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Abstract

The lectures will be devoted to a somewhat detailed presentation of Stochastic Schramm-
Loewner Evolutions (SLE), which are Markov processes describing fractal curves or interfaces
in two-dimensional critical systems. A substantial part of the lectures will cover the connection
between statistical mechanics and processes which, in the present context, leads to a connection
between SLE and conformal field theory (CFT). These lectures aim at filling part of the gap
between the mathematical and physics approaches. They are intended to be at an introductory
level.
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Monday, March 19: Statistical interfaces and
SLE

The lecture will be in three parts:

Monday Statistical interfaces and SLE

Wednesday Relation between SLE and CFT

Friday SLE/CFT Delicatessen

The basic idea is to relate SLE with 2-dimensional conformal field theory. In this relation, SLE
martingales, which are similar to physically conserved quantities, will be related to observables in
CFT.

Today, what I’m going to describe first are curves, and then the relation between statistical me-
chanics and curves, and then the definition of SLE.

1 What objects?

Our objects of study are curves in connected and simply connected planar domains. These are
geometric objects, and also interfaces.

1.1 Loop erased random walks

To begin, you start with a lattice, with some lattice spacing, filling your planar domain D. Then
you take two points, x0 and x∞, which I will draw on the boundary but they can be in the interior.
Then you take a random walk that connects x0 and x∞, and in two dimensions these will go to
every point infinitely many times. And “loop-erased” means that you erase all loops. So a loop
erased random walk is a simple path γ in D from x0 to x∞, and you want to give these a probability
measure. We do this by setting a weight wγ =

∑
rw↓γ wrw, where wrw = x‖rw‖; here ‖rw‖ is the

number of steps in an arbitrary random walk, and rw ↓ γ means that the random walk becomes γ
upon erasing loops.

Since the lattice is finite, there are finitely many simple curves. But we are interested in the limit
as the lattice spacing a→ 0. This limit is critical at x = xc = 1

4 . At the critical value, the limit is
almost surely a simple curve with fractal dimension 5

4 . The limiting probability measure is called
SLEκ=2.

Harold: You said there’s a critical point at x = 1
4 . What happens away from this value? De-

nis: Away from this, the correlations decay exponentially with the length scale. We want some-
thing conformally invariant, and in particular that the correlations are independent of the length
scale.
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1.2 Percolation

In this case, you draw a triangular lattice. Now at each vertex I will assign a color with some
probability, either yellow with probability p or blue with probability 1− p. The aim will be to look
at the clusters of, say, yellow sites, and the properties of the boundary of such clusters.

To be sure that there is a boundary, we assign boundary conditions appropriately. We work on the
upper half plane, and ask that lattice points at (−n− 1

2 , 0) are assigned yellow and at (n+ 1
2 , 0) are

assigned blue, for n ∈ N. Then we start at (0, 0), and we see a path disconnecting yellow from blue.
The question now is to study properties of this interface as the lattice spacing a → 0. We choose
p carefully so that the limit is conformally invariant. Then we see a curve which is not simple: it
has infinitely many double points. But it never crosses itself.

In particular, we can look at the curve by an exploration process: we can discover it step-by-step
by walking along. Because of a locality property of percolation — you assign the color of each site
independently of the colors of some other site. So you start along the curve, and suppose you’ve
decided it so far. Then you have to decide whether to turn left or right. This depends just on the
color of the vertex you’re about to run into, and so L or R turns happen in probability p or 1− p.
To be critical, p = 1

2 for the triangular lattice.

This is typical of the SLE process.

I should mention, the curve you get has fractal dimension 7
4 .

1.3 Self-avoiding walk

You take a simple domain, and look at self-avoiding walks, which are random walks where you
demand that they do not self-intersect.

2 Statistical mechanics and curves

2.1 Ising model

Again, you take a domain D, and fill it will a lattice. Then there is a degree of freedom at each vertex
of the lattice Λ, called a spin. For the Ising model, if i ∈ Λ, then σi = ±1. So the configuration c is
a value of σi for each i. So there are finitely many configurations c ∈ C. And to each configuration
we assign a weight wc = e−βEc , where βEc =

∑
i∼j Jσiσj , where “i ∼ j” means that i and j

are lattice points and neighbors. Then we have the probability Pc = 1
Zwc where Z =

∑
c∈C wc.

Actually, everything also depends on the domain D.

So, there are some sites + and some sites −, and we’d like to understand the curve that is the
interface. To control the interface, and in particular to control where it starts and ends, we choose
boundary conditions. So we choose two points on the boundary x0 and x∞, and put + on all
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the boundary from x0 to x∞ (going counterclockwise) and − on the ones from x∞ to x0. In this
way again we get a measure on curves in D connecting x0 with x∞. We get a probability measure
PD,x0,x∞ [γ] = 1

ZD

∑
c∈C[γ]wc, where C[γ] are the configurations giving γ, i.e. the sites immediately

to the left of γ are − and immediately to the right are +.

Question from the audience: Is it important to choose some special β? Denis: The model
makes sense for any β, but in order to say anything about the measure, we want it to be conformally
invariant. Question from the audience: So this means that at βc all the correlations are scale-
invariant? Denis: At βc, 〈σxσy〉 ∼ 1

|x−y|# . At others, it’s like e−|x−y|/ξ. Question from

the audience: On both sides of the critical point? Denis: Yes, if you look at the connected
expectation.

2.2 Induced measure

What we hope is to give a definition of this measure in the limit as the lattice spacing goes to 0.
This is very hard to do directly. What SLE does it directly gives a measure on the space of curves,
that you can then compare.

And you see that the construction is very general: not just the Ising model, but others like the
Potts models or the O(n) models.

2.3 Conditioning → Domain Markov property

I start with a domain D, and two marked points x∞ and x0. Then I consider curves γx0,x∞ . Depends
on four data: D, x0, x∞, and also on a curve γx0,x going to some point x in the bulk of D. Then with
these data we can consider probabilities PDrγx0,x,x0,x∞ [ · ]. Now, I can think of this as a conditional
probability, but I can also think of it as replacing D with a domain in which I have cut along the
curve. If you think about the Ising model, then the new cut domain with its boundary conditions
is of the same type as the old one. The domain Markov property is that:

PD;x0,x∞ [ · |γx0,x] = PDrγx0,x;x,x∞ [ · ]

Let’s prove that we have this. Call γ̂ the variable curve from x to x∞. Then we have:

PD;x0,x∞ [γx0xγ̂|γx0x] =
PD[γx0xγ̂]

PD[γxx0 ]

and PD[γxx0 ] = 1
ZD
ZD[γxx0 ], and ZD[γxx0 ] =

∑
c∈C[γxx0 ]w

D
c . We sum over all the spins which are

away from γ, and we see that ZD;x0,x∞ [γx0x] = ZDrγx0x;x,x∞ , with one difference: there is a factor

e−βEγx0x , which is the energy along the curve, but it factors out.
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The same argument will be true for the other partition function, and you see that it applies in any
local statistical model. Question from the audience: Even for next-nearest-neighbor models?
Denis: You trust the universality of the scaling limit.

