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Abstract

The tangent linear approximation (TLA) developed in Almohammadi et al. (Combust. Flame 230, 111426) is
extended to estimate the sensitivity of the ignition delay time with respect to species enthalpies and entropies.
The proposed method relies on integrating the linearized system of equations governing the evolution of the
state vector’s partial derivatives with respect to variations in thermodynamic parameters. The sensitivity
of the ignition delay time is estimated through a linearized approximation of a temperature functional. The
TLA approach is applied to three gas mixtures, H2, n-butanol, and iso-octane, reacting in air under adiabatic,
constant-volume conditions. The numerical experiments indicate that the linearized approximation of the
ignition delay time’s sensitivity is in excellent agreement with the finite-difference estimates. This is also
the case for sensitivity estimates obtained using the TLA approach. Further, significant computational
speed-ups are achieved with the TLA approach, and the method scales well with the number of perturbed
parameters. In the case of the H2 mechanism, TLA is about ten times faster than finite differences, and
this enhancement becomes even more substantial when more complex mechanisms are considered.

Keywords: local sensitivity; tangent linear approximation; thermophysical parameter; Jacobian

1. Introduction

Sensitivity analyses are frequently employed to identify the key parameters contributing to the variability
in quantities of interest (QoIs) predicted by a chemical reaction model. In particular, these methods have
been applied to guide model reduction and refinement. A prominent example of the application of sensitivity
tools in the context of ignition simulations concerns the characterization of the ignition delay time (τign,
defined precisely later) to local perturbations in chemical rate parameters.

In contrast to the extensive body of work focusing on the impact of rate parameters, a relatively lower
number of studies have addressed the role of thermodynamic properties on mixture reactivity [1–8]. This is
a primary focus of the present work.

Traditionally, sensitivity analyses have relied on a (so-called brute-force) finite-difference methodology
based on perturbing one-at-a-time the input parameters and performing independent simulations of the
system to determine the perturbed QoI. When N independent parameters are considered, this requires N+1
independent simulations if first-order differences are used, or 2N + 1 in the case of centered differences.

Recently, however, several approaches [9–12] have been conducted that focus on exploring alternative
means of estimating sensitivities that can specifically reduce the O(N) cost associated with the brute force
approach. These include methodologies based on tangent linear approximations [9, 12–14], adjoint tech-
niques [10], as well as optimization approaches [11]. Applications in [9–12] have particularly focused on
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estimating ignition delay time sensitivities to rate parameters. These works have shown that the underly-
ing techniques offer accurate and efficient means of estimating sensitivities and that, in high dimensional
situations, speedup by order-of-magnitude can be achieved over the traditional brute-force finite-difference
approach.

In this work, we focus on extending the TLA methodology introduced in our previous work [12] to enable
estimating the local sensitivity of the ignition delay time to variations in the thermodynamic properties of
individual species. Note that regardless of the parameters being perturbed, the TLA methodology leads
to a system of dynamical equations that governs the state-vector perturbations [9–15], comprising a linear
stretching term involving the Jacobian of the source term, and a forcing term that corresponds to the deriva-
tive of the source term with respect to the parameters being perturbed. Our effort in [12] focused exclusively
on the impact of rate parameters, and consequently involved deriving expressions for the derivative of the
source term with respect to these parameters. In section 2, a similar analysis is applied, focusing on enthalpy
and entropy perturbations, assuming both to be temperature independent. As in [12], we rely on a linearized
functional approximation to relate the sensitivity of the ignition delay time to the sensitivity of the state
vector. In Section 3, a unified framework is presented that enables simultaneous characterization of the
impact of reaction rate, enthalpy, and entropy perturbations. Section 4 provides a brief description of the
simulation approaches for modeling the ignition problem and simulating the evolution of local sensitivities.
The application of the TLA framework presently developed is illustrated in section 5 for simulations of the
ignition of hydrogen/air, iso-octane/air, and n-butanol/air mixtures. The main conclusions of the work are
discussed in section 6.

2. Formulation

2.1. Governing Equations
In this section, we start by summarizing the governing equation for homogeneous combustion of a reacting

gas mixture under adiabatic, constant-volume conditions; see Refs. [16, 17] and Appendix A. We denote
Yi, i = 1, . . . , Ns the species mass fractions, Ns the number of reacting species, T the temperature, and t
the time. For a detailed chemical mechanism involving Nr elementary reactions, the evolution of the species
mass fractions and temperature follows the coupled system,

dYi
dt

= 1
ρ

Nr∑
j=1

[
ḟ ji + ṙji

]
, i = 1, . . . , Ns

dT

dt
= − γ

ρcp

Ns∑
i=1

hi

 Nr∑
j=1

[
ḟ ji + ṙji

]+ (γ − 1)TW
ρ

Ns∑
i=1

1
Wi

 Nr∑
j=1

[
ḟ ji + ṙji

] ,

(1)

where ρ denotes the density, cp is the heat capacity at constant pressure, ḟ ji is forward rate of production of
species i due to reaction j, ṙji is the reverse rate of production of species i due to reaction j, γ is the specific
heat ratio, hi is the enthalpy of species i, Wi is the molecular weight of species i, whereas

W ≡

(
Ns∑
i=1

Yi
Wi

)−1

. (2)

The species forward and reverse rates, respectively ḟ ji and ṙji , are defined such the total reaction rate of
species i, ω̇i, is given by ω̇i =

∑Nr

j=1

[
ḟ ji + ṙji

]
.

