Ω̄2

γfw
h,s,t′x

2
h ≥ 0 ∀s ∈ S, t ∈ T2,start

s (3f)

∑
t′≥t+ps

(
∑
h∈Ω̄1

γrv
h,s,t′x

1
h − urv

s,t′)−
∑
t′≥t

∑
h∈Ω̄2

γrv
h,s,t′x

2
h ≥ 0 ∀s ∈ S, t ∈ T2,end

s (3g)

∑
t′≤t

(
∑
h∈Ω̄1

γfw
h,s,t′x

1
h − ufw

s,t′)−
∑
t′≤t

∑
h∈Ω̄2

γfw
h,s,t′x

2
h

+
∑
t′>t

(
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h∈Ω̄1
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1
h − urv

s,t′)−
∑
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h∈Ω̄2

γrv
h,s,t′x

2
h ≤ Csat

s ∀s ∈ S, t ∈ T1,visit
s (3h)
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ufw
s,t ≤

∑
h∈Ω̄1

γfw
h,s,tx

1
h ∀s ∈ S, t ∈ T1,visit

s (3i)

urv
s,t ≤

∑
h∈Ω̄1

γrv
h,s,tx

1
h ∀s ∈ S, t ∈ T1,visit

s (3j)

∑
t∈T

∑
h∈Ω2+

s,t∪Ω
2−
s,t

x2h ≤M · ζs ∀s ∈ S (3k)

x1h ∈ N0 ∀h ∈ Ω̄1 (3l)
x2h ∈ {0, 1} ∀h ∈ Ω̄2 (3m)
ufw
s,t, u

rv
s,t ≥ 0 ∀s ∈ S, t ∈ T1,visit

s (3n)
σi ≥ 0 ∀i ∈ N (3o)
ζs ∈ {0, 1} ∀s ∈ S (3p)

The objective (3a) adds the new penalty variables for unserved customer with big-M coeffi-
cients to the routing costs. Constraints (3b) state that each customer i ∈ N is either served
by a second-echelon trip or the associated penalty variable σi is set to 1. The fleet-size con-
straints (3c)–(3e) are identical to those in formulation (1) using sets Ω̄1 and Ω̄2. Constraints (3f)–
(3h) are the flow-conservation and satellite-capacity constraints now subtracting the new u-
variables to manage surplus quantities. Constraints (3i) and (3j) limit the variables u to the
quantity dropped off and collected at each satellite s ∈ S at time t. In addition, constraints (3k)
allow trips to visit a satellite only if the satellite is utilized according to the new ζ-variables.
Finally, the variable domains are given by (3l)–(3p).

A.4 Detailed results for the 2E-MTVRPTW instances

Instance Cost
r101 872.37
r102 800.18
r103 703.95
r104 666.01
r105 801.67
r106 714.36
r107 673.67
r108 652.33
r109 701.08
r110 695.84
r111 677.73
r112 648.10
r201 717.33
r202 661.68
r203 641.77
r205 648.51
r206 659.74
r207 642.39
r208 574.47
r210 651.19

Instance Cost
c101 471.03
c102 459.75
c103 443.16
c104 435.11
c105 471.03
c106 471.03
c107 465.75
c108 461.93
c109 440.13
c201 455.81
c202 445.23
c203 441.62
c204 438.10
c205 453.27
c206 453.27
c207 449.68
c208 445.70

Instance Cost
rc101 802.84
rc102 757.23
rc103 743.34
rc104 709.95
rc105 828.21
rc106 759.81
rc107 718.17
rc108 700.96
rc201 619.93
rc202 592.38
rc203 607.06
rc204 595.39
rc205 564.54
rc206 579.80
rc207 576.01
rc208 524.35

Table 10: Results of the matheuristic ITSH on the 2E-MTVRPTW instances with 25 customers
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Instance Cost
r101 1 316.38
r102 1 185.01
r103 1 086.47
r104 963.87
r105 1 198.87
r106 1 080.09
r107 1 033.93
r108 937.21
r109 1 065.14
r110 1 036.03
r111 993.24
r112 1 002.22
r201 1 064.08

Instance Cost
c101 1 008.91
c102 978.24
c103 947.95
c104 916.21
c105 995.86
c106 1 011.95
c107 975.37
c108 968.11
c109 934.44
c201 744.20
c202 740.53
c203 759.51
c204 706.63
c205 741.87
c206 741.32
c207 754.60
c208 727.20

Instance Cost
rc101 1 505.31
rc102 1 429.51
rc103 1 383.80
rc104 1 265.18
rc105 1 487.50
rc106 1 453.06
rc107 1 431.03
rc108 1 315.12
rc201 968.99
rc202 916.46
rc203 866.15
rc205 934.23
rc206 911.71
rc207 890.79

Table 11: Results of the matheuristic ITSH on the 2E-MTVRPTW instances with 50 customers

Instance Cost
r101 2 033.36
r102 1 863.84
r103 1 604.68
r104 1 428.00
r105 1 792.73
r106 1 707.32
r107 1 537.08
r110 1 608.41
r111 1 522.28
r112 1 539.07

Instance Cost
c101 1 480.58
c102 1 434.96
c103 1 443.70
c104 1 309.81
c105 1 431.34
c106 1 455.36
c107 1 403.53
c108 1 393.20
c201 985.71
c202 1 007.61
c205 946.99
c206 944.77

Instance Cost
rc101 2 019.64
rc102 1 915.65
rc103 1 790.81
rc105 1 959.16
rc106 1 879.94
rc107 1 795.84
rc108 1 731.54