We see that the factors e−βEγx0x cancel out, and

PD[γx0xγ̂]

PD[γxx0 ]
=
ZD[γx0xγ̂]

ZD[γxx0 ]
=
ZDrγx0x [γ̂]

ZDrγx0x
= PDrγx0x;x,x∞ [γ̂]

3 SLE

Our goal, coming from physics, is to perhaps use lattice models to understand the continuum
theory. But the lattice partition function becomes divergent in the continuum limit. So we directly
look for a continuous model, and we will lose contact with statistical mechanics, to regain it when
we connect to CFT.

We consider γ a random curve in D, connecting x0 to x∞. And we consider some open set U . Then
we ask for a measure PD;x0,x∞ [γ ⊂ U ], and we ask for some properties:

1. conformal transport

2. domain Markov property

Then with these two properties, what Schramm understood is that there is a one-parameter family
of measures, which are the SLE measures with parameter κ ∈ R+.

3.1 Basics of conformal transformations

A conformal transformation is a transformation from a planar domain to another planar domain,
which locally preserves angles. This means that locally they are holomorphic. So at least locally
at z, you have w = f(z), and if you take two points very close, z1 = z0 + δz, this is mapped to w0

and w1 = w0 + δw, and δw = f ′(z0)δz. This is a dilation and a rotation — it is a complex number
f ′(z0) = |f ′(z0)|eiθ0 . These numbers of course can vary from point to point.

The standard example: let H = {z ∈ C|=(z) > 0} upper half plane to U = {w ∈ C||w| < 1}. Then
we can set w = f(z) = z−i

z+i . Here i 7→ 0, 0 7→ −1, and ∞ 7→ 1.

The Riemann mapping theorem says that any domain in C which is connected and simply-connected
is conformally equivalent to H. This map is not unique — there are conformal transformations of
H to itself, and these form a group which is SL(2,R), by φ(z) = az+b

cz+d , with real ad− bc = 1. So to
fix f , you have to fix three parameters.

This is everything I will use about these functions.
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3.2 Conformal transport

Now we can state what we mean by conformal transport.

We take two planar domains D and ∆, each with two marked points x0, x∞ ∈ ∂D and y0, y∞ ∈ ∂∆.
Then we have probabilities PD;x0,x∞ and P∆;y0,y∞ . Then these are conformally equivalent, and so
we fix two parameters that f(x0) = y0 and f(x∞) = y∞, and we ask that f relate them. More
precisely, we choose such an f , and for each U , we can ask that

PD;x0,x∞ [γ ⊂ U ] = P∆;y0,y∞ [γ̂ ⊂ f(U)]

This is tautological, because we’re just saying how we transport the measure, in a way similar that
if we have a vector field on a manifold, then we know how vector fields transform. But if we knew
how to take the scaling limit, then conformal invariance would mean something.

Question from the audience: And the third condition to fix f? Denis: It says that the
probability is invariant under a one-parameter group. If you work on H with x0 = 0 and x∞ =∞,
then this group is by dilation.

So since it is a tautological statement. What makes it useful is also to impose the domain Markov
property.

3.3 Domain Markov property

We have D, and x0, x∞, and x and γx0x. And we also have Dr γxx0 . So we impose that:

PD;x0,x∞ [ · |γx0x] = PDrγx0x;x,x∞ [ · ]

The cut domain is still connected and simply connected. So we choose a conformal map fxx0 :
Dr γx0x → D, taking x to x0 and x∞ to x∞. So our axiom is that:

PD;x0,x∞ [ · |γx0x] = fx0x ◦ PD;x0,x∞

This axiom is a growth process. You imaging that you have grown the curve from x0 to x, and then
you want to know what happens in just a little more. By the above axiom, this is the same as just
the very beginning step of the curve. It follows that: to define the measure, it’s enough to know
the statistics of just the germ of curves.

This is what Schramm did, and we lose contact (temporarily) with all statistical mechanics.

3.4 Towards the definition of SLE

Now that we understand that it is enough to know the statistics of just the germ of the curve, we
need good parameterization in order to understand the formula.
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This we do via the Loewner equation. We work on the upper half plane, since this is the same
as any other domain by a transformal map. We imagine that we start at 0 and go to ∞: we are
studying PH;0,∞.

Now imagine that we have a parameterized curve γ[0,∞) : t 7→ γt. But we are really interested in
the curve as a geometrical object. Anyway, so we have γ[0,t], and we choose gt : Hr γ[0,t] → H. If
we fix three conditions, then we have fixed gt. They are:

gt(z) = z + 0 +
2t

z
+

#

z2
+ . . .

This is the Taylor expansion of g near z =∞.

So the first condition says that ∞ 7→ ∞, and the second that g′(∞) = 1. Along with the condition
that the next coefficient is 0, we define the map uniquely. Here t, as coefficient of 1/z, is a choice
of affine parameter along the curve.

3.5 How gt varies when the curve groups (Loewner equation)

To know how gt evolves, it is enough to know how to uniformize a tiny bit of a curve. So we have in
H a tiny curve from ξt to ξt + iδt. The uniformization of this tiny curve is implemented by:

gt,δt(z) =
√

(z − ξt)2 + δ2
t + ξt

with the cut in the square root along the tiny curve.

If δt is small, then we can Taylor expand, and we see that:

gt,δt(z) ≈ z +
1
2δ

2
t

z − ξt
+ . . .

This implies that the function gt transforms by picking up a pole:

∂tgt(z) =
2

gt(z)− ξt
(L)

Let’s say this again. We have a map gt, and gt+δt . Then to uniformize just the little bit, we want
to use gt+δt ◦ g−1

t , and we just computed (gt+δt ◦ g−1
t (z) − id)(gt(z)). The factor of 2 is linked to

our choice of t-parameterization.