2.2. Setup
Our main objective is to estimate the sensitivity of the ignition delay time, τign, with respect to in-

finitesimal perturbations in the stochastic germ parametrizing the uncertainty in species enthalpies and

2



entropies [2–4, 8]. The latter are typically expressed using NASA polynomials, according to [17, 18]:
Hi

<
= T

(
a0,i + T

(a1,i

2 + T
(a2,i

3 + T
(a3,i

4 + a4,i

5 T
))))

+ a5,i, (3)

Si
<

= a0,i lnT + T
(
a1,i + T

(a2,i

2 + T
(a3,i

3 + a4,i

4 T
)))

+ a6,i, (4)

where Hi and Si are the molar enthalpies, and < is the universal gas constant. The specific thermodynamic
properties in mass units are obtained by dividing the above expressions by the molecular weights,

hi = Hi/Wi, si = Si/Wi. (5)

Following [8], with the molar enthalpy and entropy of species i respectively represented as in (3) and (4),
we assume that parameters a5,i and a6,i are uncertain and parametrized using independent canonical random
variables ηi and σi, uniformly distributed over [−1, 1]. The dependence of a5,i and a6,i on ηi and σi is
expressed as

a5,i(ηi) = a0
5,i + αiηi, a6,i(σi) = a0

6,i + βiσi,

where a0
5,i and a0

6,i denote the respective nominal values, whereas αi and βi denote the corresponding (prior)
ranges. Clearly, we have:

∂hi
∂ηk

= αi<
Wi

δik,
∂hi
∂σl

= 0, ∂si
∂ηk

= 0, ∂si
∂σl

= βi<
Wi

δil, (6)

where δ denotes the Kronecker delta.
In the present setup, our goal is to develop an efficient methodology that enables us to estimate the

local sensitivity of the ignition delay time with respect to infinitesimal perturbations of individual canonical
variables ηi and σi, i.e. to determine the partial derivatives ∂τign/∂ηi, and ∂τign/∂σi, as well as the local
sensitivity indices defined as

Sh
i ≡ hi

(∂hi
∂ηi

)−1 1
τign

∂τign

∂ηi
, and Ss

i ≡ si
( ∂si
∂σi

)−1 1
τign

∂τign

∂σi
. (7)

2.3. Dependence of reaction rates on selected thermophysical parameters
When both the forward and reverse reaction rates are specified using Arrhenius parameters, variations

of species enthalpies and entropies do not impact the reaction rates. On the other hand, when reverse
Arrhenius parameters are not specified, the reverse rate parameter, krj , is computed based on the forward
rate kf j , and the equilibrium constant, Kcj , namely according to [17],

krj =
kf j
Kcj

, (8)

where

Kcj =
(patm
<

)∑Ns

k=1
νkj

exp
(
Ns∑
k=1

νkjgk

)
, (9)

νkj is the stoichiometric coefficient of species k in reaction j, and

gk = a6,k − a0,k + (a0,k − 1) lnT + T
(a1,k

2 + T
(a2,k

6 + T
(a3,k

12 + a4,k

20 T
)))

− a5,k

T
. (10)

Differentiating (8), and using (9–10), it follows that

∂krj
∂ηl

= −krj
∂

∂ηl

(
Ns∑
k=1

νkjgk

)
= krj

νljαl
T

. (11)

Similarly, we have
∂krj
∂σl

= −krjνljβl. (12)
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2.4. Tangent linear approximation
To estimate the ignition delay time’s sensitivity for infinitesimal perturbations in thermophysical pa-

rameters, we rely on linearized approximations of the governing equation. For variations in enthalpies, the
linearization is performed with respect to local variations in the ηk, whereas when entropy variations are
considered, the linearization is performed for variations in the σk.

Let Z(t) denote the state vector concatenating the species mass fractions and temperature for a given
realization of the germ:

Zi =
{
Yi i = 1, . . . , Ns
T i = Ns+1

(13)

Following a similar methodology as in [12, 13], the local sensitivity of the state around Z(t), with respect
to enthalpy variations ηk=1,...,Ns

, is estimated by integrating the linearized system

dZh
,k

dt
= J(t)Zh

,k + Sηk k = 1, . . . , Ns, (14)

from the initial condition Zh
,k(0) = 0. Here Zh

,k(t) ≡ ∂Z/∂ηk denotes the partial derivative of the state at
Z(t), J(t) is the Jacobian of the right-hand side of (1) at Z(t), Sηk is the vector with components Sηik given
by

Sηik(t) = 1
ρ

Nr∑
j=1

qηjkṙ
j
i , i = 1, . . . , Ns, (15)

and

SηNs+1,k = − γ

ρcp

αk<
Wk

 Nr∑
j=1

ω̇jk

− γ

ρcp

Ns∑
i=1

hi

 Nr∑
j=1

qηjkṙ
j
i

+ (γ − 1)TW
ρ

Ns∑
i=1

1
Wi

 Nr∑
j=1

qηjkṙ
j
i

 , (16)

where ω̇ji ≡ ḟ
j
i + ṙji , and

qηjk ≡ Ij
νkjαk
T

, 1 ≤ k ≤ Ns, 1 ≤ j ≤ Nr. (17)

The reaction indicator, Ij , is defined according to

Ij =
{

0 reverse Arrhenius parameters for reaction j are specified
1 otherwise. (18)

We use a similar approach to estimate the sensitivity of the state with respect to variations in σl=1,...,Ns
.

