
HAL Id: hal-03383779
https://hal.science/hal-03383779v1

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking Simulation Software Capabilities Against
Distributed Control Requirements: FlexSim Vs

AnyLogic
Ali Attajer, Saber Darmoul, Sondès Chaabane, Fouad Riane, Yves Sallez

To cite this version:
Ali Attajer, Saber Darmoul, Sondès Chaabane, Fouad Riane, Yves Sallez. Benchmarking Simulation
Software Capabilities Against Distributed Control Requirements: FlexSim Vs AnyLogic. Service
Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, Proceedings
of SOHOMA 2020, Springer, 2021, 9783030693732. �10.1007/978-3-030-69373-2_38�. �hal-03383779�

https://hal.science/hal-03383779v1
https://hal.archives-ouvertes.fr

HAL Id: hal-03383779
https://hal.archives-ouvertes.fr/hal-03383779

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking Simulation Software Capabilities Against
Distributed Control Requirements: FlexSim Vs

AnyLogic
Ali Attajer, Saber Darmoul, Sondès Chaabane, Yves Sallez, Fouad Riane

To cite this version:
Ali Attajer, Saber Darmoul, Sondès Chaabane, Yves Sallez, Fouad Riane. Benchmarking Simulation
Software Capabilities Against Distributed Control Requirements: FlexSim Vs AnyLogic. Service
Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future: Proceedings of
SOHOMA 2020, Oct 2020, Paris, France. �hal-03383779�

https://hal.archives-ouvertes.fr/hal-03383779
https://hal.archives-ouvertes.fr

Benchmarking Simulation Software Capabilities Against

Distributed Control Requirements: FlexSim Vs AnyLogic

Ali Attajer1,2,3, Saber Darmoul1, Sondes Chaabane2, Fouad Riane1,3, and Yves Sallez2

1 Ecole Centrale Casablanca, Bouskoura Ville Verte, 27182, Casablanca, Morocco
{ali.attajer, saber.darmoul, fouad.riane}@centrale-casablanca.ma
2 LAMIH, UMR CNRS 8201, Université Polytechnique des Hauts-de-France, UPHF, Le Mont

Houy, 59313 Valenciennes, France
{sondes.chaabane, yves.sallez}@uphf.fr

3 LIMII, Hassan First University, Settat, Morocco

Abstract. Industry 4.0 communication and data management technologies

enable the development of distributed, product driven control architectures,

where intelligent products can play active roles in manufacturing control pro-

cesses. Although simulation is a widespread practice to test, evaluate, com-

pare and validate different design alternatives, there is still a lack of papers

that assess and discuss the capabilities of available simulation software to

meet and implement the requirements of such distribution as a design alter-

native. This paper provides an analysis of distributed, product driven control

requirements and benchmarks them against the capabilities of two commer-

cially available simulation software, namely FlexSim and AnyLogic. A com-

parison of the strengths and weaknesses of each software is provided through

a case study.

Keywords: simulation software, distributed control, intelligent product, simula-

tion benchmark.

1 Introduction

The advent of the industry 4.0 paradigm introduces a set of information and commu-

nication technologies that allow both information processing to be distributed, and de-

cision-making to be decentralized over several autonomous and intelligent production

entities, including smart manufacturing assets (machines, robots, material handling de-

vices, etc.), augmented operators and intelligent products [1]. This distribution/decen-

tralization particularly encourages the design and development of distributed, product

driven control architectures, where intelligent products can play more active roles in

operational and decision-making processes [1].

As manufacturers are often reluctant to experiment with new control architectures

directly on their production systems [2], mainly due to risk aversion considerations

(loss of production capacity, functionality, quality, performance, etc.), they prefer first

assessing the control architecture using simulation before implementing it on real scale.