Question from the audience: But then you are demanding that the curve grows perpendicularly
to the boundary? Denis: No, I did that just for clarity. The better answer is to ask: how do
you add on a little to a subdomain? What SLE supposes is that you add matter just at a delta
function, but you can of course smooth this out.

Ok, so we said how gt evolves, depending on this number ξt = gt(γt). The trick now is to reverse
the logic, to understand the curve from the data t 7→ ξt.

Remember, given the curve, the function was unique. And conversely. What you can do is integrate
(L) with initial data gt=0(z) = z, given t 7→ ξt, to reconstruct gt(z) and hence the curve.
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3.6 Definition of SLE

To give a measure on curves, we give a measure on maps, which satisfy (L) with initial data. The
measure will be: ξt =

√
κBt, with Bt the standard Brownian motion E[ξtξs] = κmin(t, s).

Then γt = g−1(ξt + iε)ε→0+ . It is a theorem of Rohde and Schramm that t 7→ γt is a curve, for any
κ, but with different phases.

If κ = 0, then ξt is not random. If you integrate (L), then you get a square root.

The theorem is that there are three phases. When κ ≤ 4, then you get a simple curve. When
4 < κ < 8, then γ is a curve with infinite number of double points. When κ ≥ 8, then γ is
space-filling.

For example, LERW has κ = 2, Ising ± is κ = 3, and SAW should be κ = 8/3. The percolation
model is κ = 6, and the Ising FK model is κ = 16/3. I know of no statistical model that gives
κ > 8 or κ < 2.

3.7 Domain Markov property (again)

Now I will prove that to have domain Markov property, it fixes the statistics of ξt to be a Brownian
motion.

Look. I have a curve γt, and I have the map gt which is sends the tip to ξt, with the normalization
at∞ as above. But this is not quite the same normalization as when I defined the Domain Markov
property. So I must translate, and use ft(z) = gt(z)− ξt.

Now the curve continues to evolve to γt+s, conditional on γt. This translates to a small bit of
curve γ̃t,s starting at 0. Then there is the full flattening ft+s of γt+s. But by additivity, we
see that ft+s ◦ f−1

t , which is the flattening of the short curve, must be (by the domain markov
property):

ft+s ◦ f−1
t
∼= fs

by which we mean that they should have the same law.

Then you expand at z = ∞, and what you learn is that ξt+s − ξt has to have the same law as ξs.
Because ft(z) = z−ξt+ 2t

z +O(1/z2). Now impose continuity, and this imposes that ξt =
√
κBt+αt.

And finally, you need invariance by dilation, and this kills that αt factor.

3.8 Some remarks

The first remark is that it has been proved that the dimension of the curve is dκ = 1 + κ
8 when

κ < 8. And, of course, that it is a curve.

There’s been work by Schramm, Lawler, Werner, Rohde. There are also many conjectures by
physicists. And I probably forgot many names.

Notes by Theo Johnson-Freyd
theojf@math.berkeley.edu

UC Berkeley, Spring 2012

theojf@math.berkeley.edu


Denis Bernard Stochastic SLE from Statistical CFT 10

Physicists usually, when they study critical system, are used to using field theory. Field theory is
usually defined by actions, integration, quantization. They are determined by local data. So this
is why it is difficult for physicists to get information about nonlocal objects. What we learn from
SLE is that there is a way to learn from field theory about nonlocal objects.

So, I talked about SLE with data which are two points on the boundary. What I talked about was
chordal SLE. You can also talk about radial SLE, which goes into the bulk. In radial SLE, you fix
three numbers, one on the boundary and two in the bulk. There is also dipolar SLE, where you fix
three points x0, x+, and x−, and just ask that the curve start at x0 and go somewhere between the
other two. You can do this in Ising by putting some area of free boundary. Question from the
audience: How do you do radial SLE in the Ising model? Denis: You can’t for ± model. But
for O(n) model you can.

And there are many more, with more data, i.e. more marked points. But then you have only three
conditions on conformal map, and so when you do the SLE argument, you get a flow in the moduli
space of marked points. That flow is specified by the CFT partition function.

So what I’m going to describe, which is a relation between CFT and SLE, gives you a way to make
contact between these. And it will give a hint how to define the more general process. Next time I
will give these connections, there are many ways to approach it, and since one way to define CFT is
just through algebra, I will do it through algebra and group theory. I will give a group-theoretical
description of Loewner equation.

Wednesday, March 21: SLE/CFT
correspondence

Today I will talk about the correspondence between SLE and CFT. I will first formulate the relation
between statistical mechanics and Martingales for some processes. Then I will tell you what is the
statement about the correspondence between CFT and SLE. Then I will describe the objects, and
see how we can prove this correspondence. This will be a more algebraic approach.

4 Statistical martingales

4.1 Discrete

So I start again with the model on the lattice that we are to consider. If I am to talk about
martingales, then I must talk about stochastic processes. In this case, the process will be the
growth of the curve of interfaces.

Again, we have a domain D which has the topology of a disk, and has a lattice in it. And we have
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two marked points x∞ and x0 on the boundary, and we can look at the interface of fixed length
γT . So if C is the configuration space, we have C =

⋃
γT
C[γT ]. This partition is finer and finer as

we increase the lengths.

Since everything is finite, we can from this define a filtration FT ⊆ FS for S > T . Here FT and FS
are sigma algebras. The probability measure P is the one coming from the Boltzman weight that
I discussed last time.

That’s our process. Now you have to define first what are the observables, and their expectation
values, and I want to show that if you look at the expectation values of the observables, then that
is a martingale.

What is an observable? We have some observable O — maybe you measure the values of spins at
various locations — and for c ∈ C its value Oc (that is an observable is a function on C), and we
define the expectation value to be

〈O〉stat
D =

1

ZD

∑
c∈C

wcOc

Now we can consider the conditional expectation value:

〈O〉stat
D |γT =

1

ZD[γT ]

∑
c∈C[γT ]

wcOc

Then the first is really just an expectation value E[O], and the second is the conditional expectation
E[O|γT ] = E[O|FT ].

Then I explained last time that ZD[γT ] = e−EγT ZDrγT . Here EγT is the energy of γT . This was

because if c ∈ C[γT ], then wD
c = e−EγT wDrγT

c . So from this relation, we see that

〈O〉stat
D |γT = 〈O〉stat

DrγT

Prop: This is a FT -martingale.