In that case, the variations are governed by

dZs
,l

dt
= J(t)Zs

,l + Sσl l = 1, . . . , Ns, (19)

with initial condition Zs
,l(0) = 0, whereas Zs

,l(t) ≡ ∂Z/∂σl denotes the partial derivative of the state at
Z(t), and J(t) is again the Jacobian of the right-hand side of (1) at Z(t). The source term Sσl in (19) is
given component-wise by:

Sσil(t) =


−1
ρ

Nr∑
j=1

qσjlṙ
j
i , i = 1, . . . , Ns,

γ

ρcp

Ns∑
i=1

hi

 Nr∑
j=1

qσjlṙ
j
i

− (γ − 1)TW
ρ

Ns∑
i=1

1
Wi

 Nr∑
j=1

qσjlṙ
j
i

 i = Ns + 1,
(20)

where
qσjl ≡ Ijνljβl, 1 ≤ j ≤ Nr, 1 ≤ l ≤ Ns. (21)
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2.5. Canonical Systems
Note that because of the linearity of the governing equations (14) and (19), and the proportionality of the

source terms with αk and σl respectively, it is convenient to define canonical systems in which the enthalpies
and entropies have equal uncertainty ranges. We denote by α̂ and β̂ the canonical values of the ranges for
enthalpy and entropy respectively, to distinguish them from the actual values αk and βl associated with
individual species. Using the canonical values, we may consider the state vectors Ẑh

,k and Ẑs
,l, respectively

governed by
dẐh

,k

dt
= J(t)Ẑh

,k + Ŝηk ,
dẐs

,l

dt
= J(t)Ẑs

,l + Ŝσl (22)

for k = 1, . . . , Ns and l = 1, . . . , Ns, with

Ŝηik(t) = 1
ρ

Nr∑
j=1

q̂ηjkṙ
j
i , Ŝσil(t) = −1

ρ

Nr∑
j=1

q̂σjlṙ
j
i , i = 1, . . . , Ns, (23)

and

ŜηNs+1,k = − γ

ρcp

α̂<
Wk

 Nr∑
j=1

ω̇jk

− γ

ρcp

Ns∑
i=1

hi

 Nr∑
j=1

q̂ηjkṙ
j
i

+ (γ − 1)TW
ρ

Ns∑
i=1

1
Wi

 Nr∑
j=1

q̂ηjkṙ
j
i

 , (24)

where

ŜσNs+1,l(t) = γ

ρcp

Ns∑
i=1

hi

 Nr∑
j=1

q̂σjlṙ
j
i

− (γ − 1)TW
ρ

Ns∑
i=1

1
Wi

 Nr∑
j=1

q̂σjlṙ
j
i

 , (25)

and
q̂ηjk ≡ Ij

νkjα̂

T
, q̂σjl ≡ Ijνkj β̂, 1 ≤ k ≤ Ns, 1 ≤ l ≤ Ns, 1 ≤ j ≤ Nr. (26)

Once canonical solutions of (22) are obtained, solutions of the original systems (14) and (19) are recovered
simply by setting

Zh
,k = αk

α̂
Ẑh
,k, and Zs

,l = βl

β̂
Ẑs
,l. (27)

Remark 1. In the developments above, we have assumed that the enthalpies and entropies of all species
involved in the detailed mechanism are uncertain. Consequently, the indices k (enthalpies) and l (entropies)
range from 1 to Ns. This need not always be the case, as one may alternatively focus on selected species of
interest. Thus, in general the indices k and l may respectively range in subsets Kh ⊆ Is and Ks ⊆ Is, where
Is ≡ {1, . . . , Ns}.
Remark 2. It is convenient to rewrite the source terms in matrix form, i.e. letting Sη and Sσ respectively
denote the matrices with components Sηi,k and Sσi,l where i = 1, . . . , Ns + 1, k ∈ Kh and l ∈ Ks.

Let Q and Q′ denote the matrices respectively defined component-wise by:

Qjk = Ijνkj 1 ≤ j ≤ Nr, k ∈ Kh, (28)

and
Q′jl = Ijνlj , 1 ≤ j ≤ Nr, l ∈ Ks. (29)

Note that Q and Q′ are mechanism-dependent but time-independent. Also, they do not involve the reference
ranges of enthalpy and entropy uncertainties, α̂ and β̂.

Let R by the matrix defined component-wise by:

Rij =


1
ρ
ṙji 1 ≤ i ≤ Ns, 1 ≤ j ≤ Nr

− γ

ρcp

Ns∑
i=1

hiṙ
j
i + (γ − 1)TW

ρ

Ns∑
i=1

1
Wi

ṙji i = Ns + 1, 1 ≤ j ≤ Nr,
(30)
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and let A be the “row” matrix,

Aik =
{

0 1 ≤ i ≤ Ns k ∈ Kh
ak i = Ns + 1 k ∈ Kh

(31)

where

ak ≡ −
γ

ρcp

<
Wk

 Nr∑
j=1

ω̇jk

 k ∈ Kh. (32)

A straightforward calculation yields
Sη = α̂A + α̂

T
RQ, (33)

and
Sσ = −β̂RQ′. (34)

3. Rate and thermodynamic parameter sensitivities

The development above enables us to provide a combined treatment of local sensitivities to thermody-
namic and rate parameters, in the case where the former are expressed as in section 2 above, and the latter
follow the form given in [12]. Specifically, when the pre-exponents of reaction j is parametrized according
to

Aj(ξj) = UFξj

j Āj , j = 1, . . . , Nr, (35)
where UFj is the uncertainty factor associated with reaction j, the ξj ’s are canonical independent random
variables uniformly distributed over [−1, 1], and Āj is the “nominal” pre-exponential of reaction j, the
evolution of the derivative of Z(t) with respect to variations in ξj , denoted Zr