Indeed, simulation is a widespread practice that offers a methodology and a set of tools

adfa, p. 1, 2020.

mailto:ali.attajer,%20saber.darmoul,%20fouad.riane%7d@centrale-casablanca.ma
mailto:yves.sallez%7d@uphf.fr

[3] to test, evaluate, compare and validate different design alternatives at lower costs

and almost without risk. However, as it will be discussed in section 2, there is still a

lack of papers that provide guidelines to benchmark the capabilities of available simu-

lation software against the requirements of distributed product driven control in order

to select the simulation software that offers the set of capabilities that better meet those

requirements. The aim of this paper is then to provide such guidelines based on the

benchmarking of two representatives of available simulation software: FlexSim and

AnyLogic. FlexSim (https://www.flexsim.com/) is considered due to its high ranking

[4], and as a representative of discrete event simulation software. AnyLogic

(https://www.anylogic.com/) is considered as a representative of multi-agent based

modeling and simulation software [5].

The remaining of the paper is organized as follows: section 2 reviews the related

works with respect to the use of simulation in distributed manufacturing control. Then,

section 3 provides an analysis of distributed control requirements, which are illustrated

on a case study (cf. section 4) and further matched against the capabilities of FlexSim

(cf. section 5.1) and AnyLogic (cf. section 5.2). Finally, a conclusion provides a com-

parison of the strengths and weaknesses of each software, and some future works are

presented.

2 Simulation in distributed control of manufacturing systems

In product driven control architectures, intelligent products [6] can play active roles

in manufacturing control [1], [7], [8]. Although simulation is widely used to assess the

behavior and performance of such architectures [2], [3], [9], most often, authors do not

argument the selection criteria of the simulation software they use. Usually, authors do

discuss the strengths and weaknesses of their control architectures. However, they do

not discuss the capabilities, ease of use, strengths and weaknesses of the simulation

software they used. They do not report on their user experience with the simulation

software to implement those architectures. These are some of the key observations that

motivate this paper. As a matter of fact, if no guidelines are available to help select a

simulation software before implementing a product driven control architecture, then

misleading choices could be made, or additional efforts (e.g. programming) could be

spent using a software that does not provide the necessary or satisfactory capabilities

that implement the sought after requirements.

Indeed, the Simulation Software Survey [10] is a useful source of information to

summarize the main characteristics of a variety of simulation software packages avail-

able in the market. Some references focused on ranking simulation software [4], com-

paring their capabilities [11] and providing frameworks for simulation software selec-

tion [12]. However, all of this is made independently of the distribution/decentralization

decisions and independently of any targeted control architecture. Several studies de-

scribed requirements to develop benchmarking testbeds [13], particularly using simu-

lation [14], to assess the behavior and performance of distributed control architectures.

In [15], a recent review of the benchmarking initiatives aimed at Holonic Manufactur-

ing Systems performance assessment shows that very few of them exist. None of the

https://www.flexsim.com/
https://www.anylogic.com/

above-mentioned references provides an analysis of the capabilities of available sim-

ulation software to meet requirements of distributed product driven control. There-

fore, this paper is an effort to fill in this gap. The paper compares the strengths and

weaknesses of two available simulation software with respect to the implementa-

tion of distributed, product driven control. FlexSim is considered due to its high rank-

ing, and as a representative of discrete event simulation software [4]. AnyLogic is con-

sidered as a representative of multi-agent based modeling and simulation software [5].

Both software provide trial and evaluation versions available on-line that could be used

to implement the case study considered in section 4.

3 Requirements for simulation in distributed control

Distribution decisions are design decisions, which behavior and performance can be

evaluated using simulation. However, for a successful simulation and evaluation of

product driven control architectures, the simulation software (i.e. simulators) have to

satisfy several types of requirements, as shown in Fig. 1.

Fig. 1. Illustration of the requirements for simulation.

1. Production entities (item numbered (1) in Fig. 1): simulators shall be able to con-

sider several features of several types of production entities:

(a) To achieve product intelligence, simulators should enable products to be aware

of their (design, operational and customer order) specifications, context and set

of required services to be manufactured.

