
HAL Id: hal-03384164
https://hal.science/hal-03384164

Submitted on 14 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AGAT: Building and evaluating binary partition trees
for image segmentation

Jimmy Francky Randrianasoa, Camille Kurtz, Eric Desjardin, Nicolas Passat

To cite this version:
Jimmy Francky Randrianasoa, Camille Kurtz, Eric Desjardin, Nicolas Passat. AGAT: Building
and evaluating binary partition trees for image segmentation. SoftwareX, 2021, 16, pp.100855.
�10.1016/j.softx.2021.100855�. �hal-03384164�

https://hal.science/hal-03384164
https://hal.archives-ouvertes.fr


AGAT: Building and Evaluating Binary Partition Trees

for Image Segmentation

Jimmy Francky Randrianasoaa, Camille Kurtzb, Éric Desjardinc,
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Abstract

AGAT is a Java library dedicated to the construction, handling and evalu-
ation of binary partition trees, a hierarchical data structure providing mul-
tiscale partitioning of images and, more generally, of valued graphs. On the
one hand, this library offers functionalities to build binary partition trees
in the usual way, but also to define multifeature trees, a novel and richer
paradigm of binary partition trees built from multiple images and / or sev-
eral criteria. On the other hand, it also allows one to manipulate the binary
partition trees, for instance by defining / computing tree cuts that can be
interpreted in particular as segmentations when dealing with image model-
ing. In addition, some evaluation tools are also provided, which allow one to
evaluate the quality of different binary partition trees for such segmentation
tasks. AGAT can be easily handled by various kinds of users (students, re-
searchers, practitioners). It can be used as is for experimental purposes, but
can also form a basis for the development of new methods and paradigms for
construction, use and intensive evaluation of binary partition trees. Beyond
the usual imaging applications, its underlying structure also allows for more
general developments in graph-based analysis, leading to a wide range of po-
tential applications in computer vision, image / data analysis and machine
learning.

Keywords: binary partition tree, hierarchical modeling, image / graph
processing, quality evaluation
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Current code version

Nr. Code metadata description Please fill in this column
C1 Current code version v2.0
C2 Permanent link to code/repository used for

this code version
https://github.com/yonmi/AGAT2.0

C3 Code Ocean compute capsule NA
C4 Legal Code License Cecill-B
C5 Code versioning system used git
C6 Software code languages Java SE 8
C7 Compilation requirements, operating envi-

ronments & dependencies
JDK 1.8 (for Eclipse developers, .project
files are also provided)

C8 If available Link to developer documenta-
tion/manual

https://github.com/yonmi/AGAT2.0

C9 Support email for questions agat@univ-reims.fr

Table 1: AGAT code metadata.

1. Introduction1

Due to the rapid progress in the development of imaging sensors, the2

produced images are becoming increasingly complex, both in size and in3

semantics. This is the case for example in medical and biological imaging,4

remote sensing, material sciences, and more generally, in computer vision5

applications. In such domains, the data that are now handled require to be6

processed at various levels of detail, i.e. at various scales, in particular with7

the purpose of tackling computational and semantic analysis issues.8

For tackling these issues, two main paradigms have been investigated9

over the last decades. On the one hand, the paradigm of multiscale analysis,10

that intrinsically relies on the underlying notion of scale space [1], consists11

in observing an image at “different distances”, then focusing on the details12

available at each distance. This led to various multiscale analysis approaches13

for image description (e.g. SIFT, pyramids [2]). On the other hand, the14

paradigm of image partitioning popularized under the terminology of “su-15

perpixels” consists in creating connected clusters of homogeneous pixels of16

certain size within an image, in order to reduce its space complexity without17

altering the carried visual information. Superpixels were then developed in18

many variants, mainly for pre-segmentation purposes (e.g. SLIC [3], water-19

pixels [4]).20

At the convergence of these two paradigms, the notion of hierarchical21

image model was developed, in particular in the field of mathematical mor-22

phology, leading to a rich family of graph-based data structures, generally23

defined as trees (i.e. connected, acyclic graphs), designed for modeling im-24

ages as hierarchies of partitions. Non-exhaustively, the most frequently used25
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trees are the component-tree [5] (which models a grey-level image as the26

