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Mercury’s tectonic history has been dominated by global contraction as the planet shrinks and cools. Previously,
fault dips have been indirectly estimated by measuring offsets to the rims of craters displaced by fault movement.
Here we present the first observations of a fault surface exposed in three dimensions, in this case within a volcanic
vent. We use shadow measurements to determine the depth of the vent and have measured the dip of the fault as
28° +5. This is towards the shallower end of previous dip estimates used to estimate global contraction. If it is

representative, it suggests global contraction at the higher end (5.7-7.1 km) of previously published estimates.

1. Introduction

Tectonic and volcanic processes have shaped Mercury’s surface over
its geological history (Strom et al., 1975; Head et al., 2008, 2009; Watters
et al., 2015). Tectonism is manifest in shortening landforms such as
lobate scarps, wrinkle ridges, and high relief ridges, which are the
dominant surface expression of the planet’s global contraction (Dzurisin,
1978; Melosh and McKinnon, 1988; Watters et al., 2009).

A lobate scarp is an asymmetrical ridge that is the surface expression
of a thrust fault. They are known to be up to 2 km high on Mercury (Strom
et al., 1975; Watters and Nimmo, 2010; Massironi et al., 2015). Wrinkle
ridges have a similar surface expression to lobate scarps, but tend to be
smaller and more symmetrical (Strom et al., 1975; Watters and Nimmo,
2010; Korteniemi et al., 2015). High relief ridges are broad, symmetrical
topographic features, interpreted as high angle reverse faults (Dzurisin,
1978). Initially thought to be a distinct tectonic landforms, subsequent
observations show high relief ridges can often transition into lobate
scarps and thus are part of a continuum of landforms (Melosh and
McKinnon, 1988; Watters et al., 2009; Byrne et al., 2014; Massironi and
Byrne, 2015).

Key terminology related to faults in this manuscript includes: the fault
plane, which is the surface separating the blocks and along which
movement has occurred; strike, the azimuth at which the fault plane
intersects the horizontal; and the dip, the angle at which the fault plane
descends below the horizontal (Neuendorf et al., 2005).

The stresses in Mercury’s crust that have generated this contractional
tectonism have multiple possible origins, including global contraction
(Watters and Nimmo, 2010), tidal despinning (e.g. Melosh and Dzurisin,
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1978), true polar wander (Matsuyama and Nimmo, 2009), and mantle
convection (King, 2008). Some of the faulting is localised at the junction
between regional geochemical terrains (Galluzzi et al., 2019), or at the
edges of smooth plains confined within impact basins (Fegan et al.,
2017). Although a combination of factors probably influences many of
the visible faults, the dominant cause of contractional tectonics on
Mercury is widely accepted to be global contraction of the planet
(Klimczak et al., 2015). Mercury’s relatively high ratio of surface area to
volume means that it has undergone significant cooling, which has led to
shrinking (Watters and Nimmo, 2010). Thermal and compositional
models of the planet provide a wide range of estimated shrinking; the
planet could have shrunk by between 0.6 and 10 km radially (Solomon,
1977; Watters and Nimmo, 2010; Grott et al., 2011).

Byrne et al. (2014) calculated Mercury’s global contraction from a
global inventory of contractional features combined with estimates of
fault dips associated with each type of surface expression. The amount of
horizontal movement across a thrust fault can be determined from the
measured displacement of features on either side, most usefully offset
crater rims (Galluzzi et al., 2015). The steeper the average fault dip, the
less horizontal movement is accommodated by each fault of a given
horizontal offset, and so the lower the amount of global contraction
necessary to account for it. The derived reduction in global radius
recorded by Mercury’s crust is 7.1 km if the average fault dip is 25°, but
as little as 4.7 km if the average fault dip is 35° (Byrne et al., 2014).
Watters (2021) uses a more conservative number of faults on Mercury to
claim a maximum global contraction of only 1-2 km, but this too is based
on average fault dips of 25°-35°. Thus, an understanding of the average
dip of the faults on Mercury is vital to constrain contraction estimates and
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therefore to understand Mercury’s thermal history. Estimates of fault Mercury has been measured by direct means.

dips range between 6° and 57° with an average of 25° (Galluzzi et al.,

2015, 2019) were made using the shortening and vertical offset of craters 2. A fault’s dip revealed

that straddle faults on lobate scarps. Crane (2020) used topographic data

and modelling to estimate a dip for 29 faults; all results being less than Here we describe the first reported example on Mercury where the

20°, with average dips ranging from 3° to 10°. Until now no fault dip on local topography exposes a fault scarp sufficiently well that its dip of the