(b) The resources that offer different services to the products (e.g. transformation

services for machines, maintenance and quality control as support services,

transport and storage services for material handling systems);

Scheduling

expert

Product #1

Resource #1

Product #2

Resource #2

Resource #3

Informational

structure

Decisional

process

LEGEND: Informational part

Physical/operative part

Informational structure

Direct interaction

Indirect interaction

Functioning modes

Environment

1
3

4

5

6

K

I

D

2

(c) Decision entities, human and/or artificial, to synchronize, coordinate and perform

analysis and decision-making processes.

2. Informational structures (item numbered (2) in Fig. 1): simulators shall enable

considering entity attributes and properties, related to product and process specifica-

tions (e.g. bills of materials, routings, machining and process parameter settings, tol-

erances, services required to obtain a given product, etc.), as well as indicators and

descriptors of the evolution of manufacturing processes (e.g. key performance indi-

cators, statuses and reports describing normal, tolerable, satisfactory and/or abnor-

mal operating conditions). To achieve product driven control, simulators shall enable

intelligent products to handle informational structures that are compliant with a DIK

model [16]:

(a) D (for Data) represents the properties and statues of production entities and pro-

cesses, as well as the events generated by, or occurring to, production entities in

interaction with each other and within their environment. Data can be considered

as raw facts, without meaning, issued from measurements (e.g. data acquisition

from sensors, such as velocity, temperature, pressure, etc.);

(b) I (for Information) obtained by some data processing to add meaning to raw

data, for example to have answers to questions, such as “what” event happened,

“when” and “where” did it happen, “who” or “what” generated it, “how” is it

described and eventually “who” is in charge of dealing with it;

(c) K (for Knowledge) represents expertise and can be seen as groups of information

that are linked by semantic relations.

3. Interactions: To achieve product driven control, simulators shall enable intelligent

products to support different types of interactions with production entities:

(a) Direct interaction (item numbered (4) in Fig. 1), for example using direct com-

munication channels and exchanges of messages.

(b) Indirect interaction (item numbered (5) in Fig. 1), using the environment and

communication channels, such as blackboards or stigmergy [17].

(c) More complex interactions, such as negotiation protocols, should be enabled.

4. Decision-making (item numbered (3) in Fig. 1): To achieve product driven control,

simulators shall enable intelligent products to integrate different decision-making

processes, which are the set of activities, coordinated and synchronized within busi-

ness processes, that lead to the satisfaction of production objectives as well as per-

formance, behavior and quality of service constraints and requirements.

(a) Depending on distribution design choices, the decision-making can be supported

either by products, or resources, or decision-makers, or else by any combination

of these entities.

(b) Decision-making processes use informational inputs to generate decisions and

informational outputs that will be stored in informational structures.

5. Functioning modes (item numbered (6) in Fig. 1): To achieve product driven con-

trol, simulators shall enable intelligent products to represent and be aware of all op-

erational settings of the manufacturing system, in terms of both normal, degraded

and disturbed operational conditions.

It is worth noting that production entities and informational structures are common

to many production systems and thus easily handled by simulators. However, decision-

making processes, interactions and functioning modes are rather business dependent,

specific to each production system, and particularly related to the distribution design

choices and mechanisms of the suggested control architectures. The implementation of

these requirements will challenge the capabilities of simulation software, in terms of

ease of use, ease of configuration, ease of custom code programming and existence of

pre-built libraries. The case study of section 4 is built to evaluate the above require-

ments through different interactions between entities.

4 Case study

Let us consider an automated manufacturing system, as the example one shown in

Fig. 2. The system is composed of a main unidirectional conveyor loop (shown in blue

color in Fig. 2) servicing production resources located aside secondary loops (shown

in black color in Fig. 2), and two scrapping areas (shown in orange color in Fig. 2). The

production resources include a raw material (RM) automated storage and retrieval sys-

tem (AS/RS), two equivalent machines M1 and M2 and an AS/RS to store work in

progress (WIP) and finished products. As the main purpose of the paper is not focused

on complex product design and manufacturing, product routings with only one opera-

tion (to be performed interchangeability either on machine M1 or machine M2) are

considered. Machines are subject to failures, and products are subject to quality defects.