Hasse diagram of the binary connected components of all the threshold sets,27

with respect to the inclusion relation) and its multivalued variant [6]; the tree28

of shapes [7] (which is a self-dual variant of the component-tree, that gath-29

ers information obtained by thresholding the image in both top-down and30

bottom-up ways) and its multivalued variant [8]; the watershed tree [9] (that31

derives from hierarchical watersheds [10], and allows to model in a hierarchi-32

cal way the saliency maps derived from the gradient of an image), the binary33

partition tree [11] (that we consider in this article), and some variants such34

as the α-tree [12] (that derives from the concept of constrained connectivity35

[13]). Many other hierarchical models (including not only trees but also more36

complex directed acyclic graph structures, e.g. asymetric hierarchies, braids37

of partitions, component-graphs or component-hypertrees [14, 15, 16, 17]38

that generalize / extend the tree structures beyond their usual topological39

and/or spectral hypotheses of definition) were provided. Awhole discussion40

is beyond the scope of this article; the interested reader can refer to [18] for41

a recent survey.42

The construction of the trees mentioned above is generally expressed as a43

graph partitioning problem. More generally, the induced methods lie in the44

same family as optimization methods on graphs, which are often involved in45

imaging problems, but can also tackle a wider family of problems, if the data46

to be processed are discrete and can be structured via a binary relation (e.g.,47

in mesh-based applications, structured data processing, etc.). In particular,48

strong links exist between the concepts of hierarchical models, saliency maps49

and spanning trees in graphs [19].50

Most of the hierarchical models (e.g. the component-tree or the tree of51

shapes) can be built from an image, without considering any additional in-52

formation. Such trees can be seen as pure image modeling data structures,53

that embed an image into an alternative space, where it can be handled and54

modified thanks to image processing paradigms. By contrast, the binary55

partition tree (BPT, for brief) [11], is built from two kinds of information:56

(1) the intrinsic information carried by the input image (or, more gener-57

ally, the input valued graph), and (2) an extrinsic—generally user-defined58

/ application-based—information that determines which criteria should be59

considered for describing the input data in a multiscale way. This expert /60

domain-based information is crucial in certain application fields. In other61

words, the binary partition tree is not only an image-oriented but also a62

knowledge-based data structure. As a consequence, it can be relevantly in-63

volved in image analysis tasks that require the embedding of expert-defined64

priors and knowledge. For instance, the binary partition tree is quite popu-65

lar in remote sensing applications [20, 21, 22, 23, 24, 25, 26], where the way66
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to decompose an image depends on its content (e.g. an urban area vs. a67

wild forest zone) but also on the purpose of the analysis (e.g. classifying the68

buildings vs. observing pollution effects).69

Various software programs and libraries are available for hierarchical im-70

age model handling. GraphBPT1 [27] is especially designed for building and71

using binary partition trees. More general-purposed libraries, for instance72

scikit-image2, Higra [28] or the trees-lib library3 deal with wider issues. In73

particular the last two mentioned allow for the construction of binary parti-74

tion trees or α-trees, that can be seen as a variant of binary partition trees.75

Other libraries, namely Olena4 or LibTIM5 (used e.g. in [29]) are mainly76

geared towards the construction of the so-called component-trees and / or77

trees of shapes, but could probably support further extensions for handling78

binary partition trees.79

In this article, we introduce AGAT, a Java library specifically dedicated80

to the binary partition tree. Similarly to previous libraries (e.g. GraphBPT)81

it proposes a construction framework of traditional binary partition trees. In82

addition, it also proposes a way of building a more general family of binary83

partition trees, the so-called multifeature binary partition trees [30]. From a84

structural point of view, these binary partition trees do not differ from the85

classical ones. They differ actually in the way they are built. Indeed, by86

contrast to the usual construction algorithm that relies on a single clustering87

criterion and a single image, the construction of the multifeature binary88

partition trees relies on the collaboration between various clustering criteria89

and / or allows to handle many images of a same scene.90

Another contribution of AGAT compared to the already available libraries91

is the proposal of various tools for evaluating the quality of a binary parti-92

tion tree (or equivalently, the quality of the meta-parametrization of its con-93

struction) with respect to object segmentation purposes. Indeed, evaluating94

the quality of a hierarchical image model is an important—but infrequently95

considered—topic as a prerequisite to its actual involvement for real appli-96

cations [31, 32, 33].97

1https://github.com/ash-aldujaili/GraphBPT
2https://scikit-image.org
3https://github.com/pbosilj/trees-lib
4https://www.lrde.epita.fr/wiki/Olena
5https://github.com/bnaegel/libtim
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2. Software description98

