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Abstract. Industry 4.0 communication and data management technologies 

enable the development of distributed, product driven control architectures, 

where intelligent products can play active roles in manufacturing control pro-

cesses. Although simulation is a widespread practice to test, evaluate, com-

pare and validate different design alternatives, there is still a lack of papers 

that assess and discuss the capabilities of available simulation software to 

meet and implement the requirements of such distribution as a design alter-

native. This paper provides an analysis of distributed, product driven control 

requirements and benchmarks them against the capabilities of two commer-

cially available simulation software, namely FlexSim and AnyLogic. A com-

parison of the strengths and weaknesses of each software is provided through 

a case study.  

Keywords: simulation software, distributed control, intelligent product, simula-

tion benchmark. 

1 Introduction 

The advent of the industry 4.0 paradigm introduces a set of information and commu-

nication technologies that allow both information processing to be distributed, and de-

cision-making to be decentralized over several autonomous and intelligent production 

entities, including smart manufacturing assets (machines, robots, material handling de-

vices, etc.), augmented operators and intelligent products [1]. This distribution/decen-

tralization particularly encourages the design and development of distributed, product 

driven control architectures, where intelligent products can play more active roles in 

operational and decision-making processes [1].  

As manufacturers are often reluctant to experiment with new control architectures 

directly on their production systems [2], mainly due to risk aversion considerations 

(loss of production capacity, functionality, quality, performance, etc.), they prefer first 

assessing the control architecture using simulation before implementing it on real scale. 

Indeed, simulation is a widespread practice that offers a methodology and a set of tools 
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[3] to test, evaluate, compare and validate different design alternatives at lower costs 

and almost without risk. However, as it will be discussed in section 2, there is still a 

lack of papers that provide guidelines to benchmark the capabilities of available simu-

lation software against the requirements of distributed product driven control in order 

to select the simulation software that offers the set of capabilities that better meet those 

requirements. The aim of this paper is then to provide such guidelines based on the 

benchmarking of two representatives of available simulation software: FlexSim and 

AnyLogic. FlexSim (https://www.flexsim.com/) is considered due to its high ranking 

[4], and as a representative of discrete event simulation software. AnyLogic 

(https://www.anylogic.com/) is considered as a representative of multi-agent based 

modeling and simulation software [5]. 

The remaining of the paper is organized as follows: section 2 reviews the related 

works with respect to the use of simulation in distributed manufacturing control. Then, 

section 3 provides an analysis of distributed control requirements, which are illustrated 

on a case study (cf. section 4) and further matched against the capabilities of FlexSim 

(cf. section 5.1) and AnyLogic (cf. section 5.2). Finally, a conclusion provides a com-

parison of the strengths and weaknesses of each software, and some future works are 

presented. 

2 Simulation in distributed control of manufacturing systems 

In product driven control architectures, intelligent products [6] can play active roles 

in manufacturing control [1], [7], [8]. Although simulation is widely used to assess the 

behavior and performance of such architectures [2], [3], [9], most often, authors do not 

argument the selection criteria of the simulation software they use. Usually, authors do 

discuss the strengths and weaknesses of their control architectures. However, they do 

not discuss the capabilities, ease of use, strengths and weaknesses of the simulation 

software they used. They do not report on their user experience with the simulation 

software to implement those architectures. These are some of the key observations that 

motivate this paper. As a matter of fact, if no guidelines are available to help select a 

simulation software before implementing a product driven control architecture, then 

misleading choices could be made, or additional efforts (e.g. programming) could be 

spent using a software that does not provide the necessary or satisfactory capabilities 

that implement the sought after requirements.  

Indeed, the Simulation Software Survey [10] is a useful source of information to 

summarize the main characteristics of a variety of simulation software packages avail-

able in the market. Some references focused on ranking simulation software [4], com-

paring their capabilities [11] and providing frameworks for simulation software selec-

tion [12]. However, all of this is made independently of the distribution/decentralization 

decisions and independently of any targeted control architecture. Several studies de-

scribed requirements to develop benchmarking testbeds [13], particularly using simu-

lation [14], to assess the behavior and performance of distributed control architectures. 