The scrap areas receive WIP products if they do not meet quality requirements. Deci-

sion and quality control points are located on the main conveyor loop as milestones so

that intelligent products check updates about indicators and make decisions.

Fig. 2. Illustration of the case study

4.1 Product decisions

Initially, a product leaves the raw material AS/RS without having a schedule. The

product moves on the conveyor and crosses decision point D1, where it acquires its

decision indicators (cf. section 4.2). According to this data, and using a decision mech-

anism, such as the one described in section 4.2, the product selects the machine that

will perform the next operation in its routing. Then, the product moves on the conveyor.

When it crosses decision point D2, it acquires the decision indicators and updates the

decision it made earlier accordingly. As a generalization, the product can update its

decisions based on indicators each time it crosses a decision or a quality control point.

At decision points, a product can make one among four possible product decisions

(PD):

─ PD1. Enter the resource loop;

─ PD2. Stay on the main conveyor to wait until the resource is available;

─ PD3. Go to the alternative resource loop;

─ PD4. Return to stock and wait for the next production horizon.

When a product leaves a production resource (M1 or M2), it crosses a quality control

point, where it acquires indicators about its quality. According to this data, and using a

decision mechanism (cf. section 4.2), the product can make one among four possible

product decisions (PD) at quality control points:

─ PD5. go to finished products inventory if quality indicators are acceptable;

─ PD6. rework on either machine M1 or M2 if quality indicators are tolerable and

machines are available and reliable (rework machine has to be selected);

─ PD7. go to WIP inventory and wait for rework on either machine M1 or M2 if

quality indicators are tolerable and machines are either unavailable or unreliable

(wait for a pre-specified period of time before updating the decision);

─ PD8. go to scrap otherwise.

These decisions are taken using a decision mechanism such as the one detailed in the

next paragraph.

4.2 AHP based decision mechanism

The Analytic Hierarchy Process (AHP) described in [18] was adapted to the purpose

of this paper to enable products to make decisions and consequently update their next

step at each decision and quality control point in reaction to availability and reliability

disturbances. Starting from the raw material AS/RS, the global objective for each

product is to reach the finished products AS/RS. As in [18], three types of criteria are

considered, related to production costs, processing and transportation times and

machine reliability. Each criterion type is associated with a set of indicators. A product

applies AHP at decision points to select a decision among PD1 to PD4, and at quality

control points to select a decision among PD5 to PD8. First the product acquires the

indicators associated with the type of decision point. Then the product performs

pairwise comparisons between decisions according to each indicator. Then,

comparisons of decisions according to indicators are aggregated to comparisons of

decisions according to criteria. Finally, the decision that best suits the global objective

is selected. We refer to reference [18] for more details with respect to the different steps

of implementation.

5 Capabilities benchmarked against requirements

The case study is implemented in FlexSim and AnyLogic to evaluate their capabili-

ties to implement a product driven control model.

5.1 FlexSim capabilities

FlexSim offers a user-friendly interface and a wide library of standard objects that

enable drawing a simulation model quickly. Different library objects are used to build

a simulation model (see Fig. 3) that corresponds to the case study illustrated in Fig. 2.

Fig. 3. Simulation of the case study using FlexSim

Production entities: FlexSim offers a rich and user-friendly library containing sim-

ulation model objects that can be used to design simulation models. A source node is

used to simulate and customize the product arrivals, and to assign the processing cost

and time indicators to products as flow items. Three queuing objects for raw material,

WIP and finished product inventories are constructed for the waiting areas. Conveyors

are constructed to move the flow item. Machines are simulated using two production

servers. Two sink nodes are used to simulate the scrapping areas 1 and 2.