Fig. 1. Selection of volcanic vents that are coin-
cident with contractional structures, but which do
not adequately reveal the fault geometry. Red
arrows  point  to  scarps. a image:
EN1014936140M, centre: 148°E, 24°N. b: image:
EN1048654092M centre: 67°W, 21°N. c¢: image:
EN1021068336M centre: 105°W, 24°N. d: image:
EN0258310462M centre: 162°W, 17°S. e: image:
EN0257073440M centre: 112° W, 15°N. f: image:
EN0131771793M centre: 30° E. 27°N. Alone
among these, example (a) is the only one where
the available images contain hints about fault dip
within the vent (towards the east in that case), but
no image with sufficient resolution, shadows, or
stereo pair is available to measure it.
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fault plane can be measured. Our example comes from the inner wall of a
pit interpreted as an explosive volcanic vent.

Explosive volcanism is manifest on Mercury through endogenic pits
(vents) that are up to tens of kilometres across and several kilometres
deep. The vents are often surrounded by faculae: high albedo, spectrally
red features that are probably explosive ejecta from the eruptions (Head
et al., 2008; Goudge et al., 2014). Unlike impact craters, these vents tend
to be non-circular and lack a raised rim, and hence we refer to the break
of slope at the edge of a pit as the *brink’ to avoid confusion with the rim
of an impact crater. High-resolution studies of these vents suggest that
they did not form through caldera collapse (Rothery et al., 2014; Thomas
et al., 2014b), in which the emptying of a magma chamber leads to
subsidence creating a large volcanic crater. Instead, the vents are inter-
preted to be excavated by explosive eruption, perhaps analogous to
kimberlite pipes on Earth (White and Ross, 2011).

shadow
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Explosive  volcanism peaked during Mercury’s Calorian
(3.9-~3.5-3.0 Ga) and Mansurian (~3.5-3.0 to ~1.0-0.28 Ga) epochs
but continued into the Kuiperian (Thomas et al., 2014a; Jozwiak et al.,
2018), which may have begun as recently as 280 Ma (Banks et al., 2017).
As Mercury’s lithosphere has cooled, it has thickened (Peplowski et al.,
2011), and contraction hinders volcanism by impeding magma ascent
(Solomon, 1978). The formation of volcanic vents on Mercury therefore
probably requires crustal weakness to aid continued rising of the magmas
(Klimczak et al., 2018), which are generally presumed to be volatile-rich
to account for the explosivity of these eruptions (e.g. Kerber et al., 2009;
Weider et al.,, 2016). Possible crustal weaknesses include fractures
associated with impact craters, and faulting. Vents are found both within
impact craters and on lobate scarps (Thomas et al., 2014b; Goudge et al.,
2014). There is a significant correlation between impact craters and
vents, but the high density of tectonic features on Mercury means it is not

I Crater Class 1
Crater Class 2

| Crater Class 3
Vent interior
Crater Floor

. Intercrater Plains
Smooth Plains

m— >20 km Craters

> 5 km Craters
— - Crater Crest (Subdued or Buried) |
—— — Contact Approximate
Contact Certain
—v— Fault Certain
—v- — Fault Uncertain
T Pit
=v-— Thrust Uncertain
—— Section Line

Fig. 2. a: Image EN0261054374M, showing the location of panels ¢ and d. (red box) Image centre:147°E —65.5°N. b: interpreted geological map of area in a. showing
vents and fault location and section line (purple) and label of ridge on crater floor between the two possible faults. c: Close up of vent within which the fault trace is
visible. d: same area as c. with fault trace measured highlighted in red. e. illustrative diagram looking northwest showing the view of the crater floor, ridge and fault.



D.L. Pegg et al.

possible to distinguish from random whether there are also tectonic
controls on the locations of vents (Klimczak et al., 2018).

During the process of reviewing volcanic vents on Mercury (Pegg
et al., 2020) we identified several vents that occur directly on a tectonic
fault (Fig. 1). The fault scarp is not usually visible within such vents.
There are many factors that could contribute to this, such as: the vent
post-dating the fault movement, space weathering, volcanic activity or
rockfalls covering the scarp, poor illumination and/or low image reso-
lution, lack of shadows or stereo pairs. However we have identified one
vent within Vazov crater (147.6°E, —65.6° N) that shows what we
interpret as a small fault scarp visible beyond the north side of the vent
and expressed also on the internal vent wall and on the vent floor (Fig. 2).
This situation enables us to reconstruct the geometry of the fault plane
from the fault’s intersection with the topographic surface.