Proof: More or less, a martingale is something that is conserved in mean. So we want to prove
that

E[〈O〉stat
DrγT ] = 〈O〉stat

D

If we have a martingale, then it definitely has this property, so this is a hint that it is a martin-
gale.

The LHS is an expectation with respect to the measure on the interface γT . And we know that
P [γT ] = ZD[γT ]/ZD. So the LHS is∑

γT

P [γT ]〈O〉stat
DrγT =

∑
γT

ZD[γT ]

ZD
× 1

ZD[γT ]

∑
c∈C[γT

wcOc =
1

ZD

∑
c∈C

wcOc = 〈O〉stat
D

Notes by Theo Johnson-Freyd
theojf@math.berkeley.edu

UC Berkeley, Spring 2012

theojf@math.berkeley.edu


Denis Bernard Stochastic SLE from Statistical CFT 12

The double sum on γT and c ∈ C[γT ] reproduces the sum on c ∈ C because C =
⋃
γT
C[γT ]. What

have I done? I’ve rearranged a statistical sum. That’s what we learned from SLE. When you have
a sum of many things, you can rearrange.

So I have proved that it is conserved in mean. That’s not enough to prove that it is a martingale,
but there is more, you need to have

E[〈O〉stat
DrγT |γS ] = 〈O〉stat

DrγS

for S < T . What we proved above was the statement for S = 0. But you can prove this more
generally. You can do it either directly, using a sum as above, or you can use that this is a
conditional expectation and E

[
E[O|FT ]

∣∣FS] = E[O|FS ].

The definition of a martingale is that you have a filtration FS and a map S 7→ MS which is FS-
measurable, satisfying E[MT |FS ]S<T = MS . And you see that in our case (of statistical mechanics)
this is tautological, more or less, like the Markov property. It is true for any model, even away
from criticality, and even more general things, like the renormalization group can be formulated in
this way.

4.2 Continuum

In the continuum, we don’t have anymore the lattice, but we have a curve γ[0,t] that we are
parameterizing in some way. What we expect is to give a definition of 〈O〉stat

Drγt in the continuum.
We have the measure on curves, which I call E, and if both are coming from a lattice model then
we want that t 7→ 〈O〉stat

Drγt is a martingale for the γ[0,t]-process.

This gives information on the relation between E and the continuum limit of a statistical model,
which will be a QFT. Because when you write E[〈O〉Drγt ] = 〈O〉D, then the LHS uses the measure
on curves, and the RHS is information for the QFT.

Question from the audience: So you are not assuming that this angle bracket is a scaling limit?
Denis: I am. Or rather, if you knew how to define E directly from the lattice, then you would
have it, but you can impose the martingale property, when you try to define the continuum theory
through some other method. Question from the audience: Through SLE? Denis: Yes. But
you see, there’s the parameter κ for E, and the parameters T, c, . . . for the QFT, and you want to
find which parameters satisfy that identity.

5 CFT/SLE

5.1 Statement

I will use terms from field theory, and then try to explain them.
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I have the domain D, and in the continuum I know that E = SLEκ. Then the rule is that the QFT
expectation value is a ratio of two partition functions — the individual partition functions don’t
have continuum limit, but their ratio can.

Then since we care about the boundary conditions, we have:

〈O〉stat
D −→

〈Ψ(x∞)OΨ(x0)〉cft
D

〈Ψ(x∞) Ψ(x0)〉cft
D

Actually, this type of relation is still true also away from criticality, but then you don’t have cft,
but some other qft. Why is it useful to study at criticality? Because in a cft, going from D r γt
to D is implemented by conformal transformation, and in cft you know how it transforms for such
maps. Question from the audience: Do you know what to do away from criticality? Denis:
Yes, in the free theory; no in general. Away from criticality, SLE is not a good approach. In SLE,
you grow the curve step-by-step, and you can still do this in QFT, but at the conformal point
then you can forget about the past. But if you have a mass term, say, or some density, then when
you do the conformal map, if the mass was originally homogeneous, then it is no longer after the
conformal map. Question from the audience: But if you can control this? Denis: Yes, but
it is impossible. In Ising model with magnetic field, it may start homogeneous, but afterwards, it
has a Jacobian, and it is dilated in a nonuniform way. So to do this away from criticality, you have
to control the qft with nonuniform perturbation, and no one knows how to do that, except in the
free theory.

At criticality, going from Dr γt to D is purely kinematical.

How does it go? You have 〈Ψ(x∞)OΨ(x0)〉cft
Drγt , and you use a conformal map gt to send x∞ 7→ x∞

and the tip γt of the curve to some ξt = gt(γt). Now how does this transform?

〈Ψ(x∞)OΨ(γt)〉cft
Drγt = |g′t(x∞)|h |g′t(γt)|h 〈Ψ(x∞) gtOΨ(ξt)〉cft

D (CFT property)

where h is the scaling dimension of the operator Ψ. But in the ratio, this part will cancel out.

Question from the audience: And there is a Jacobian from O? Denis: Yes, it is hidden in
gtO. If O =

∏
k Φk(zk, z̄k), with Φk of weight ∆k, then gtO =

∏
k |g′t(zk)|∆kΦk(gt(zk)).

So it is now easy to insert, and we have

〈O〉stat
Drγt −→

〈Ψ(x∞) gtOΨ(ξt)〉cft
D

〈Ψ(x∞) Ψ(ξt)〉cft
D

=: ZD
(
ztk, . . . ; ξt

)
And we want to make this a martingale.

Claim: ZD
(
ztk, . . . ; ξt

)
are SLEκ martingales if the CFT has central charge c = (6− κ)(3κ− 8)/2κ

and h = (6 − κ)/2κ. And the field Ψ has to have a null vector at level 2, but I’ll discuss that
later.

So now we know how to match things up. For example, when c = 1, then κ = 4, and this is the
free Gaussian field theory. You consider a domain D with a free boson with action S = 1

2

∫
(∂φ)2,
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and then you impose boundary conditions that on one side of the boundary you have φ = λ∗, and
on the other φ = 0. And then for any configuration you have a discontinuity, and this curve is
SLE(4).

For other values of c, there are two values of κ for the same c. For example, for c = 1
2 , then you

have κ = 3 corresponding to the Ising ± model, and you have κ = 16/3 which is FK (high temp).
For c = 0, you have κ = 6 percolation, and κ = 8/3 which is SAW. Etc. Question from the
audience: c can also be negative? Denis: Yes. Question from the audience: But c does
not uniquely fix the theory — you need the whole operator content.