Informational structures: FlexSim allows different ways to store and process data

and information. It can route items through different resources based on data embedded

in a flow item since its creation at source nodes. It can connect with external data

sources (e.g. MS Excel spreadsheets) and databases, such as ERP, MES, HMI, PLC

and OPC servers and exchange data using Open Database Connectivity1(ODBC) con-

nection. FlexSim defines specific indicators for each model object. For example, the

holding costs associated with inventory are defined in the queuing objects. All indica-

tors are communicated by objects and stored in two global tables named “Indicators at

Di” and “Indicators at Qj”. The role of the tables is to provide data to decision and

quality control points in order to perform the AHP calculations. Global tables enable

indirect communication between products and production resources. When a decision

is assigned to a product, FlexSim stores this decision in a global list that can be exported

to Excel.

Interactions: In FlexSim, library objects are connected to define different process

flows and to allow the exchange of physical flows between model objects. The flow of

information between objects can be implemented by sending direct messages on state

conditions. Custom communication protocols between objects can be programmed on

the FlexSim snippet using either FlexScript (FlexSim’s proprietary language) or C++.

Products are considered as inert flow items that move through the model objects ac-

cording to their predefined routings, without having active roles or interactions with

other entities. At decision and quality control points, the supervisor can change the cri-

teria and weightings of the AHP mechanism using FlexSim interfaces.

Decision-making: as products are inert flow items, they cannot directly process in-

formation or do calculations, and consequently cannot be directly endowed with deci-

sion mechanisms. To solve this problem, the AHP mechanism is implemented on deci-

sion and quality control points (i.e. outside the product). When a product reaches a

decision or quality control point, a customized logic encoded on each point allows up-

dating the product routing. Such logic can be programmed using FlexScript or C++

programming languages. FlexSim can directly compile custom code written in C++ via

its snippet. It can create .dll2 files in C++ and link them to FlexSim. It can connect with

other programming environments and languages, such as Python and R.

Functioning modes: FlexSim enables defining customized indicators to represent

product quality, and customized routines to change the values of these indicators. For

example, the value qp is created to represent a measurement of a product dimension.

This quality parameter is susceptible to random events that can change its value (to

model product defects). The quality indicator can be directly consulted by the various

FlexSim objects. Machine failures can be generated by the MTBF/MTTR fault profile

in the FlexSim “toolbox”. Using probability distributions, FlexSim can model the first

failure time, the down time, and the up time of the machine. Based on mean of ma-

chine’s up time and the machine operating time, the machine reliability is calculated

using the exponential distribution.

1 ODBC is a standard application programming interface (API) for accessing database manage-

ment systems (DBMS).
2 Dynamic-link library (DLL) is Microsoft's implementation of the shared library concept in

the Microsoft Windows and OS/2 operating systems.

5.2 AnyLogic capabilities

AnyLogic enables modeling all entities (products, resources, storage, and scrapping

areas) as agents using agent-based modeling.

Fig. 4. Simulation of the case study using AnyLogic.

Production entities: The Process Modeling Library of AnyLogic is used to build a

simulation model that corresponds to Fig. 2: A source that generates productAgent(s);

Three queuing agents for raw material, WIP and finished product inventories; a con-

veyor agent that moves productAgent(s) at a certain speed, preserving order and space

between them; delay agents are associated with machines M1 and M2; Two agents are

associated with the sink nodes that represent the scrapping areas 1 and 2. Their role is

to destroy incoming productAgent(s). A systemProductionAgent embeds all other

agents. AnyLogic enables defining positions on the conveyor where product agents can

make calculations. Four decision points Di (red points in Fig. 4), and two quality control

points Qj (green points in Fig. 4) are created to enable such calculations.

Informational structures: Product cost and time indicators are defined as

productAgent(s)’ related parameters since their creation. Each product knows its pro-

duction cost and processing time on M1 and M2. Before a product is processed on a

machine, the quality indicator qp does not contain any value. AnoLogic assigns the

value of the indicator qp embedded in productAgents using a set of statistical distribu-

tion functions to simulate product defects. ProductAgents can consult each time the

other indicators from all agents. The native Java environment supports custom Java

code, external libraries, and external data sources.