In this section, we describe the structure of the AGAT library and the99

major functionalities implemented.100

2.1. Software architecture101

AGAT is composed of three modules (Image, BinaryPartitionTree,102

TreeEvaluation) required for the construction of binary partition trees from103

images, their handling and their evaluation. The three modules are coded104

in pure Java 8, taking advantage of the latest language innovations. They105

also contain some external Java libraries, encapsulated in the projects in the106

form of .jar files (mainly for input / output).107

The Image module is independent. It contains basic tools for manip-108

ulating and processing raster images (e.g. equalization, conversion, chan-109

nel management, inputs / outputs). Images are classically encoded via the110

BufferedImage class which is part of the Abstract Window Toolkit (AWT),111

a graphics library commonly used by the Java community.112

The BinaryPartitionTree module is dependent on the Image module. It113

contains various functionalities for building binary partition trees in a usual114

way, but also to define multifeature trees from consensus of multiple images115

and / or multiple criteria. This module also allows to handle the trees, for116

instance by defining / computing tree cuts that can be interpreted in partic-117

ular as segmentations when dealing with images. In AGAT, binary partition118

trees are modeled and analyzed through their hierarchical representations.119

They are encoded as trees, where each node is a region of the image support.120

The main data structures of the library are thus a graph class, implemented121

as an adjacency list (required for the construction step of the binary parti-122

tion trees relying on an region adjacency graph), and a tree class, classically123

implemented with inheritance relationships. To enable the multiple images124

and / or multiple criteria paradigm, data structures based on ordered lists125

of valued edges have been also implemented. These data structures are a126

bit specific because they should allow to choose efficiently the next edges to127

be selected during the construction of the trees. Multiple index systems and128

optimized iterators have thus been implemented to make it possible to speed129

up their scans. In addition, when the number of criteria to be considered130

is important, the lists are kept sorted sporadically, after a fixed number of131

modifications, which approximates the expected solution but enables better132

scaling.133

The TreeEvaluation module is dependent on the BinaryPartitionTree134

module. It provides various classes related to the quantitative evaluation of135
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the quality of a binary partition tree (or its meta-parametrization) with re-136

spect to object segmentation purposes. Both intrinsic and extrinsic analyses137

can be carried out. For a given binary partition tree (an object built from the138

BinaryPartitionTree module), the user can provide examples of ground-139

truth (defined as binary regions of interest in the image support) and quality140

metrics. The main data structures of this module make it possible to manage141

both information on the ground-truth segments provided by the user (e.g.142

coordinates of the bounding box, semantic labels, etc.) but also sub-trees of143

interest on which the analysis is carried out (to make processing faster by144

restricting it spatially and hierarchically).145

2.2. Software functionalities146

AGAT proposes a large amount of algorithms for the construction, the147

handling and the evaluation of binary partition trees (complementary tech-148

nical details regarding the main data structure architecture can be found in149

[34, Appendix B]):150

• BPT construction:151

– mono-image / mono-criterion [11]: tree construction from pix-152

els or flat zones or a given partition, various generic (e.g. color:153

RGB, LAB, geometric: elongation, smoothness) and thematic154

(e.g. NDVI, NDWI) criteria are available;155

– multi-image / multi-criteria [30]: efficient process to establish dif-156

ferent kinds of consensus among the adjacency lists (e.g. majority157

vote, most frequent, etc.), visualization of the conflict between158

metrics.159

The construction criteria and the consensus policy are provided by the160

user as parameters of the (mutltifeature) binary partition tree construc-161

tion process (an example can be found in the code snippet of Listing 1).162

• BPT handling:163

– definition of tree cuts from partition cardinality: flat or fitting164

with an input mask of an object of interest;165

– backup and restore trees from .h5 files, which is a Hierarchical166

Data Format (HDF) designed to store and organize large amounts167

of data and ensures compatibility with external tools;168

– export trees to .xml and .dot files, which allows visualization with169

external tools.170
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• BPT quality evaluation:171