Denis: What you see is that c < 1. But when you want to study SLE, you see that you need to
work with many more operators than usual. You can’t just work with local operators, because in
SLE we look at non-local objects.

5.2 Hint for the proof

We have the Loewner equation dgt = 2
gt−ξtdt, and we have ZD(ztk, . . . ; ξt). We have:

dZD(gt(z•), ξt) = dt
(κ

2
L2
−1 − 2L−2

)
︸ ︷︷ ︸
diff op of 2nd order

ZH + dξt (L−1ZH)

In order to be a martingale, it should be conserved, and we have to ask that the factor of dt is 0
for ZH. And this has an interpretation in terms of representation theory. What we have to do is
look for a representation of the Virasoro algebra such that

(
κ
2L

2
−1 − 2L−2

)
|hw〉 = 0. This is what

gives the above claim.

This is called the null vector equation. I’m sure you’ve seen the representation theory of SL(2).
In particular, the spin-1

2 -representation, which is 2-dimensional, how do you construct it? It is
defined as the representation such that if you act on the highest-weight vector twice with the
lowering operator J−, you get 0. Put another way, you take some Verma module, and then you
demand that when you act on the highest weight vector twice, you get the highest weight vector
of a sub-module. What we will do is analogous.

6 Details

This is for Loewner equation in H, and chordal.

6.1 Basics of Ito Calculus

We start with Brownian motion Bt. This is some very irregular curve: it is almost surely continuous
and nowhere differentiable. We have Gaussian measure with E[BtBs] = min(t, s), and E[Bt] = 0.
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This has iid increments, where conditioned on Bs we have that Bt+s − Bs is distributed like Bt.
And this is independent of Bs′ for s′ ≤ s.

Why is this? Because we have a random walk, and if you post time at some moment, then resume
your random walk, your choices are independent of your history.

Ito calculus is an attempt to define a continuum limit with these properties. Specifically, it is the
goal to define

∫ T
0 f(Bt) dBt. You have to be careful. If you look at the E[(Bt−Bs)2] = |t− s|, and

so (dBt)
2 ∼ dt. This is why almost surely Bt is nowhere differentiable.

So how to define the integral? I will do it by example. Let’s consider f(B) = B. Then we want∫ T
0 f(Bt) dBt, and we do it by a Riemann sum. So we divide the interval 0 = t0 < t1 < · · · < tN = T .

Then we would have: ∫ T

0
f(Bt) dBt =

∑
i

f(Bti) (Bti+1 −Bti)

This is the Ito convention: you do the sampling of f before the increment, so as to have indepen-
dence.

In our example, this is:

= −1

2

∑
i

(Bti+1 −Bti)2 +
1

2

∑
i

(B2
ti+1
−B2

ti)

using Bti = 1
2(Bti+1 +Bti)− 1

2(Bti+1 −Bti).

Well, the second sum is telescopic, and so is 1
2(B2

T −B2
0). And the first is a sum of random variables

that are about |ti+1 − ti|, and by the law of large numbers in the limit the sum is a non-random
variable with value T . So what we find is:∫ T

0
B dB = −1

2
T +

1

2

(
B2
T −B2

0

)
We proved the following for F (B) = B2/2, but in general the fact of Ito calculus is:

F (BT )− F (B0) =

∫ T

0
F ′(Bt) dBt +

1

2

∫ T

0
F ′′(Bt) dt

In infinitesimal form, this is

dF (Bt) = F ′(Bt) dBt +
1

2
F ′′(Bt) dt

which is Taylor expansion with (dBt)
2 = dt. You must use the Ito convention to understand the

first term. Then

dE[F (Bt)] = 0 +
1

2
E[F ′′(Bt)] dt.
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6.2 Example: Loewner equation

Recall we have ∂tgt = 2
gt−ξt , with gt=0(z) = z. Then it is convenient to use ft = gt − ξt, with

ξt =
√
κBt, and so dft(z) = dgt(z) − dξt = 2dt

ft
− dξt. Now we consider F (ft). When, expanding

Taylor to second order as we must above, we have:

dF (ft) = dt
2

f
F ′(f)− dξt F

′(t) +
κ

2
F ′′(f) dt =

(
2

f
F ′(f) +

κ

2
F ′′(f)

)
dt− F ′(f) dξt

Let `n = −zn+1∂z. Then we have:

dF (ft) =
(
−2`−2 +

κ

2
`2−1

)
F (ft) dt+ (`−1F )(f) dξt

So you can see that the hinted proof above is simply an application of the Ito calculus.

Then from what I said, in order to be a martingale you have to kill the term in front of dt. Because
the other term is zero in mean, so you just have to kill the drift.

So now there are two approaches. You either take the equation (and its multi-point generalization),
and just try to solve it, and classify the solutions. Or you can recognize that the equations you
need to solve already show up in field theory, and are related to representation theory.

6.3 Group tautology

In order to make contact with Virasoro algebra, I need to make contact with algebra.

The functions f, g are all of the same kind. They are conformal transformations, and in particular
Laurent series. Specifically, we consider N− to be the set

N− = {f(z) = z +
∑
n≥0

anz
−n} (finite radius of convergence)

So N− is a group under composition. Given f ∈ N , we denote the group element by Γf , so that
ΓfΓg = Γf◦g. Of course N− acts on itself.

Note, for SLE ft ∈ N−, with a0 = −ξt and a1 =
∫
ξdξt or so, and so on.

For SLE, we set Γt to be the group element corresponding to ft. Then the Loewner equation
reads:

Γ−1
t dΓt =

(
−2`−2 +

κ

2
`2−1

)
dt− `−1 dξt

Now, usually when you write a differential equation for a group, the RHS should be in the Lie
algebra. But here, because of Ito calculus there is on the RHS a term which is not.

In any case, the goal now is to promote this equation in CFT data, so that
(
−2`−2 + κ

2 `
2
−1

)
becomes

some operator acting on the CFT data, and we look for some object which kills this operator.
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6.4 Basics of CFT

There are three data in a cft. There is the Virasoso algebra, its representations, and fields. Oh,
and a 1000-page book by Di Francesco et al. But the main data are the first three.

We have the differential `n = −zn+1∂z, and they form an algebra [`n, `m] = (n − m)`n+m. The
Virasoro algebra is the unique central extension of this algebra. Namely, it is:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1) δn+m,0

Here c is the central charge: it is central, and so commutes with everything. Why do you get a
central charge? Because in quantum mechanics, you may have projective representations.