In [15], a recent review of the benchmarking initiatives aimed at Holonic Manufactur-

ing Systems performance assessment shows that very few of them exist. None of the 

https://www.flexsim.com/
https://www.anylogic.com/


above-mentioned references provides an analysis of the capabilities of available sim-

ulation software to meet requirements of distributed product driven control. There-

fore, this paper is an effort to fill in this gap. The paper compares the strengths and 

weaknesses of two available simulation software with respect to the implementa-

tion of distributed, product driven control. FlexSim is considered due to its high rank-

ing, and as a representative of discrete event simulation software [4]. AnyLogic is con-

sidered as a representative of multi-agent based modeling and simulation software [5]. 

Both software provide trial and evaluation versions available on-line that could be used 

to implement the case study considered in section 4.  

3 Requirements for simulation in distributed control 

Distribution decisions are design decisions, which behavior and performance can be 

evaluated using simulation. However, for a successful simulation and evaluation of 

product driven control architectures, the simulation software (i.e. simulators) have to 

satisfy several types of requirements, as shown in Fig. 1.  

 

Fig. 1. Illustration of the requirements for simulation. 

1. Production entities (item numbered (1) in Fig. 1): simulators shall be able to con-

sider several features of several types of production entities: 

(a) To achieve product intelligence, simulators should enable products to be aware 

of their (design, operational and customer order) specifications, context and set 

of required services to be manufactured.  

(b) The resources that offer different services to the products (e.g. transformation 

services for machines, maintenance and quality control as support services, 

transport and storage services for material handling systems); 
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(c) Decision entities, human and/or artificial, to synchronize, coordinate and perform 

analysis and decision-making processes. 

2. Informational structures (item numbered (2) in Fig. 1): simulators shall enable 

considering entity attributes and properties, related to product and process specifica-

tions (e.g. bills of materials, routings, machining and process parameter settings, tol-

erances, services required to obtain a given product, etc.), as well as indicators and 

descriptors of the evolution of manufacturing processes (e.g. key performance indi-

cators, statuses and reports describing normal, tolerable, satisfactory and/or abnor-

mal operating conditions). To achieve product driven control, simulators shall enable 

intelligent products to handle informational structures that are compliant with a DIK 

model [16]: 

(a) D (for Data) represents the properties and statues of production entities and pro-

cesses, as well as the events generated by, or occurring to, production entities in 

interaction with each other and within their environment. Data can be considered 

as raw facts, without meaning, issued from measurements (e.g. data acquisition 

from sensors, such as velocity, temperature, pressure, etc.);  

(b) I (for Information) obtained by some data processing to add meaning to raw 

data, for example to have answers to questions, such as “what” event happened, 

“when” and “where” did it happen, “who” or “what” generated it, “how” is it 

described and eventually “who” is in charge of dealing with it;  

(c) K (for Knowledge) represents expertise and can be seen as groups of information 

that are linked by semantic relations.  

3. Interactions: To achieve product driven control, simulators shall enable intelligent 

products to support different types of interactions with production entities:  

(a) Direct interaction (item numbered (4) in Fig. 1), for example using direct com-

munication channels and exchanges of messages.  

(b) Indirect interaction (item numbered (5) in Fig. 1), using the environment and 

communication channels, such as blackboards or stigmergy [17].  

(c) More complex interactions, such as negotiation protocols, should be enabled. 

4. Decision-making (item numbered (3) in Fig. 1): To achieve product driven control, 

simulators shall enable intelligent products to integrate different decision-making 

processes, which are the set of activities, coordinated and synchronized within busi-

ness processes, that lead to the satisfaction of production objectives as well as per-

formance, behavior and quality of service constraints and requirements.  

(a) Depending on distribution design choices, the decision-making can be supported 

either by products, or resources, or decision-makers, or else by any combination 

of these entities.  

(b) Decision-making processes use informational inputs to generate decisions and 

informational outputs that will be stored in informational structures.  

5. Functioning modes (item numbered (6) in Fig. 1): To achieve product driven con-

trol, simulators shall enable intelligent products to represent and be aware of all op-

erational settings of the manufacturing system, in terms of both normal, degraded 

and disturbed operational conditions.  



It is worth noting that production entities and informational structures are common 

to many production systems and thus easily handled by simulators. However, decision-

making processes, interactions and functioning modes are rather business dependent, 

specific to each production system, and particularly related to the distribution design 

choices and mechanisms of the suggested control architectures. The implementation of 

these requirements will challenge the capabilities of simulation software, in terms of 

ease of use, ease of configuration, ease of custom code programming and existence of 

pre-built libraries. The case study of section 4 is built to evaluate the above require-

ments through different interactions between entities. 