– management of multiple ground-truth examples per image with172

potentially different semantic labels;173

– extraction of sub-trees of interest to speed up the analysis by re-174

stricting it spatially and hierarchically;175

– intrinsic analysis: combinatorial, quantitative, node assessment176

from the notion of pure and impure nodes matching with ground-177

truth examples [32, 33];178

– extrinsic analysis: home-made evaluation framework [31, 33], im-179

plementation of other existing frameworks from the literature180

[35, 36], evaluation metrics: F-measure / Dice, Jaccard index.181

3. Illustrative examples182

In this section, we present two illustrative examples of AGAT usage and183

performances. In the first example (Section 3.1), we show how AGAT can184

be used for building both traditional and multifeature binary partition trees,185

that can then be used for image partitioning. In the the second example186

(Section 3.2), we show how AGAT can be employed for comparing the per-187

formances of various binary partition trees, in particular in the context of188

object segmentation. These illustrations were designed from the source codes189

and some codes snippets available in the provided GitHub repository.190

3.1. Building a (traditional or multifeature) binary partition tree191

The binary partition tree, such as defined in the pioneering article [11],192

was designed for hierarchically modeling one image with respect to one given193

criterion. Later on, the notion of multifeature binary partition tree, devel-194

oped in [30], extended this initial paradigm, by allowing one to build a binary195

partition tree from one or many image(s) of the same scene with respect to196

one or many given criteria. The implementation of binary partition trees197

proposed in AGAT follows the latter paradigm of [30], and allows a fortiori198

to build traditional binary partition trees as defined in [11].199

In this first illustrative example, we consider images in the context of200

remote sensing, and more precisely the analysis of very high spatial resolution201

(VHSR) satellite images, a domain where the concept of binary partition tree202

has been quite frequently and successfully involved over the last two decades.203

Listing 1: Code snippet for building a binary partition tree using AGAT.

import java.awt.image.BufferedImage;204

import java.util.Map.Entry;205
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(a) High-density urban area (b) BPT of (a) (c) MBPT of (a)

(d) Low-density urban area (e) BPT of (d) (f) MBPT of (d)

Figure 1: (a, d) Two VHSR satellite images (2 000× 2 000 pixels) at a spatial resolution
of 60 cm sensed by the Pléiades satellite and covering different areas. (b, e) Partitioning
results from traditional binary partition trees computed from (a) and (d), respectively
(23 500 and 5 000 regions, respectively), using one criterion: Ccolour. (c, f) Partitioning
results from multifeature binary partition trees computed from (a) and (d), respectively
(23 500 and 5 000 regions, respectively), using 4 criteria: Ccolour, Celong, Cndvi, Cndwi.

import datastructure;206

import metric.bricks.Metric.TypeOfMetric;207

import multi.sequential.MBPT;208

import multi.strategy.consensus.bricks.Consensus.ConsensusStrategy;209

import ui.ImFrame;210

import utils;211

/**212

* Example to create a multi-feature binary partition tree using four criteria213

*/214

public class ExampleCreateAndCutMbpt {215

public static void main(String[] args) {216

217

BufferedImage image = ImTool.read("./dataset/VHSR-sample1.png");218

219

Tree tree = new MBPT(); //Create an empty tree220

((MBPT)tree).registerImage(image); //Register the image(s)221

222
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/* Choosing the consensus strategy to use */223

int consensusRange = 5; /* % defining the interval of the list to consider */224

int progressive = 1; /* interval defined proportionally to remaining number of225

adjacency links */226

((MBPT) tree).setConsensusStrategy(ConsensusStrategy.SCORE_OF_RANK, consensusRange,227