,j(t) ≡ ∂Z/∂ξj , obeys to

dZr
,j

dt
= J(t)Zr

,j + Sξj j = 1, . . . , Nr (36)

with initial condition Zr
,j(0) = 0. As before, J(t) is the Jacobian of the right-hand side of (1) at Z(t),

whereas the source term is given by

Sξij(t) =


1
ρ
qξij(t) i = 1, . . . , Ns

− γ

ρcp

Ns∑
i=1

hiq
ξ
ij(t) + (γ − 1)TW

ρ

Ns∑
i=1

1
Wi

qξij(t) i = Ns + 1,
(37)

where
qξij(t) ≡ ln (UFj) ω̇ji (Z(t)), 1 ≤ i ≤ Ns + 1, 1 ≤ j ≤ Nr. (38)

As for the thermodynamic parameters, one can define a canonical system by introducing the scaled
sensitivity vector,

Ẑr
,j ≡

Zr
,j

ln (UFj)
, j = 1, . . . , Nr, (39)

which leads to the canonical system,

dẐr
,j

dt
= J(t)Ẑr

,j + Ŝξj , Ẑr
,j(0) = 0 , j = 1, . . . , Nr, (40)

where the vector Ŝξj has components Ŝξij given by

Ŝξij(t) =


1
ρ
ω̇ji (Z(t)) i = 1, . . . , Ns

− γ

ρcp

Ns∑
i=1

hiω̇
j
i (Z(t)) + (γ − 1)TW

ρ

Ns∑
i=1

1
Wi

ω̇ji (Z(t)) i = Ns + 1
(41)
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Remark 3. With the definitions above, one can express the TLA of the canonical sensitivities to the uncertain
rates, enthalpies, and entropies, through the generic system

dẐ•,m
dt

= J(t)Ẑ•,m + Ŝ•m , Ẑ•,m(0) = 0, m ∈ K• (42)

where • ∈ {h, s, r}, and the source term Ŝ•m is Ŝξm(t) in (41) when • = r, Ŝηk(t) in (23) and (24) when • = h,
and Ŝσl (t) as defined in (23) and (25) when • = s.

Letting Z denote the matrix concatenating the vectors Ẑ•,m and T the matrix concatenating the matrices
Ŝξ in (41), Sη in (33) and Sσ in (34), we may express the sensitivity evolution equations as

dZ
dt

= J(t)Z + T, Z(0) = 0. (43)

Because the matrices Sη and Sσ require the same terms needed to form Ŝξ, when analyzing thermodynamic
sensitivities the simultaneous consideration of all reaction rate sensitivities incurs a small incremental cost,
and so we will generally consider Kr = {1, . . . , Nr}.
Remark 4. Using an analytical transformation, an amplitude correction scheme for the rate sensitivities
was developed in [12]. This amounts to multiplying the reaction rate sensitivities by a correction factor, Λ,
defined according to:

Λ =
t
dZ

dt∑
j

Ẑr
,j(t)ηj

(44)

where Z denotes a generic component of Z. Though the amplitude correction scheme is not needed when
the right-hand-side of the TLA system is accurately estimated, it was shown in [12] to dramatically reduce
errors in the prediction of ignition delay time sensitivities when an approximate Jacobian is used. In the
analysis below, we explore the application of this correction scheme by applying the correction to all the
entries of Z, i.e. we estimate the amplitude-corrected rate and thermodynamic sensitivities through

Zac ≡ ΛZ. (45)

Remark 5. With the ignition delay time, τign, defined as the time lapse needed for the mixture to rise by
an increment ∆Tign from its initial temperature T0, i.e. T (τign) = T0 + ∆Tign, one can follow the linearized
approximation approach developed in [12] to estimate the sensitivities of τign to variations in the ξj , ηk and
σl. This yields

∂τign

∂ξj
≈ −

∂T

∂ξj
(τign)

dT

dt
(τign)

,
∂τign

∂ηk
≈ −

∂T

∂ηk
(τign)

dT

dt
(τign)

,
∂τign

∂σl
≈ −

∂T

∂σl
(τign)

dT

dt
(τign)

. (46)

As in [12], we will assess the fidelity of (46) by comparing the resulting estimates with results obtained
through a brute-force, finite-difference methodology based on independent (nonlinear) perturbations of ξ,
η, and/or σ. Note that, as discussed in [12], the linearization approach may be readily extended to other
functionals, enabling us to define τign based on pressure, or possibly other observables.

4. Numerical Schemes

The numerical solution of (1) is computed using TChem, which relies on an adaptive-step, error-controlled,
stiff integration methodology to determine the time profile of state vector, Z(t). The output frequency is
controlled by specifying the maximum time step, ∆tmax, as well as the maximum temperature difference,
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∆Tmax, between consecutive records. In all cases presented below, we set ∆Tmax = 1 K. This methodology
results in discrete time profile of the state vector, Zn, n = 0, . . . , N , where the superscript denotes the time
level. The latter is subsequently used as input to the TLA methodology.

Specifically, we rely on a second-order Crack-Nicolson scheme to integrate (22) and (40) on the same
time grid on which Zn is available. Reusing the notations of Remark 3 the integration is expressed as:

Ẑ•,n+1
,m =

(
I− 1

2∆tn+1Jn+1
)−1 [

Ẑ•,n,m + 1
2∆tn+1

(
JnẐ•,n,m + Ŝ•,n+1

m + Ŝ•,nm
)]
, m ∈ K• (47)

where I is the (Ns+1)× (Ns+1) identity matrix. To estimate the Jacobian, Jn ≡ J(Zn), we rely on library
functions in TChem, which provides estimates using either analytical expressions or finite differences.