Now we want a qft. The Hilbert space for the qft will be a sum of representations of Virasoro,
all with the same central charge, so that the value of c is a characteristic of the qft. But we
want specific representations, namely the highest weight vector representations. These are H, with
|ω〉 ∈ H unique such that Ln|ω〉 = 0 for all n > 0. And it is an eigenvector, so that the representation
is characterized by the eigenvalue h with L0|ω〉 = h|ω〉. Since L0 ≈ z∂z, we see that h is the scaling
dimension.

Question from the audience: So one qft is one representation? Denis: A qft involves a sum of
representations. There is a rule how these representations interact, but I will not discuss it.

Now I give an example of how to construct such representations. One class are the Verma modules.
What you do, you set n− = {Ln, n ≤ −1}. Then the Verma module is Vh,c = U(n−)|ω〉. So you
have a graded representation. In grading 0, you have |ω〉. Then L−1|ω〉. In grading −2, you have
two basis vectors L2

−1|ω〉 and L−2|ω〉. And so on.

But this is nor irreducible. In general, you can let N be any submodule of Vh,c, and consider
M = Vh,c/N . This is still highest-weight. These quotients are the class of representations that we
will usually use in qft. Asking that N → 0 — these are the null vectors.

6.5 CFT/SLE

Now we are almost done, which is good because it is almost 2 o’clock. We consider U(n−), and for
each ft ∈ N− we assign to Γ̂t ∈ U(n−). By construction, this object satisfies the same relations as
the earlier one:

Γ̂−1
t dΓ̂t =

(
−2L−2 +

κ

2
L2
−1

)
dt+ L−1 dξt

Then we look for highest-weight representations with |hw〉 = |ω〉 such that
(
−2L−2 + κ

2L
2
−1

)
|ω〉 =

0. If this is OK, then Γ̂t|ω〉 is a generating function of martingales.

Why is it a martingale? Because you apply the above, and then the drift part is killed. Why
is it a generating function? Because it is something that is valued in the representation, so each
coordinate is a martingale.
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So this is the null vector equation.

And now the question is: In Vh,c, when is |Θ〉 =
(
−2L−2 + κ

2L
2
−1

)
|ω〉 a highest-weight vector?

There are two equations to check. We need Ln|Θ〉 = 0 for all n > 0, but it is enough to check for
L1 and L2, because L3 is in the commutator of L1 and L2, and so on. So there are two equations
to check. You check L1|Θ〉 = 0, and this gives one equation for c, h, κ. You check L2|Θ〉 = 0, and
this gives a second equation. Then you solve, and you get hκ and cκ.

So you have found what is the vector, and you know that in the representation which is the quotient
by the submodule, the vector is zero, and so that’s the generating function.

That’s an algebraic way of doing it. What I have done algebraically is I use Ln as a formal way to
represent the differential operators from the beginning.

6.6 Relation with correlation functions

In sum, that’s the correspondence between SLE and CFT. But now we have more information. In
particular, a remark. We defined Virasoro, and gave the representation. And the fields are the
operators or intertwiners acting on Virasoro modules.

So now consider
〈ω|

∏
k

Φk(zk) Γ̂t |ω〉.

This is just a number, but by the construction, if I commute Γ̂t through the operator, it implements
the conformal transformation, so it is

= 〈ω|
∏
k

|f ′t(zk)|∆kΦk(ft(zk)) |ω〉,

which are the CFT correlations in Hr γt; i.e. they are what we called ZH(ztk, . . . ; ξt).

Next time will be less formal, and we will give applications. For example, there’s a recent proof
using SLE of the Mandelbrot conjecture, that if you take a random walk in two dimensions, well
it comes back to itself many times, and it fills in some region, and if you take the boundary of the
region, then you get a curve with dimension 4

3 .

Friday, March 23: SLE/CFT delicatessen

The lecture today will be lighter than last time. I’m going to talk about applications of the link
between SLE and CFT. First I will say a few words on applications. Then I will talk about how to
generalize SLE, using input from CFT. The goal is to try to show that the CFT partition function
encodes dynamics of the SLE. Finally, I will talk about something completely different, which is
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the restriction measure in SLE. This won’t use much CFT, but will work towards the proof of the
Mandelbrot conjecture I said last time.

7 Application of CFT/SLE

Last time we said that ratios of CFT partition functions are SLE martingales. In particular, if we
think about chordal SLE, then we had a process of the form

t 7→
〈Ψ(x∞) · · ·Ψ(γt)〉Hrγt
〈Ψ(x∞)Ψ(γt)〉Hrγt

and it is a martingale for any operator “· · · ”. Here the Ψ are of dimension hκ = 6−κ
2κ and the

central charge for the CFT is c = (6−κ)(3κ−8)
2κ .

Why do you want a martingale? You want to know about the probability that the SLE curve
does this or that. These probabilities can often be formulated in terms of stopping time. And
they are going to be given in terms of a ratio of correlation functions, with the operator “· · · ”
depending on the question you want to ask. If physicists were sufficiently clever, then they could
have calculated directly all of these probabilities directly from statistical mechanics: if comes just
from the Boltzman weight definition that all probability are ratios of partition functions, and this
fact survives going to the continuum. So a posteriori we could have solved (or guessed the answers
to) all of these questions without going to SLE. But History is different.

Question from the audience: Is it going to be local the operator? Denis: It depends on the
question that you ask. If you ask “does the curve visit within ε of some point?” then that’s local.
But normally the operators are very complicated.

So we started with statistical mechanics, and then wrote down SLE, and now we’re back to statistical
mechanics, which is good, because we closed the loop.

And one thing you can do is ask: how to learn about CFT statistical questions from SLE? But
there are more degrees of freedom in CFT, and so you have to invent generalization of SLE to
“CLE”.

8 Generalization of SLE

8.1 More marked points

We are in H, and we have the curve starting at 0 and going to ∞. But we also add some more
marked points, perhaps in the bulk of H, that maybe impose some spin conditions. Since we still
have the curve, then we can still parameterize γt via the Loewner equation

∂tgt(z) =
2

gt(z)− ξt
.
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This means that we have normalized at ∞, and the “2” fixes the time parameterization.

Then we can ask still about the measure/statistics on t 7→ ξt. We should still impose conformal
invariance.