4 Case study 

Let us consider an automated manufacturing system, as the example one shown in 

Fig. 2. The system is composed of a main unidirectional conveyor loop (shown in blue 

color in Fig. 2) servicing production resources located aside secondary loops (shown 

in black color in Fig. 2), and two scrapping areas (shown in orange color in Fig. 2). The 

production resources include a raw material (RM) automated storage and retrieval sys-

tem (AS/RS), two equivalent machines M1 and M2 and an AS/RS to store work in 

progress (WIP) and finished products. As the main purpose of the paper is not focused 

on complex product design and manufacturing, product routings with only one opera-

tion (to be performed interchangeability either on machine M1 or machine M2) are 

considered. Machines are subject to failures, and products are subject to quality defects. 

The scrap areas receive WIP products if they do not meet quality requirements. Deci-

sion and quality control points are located on the main conveyor loop as milestones so 

that intelligent products check updates about indicators and make decisions.  

 

Fig. 2. Illustration of the case study 



4.1 Product decisions 

Initially, a product leaves the raw material AS/RS without having a schedule. The 

product moves on the conveyor and crosses decision point D1, where it acquires its 

decision indicators (cf. section 4.2). According to this data, and using a decision mech-

anism, such as the one described in section 4.2, the product selects the machine that 

will perform the next operation in its routing. Then, the product moves on the conveyor. 

When it crosses decision point D2, it acquires the decision indicators and updates the 

decision it made earlier accordingly. As a generalization, the product can update its 

decisions based on indicators each time it crosses a decision or a quality control point. 

At decision points, a product can make one among four possible product decisions 

(PD):  

─ PD1. Enter the resource loop;  

─ PD2. Stay on the main conveyor to wait until the resource is available;  

─ PD3. Go to the alternative resource loop;  

─ PD4. Return to stock and wait for the next production horizon. 

When a product leaves a production resource (M1 or M2), it crosses a quality control 

point, where it acquires indicators about its quality. According to this data, and using a 

decision mechanism (cf. section 4.2), the product can make one among four possible 

product decisions (PD) at quality control points:  

─ PD5. go to finished products inventory if quality indicators are acceptable;  

─ PD6. rework on either machine M1 or M2 if quality indicators are tolerable and 

machines are available and reliable (rework machine has to be selected);  

─ PD7. go to WIP inventory and wait for rework on either machine M1 or M2 if 

quality indicators are tolerable and machines are either unavailable or unreliable 

(wait for a pre-specified period of time before updating the decision);  

─ PD8. go to scrap otherwise.  

These decisions are taken using a decision mechanism such as the one detailed in the 

next paragraph. 

4.2 AHP based decision mechanism 

The Analytic Hierarchy Process (AHP) described in [18] was adapted to the purpose 

of this paper to enable products to make decisions and consequently update their next 

step at each decision and quality control point in reaction to availability and reliability 

disturbances. Starting from the raw material AS/RS, the global objective for each 

product is to reach the finished products AS/RS. As in [18], three types of criteria are 

considered, related to production costs, processing and transportation times and 

machine reliability. Each criterion type is associated with a set of indicators. A product 

applies AHP at decision points to select a decision among PD1 to PD4, and at quality 

control points to select a decision among PD5 to PD8. First the product acquires the 

indicators associated with the type of decision point. Then the product performs 

pairwise comparisons between decisions according to each indicator. Then, 



comparisons of decisions according to indicators are aggregated to comparisons of 

decisions according to criteria. Finally, the decision that best suits the global objective 

is selected. We refer to reference [18] for more details with respect to the different steps 

of implementation. 

5 Capabilities benchmarked against requirements 

The case study is implemented in FlexSim and AnyLogic to evaluate their capabili-

ties to implement a product driven control model.  

5.1 FlexSim capabilities 

FlexSim offers a user-friendly interface and a wide library of standard objects that 

enable drawing a simulation model quickly. Different library objects are used to build 

a simulation model (see Fig. 3) that corresponds to the case study illustrated in Fig. 2.  

 

Fig. 3. Simulation of the case study using FlexSim 

Production entities: FlexSim offers a rich and user-friendly library containing sim-

ulation model objects that can be used to design simulation models. A source node is 

used to simulate and customize the product arrivals, and to assign the processing cost 

and time indicators to products as flow items. Three queuing objects for raw material, 

WIP and finished product inventories are constructed for the waiting areas. Conveyors 

are constructed to move the flow item. Machines are simulated using two production 

servers. Two sink nodes are used to simulate the scrapping areas 1 and 2. 