Note that integration of (22) and (40) yields the evolution of the corresponding sensitivities Ẑh
,m and Ẑs

m.
Finally, interpolating the discrete profiles at t = τign enables us to apply the linearized approximation (46)
and consequently estimate the desired sensitivity of τign with respect to the index m.

5. Results

In this section, we present results obtained by applying TLA schemes to three different settings. First, we
consider the oxidation of hydrogen in air using a small mechanism [19]. Then, we scale up the problem con-
sidering uncertainty in a larger number of species, as they feature in the iso-octane mechanism from [20–22].
Finally, we apply TLA to estimate local sensitivities of the ignition delay time on rate and thermodynamic
uncertainties belonging to rate rules and thermodynamic classes of the n-butanol mechanism from [23].

To quantitatively assess the errors in the TLA approach, we use the finite-difference results as the
reference. For a vector u ∈ Rm we denote ‖u‖2 its L2-norm, RMS(u) ≡ ‖u‖2/

√
m its the Root Mean

Squared value, and ‖u‖∞ its infinity norm. Using these definitions, we set the normalized errors E2 and E∞
of a TLA estimate uTLA to be

E2 =
√
m

RMS
(
uTLA − uFD

)
‖uFD‖2

and E∞ =
RMS

(
uTLA − uFD

)
‖uFD‖∞

. (48)

In the analysis of the results, we shall denote T h
,i (resp. T s

,i or T r
,i) the partial derivative ∂T (τign)/∂ηi

(resp. ∂T (τign)/∂σi or ∂T (τign)/∂ξi) for i ∈ Kh (resp. Ks or Kr).

5.1. H2 oxidation
Here, we apply the TLA scheme to the H2 mechanism from [19], which involves Ns = 9 species, and Nr =

19 reactions. We consider hydrogen oxidation in air at stoichiometric conditions with initial temperature
T0 = 1000 K, and initial pressure p0 = 1 bar. The computer code TChem is used to perform the computations
with output frequency set to ∆Tmax = 1 K and ∆tmax = 10−7 s. These settings lead to a discrete state-
vector profile defined on an irregular time grid having 2649 intervals, forming a partition of the interval
[0, τ0], where τ0 = 2.3991× 10−4 s is the nominal ignition delay time of the unperturbed system.

Figure 1 shows the derivatives of the ignition time with respect to the species enthalpy (∂τign/∂ηk, top
frame) and entropy (∂τign/∂σl, bottom frame) versus their respective species index. The plots contrast the
estimates obtained using finite-differences (blue circles) and the linearized approximation (orange dots).
The figure displays the excellent agreement between the results obtained using finite-differences and the
linearized approximation. This agreement highlights the ability of the linearized approximation (46) to
provide accurate estimates of the local sensitivities of τign.

To determine the local sensitivity indices Sh
k and Ss

l , we first exploit the TLA schemes to estimate the
temperature derivatives with the species’ enthalpy and entropy, T h

,k and T s
,l. Figure 2 shows the estimates of

enthalpy (top frame) and entropy (bottom frame) derivatives for all the species. Again, a close agreement
between the finite-difference and TLA estimates is observed.

Figure 3 finally presents the local sensitivity indices Sh
k and Ss

l computed using TLA, without amplitude
correction. As for the estimates of the enthalpy and entropy derivatives shown above, an excellent agreement
is seen with results obtained using the brute-force, finite-difference approach.
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Figure 1: Derivatives of ignition time ∂τign/∂ηk (top frame) and ∂τign/∂σl(bottom frame) versus the species index for the H2
oxidation case. Plotted are estimates obtained using finite-differences (blue circles) and the linearized approximation (orange
dots). The normalized errors E2 in the local sensitivity vectors are 3.4182×10−5 and 3.4127×10−5 for enthalpies and entropies
derivatives, respectively.

Table 1 reports the normalized errors for the TLA estimates of T h
,k and T s

,l. Noting that errors reported
in Table 1 are very small, we conclude that the predictions obtained using the TLA methodology are
accurate. We also note the normalized errors for Sh

l and Ss
k (not shown) are nearly identical to those of T h

,k

and T s
,l. These similarities indicate that TLA integration errors dominate those arising from the linearized

approximation.

Enthalpy Entropy
E2 1.4700e-04 1.5240e-04
E∞ 9.2952e-05 9.0988e-05

Table 1: Normalized errors of the TLA estimates of temperature derivatives with respect to the species’ enthalpy and entropy
(T h
,k and T s

,l) for the H2 oxidation case. TLA results obtained without amplitude correction.
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Figure 2: Derivatives T h
k and T s

l (bottom frame) versus the species index for H2 oxidation. Shown are results obtained using
finite-differences and TLA using analytical Jacobian and time grid obtained with ∆tmax = 10−7 s.

5.2. Iso-octane oxidation
We now consider the more elaborate iso-octane mechanism from [20–22], with Ns = 874 species and

Nr = 3796 elementary reactions. The combustion of a stoichiometric iso-octane air mixture, reacting
adiabatically at constant volume, starting from an initial temperature T0 = 850 K and an initial pressure
p0 = 20 bar is performed using TChem. The output frequency is controlled using ∆Tmax = 1 K, and
∆tmax = 10−5 s. This yields 2569 points in the time interval [0, τ0] where τ0 = 0.0231 s is the nominal
ignition delay time of the unperturbed system.