Question from the audience: But now you do not have domain markov property? Because
before, we said that if we have domain markov property, then t 7→ ξt must be Brownian motion.
Denis: We still have domain markov property. I’m imagining just the Ising model, but with
insertion of operators. Before, I argued that the law for the evolution of the curve must be the
same after unfolding the cut. But now I have the function gt depending on extra parameters wi for
the locations of the marked points. And these points must move with gt.

Question from the audience: What does it mean to include marked points, and not forget
them? Denis: You get to ask questions of the curve. This is the same as imposing conditions on
the curve, and from that point of view it is to change the statistics.

So the short way to do this is to impose that the correlation functions 〈〉stat are martingales.

Prop: Let Z0
H(wtk, ξt) be a chordal SLEκ martingale. (So we pick one, and it’s the one associated

to the marked points wk.) And take another one ZH(wtk,
tO, ξt). Then the ratio

ZH(wtk;
tO, ξt)

Z0
H(wtk; ξt)

is a martingale for SLE process defined by

∂tgt(z) =
2

gt(z)− ξt
, wtk = gt(wk), dξt =

√
κdBt + κ ∂ξt logZ0

H(wtk, ξt) dt.

So ratio of martingales is a martingale for the theory with a drift term. Why? I said that everything
is ratio of partition functions. If we have marked points, then statistical observable

〈O〉stat
D =

〈ψ
∏
k Φk(wk)Oψ〉D

〈ψ
∏
k Φk(wk)ψ〉D

and this becomes the ratio of ZH above. We want this ratio to be a martingale. You know that
each is itself a martingale for original SLE. And you impose that the ratio is a martingale for some
new SLE, and it’s the SLE with drift term.

Proof: Option 1: Explicit computation (with Ito calculus). Option 2: Girsanov’s theorem. Once
you have a martingale, you can use it to change the measure and this adds drift terms to the
stochastic equations.

In summary: if you condition SLE, you get a new SLE with a drift term depending on the condi-
tioning.

Question from the audience: But then you should be able to get radial SLE, but that’s not
Brownian? Denis: You do get radial motion, by inserting an operator that forces the curve to go
through some point in the bulk. But notice that always I use the same normalization at ∞, and
from that perspective it is still locally Brownian with a drift term.
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8.2 Example: chordal SLE from 0 to a

This you can just get from our other theory by conformal transformation, but I impose the nor-
malization at ∞ that g(∞) =∞, g′(∞) = 1, and the second Taylor coefficient is 0.

So how do you do this? You insert an operator to create the curve at x0 = 0, and an operator at
a. So you have:

Z0
H(a, x0) = 〈Ψ(a)Ψ(x0)〉H =

1

(a− x0)2hκ

by scaling dimensions. Let’s call this SLEκ(0→ a,H). Then using 2hκ = 6−κ
κ , we can write down

the theory: it is

∂tgt(z) =
2

gt(z)− ξt
, dξt =

√
κdBt − (6− κ)

dt

at − ξt
, dat =

2

at − ξt
dt

This is chordal SLE, but with a normalization that is not at the final boundary point.

Remark: when κ = 6, we have dξt =
√
κdBt, and thus we have locality of SLE(κ = 6). This is

related to the locality property of percolation. By “locality” we mean “independent of the target
point.” And that’s the only SLE which has this property.

8.3 Example: 3 marked points on ∂D, giving SLE(κ, ρ), or dipolar SLE

We are still in H. We have three marked points 0, x+, x−, and we put in three observables: Ψ at 0
with dimension hκ, and Φ± at x± with scaling dimensions δ±. I don’t put anything to absorb the
curve — it can go anywhere.

So we have Z0
H(x0, x−, x+) = 〈Φ−(x−) Φ+(x+) Ψ(x0)〉H. By Möbius invariance, this is completely

determined; it is
constant

(x0 − x+)h+δ+−δ− (x0 − x−)h+δ−−δ+ (x+ − x−)δ++δ−−h

But now we know something from CFT, which is that Z0
H satisfies a second-order differential

equation. So this imposes one condition on (δ+, δ−, hκ). This imposes the “fusion rules” from
CFT. I mean, the constant vanishes if the equation is not satisfied. So given κ, there is one
parameter, usually called ρ.

Then I get SLE(κ, ρ), and it still satisfies ∂tgt(z) = 2
(gt−ξt) . And now the point moves, as always:

dxt± = 2
xt±−ξt

dt. And the rest of the dynamics is the Brownian motion plus drift for ξt:

dξt =
√
κdBt −

(
ρ

ξt − xt+
− ρ+ κ− 6

ξt − xt−

)
dt

The dipolar case is when these two numbers are the same: ρ = κ−6
2 . And more generally, the curve

tends to end up between x±, and in the dipolar case then it tends symmetrically between x+, x−,
and for other ρs the curve will tend towards x+ or perhaps towards x−.
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Question from the audience: How do you see that the partition function must be exactly as
you said? Denis: It is just the Möbius invariance. I will explain it for the 2-point function in the
earlier example.

We have the Möbius transformation z 7→ az+b
cz+d , with ad− bc = 1. Then this is an action of SL(2,R).

The Lie algebra of SL(2,R) is spanned by L0 and L±1 with commutators [L0, L±1] = ±L±1 and
[L+, L−] = 2L0. So this includes into the Virasoro algebra. A representation is `n = −zn

[
(n +

1)δ + z∂z
]
. When δ = 0, this is acting on functions, and when δ = −1 it is action on vectors, and

when δ = 1 it is acting on 1-forms, and and when δ is arbitrary it is action on “δ-forms.”

Then we have ZH(z1, . . . , zN ) = 〈Φδ1(z1) · · ·ΦδN (zN )〉. For the SL(2,R) invariance, we impose
that

N∑
j=1

`
(j)
k ZH(z1, . . . , zN ) = 0 for k = 0,±1

For the 2- and 3-point functions, this completely determines the function.

Question from the audience: Does it matter whether the points are in the bulk or in the
boundary? Denis: It is important that they are on the boundary. If the points are in the
bulk, then you have two operators, for z and z̄. If you have two points in the bulk, then you have
four operators, and so it is not fixed. But for example, in radial SLE, you have one point on the
boundary and one in the bulk, so it’s still preserved.

But I think it’s less important the explicit formulas, and more important what we’ve learned: when
you condition on other operators, then you keep the same SLE structure, just with a drift depending
on the conditioning.