Informational structures: FlexSim allows different ways to store and process data 

and information. It can route items through different resources based on data embedded 



in a flow item since its creation at source nodes. It can connect with external data 

sources (e.g. MS Excel spreadsheets) and databases, such as ERP, MES, HMI, PLC 

and OPC servers and exchange data using Open Database Connectivity1(ODBC) con-

nection. FlexSim defines specific indicators for each model object. For example, the 

holding costs associated with inventory are defined in the queuing objects. All indica-

tors are communicated by objects and stored in two global tables named “Indicators at 

Di” and “Indicators at Qj”. The role of the tables is to provide data to decision and 

quality control points in order to perform the AHP calculations. Global tables enable 

indirect communication between products and production resources. When a decision 

is assigned to a product, FlexSim stores this decision in a global list that can be exported 

to Excel. 

Interactions: In FlexSim, library objects are connected to define different process 

flows and to allow the exchange of physical flows between model objects. The flow of 

information between objects can be implemented by sending direct messages on state 

conditions. Custom communication protocols between objects can be programmed on 

the FlexSim snippet using either FlexScript (FlexSim’s proprietary language) or C++. 

Products are considered as inert flow items that move through the model objects ac-

cording to their predefined routings, without having active roles or interactions with 

other entities. At decision and quality control points, the supervisor can change the cri-

teria and weightings of the AHP mechanism using FlexSim interfaces.  

Decision-making: as products are inert flow items, they cannot directly process in-

formation or do calculations, and consequently cannot be directly endowed with deci-

sion mechanisms. To solve this problem, the AHP mechanism is implemented on deci-

sion and quality control points (i.e. outside the product). When a product reaches a 

decision or quality control point, a customized logic encoded on each point allows up-

dating the product routing. Such logic can be programmed using FlexScript or C++ 

programming languages. FlexSim can directly compile custom code written in C++ via 

its snippet. It can create .dll2 files in C++ and link them to FlexSim. It can connect with 

other programming environments and languages, such as Python and R.  

Functioning modes: FlexSim enables defining customized indicators to represent 

product quality, and customized routines to change the values of these indicators. For 

example, the value qp is created to represent a measurement of a product dimension. 

This quality parameter is susceptible to random events that can change its value (to 

model product defects). The quality indicator can be directly consulted by the various 

FlexSim objects. Machine failures can be generated by the MTBF/MTTR fault profile 

in the FlexSim “toolbox”. Using probability distributions, FlexSim can model the first 

failure time, the down time, and the up time of the machine. Based on mean of ma-

chine’s up time and the machine operating time, the machine reliability is calculated 

using the exponential distribution. 

 
1  ODBC is a standard application programming interface (API) for accessing database manage-

ment systems (DBMS). 
2  Dynamic-link library (DLL) is Microsoft's implementation of the shared library concept in 

the Microsoft Windows and OS/2 operating systems. 



5.2 AnyLogic capabilities 

AnyLogic enables modeling all entities (products, resources, storage, and scrapping 

areas) as agents using agent-based modeling.  

 

Fig. 4. Simulation of the case study using AnyLogic. 

Production entities: The Process Modeling Library of AnyLogic is used to build a 

simulation model that corresponds to Fig. 2: A source that generates productAgent(s); 

Three queuing agents for raw material, WIP and finished product inventories; a con-

veyor agent that moves productAgent(s) at a certain speed, preserving order and space 

between them; delay agents are associated with machines M1 and M2; Two agents are 

associated with the sink nodes that represent the scrapping areas 1 and 2. Their role is 

to destroy incoming productAgent(s). A systemProductionAgent embeds all other 

agents. AnyLogic enables defining positions on the conveyor where product agents can 

make calculations. Four decision points Di (red points in Fig. 4), and two quality control 

points Qj (green points in Fig. 4) are created to enable such calculations. 

Informational structures: Product cost and time indicators are defined as 

productAgent(s)’ related parameters since their creation. Each product knows its pro-

duction cost and processing time on M1 and M2. Before a product is processed on a 

machine, the quality indicator qp does not contain any value. AnoLogic assigns the 

value of the indicator qp embedded in productAgents using a set of statistical distribu-

tion functions to simulate product defects. ProductAgents can consult each time the 

other indicators from all agents. The native Java environment supports custom Java 

code, external libraries, and external data sources. 