progressive);228

229

/* Linking metrics to the image: four criteria are considered */230

((MBPT)tree).linkMetricToAnImage(image, TypeOfMetric.RADIOMETRIC_MIN_MAX);231

((MBPT)tree).linkMetricToAnImage(image, TypeOfMetric.NDVI);232

((MBPT)tree).linkMetricToAnImage(image, TypeOfMetric.NDWI);233

((MBPT)tree).linkMetricToAnImage(image, TypeOfMetric.SIMPLE_ELONGATION);234

235

tree.grow(); //Build the BPT236

237

/* Cutting */238

if(tree.hasEnded()) {239

int starting = 25, ending = 0, step = 5;240

CutResult cutResult = CutBPT.execute(tree, starting, ending, step);241

242

for(Entry<Integer, BufferedImage> entry: cutResult.regionImages.entrySet()) {243

int numberOfRegions = entry.getKey();244

BufferedImage partition = entry.getValue();245

ImTool.show(partition, ImFrame.IMAGE_DEFAULT_SIZE, numberOfRegions);246

}247

}248

}249

}250

The used dataset (courtesy LIVE, UMR CNRS 7263) was sensed over the251

town of Strasbourg (France) by the Pléiades satellite, in 2012. From this252

dataset, we sampled two VHSR images (2 000× 2 000 pixels) representing:253

• a complex high-density urban area (Figure 1(a)) composed of different254

urban objects (e.g. individual houses, industrial buildings, parking lots,255

roads, shadows, water canals);256

• a typical low-density urban area (Figure 1(d)) composed of different257

geographical objects (e.g. crop fields, forests, bare soils, rivers).258

These multispectral images are at a spatial resolution of 60 cm with 4 spectral259

bands (red, green, blue, near infrared).260

We considered four criteria for building the binary partition trees, each261

one modeling either radiometric or geometrical information:262

• Ccolour, defined as the increase of the range of the pixel intensity values263

for each radiometric band, induced by the putative fusion of incident264

regions;265

• Cndvi, that quantifies the difference of NDVI (Normalized Difference266

Vegetation Index, a standard indicator for the presence of green vege-267

tation) between two adjacent regions;268
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• Cndwi, that quantifies the difference of NDWI (Normalized Difference269

Water Index, a standard indicator for the presence of water) between270

two adjacent regions;271

• Celong, defined as the change of geometrical elongation, potentially in-272

duced by the fusion of two regions.273

Figure 1(b, e), illustrates the results of partitionings (induced by tree-cuts)274

obtained from traditional binary partition trees built by considering individ-275

ually the first criterion. Figure 1(c, f), illustrates the results of partitionings276

(induced by tree-cuts) obtained from multifeature binary partition trees built277

by considering collectively these four criteria.278

A Java code snippet, presented in Listing 1, exemplifies how to obtain279

such results within AGAT. More extensive experiments related to the con-280

struction of various (multifeature) binary partition trees and the impact of281

these various kinds of trees in the context of remote sensing can be found in282

[32, 30].283

3.2. Assessing / comparing the quality of various binary partition trees284

A wide literature has been devoted to segmentation based on binary par-285

tition trees. In this context, various criteria were investigated. The design286

of these criteria strongly influences the resulting trees and, equivalently, the287

research space for further segmentation, and thus the quality of the subse-288

quent segmentation results. The literature dedicated to the evaluation of the289

quality of binary partition trees is not abundant. AGAT proposes (variants290

of) some of the most relevant approaches of the literature:291

• an intrinsic quality analysis [33], that evaluates the relevance of a binary292

partition tree based on the combinatorial analysis of its nodes and their293

relationships with a binary ground-truth associated to the input image;294

• an extrinsic quality analysis [33], that evaluates the ability of a binary295

partition tree to provide a cut that minimizes at best a given quality296

metric provided as hyperparameter with respect to the ground-truth297

associated to the input image;298

• a framework adapted from [35] that provides the F-measure of the seg-299

mented object vs. the associated ground-truth, with respect to the size300

of inside / outside markers generated from the ground-truth associated301

to the input image;302

• a framework adapted from [36] that aims at computing the best cuts303

composed of k nodes for each k in [0, p] (p > 0), allowing to reconstruct304

the targeted segmentation.305
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Figure 2: Horizontal cuts of different binary partition trees on an image from the Grabcut
dataset. First line: initial image, ground-truth and initial superpixel partition. First col-
umn: binary partition tree built with WSDM criterion. Second column: binary partition
tree built with Min-Max criterion. Third column: binary partition tree built with MSE
criterion. From second to fifth rows: horizontal cuts with 40, 50, 60, and 70 nodes. Each
node is represented with a false colour, for the sake of visualization.