Table 12: Results of the matheuristic ITSH on the 2E-MTVRPTW instances with 75 customers

Instance Cost
r101 2 302.51
r102 2 131.33
r105 2 064.17

Instance Cost
c101 2 007.48
c102 1 933.68
c105 1 911.79
c106 1 920.90
c107 1 864.91
c108 1 867.74
c109 1 939.84
c201 1 283.63

Instance Cost
rc101 2 548.11
rc102 2 403.70
rc105 2 549.57
rc106 2 375.75
rc106 2 375.75

Table 13: Results of the matheuristic ITSH on the 2E-MTVRPTW instances with 100 customers
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A.5 Detailed results for the 2E-MTVRP-CSRF instances

Satellite capacity Csat

Instance 20 25 35 50 70 ∞

A-50-1 1 876 1 759 1 642 1 598 1 598 1 598
A-50-2 – 1 956 1 907 1 847 1 847 1 842
A-50-3 1 976 1 870 1 798 1 753 1 753 1 753
A-50-4 – 2 042 1 914 1 862 1 862 1 862
A-50-5 – 2 260 2 116 2 081 2 066 2 066
A-50-6 1 993 1 988 1 973 1 973 1 973 1 973
A-50-7 1 988 1 905 1 819 1 818 1 798 1 738
A-50-8 – 1 854 1 854 1 791 1 727 1 727
A-50-9 – 2 170 2 030 1 986 1 936 1 936
A-50-10 1 931 1 846 1 776 1 714 1 700 1 700
B-50-1 1 960 1 881 1 835 1 835 1 802 1 802
B-50-2 1 857 1 857 1 787 1 749 1 749 1 749
B-50-3 1 888 1 733 1 713 1 713 1 713 1 699
B-50-4 1 765 1 647 1 641 1 566 1 566 1 566
B-50-5 1 768 1 721 1 713 1 712 1 660 1 641
B-50-6 1 762 1 684 1 664 1 664 1 616 1 616
B-50-7 1 625 1 573 1 533 1 533 1 521 1 521
B-50-8 1 875 1 822 1 752 1 752 1 752 1 746
B-50-9 1 760 1 738 1 710 1 710 1 710 1 710
B-50-10 1 661 1 601 1 585 1 566 1 566 1 547
C-50-1 1 746 1 666 1 666 1 666 1 666 1 666
C-50-2 1 772 1 762 1 733 1 677 1 631 1 631
C-50-3 1 637 1 571 1 546 1 546 1 513 1 513
C-50-4 1 845 1 732 1 654 1 654 1 654 1 654
C-50-5 1 800 1 800 1 711 1 689 1 689 1 624
C-50-6 1 783 1 781 1 703 1 703 1 703 1 700
C-50-7 1 553 1 449 1 449 1 449 1 449 1 449
C-50-8 1 815 1 770 1 692 1 636 1 636 1 636
C-50-9 1 578 1 578 1 578 1 542 1 542 1 534
C-50-10 1 555 1 522 1 487 1 487 1 487 1 487

Table 14: Results on the 2E-MTVRP-CSRF instances with 50 customers
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Satellite capacity Csat

Instance 20 25 35 50 70 ∞

A-50-1 – 3 384 3 110 2 992 2 821 2 782
A-50-2 – 3 756 3 525 3 273 3 180 3 180
A-50-3 – 3 167 2 840 2 744 2 671 2 660
A-50-4 3 921 3 685 3 319 3 086 3 086 3 086
A-50-5 3 789 3 338 2 999 2 822 2 783 2 783
A-50-6 – - 3 380 3 187 3 093 3 036
A-50-7 – 3 588 3 214 3 027 2 956 2 935
A-50-8 3 835 3 354 3 128 2 870 2 813 2 813
A-50-9 3 682 3 380 3 196 2 921 2 869 2 848
A-50-10 3 279 2 967 2 727 2 637 2 566 2 566
B-50-1 3 313 3 157 2 932 2 769 2 669 2 669
B-50-2 3 490 3 358 3 112 3 041 2 865 2 865
B-50-3 3 268 3 096 2 934 2 831 2 767 2 767
B-50-4 3 064 2 952 2 816 2 605 2 605 2 605
B-50-5 3 164 3 124 2 923 2 846 2 728 2 728
B-50-6 3 073 2 837 2 547 2 547 2 516 2 516
B-50-7 3 660 3 464 3 235 3 083 2 961 2 933
B-50-8 2 541 2 526 2 412 2 391 2 391 2 373
B-50-9 3 344 3 166 2 933 2 745 2 667 2 667
B-50-10 2 702 2 538 2 423 2 423 2 406 2 406
C-50-1 2 948 2 831 2 631 2 531 2 524 2 514
C-50-2 2 686 2 546 2 483 2 410 2 363 2 326
C-50-3 2 811 2 565 2 485 2 485 2 473 2 456
C-50-4 2 704 2 508 2 429 2 408 2 370 2 370
C-50-5 2 476 2 476 2 422 2 367 2 367 2 367
C-50-6 2 554 2 513 2 462 2 354 2 354 2 354
C-50-7 2 449 2 449 2 340 2 340 2 279 2 279
C-50-8 2 732 2 707 2 629 2 479 2 479 2 477
C-50-9 2 383 2 326 2 287 2 265 2 265 2 265
C-50-10 2 895 2 799 2 659 2 593 2 593 2 593

Table 15: Results on the 2E-MTVRP-CSRF instances with 100 customers
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