Interactions: AnyLogic is a multi-paradigm simulation software, which features 

Agent-Based Modeling (ABM). In ABM, the primary consideration is individual 

agents, their rules, behaviors and interactions with each other and with the environment. 

Agents living in one environment can directly communicate via sending messages to 

each other. The simulation runs on one computer system which means all agents share 



the same ontology and the use of an Agent Communication Language is not necessary. 

For example, when the product reaches the decision point D2, if machine 1 is in the 

product routing, the machine1Agent sends a message to the productAgent to inform of 

its availability.  

Decision-making: the AHP mechanism is implemented using the Java program-

ming language. It is embedded directly on productAgents, and is only triggered when 

product agents reach decision or quality control points. AnyLogic can work with R3 

programming language through the use of the Java library “Rcaller”, which increases 

the data analytics capability. Also, it can integrate Artificial Intelligence in simulation 

models using a link to Python language or Skymind’s library to enable reinforcement 

learning. The artificial intelligence models can be constructed externally (e.g. in Py-

thon) and may be trained before their integration into AnyLogic. 

Functioning modes: Machine failures can be generated by the “ResourcePool” 

block. Recurrent downtime and maintenance activities are scheduled by the different 

types of triggers or using the AnyLogic Schedule element. In our case, the downtime 

and maintenance tasks are defined using the properties of the “ResourcePool” block. 

6 Conclusion and perspectives 

This paper discussed the capabilities of two available simulation software to imple-

ment the requirements of distributed product driven control. A case study provided the 

product with some intelligence enabling it to play an active role in the decision-making 

processes using AHP mechanism. The implementation of the case study on AnyLogic 

and FlexSim allows to examine the capabilities of these simulation software according 

to the requirements of distributed product driven control. To do this, a matrix is estab-

lished (Table 1) to map the simulation software capabilities to the case study require-

ments. 

From Table 1, it can be noticed that AnyLogic is a consistent simulation software to 

implement and model a distributed product driven control in industrial context, due to 

the conjunction of multi-paradigm simulation and high capabilities in data analytics. 

AnyLogic offers good interoperability with standard programming languages, such as 

Java, Python and R, which extends its core capabilities to those of the rich libraries 

available in these languages. Agent based modeling can be combined with discrete 

event simulation, which further extends the capabilities of simulation using AnyLogic. 

Agent based modeling enables achieving product intelligence in terms of data pro-

cessing, communication, interactions and decision-making.  

Table 1. Summary of simulation software capabilities for product driven distributed control re-

quirements. (Legend:       Good,      Fair,      Poor)  

 AnyLogic FlexSim 

Production entities   

 
3  R is a programming language and free software environment for statistical computing and 

graphics. 

https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/ResourcePool.html


 AnyLogic FlexSim 

Products            

Resources             

Decision-making entities (human and/or artificial)             

Interactions   

Product-Product            

Product-Production resource            

Product-Human            

Production resource- Production resource             

Functioning modes and disturbances   

Machine disturbances             

Product disturbances            

Intelligence level of the entities (except product for FlexSim)   

Associate informational structures with production entities (except product for FlexSim)              

Decision-making (except product for FlexSim)             

On the other hand, FlexSim is very strong in 3D animation and is characterized by 

its user-friendly interface and ease of use. Compared with AnyLogic, which offers 

multi-paradigm simulation, FlexSim offers only discrete event simulation. In this type 

of simulation, products are represented and handled as flow items. This introduces lim-

itations with respect to implementing product-based decision-making and interactions. 

Custom made developments and extra programming is needed to overcome these lim-

itations and achieve product intelligence. As FlexSim offers less interoperability with 

other programming languages compared to AnyLogic, this is an extra limitation.  

Because of the differences between packages, none of them is suitable for use with 

every type of manufacturing problem [11]. The most appropriate simulation software 

should be selected for the specific application being studied. 

We are considering an extension of the work to take into account several types of 

disruptions in the production environment (e.g., late delivery of raw materials, con-

veyor breakdown, etc.) in order to progress more on this work and further develop our 

model. Even several products can be interconnected (a network of products able to 

communicate with each other), in this case the products can share their experiences 

when they make a decision, and they can update the set of actions. 
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