Question from the audience: So how do you continue if you want to study these more compli-
cated theories? Denis: We have N variables, and 3 equations, which isn’t enough and so you stop.
If one of the operators is Ψ, then you also get the null-vector equations, this is another 2nd-order
equation and so for four points you can still do something. In general, you have to be specific to
the problem you’re looking at. In certain cases, you can work with the minimal model, which has
enough structure that you can proceed.

8.4 N-SLE

We pick N points on ∂D, and try to grow N curves. For example, in Ising, perhaps we color the
boundary alternatingly + and −. The curves grow and do not cross, and so with some probabilities
they meet up in various ways. We want to understand the statistics of the model.

We have N points x1, . . . , xN , and we work with D = H, so that xj are real. You grow all the curves,
and then uniformize with some fixed parameterizations at ∞. Then you get N new locations ξtj .
You can play with the speeds, but I will fix all of them, so that we have;

∂tgt(z) =

N∑
j=1

2

gt(z)− ξtj
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Then what happens? You have N Brownian motions, but with some interaction terms as well:

dξtj =
√
κdBt

j +
∑
k 6=j

2dt

ξtk − ξtj
+ dt κ ∂ξj logZH(ξt1, . . . , ξ

t
N ) (∗)

The first two terms comprise the original definition, which is wrong. What you need to include is
an extra drift, like we had above.

With the third term, it is a good definition. Why? First, we think in terms of statistical
physics. The correlation functions should have a description from field theory, so that we have
ZH(x1, . . . , xN ) = 〈Ψ(x1) · · ·Ψ(xN )〉cft

H , where the Ψs are boundary-changing operators, with di-
mension hκ = 6κ

2−κ .

Second, with (∗), all expectation values 〈O〉stat
H given by ratios of CFT correlation functions are

martingales. This request completely fixes the drift term.

Finally, let me address what freedom we have in the choice of ZH = 〈Ψ(x1) · · ·Ψ(xN )〉H? Last time
we learned that each time we insert Ψ, we get a 2nd-order differential equation. So ZH satisfies N
differential equations, and there is a finite number of solutions and you can take linear combinations
of them.

We didn’t prove everything, but you can find some Z
(α)
H of them (how many depending on the

Catalan numbers) which have certain positivity conditions to be partition functions, where α is

indexing over a discrete set. Then we are interested in ZH =
∑

α pα Z
(α)
H . When N = 4, there

are two of them: Z
(1)
H and Z

(2)
H . These correspond to the two arch configurations. If you choose

Z(1), then with probability 1 the final curves connect in a certain way, and for Z(2) the final curves
almost surely connect the other way. The conjecture (coming from cft) in general is that with N
marked points, the Z(α)s are in one-to-one correspondence to arch configurations. So for the ZH

process, the probability to have arch configuration α is
pαZ

(α)
H∑

β pβZ
(β)
H

.

This lets you get explicit formulas for percolation or for Ising.

In summary, these objects Z
(α)
H come just from statistical mechanics, and they must give the correct

answer. But SLE is a way to prove it.

9 Restriction measures

Consider the domain D, with two marked points x0, x∞, and some variable region K connecting
them, which might be a curve but might be thicker. We care about probability PD which is the
probability for K to enter some region. For example, let’s take some region A in D so that D r A
is still the topology of D, and let’s ask about PD[K ∩A = ∅]. By taking sufficiently complicated A,
this should determine the statisticts of K. We again ask for two properties:

1. Conformal transport (so far a tautology)
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2. Restriction: PDrA[ · ] = PD[ · |K ∩A = ∅].

Theorem (LSW): There is a one-parameter family of such measures. Moreover, you can define
it explicitly:

We are in H. We have the region K going from 0 to∞, and we have the region A. Since HrA has
the topology of A, then we have the map ΦA : HrA→ H, and it flattens out A to some interval.
The map Φ is uniquely determined by asking ΦA(0) = 0, ΦA(∞) =∞, and Φ′A(∞) = 1. Then the
only measures are:

PD[K ∩A = ∅] = [Φ′A(0)]α, for some α ≥ 5

8

It is easy to check that this measure effectively satisfies the restriction property. As you increase
α, it becomes a thicker and thicker domain.

9.1 Example: α = 5
8
.

This corresponds to SLE(κ = 8
3), which is cft with c = 0 and h = 6−κ

2κ = 5
8 . Conjecture: this is the

scaling limit of Self-Avoiding Walk.

If SAW is conformally invariant, then it has to be SLE with κ = 8
3 , because it does satisfy the

restriction property.

A consequence: if you take SLE in H with a chord connecting 0 to ∞, and ask that it not enter A,
then

PSLE( 8
3

)[γSLE ∩A = ∅] = Φ′A(0)5/8

SLE(8/3) is the only SLE satisfying the restriction property.

9.2 Example: Brownian excursion

You take Brownian random walk in the upper half plane H, and ask that the path starts at 0. Well,
this doesn’t exist, but you can ask to start at iε, and condition that you escape by iΛ + R before
escaping by R. Then you take the limits as ε → 0 and then as Λ → ∞. Then this satisfies the
restriction property with α = 1. Let’s prove this.

You see, this is really a one-dimensional problem, because you are just asking the probability to
cross the strip from ε to Λ. This is a standard exercise, and occurs with probability ε/Λ.

Now you take the domain A, and ask the probability that the Brownian excursion B doesn’t
intersect A. But this is

P [B ∩A = ∅ and B escapes Λ]

P [B escapes Λ]

So after you flatten, then the roof is still essentially flat, and so you are still doing a probability
that you escape the roof before you escape the floor. But now you start not at iε, but at iεΦ′A(0).
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So you get the probability

=
εΦ′A(0)/Λ

ε/Λ
= Φ′A(0)

hence α = 1.

9.3 Mandelbrot conjecture

This is a physics proof. We have seen that 8 independent SLE(8/3) satisfies the same law as
5 independent Brownian excursions. Now the boundary of the hull of 5 independent Brownian
excursions is locally given by the exterior perimeter of one of the Brownian excursions. By the above
argument, this has to have the identical dimension as the boundary of the hull of 8 independent
SLE(8/3). The latter is locally one of the SLE(8/3) with dimension 4/3. Thus the exterior perimeter
of a Brownian excursion has dimension 4/3.

A reference (with more references therein) is: “2D grown processes: SLE and Loewner chains”, M.
Bauer and D. Bernard, arXiv:math-ph/0602048, Phys. Rept. 432 (2006) pp. 115–221.
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