Outside of the vent on the crater floor there is a contractional ridge 3
km wide, 30 km long, which strikes NW-SW. The topographic feature
continues as a ridge NW of the crater. Because it is expressed by a sym-
metrical ridge, the facing direction of the fault would be uncertain if that
were the only evidence, but fortunately in this case the scarp of the NE
dipping fault is apparent inside the vent. The section revealed in the vent
wall shows that the main fault dips north. The fault trace is visible on the
west wall of the vent but is hidden by the vent-wall shadow in the bottom
and east of the vent (Fig. 2a, c).

3. Geological setting

To study the fault, we used images from the Narrow-Angle Camera
(NAC) onboard MErcury Surface, Space ENvironment, GEochemistry,
and Ranging (MESSENGER) spacecraft (Solomon et al., 2001). The vent’s
location in the southern hemisphere means no laser altimeter data are
available. We processed the image data using the USGS’s Integrated
Software for Imagers and Spectrometers (v 3.5.1.7995) and produced a
geologic map of the vent site based on image EN0231657081M (reso-
lution of 163 m/pixel) using ESRI’s ArcGIS software. We chose a sinu-
soidal projection centred on the vent. We used the mapping methods and
units outlined by (Galluzzi et al., 2016) following USGS (Tanaka et al.,
2011) and Planmap (Rothery et al., 2018) guidelines and classified crater
degradation state using (Kinczyk et al., 2020).

The geological map (Fig. 2) and image data show that the faulted vent
is one of several vents within and around a degraded impact crater.
Beyond the vent, on the crater floor, the fault is clearly marked by the SW
side of a 4 km wide ridge. A slope on the north side of the ridge, may
represent an antithetic fault on the hanging wall (Fig. 3), as is common in
reverse faulting, and indeed is possibly the case with high relief ridges on
Mercury (Strom et al., 1975). Within the vent itself the main fault is
clearly visible where it cuts obliquely down the western internal wall of
the vent and across its floor, but the antithetic fault is hard to make out.
In the east of the vent, the location of the fault rupture is in shadow, and

St fa]

Impact Crater

Volcanic Vent

Volcanic Vent

Ridge in crater floor

Fig. 3. Illustrative cross-section of faulted vent site, not to scale.
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cannot be discerned, even by increasing the image ’stretch’, but it does
appear to re-emerge onto the impact crater floor east of the vent. The
fault structure appears to continue beyond the vent-hosting impact crater
to the northwest but is less apparent there than within the crater.

The presence of the vent within the impact crater shows that the vent
postdates the formation of the impact crater. The crater degradation state
corresponds to the ’partly-degraded’ C2 class of the Kinczyk et al. (2020),
suggesting that it formed during the Tolstojan period (~3.9-4.0 Ga);
however, we could not perform a reliable crater size-frequency analysis
due to the small area involved. The fault cuts across the floor of the
crater, showing that it was active after the crater was formed (though
could have existed before).

The timing of activity on the fault relative to the vent is also unclear.
The continuity along strike of the fault on both sides of the vent might
suggest the fault formed before the vent, in which case the vent-forming
eruption could then have exploited the fault structure as a weakness
enabling it to reach the surface, though the presence of other vents in the
same crater shows this is not essential. The visibility of the fault trace on
the vent wall allows us to measure the fault plane, as a result of its
present-day topographic expression inside the vent wall. This could have
formed during the excavation of the vent, with the excavation occurring
preferentially within the fractured rock in the fault surface, leaving some
of the hanging wall behind and forming a slight step. Other possible in-
terpretations are that there has been post-eruption movement on a pre-
existing fault to produce the step, or that the fault could have been
initiated entirely after the vent formation.

4. Measuring the fault dip

We produced a digital terrain model (DTM) for the vent site using the
AMES stereo pipeline (Broxton and Edwards, 2008) using images:
EN0231657081M and EN0231356027M. We could not provide vertical
control for this DTM due to the lack of laser altimeter data, so we could
not eliminate the possibility that systematic tilts related to uncertainties
in the spacecraft pointing remained in these data. Thus, we did not use
these data to perform dip measurements. Instead, we used shadow
measurements on images EN0246250635M (176 m/pixel) and
EN0261431434M (197 m/pixel). These are the highest resolution close
to nadir images of this feature that MESSENGER obtained. Although we
examined off-nadir images as well, we elected not to attempt to use these
via the method of Barnouin et al. (2012) as we would have had to correct
both the shadow and horizontal measurements, and this would likely
compound any errors from any uncertainty in spacecraft pointing.

As shown in Fig. 4, we constructed a line propagating the fault strike
from the NW over the vent. Then we produced a second line (x)
orthogonal to the strike to where the shadow from the vent intersects the
fault trace. Finally, we constructed a line to record the length of the
shadow from the intersection of the fault trace with the vent shadow, to
the brink of the vent. We drew this line orthogonal to the shadow to get
the shadow length at the point where the shadow intersects the fault
trace. The incidence angle could then be used to calculate the depth of
the shadow (and thus the depth of the fault trace) below the vent brink at
this point (AZ). This could then be combined with x to get the dip angle.