In [33], extensive experiments were carried out with three commonly used306

datasets: Grabcut [37], Weizman [38] and VOC [39]. Examples of partition-307

ing of an image from the Grabcut dataset are illustrated in Figure 2. These308

partitions are obtained from three different binary partition trees, each one309

built with a given criterion, noted WSDM, Min-Max and MSE, respectively310

(see [33] for their formal definition).311
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Figure 3: F-measure of the segmentations obtained from various kinds of binary partition
trees in the evaluation framework [35], with respect to the size 2k + 1 of the structuring
elements used for erosion (background and foreground) of the ground-truth. Top: Grabcut.
Middle: Weizmann. Bottom: VOC. Considering S as the segmentation result and G as the
ground-truth, the F-measure / Dice score is defined as 2tp/(2tp+fp+fn) with tp = |S∩G|,
fp = |S \G| and fn = |G \S|. (In this experiment, we kept the terminology of F-measure
as used in the seminal paper [35].) The F-measure is related to the ratio of overlapping
between two objects. It lies in [0, 1]; the closer to 1, the better the overlapping.
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Figure 4: Normalized (mean) value of the TPFP measure for the optimal cuts of a
given size from various kinds of binary partition trees in the evaluation framework [36]
Top: Grabcut. Middle: Weizmann. Bottom: VOC. Considering S as the segmentation
result and G as the ground-truth, the (normalized) TPFP score is defined as tp−fp

|G| , with

tp = |S ∩ G|, fp = |S \ G|. The TPFP quantifies the trade-off between true and false
positives. It lies in (−∞, 1]; a 0 value means that there are as many true and false positives;
the closer to 1, the better the result.
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Figure 5: Normalized (mean) value of the Dice measure for the (near-)optimal cuts of
a given size various kinds of binary partition trees. Top: Grabcut. Middle: Weizmann.
Bottom: VOC. Considering S as the segmentation result and G as the ground-truth, the
Dice score is defined as 2tp/(2tp+fp+fn) with tp = |S∩G|, fp = |S\G| and fn = |G\S|.
The Dice score is related to the ratio of overlapping between two objects. It lies in [0, 1];
the closer to 1, the better the overlapping.
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Listing 2: Code snippet for evaluating a binary partition tree using AGAT.

import java.awt.image.BufferedImage;312

import java.io.PrintWriter;313

import java.util;314

import evaluation;315

import standard.sequential.BPT;316

import ui.ImFrame;317

import utils.ImTool;318

/**319

* Example to evaluate the quality of a BPT with intrisic analysis320

*/321

public class ExampleBptIntrinsicAnalysis {322

public static void main(String[] args) {323

324

/* Create a tree */325

BufferedImage image = ImTool.read("./dataset/test_img.png");326

BufferedImage presegImg = ImTool.read("./dataset/test_img_slic.tif");327

BPT tree = new BPT(image);328

tree.setPreSegImage(presegImg);329

tree.grow();330

331

/* Extract the segments of reference from a ground truth image */332

String gtImgPath = "./dataset/test_img-gt.png";333

double alpha = 0.0;334

TreeMap<Integer, SegReference> segReferences =335

SegReference.extractSegmentsOfReference(gtImgPath, alpha, true);336

337

/* Visualizing the segments if wanted */338

SegReference.showBoundingBoxes(segReferences, image, ImFrame.IMAGE_STD_SIZE, "BB");339