We contrast in Fig. 4 the estimates of the species enthalpy and entropy derivatives of τign for the finite-
difference approach and the linearized approximation. The finite-difference estimates’ absolute values are
sorted in descending order, and the dominant 20 derivatives are reported. The normalized error E2 on the
TLA vector of sensitivities are 3.6979 × 10−3 and 4.7417 × 10−3 for enthalpies and entropies, respectively.
The small relative error provides confidence in the quality of the linearized approximation of the ignition
time derivatives.

In Fig. 5, we show the TLA approximation of enthalpy and entropy derivatives of the temperature (T h
,k

and T s
,l) without and with amplitude correction for the same species indices shown in Fig. 4. The finite-

10
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Figure 3: Sensitivity indices Sh
k (top frame) and Ss

l (bottom frame) associated to the enthalpy and entropy of the 9 species in
the H2 oxidation mechanism. Plotted are results obtained using the finite-difference and TLA approaches, as indicated.

difference estimates are also presented for reference. We observe minor discrepancies between the uncorrected
TLA results and the finite-difference estimates. However, when amplitude correction is applied, the TLA
approximations of temperature derivatives are found to be in excellent agreement with the finite-difference
estimates.

Figure 6 provides scatter plots of the corrected TLA estimates T r
,j (rates; top frame), T h

,k (enthalpies;
middle frame), and T s

,l (entropies; bottom frame) shown against the corresponding finite-difference esti-
mates. Perturbations in all the pre-exponential rate parameters, species entropies, and species enthalpies
are considered and depicted. As can be seen, the points in all three scatter plots fall close to the main
diagonal, indicating a very close agreement between the sensitivities obtained from the TLA approximation
and the finite-difference estimates for all the rate and thermodynamic parameters considered.

The TLA estimates of Sh
k and Ss

l are shown in Fig. 7, and are contrasted with the finite-difference
estimates. Without correction, the TLA sensitivities are close to the finite-difference estimates, but applying
the correction scheme effectively reduces the amplitude errors resulting from the use of a relatively coarse
time grid, as the corrected TLA results are in excellent agreement with the finite-difference results.

A quantitative assessment of TLA approximation errors was again conducted using (48), namely to
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Figure 4: Derivatives of the ignition time with respect to the species enthapy (∂τign/∂ηk, top frame) and entropy (∂τ/∂σl,
bottom frame) for iso-octane oxidation. Plotted are estimates obtained using finite-differences (blue dots) and the linearized
approximation (orange circles). The reaction indices shown correspond to the largest absolute values of the finite-difference
estimates of derivatives.

determine the Ns-dimensional sensitivities T h
,k, Sh

k, T s
,l and Ss

l . As in the case of H2, the results for T h
,k and

Sh
k, and T s

,l and Ss
l are nearly identical and the results are only are reported for the temperature in Table 2.

The normalized errors for TLA approximation without and with amplitude correction are found to be small
for both enthalpy and entropy derivatives. Thus, the TLA methodology is deemed to be effective for this
detailed mechanism involving hundreds of species and thousands of reactions.

Enthalpy Entropy
No Correction Correction No Correction Correction

E2 4.9563e-02 2.2188e-03 4.6899e-02 2.8177e-03
E∞ 2.7079e-03 1.2123e-04 2.8334e-03 1.7023e-04

Table 2: Normalized error for T h
,k and T s

,l for the iso-octane oxidation case. Results are shown for TLA using the analytical
Jacobian, with and without amplitude correction.
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Figure 5: Estimates of the enthalpy and entropy derivatives of the temperature (T h
,k and T s

,l) for the species index shown in
Fig. 4 and the iso-octane oxidation mechanism. Shown are results obtained using finite-differences and TLA using analytical
Jacobian.

5.3. n-butanol oxidation
Lastly, we focus on the oxidation of a stoichiometric n-butanol/air mixture with initial temperature,

T0 = 900 K, and initial pressure, p0 = 40 bar. The n-butanol mechanism of Sarathy et al. [23] comprising
Ns = 687 species and Nr = 3435 reactions is used for this purpose. The constant volume simulation
is performed using TChem with ∆Tmax = 1 K, and ∆tmax = 10−6 s. With the selected output control
parameters, the discrete states are recorded at the nodes of an irregular time grid having 17766 intervals
that form an irregular partition of the interval [0, τ0], where τ0 = 1.769 × 10−3 s is the ignition delay time
of the unperturbed mixture.

In the present analysis of sensitivities to thermodynamic parameters, we focus exclusively on N ′s = 54
species involved in the thermodynamic classes outlined in [8] and consisting of the fuel and fuel radicals,
as detailed in the Supplementary Material. In other words, the cardinality of the sets Kh and Ks are
|Kh| = |Ks| = 54. This restriction limits the number of independent computations in the finite-difference
approach to 108 for one-sided differences and to 216 in the case of centered differences. In applying the TLA,
we explored the use of both the analytical and numerical Jacobian libraries. This specific study is motivated
because, in the presently used release of TChem, the analytical Jacobian expressions for PLOG reactions
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Figure 6: Scatter plots of the T r
,j (top frame) T h

,k (middle frame) and T s
,l (bottom frame) for the iso-octane case. The TLA

results (y axis) are plotted against the corresponding finite-difference estimates (x axis). The insets provide enlarged views of
values around 0. The corrected TLA results obtained using the analytical Jacobian are used.

are inexact as they ignore the pressure dependence of Arrhenius coefficients. This test case enables us to
investigate whether the amplitude correction scheme provides effective means for overcoming the resulting
errors, as previously observed in [12] for rate sensitivities.