For each image we repeated the measurements ten times to reduce
measurement uncertainty from digitisation. We calculated the depth of
vent at the intersection of the fault and the shadow using basic shadow
measurement techniques e.g. (Pike, 1974; Chappelow and Sharpton,
2002) and then calculated the dip. Unfortunately, there are no markers
that enable us to estimate the amount of displacement on the fault.

Our estimates for the fault plane dip from the two images are shown
in a box and whisker plot (Fig. 5). The means for the two images suggests
a mean dip of 28° +5°. Uncertainties associated with this method arise
from (i) possible uncertainties in spacecraft pointing, (ii) measurement
error, and (iii) image resolution limits. As a test of the pointing issues, we
used two nadir images to make measurements, the comparison between
two images acquired at different times allowing us to test whether there
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Fig. 4. a. Method for calculating dip of fault. Red: fault trace, Green line: propagated strike, Purple line: horizontal distance between strike and intersection of fault
with shadow, yellow line shadow-length measurement. example of these measurements applied to image EN0261431434M.

was a pointing error offset. The dip measured in EN0246250635M has a
mean of 27.8°, and median of 27.4°. The dip measured in
EN0261431434M has a mean of 27.7° and a median of 27.5°. The sim-
ilarity of the two measurements provides confidence in the technique. By
making multiple repeat measurements we tested the repeatability of
human operators to make the measurement and interpret the location of
the strike and shadow intersection. This provides a measurement of the
measurement error. In addition, we consider that no line can be drawn
more accurately than 1-pixel width. A 1-pixel error would result in the
equivalent of +5.0/-4.7° error in dip for image EN0246250635M and
+5.4/-5.0° error in dip for EN0261431434M, (Fig. 5).

5. Discussion

With a dip of 28° + 5°, this fault is slightly steeper than the mean
value used by Galluzzi et al. (2019, 2015), but within the range of
measured dips in their database. The upper end of the error for the dip
measurement is consistent with the 30° predicted to be typical by the
Anderson faulting model for a standard thrust fault (Anderson, 1905).

The scale of this fault is much smaller than that of Mercury’s most
characteristic lobate scarps and its surface expression is similar to high
relief ridges end members of the lobate scarp — high relief ridge contin-
uum, and its dip suggests that it is a similar compressive feature to those
larger examples. This dip measurement is greater than the 3-10° esti-
mated by Crane (2020), however those are based on features within
Smooth Plains units, which are likely layered (Denevi et al., 2009) and so
prone to shallow décollements (Crane and Klimczak, 2019) that would
tend to encourage gentler dipping structures. The dips of faults are

known on parts of Mercury to be affected by local geochemical conditions
(Galluzzi et al., 2019), however the location of this faulted vent in the
southern hemisphere means the geochemical data from MESSENGER is
to low resolution to make inferences (Nittler et al., 2020).

While measurement of a single fault is not conclusive, our data does
lend credence to the view that, on Mercury, moderately dipping faults are
more typical than steeper or very shallow ones. Additionally, this work
demonstrates that measurements such as these are possible and can be
made even in the absence of DEM data. The image resolution does not
allow measurement of fault displacement, which would enable quanti-
fication of how much strain the fault has accommodated, but higher-
resolution imaging data from BepiColombo (Rothery et al., 2020) may
allow this. BepiColombo should provide sufficient data to make more
measurements like this, for example in occurrences such as the example
in Fig. la, generating a database of the fault geometries in locations
across Mercury and allowing a more detailed assessment of global tec-
tonic and thermal models. If measurements of other faults prove possible
and are in line with this example, generalizing such a result to the model
of Byrne et al. (2014) would suggest that global contraction is likely to be
about 5.7-7.1 km, which at the higher end of the currently estimated
range.

6. Conclusions

Direct measurements of the dip of a fault on Mercury find a value of
~28° + 5. This is within the range of fault dips calculated indirectly
through measurements of crater displacement and for classical thrust
fault models. Although only a single example, this dip estimate agrees
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-
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Fig. 5. a) Box and whisker plot of dip measurements on each images, each image has 10 data point and the vertical lines shows the range of data, the box encapsulates
the first and third quartile with the central horizontal line the median. b) Image EN0246250635M (c) Image EN0261431434M.

with the growing evidence to suggests that the higher-end estimates of
radial shrinking by global contraction are more representative than lower
estimates. BepiColombo will provide an opportunity to gain better data
on this site and identify other locations where the volcanic vents expose
fault surfaces in 3 dimensions, offering fuller insight into planetary
tectonics.
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