Interactions: AnyLogic is a multi-paradigm simulation software, which features

Agent-Based Modeling (ABM). In ABM, the primary consideration is individual

agents, their rules, behaviors and interactions with each other and with the environment.

Agents living in one environment can directly communicate via sending messages to

each other. The simulation runs on one computer system which means all agents share

the same ontology and the use of an Agent Communication Language is not necessary.

For example, when the product reaches the decision point D2, if machine 1 is in the

product routing, the machine1Agent sends a message to the productAgent to inform of

its availability.

Decision-making: the AHP mechanism is implemented using the Java program-

ming language. It is embedded directly on productAgents, and is only triggered when

product agents reach decision or quality control points. AnyLogic can work with R3

programming language through the use of the Java library “Rcaller”, which increases

the data analytics capability. Also, it can integrate Artificial Intelligence in simulation

models using a link to Python language or Skymind’s library to enable reinforcement

learning. The artificial intelligence models can be constructed externally (e.g. in Py-

thon) and may be trained before their integration into AnyLogic.

Functioning modes: Machine failures can be generated by the “ResourcePool”

block. Recurrent downtime and maintenance activities are scheduled by the different

types of triggers or using the AnyLogic Schedule element. In our case, the downtime

and maintenance tasks are defined using the properties of the “ResourcePool” block.

6 Conclusion and perspectives

This paper discussed the capabilities of two available simulation software to imple-

ment the requirements of distributed product driven control. A case study provided the

product with some intelligence enabling it to play an active role in the decision-making

processes using AHP mechanism. The implementation of the case study on AnyLogic

and FlexSim allows to examine the capabilities of these simulation software according

to the requirements of distributed product driven control. To do this, a matrix is estab-

lished (Table 1) to map the simulation software capabilities to the case study require-

ments.

From Table 1, it can be noticed that AnyLogic is a consistent simulation software to

implement and model a distributed product driven control in industrial context, due to

the conjunction of multi-paradigm simulation and high capabilities in data analytics.

AnyLogic offers good interoperability with standard programming languages, such as

Java, Python and R, which extends its core capabilities to those of the rich libraries

available in these languages. Agent based modeling can be combined with discrete

event simulation, which further extends the capabilities of simulation using AnyLogic.

Agent based modeling enables achieving product intelligence in terms of data pro-

cessing, communication, interactions and decision-making.

Table 1. Summary of simulation software capabilities for product driven distributed control re-

quirements. (Legend: Good, Fair, Poor)

 AnyLogic FlexSim

Production entities

3 R is a programming language and free software environment for statistical computing and

graphics.

https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/ResourcePool.html

 AnyLogic FlexSim

Products

Resources

Decision-making entities (human and/or artificial)

Interactions

Product-Product

Product-Production resource

Product-Human

Production resource- Production resource

Functioning modes and disturbances

Machine disturbances

Product disturbances

Intelligence level of the entities (except product for FlexSim)

Associate informational structures with production entities (except product for FlexSim)

Decision-making (except product for FlexSim)

On the other hand, FlexSim is very strong in 3D animation and is characterized by

its user-friendly interface and ease of use. Compared with AnyLogic, which offers

multi-paradigm simulation, FlexSim offers only discrete event simulation. In this type

of simulation, products are represented and handled as flow items. This introduces lim-

itations with respect to implementing product-based decision-making and interactions.

Custom made developments and extra programming is needed to overcome these lim-

itations and achieve product intelligence. As FlexSim offers less interoperability with

other programming languages compared to AnyLogic, this is an extra limitation.

Because of the differences between packages, none of them is suitable for use with

every type of manufacturing problem [11]. The most appropriate simulation software

should be selected for the specific application being studied.

We are considering an extension of the work to take into account several types of

disruptions in the production environment (e.g., late delivery of raw materials, con-

veyor breakdown, etc.) in order to progress more on this work and further develop our

model. Even several products can be interconnected (a network of products able to

communicate with each other), in this case the products can share their experiences

when they make a decision, and they can update the set of actions.

Acknowledgement

This research is financed by the project PHC-TOUBKAL/20/98.