Figure 8 shows the leading sensitivities ∂τign/∂ηk (top frame), and ∂τign/∂σl (bottom frame), and contrasts
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the finite-difference (blue dots) and linearized approximation (orange circle) estimates. The normalized error
E2 on the vector of 58 local sensitivities is 7.7403×10−3, for both enthalpies and entropies. We thus conclude
that, as in the previous examples, there is an excellent agreement between the linearized approximation and
the brute-force approaches.

Figure 9 depicts estimates of derivatives T h
,k (top frame) and T s

,l (bottom frame) obtained using finite-
differences, and TLA approximations based on the analytical Jacobian, the analytical Jacobian with am-
plitude correction, and the numerical Jacobian. The TLA results obtained using the numerical Jacobian
(without correction) are clearly in excellent agreement with the finite-difference estimates. On the other
hand, significant amplitude errors are observed when the analytical Jacobian is used. The larger errors are
not surprising because, as previously noted, the analytical Jacobian expressions are presently only approx-
imate. Note, however, that when the amplitude correction is applied to the TLA results obtained with
the analytical Jacobian, the results are once again consistent with finite-difference predictions. Thus, the
amplitude correction scheme effectively addresses errors resulting from the use of approximate Jacobian
expressions, similar to what was observed in [12] for reaction rate sensitivities.
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Figure 8: Dominant ignition time derivatives ∂τ/∂ηk (top frame) and ∂τ/∂σl (bottom frame) for n-butanol oxidation. Plotted
are estimates obtained using finite-differences and the linearized approximation, as indicated.

The leading sensitivity indices to enthalpies and entropies of selected species, respectively Sh
l and Ss

k

are shown in Fig. 10. In particular, the figure provides two frames that contrast TLA and finite-difference
predictions. Briefly, an inspection of the results leads to similar conclusions as those drawn for the analysis
of the temperature sensitivities given in Fig. 9.

To provide a quantitative assessment of the differences between TLA and finite-difference results, we
estimate the normalized errors of the vector of temperature sensitivities associated with the species involved
in the thermodynamic classes. Table 3 provides the normalized errors E2 and E∞ computed for the vector
of T h

,l and T s
,k. Similar to the H2 and iso-octane cases, the results show relatively small errors. Inparticular,

in the present example smaller errors arise when using the numerical Jacobian without correction.
So far, we have focused exclusively on the computation of the canonical sensitivities, using fixed values

of the uncertainty ranges for species enthalpies and entropies, ᾱ = 1000, β̄ = 1, and fixed value of the
uncertainty factor for the rate expressions, UF = exp(1). We now turn our attention to the analysis of
the temperature sensitivities associated with the actual ranges, UFj , αk, and βl, as given in Supplementary
Material for the reactions appearing in the rate rules of the n-butanol mechanism, and for the thermodynamic
classes. Specifically, we rely on (39) and (27) to reverse the canonical scalings.
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Figure 9: Dominant temperature derivatives T h
,k (top frame) and T s

,l (bottom frame) for n-butanol oxidation. Shown are results
obtained using finite-differences, and TLA approximations as indicated.

Anal Jac Num Jac
No Correction Correction No Correction Correction

enthalpy E2 0.4427 9.3833e-03 2.3022e-03 6.8683e-03
E∞ 6.0251e-02 1.277e-03 4.3458e-04 1.2877e-03

entropy E2 0.4428 9.4208e-03 2.3050e-03 6.8712e-03
E∞ 6.0253e-02 1.2820e-03 3.1368e-04 9.3505e-04

Table 3: Normalized errors E2 and E∞ for T h
,k and T s

,l in the n-butanol oxidation case. Error estimates obtained before and
after amplitude correction are reported, using TLA results with the analytical or numerical Jacobian.

Figure 11 depicts the results for the local temperature sensitivities to uncertainties in the reaction rates
appearing in the rate rules (T r

,j), and to the enthalpies (T h
,k) and entropies (T s

,l) of species appearing in
the thermodynamic classes. The results indicate that the sensitivities to rates span a larger interval of
values, followed by enthalpy and entropy sensitivities. Overall, however, the three ranges of temperature
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Figure 10: Leading sensitivity indices, Sh
l (top frame) and Ss

k (bottom frame), for individual reactions in the n-butanol oxidation
case. Plotted are results obtained using finite-differences, and TLA approximations as indicated.

sensitivities are comparable.
A close-up view of the leading sensitivities is shown in Fig. 12, which shows sensitivities having absolute

values greater than 104 K. As can be seen, the highest sensitivity of temperature (and consequently τign)
occurs for an H-atom abstraction reaction from the fuel. However, uncertainties in fuel radicals enthalpies,
namely C4H8OH-3O2, C4H7OH-1OOH-3O2, C4H8OH-1O2, and C4H7OH-4OOH-2O2, also feature in the
leading set. Their presence suggests a simultaneous treatment of reaction rate and thermodynamic parameter
sensitivities, a goal which we will pursue in future work.