340

/* Extract sub trees */341

STree extractedSubTrees[] = new STree[segReferences.size()];342

int gti = 0;343

for(Entry<Integer, SegReference> entry: segReferences.entrySet()){344

SegReference gt = entry.getValue(); // each segment of reference345

STree st = new STree(gti, tree, gt); st.index = gti++; // Create the subtree346

extractedSubTrees[st.index] = st;347

}348

349

/* Evaluate the sub trees */350

ArrayList<Eval> evalRes = new ArrayList<Eval>();351

for(int i = 0; i < extractedSubTrees.length; ++i) {352

STree st = extractedSubTrees[i];353

evalRes.add(st.eval(EvalType.INTRINSIC));354

}355

356

/* Print the intrinsic evaluations results */357

System.out.println("Intrinsic evaluation results: ");358

for(Eval res: evalRes) {359

res.printResults();360

}361

}362

}363

Figures 3–5 exemplify some metrics that can be computed from the var-364

ious implemented evaluation frameworks, thus allowing to compare the rele-365

vance of distinct binary partition trees with respect to the considered data /366

ground-truth, here in the case of object segmentation. The results depicted in367

these figures quantitatively emphasize the superiority of one the three tested368
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binary partition trees (namely the one built with WSDM criterion) over the369

other two ones. This is characterized by the fact that, in the three different370

experiments, WSDM leads to better values for the considered measures (the371

higher these values, the better the results). These results are qualitatively372

confirmed by the segmentations illustrated in Figure 2.373

A Java code snippet, presented in Listing 2, illustrates how to obtain374

such results within AGAT. The interested readers can find more extensive375

experiments related to such natural images in [33]. In particular, more exten-376

sive experiments related to the binary partition tree evaluation framework377

proposed in AGAT, applied in the context of natural images (Grabcut, VOC378

and Weizmann datasets) are provided in this reference.379

4. Impact380

There already exist libraries dedicated to hierarchical image models in381

general, and the binary partition trees in particular. However, AGAT is the382

first library that integrates the construction algorithms for traditional binary383

partition trees, but also for the recently introduced multifeature binary parti-384

tion trees. This provides potential users with a unique opportunity to design385

and to experiment new and richer ways of building hierarchical models from386

complex / large (sets of) images. The success of the binary partition trees387

in the field of remote sensing over the last years is the proof of the relevance388

of this hierarchical model in the case of large and / or semantically complex389

images. Many domains involving such kinds of images (e.g. biological and390

(bio)medical imaging) could benefit from the opportunities offered by the391

binary partition trees, and then from the functionalities offered by AGAT.392

Additionally, AGAT also embeds various tools for assessing the quality of393

binary partition trees. This quantitative evaluation framework can be very394

useful, for instance in the field of computer vision, where the partitioning of395

large / complex images is generally a prerequisite for high-level scene anal-396

ysis tasks (e.g. object detection and recognition). In this regard, providing397

tools that can be involved in selection / learning of appropriate context-398

dependent meta-parameters for image decomposition is of great interest for399

the community. In particular, such frameworks proposed in combination400

with the binary partition tree construction algorithms could lead to consider401

the induced image partitioning results as a relevant alternative to the usual,402

non-hierarchical, image decompositions proposed by super-pixel paradigms.403

Finally, it is worth mentioning that the binary partition trees, beyond404

their usefulness for image analysis task, are first of all a way of building405

partitions of graph-based structures, independently of their associated se-406

mantics. Based on this fact, AGAT may then be used for solving any graph407
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partitioning problem provided that such partitionings are guided by one /408

many prior knowledge. This opens the way of the use of AGAT in a wide409

range of machine learning domains where the data are organized as graphs,410

i.e. with respect to usual binary relations.411

5. Conclusions412

We presented AGAT, a library dedicated to the construction, the han-413

dling and the evaluation of binary partition trees, which are tree data struc-414

tures providing hierarchical partitioning of images and, more generally, val-415

ued graphs. AGAT contains also many standard and state-of-the-art algo-416

rithms in this domain. AGAT is the first library allowing for the construction417

of multifeature binary partition trees, and it also gathers a large set of eval-418

uation tools for traditional binary partition trees. From this point of view,419

it constitutes, to our knowledge, the most complete and up-to-date library420

dedicated to binary partition trees. It is composed of three self-contained421

Java modules. Code sources are available via GitHub and natively compati-422

ble for Linux, Mac, and Windows systems. They can be downloaded with a423

simple command: git clone https://github.com/yonmi/AGAT2.0.git.424
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Evaluating the quality of binary partition trees based on uncertain se-526

mantic ground-truth for image segmentation, in: ICIP, International527

Conference on Image Processing, Proceedings, 2017, pp. 3874–3878.528
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