References

[1] W. Derigent, O. Cardin, and D. Trentesaux, “Industry 4.0: contributions of holonic

manufacturing control architectures and future challenges,” J. Intell. Manuf., 2020.

[2] P. Leitão, V. Mařík, and P. Vrba, “Past, present, and future of industrial agent

applications,” IEEE Trans. Ind. Informatics, vol. 9, no. 4, pp. 2360–2372, 2013.

[3] D. Mourtzis, “Simulation in the design and operation of manufacturing systems: state

of the art and new trends,” Int. J. Prod. Res., pp. 1–23, 2019.

[4] L. M. S. Dias, A. A. C. Vieira, G. A. B. Pereira, and J. A. Oliveira, “Discrete simulation

software ranking — A top list of the worldwide most popular and used tools,” in

Proceedings of the 2016 Winter Simulation Conference, 2016, pp. 1060–1071.

[5] S. Abar, G. K. Theodoropoulos, P. Lemarinier, and G. M. P. O’Hare, “Agent Based

Modelling and Simulation tools: A review of the state-of-art software,” Comput. Sci.

Rev., vol. 24, pp. 13–33, 2017.

[6] G. G. Meyer, K. Framling, and J. Holmstrom, “Intelligent Products : A survey,” Comput.

Ind., vol. 60, pp. 137–148, 2009.

[7] I. Kovalenko, D. Tilbury, and K. Barton, “The model-based product agent: A control

oriented architecture for intelligent products in multi-agent manufacturing systems,”

Control Eng. Pract., vol. 86, no. March, pp. 105–117, 2019.

[8] J. Dias-Ferreira, L. Ribeiro, H. Akillioglu, P. Neves, and M. Onori, “BIOSOARM: a

bio-inspired self-organising architecture for manufacturing cyber-physical shopfloors,”

J. Intell. Manuf., vol. 29, no. 7, pp. 1659–1682, 2018.

[9] L. Zhang, L. Zhou, L. Ren, and Y. Laili, “Modeling and simulation in intelligent

manufacturing,” Comput. Ind., vol. 112, p. 103123, 2019.

[10] J. J. Swain, “2019 Simulation Software Survey,” Software Survey, 2019. [Online].

Available: https://pubsonline.informs.org/do/10.1287/orms.2019.05.10/full/.

[Accessed: 18-Apr-2020].

[11] A. M. C. Guimarães, J. E. Leal, and P. Mendes, “Discrete-event simulation software

selection for manufacturing based on the maturity model,” Comput. Ind., vol. 103, pp.

14–27, 2018.

[12] L. Fumagalli, A. Polenghi, E. Negri, and I. Roda, “Framework for simulation software

selection,” J. Simul., vol. 13, no. 4, pp. 286–303, 2019.

[13] S. Schreiber and A. Fay, “Requirements for the benchmarking of decentralized

manufacturing control systems,” in IEEE International Conference on Emerging

Technologies and Factory Automation, ETFA, 2011.

[14] L. Mönch, “Simulation-based benchmarking of production control schemes for complex

manufacturing systems,” Control Eng. Pract., vol. 15, no. 11, pp. 1381–1393, 2007.

[15] O. Cardin and A. L’Anton, “Proposition of an Implementation Framework Enabling

Benchmarking of Holonic Manufacturing Systems,” in Studies in Computational

Intelligence, 2018, vol. 762, pp. 267–280.

[16] R. Ackoff, “From Data to Wisdom,” J. Appl. Syst. Anal., vol. 16 (1), pp. 3–9, 1989.

[17] P. Valckenaers, M. Kollingbaum, and H. Van Brussel, “Multi-agent coordination and

control using stigmergy,” Comput. Ind., vol. 53, no. 1, pp. 75–96, Jan. 2004.

[18] F. Ounnar and P. Ladet, “Consideration of machine breakdown in the control of flexible

production systems,” Int. J. Comput. Integr. Manuf., vol. 17, no. 1, pp. 69–82, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/349214642