5.4. Performance
We conclude by briefly examining the tangent linear approximation’s performance enhancement by con-

trasting the CPU cost incurred by TLA with the CPU cost incurred by a first-order, finite-difference method-
ology. In the latter case, the rates, enthalpies, and entropies are individually perturbed, and an independent
simulation is performed for each perturbation. If we use the cost of a forward simulation to normalize the
CPU cost, the computational cost of all sensitivities is Nr + 2×Ns when perturbations in all reaction rates,
species enthalpies, and species entropies are considered, as is the case in the H2 and iso-octane oxidation
examples. On the other hand, the computational cost is N ′r + 2×N ′s for n-butanol because the analysis is
restricted to reactions featuring the rate rules and species appearing in the thermodynamic classes.

Table 4 contrasts the computational cost of TLA and finite-difference approaches for all three examples
considered. In all cases, the same normalizing factor is used. As can be seen, in the case of H2 and n-
butanol, the CPU cost incurred by TLA is approximately an order of magnitude smaller than that required
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Figure 12: Leading temperature sensitivities for the n-butanol case.

by the brute force approach. For the iso-octane example, with perturbations in all parameters considered,
TLA’s speed-up is about three orders of magnitude. This speed-up provides effective means for leveraging
local sensitivities in uncertainty quantification studies aiming to build surrogate representations and leverage
these representations in global sensitivity analysis and parameter calibration.

H2 n-butanol iso-octane
∆tmax 10−7 10−6 10−5

FD 37 626 5544
Anal Jac 4.33 11.78 6.23
Num Jac 4.17 11.07 5.71

Table 4: Computational cost of various approaches, normalized by the CPU time of a single forward simulation. Reported are
the CPU costs of the finite-difference (FD) approach, of the TLA using analytical and numerical Jacobians.
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6. Conclusions

The tangent linear approximation presented in [12] was extended to estimate the local sensitivity of the
ignition delay time with respect to uncertainty in thermodynamic parameters, namely, species enthalpies and
entropies. Attention is focused on a gas mixture reacting adiabatically at constant volume. The variability
in the enthalpies and entropies of species is introduced by perturbing selected coefficients in the NASA
polynomials so that the corresponding uncertainty ranges are temperature independent. These coefficients
are parametrized using independent canonical random variables, uniformly distributed over [-1,1].

Following the methodology developed in [12], a framework was proposed that combines two key in-
gredients. The first ingredient consists of deriving a canonical tangent linear system governing the state
vector’s sensitivities on the germ’s components. The second ingredient consists of adopting a linearized
approximation of the functional defining the ignition delay time, thus relating the latter to the state vector’s
sensitivities.

Three different settings were considered to evaluate the proposed TLA, focusing on the combustion of
hydrogen, n-butanol, and iso-octane in air at stoichiometric conditions and intermediate pressures and tem-
peratures. In each case, results obtained from the TLA approach are compared against results obtaining
using the finite-difference approach, based on performing independent simulations for individual perturba-
tions in enthalpies and entropies.

In all cases considered, the linearized approximation of the ignition delay time’s local sensitivity was
found to be in excellent agreement with finite difference estimates. Also, the TLA results were in good
agreement with finite-difference predictions. A performance analysis was finally conducted considering un-
certainties in reaction rates and thermodynamic parameters simultaneously. The analysis showed that TLA
is computationally competitive compared with the brute-force approach, even when the reaction mechanism
involves a small number of species and a moderate number of reactions. In the case of iso-octane oxidation
using a detailed mechanism with hundreds of species and thousands of elementary reactions, TLA’s speed-up
factors were about three orders of magnitude.

In future work, we plan to leverage TLA’s capabilities, in conjunction with coordinate transform and
active subspace methodologies, to examine the global impact of uncertainties in reaction rates and thermo-
dynamic parameters in high-dimensional settings.
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Appendix A.

This appendix provides brief details, largely adapted from [24], regarding how the energy equation is
derived. To arrive at the form given in (1), one starts from the conservation of the internal energy,

d(ρu)
dt

= 0, (A.1)

where u ≡
∑
i uiYi =

∑
i hiYi − RT is the internal energy of the system, and ui is the internal energy of

species i. Because ρ is constant, we have:

d(ρu)
dt

= ρ

Ns∑
i=1

Yicp,i
dT

dt
+ ρ

Ns∑
i=1

hi
dYi
dt
− dp

dt
(A.2)

where p = ρRT is the thermodynamic pressure, and

R ≡ <
Ns∑
i=1

Yi
Wi

. (A.3)
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Combining (A.1–A.3), we obtain:
dT

dt
= − 1

ρcp

Ns∑
i=1

hiω̇i + 1
ρcp

dp

dt
, (A.4)

where cp =
∑Ns

i=1 Yicp,i is the heat capacity of the mixture. Differentiating the equation of state,

p = ρ<

[
Ns∑
i=1

Yi
Wi

]
T, (A.5)

and using the fact that ρ is constant, we have:

dp

dt
= WRT

Ns∑
i=1

ω̇i
Wi

+ ρR
dT

dt
, (A.6)

where W is given by (2). Substituting (A.6) into (A.4), we get:

dT

dt
= − 1

ρcp

Ns∑
i=1

hiω̇i + 1
ρcp

[
WRT

Ns∑
i=1

ω̇i
Wi

+ ρR
dT

dt

]
,

which readily yields: [
1− R

cp

]
dT

dt
= − 1

ρcp

Ns∑
i=1

hiω̇i + R

cp

TW

ρ

Ns∑
i=1

ω̇i
Wi

. (A.7)

Substituting the relation R = cp(γ−1)/γ into (A.7), expressing ω̇i in terms of the forward and reverse rates,
ω̇i =

∑Nr

j=1

[
ḟ ji + ṙji

]
, and rearranging, we finally arrive at the form of the energy equation given in (1).
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