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Disambiguation of Weak Supervision leading to Exponential Convergence rates

Vivien Cabannes '

Abstract

Machine learning approached through supervised
learning requires expensive annotation of data.
This motivates weakly supervised learning, where
data are annotated with incomplete yet discrimina-
tive information. In this paper, we focus on partial
labelling, an instance of weak supervision where,
from a given input, we are given a set of potential
targets. We review a disambiguation principle to
recover full supervision from weak supervision,
and propose an empirical disambiguation algo-
rithm. We prove exponential convergence rates
of our algorithm under classical learnability as-
sumptions, and we illustrate the usefulness of our
method on practical examples.

1. Introduction

In many applications of machine learning, such as recom-
mender systems, where an input x characterizing a user
should be matched with a target y representing an ordering
of a large number m of items, accessing fully supervised
data (x,y) is not an option. Instead, one should expect
weak information on the target y, which could be a list of
previously taken (if items are online courses), watched (if
items are plays), efc., items by a user characterized by the
feature vector x. This motivates weakly supervised learning,
aiming at learning a mapping from inputs to targets in such
a setting where tools from supervised learning can not be
applied off-the-shelves.

Recent applications of weakly supervised learning showcase
impressive results in solving complex tasks such as action
retrieval on instructional videos (Miech et al., 2019), image
semantic segmentation (Papandreou et al., 2015), salient
object detection (Wang et al., 2017), 3D pose estimation
(Dabral et al., 2018), text-to-speech synthesis (Jia et al.,
2018), to name a few. However, those applications of weakly
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supervised learning are usually based on clever heuristics,
and theoretical foundations of learning from weakly super-
vised data are scarce, especially when compared to statistical
learning literature on supervised learning (Vapnik, 1995;
Boucheron et al., 2005; Steinwart & Christmann, 2008). We
aim to provide a step in this direction.

In this paper, we focus on partial labelling, a popular instance
of weak supervision, approached with a structured prediction
point of view (Ciliberto et al., 2020). We detail this setup in
Section 2. Our contributions are organized as follows.

e In Section 3, we introduce a disambiguation algorithm
to retrieve fully supervised samples from weakly su-
pervised ones, before applying off-the-shelf supervised
learning algorithms to the completed dataset.

 In Section 4, we prove exponential convergence rates
of our algorithm, in term of the fully supervised excess
of risk, given classical learnability assumptions.

¢ InSection 5, we explain why disambiguation algorithms
are intrinsically non-convex, and provide guidelines
based on well-grounded heuristics to implement our
algorithm.

We end this paper with a review of literature in Section 6,
before showcasing the usefulness of our method on practical
examples in Section 7, and opening on perspectives in
Section 8.

2. Disambiguation of Partial Labelling

In this section, we review the supervised learning setup,
introduce the partial labelling problem along with a principle
to tackle this instance of weak supervision.

Algorithms can be formalized as mapping an input x to a
desired output y, respectively belonging to an input space X
and an output space ). Machine learning consists in au-
tomating the design of the mapping f : X — ), based on
a joint distribution u € Axxy over input/output pairings
(x,y) and a loss function € : ) X Y — R, measuring the
error cost of outputting f(x) when one should have output
y. The optimal mapping is defined as satisfying

freargminEx y)~, [€(f(X),Y)]. (1
[ XY

In supervised learning, it is assumed that one does not have
access to the full distribution g, but only to independent
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samples (X;,Y;)i<n ~ pu®". In practice, accessing such

samples means building a dataset of examples. While
input data (x;) are usually easily accessible, getting output
pairings (y;) generally requires careful annotation, which is
both time-consuming and expensive. For example, in image
classification, (x;) can be collected by scrapping images over
the Internet. Subsequently a “data labeller” might be ask to
recognize a rare feline y; on an image x;. While getting y;
will be hard in this setting, recognizing that it is a feline and
describing elements of color and shape is easy, and already
helps to determine what outputs f(x;) are acceptable. A
second example is given when pooling a known population
(x;) to get estimation of their political orientation (y;), one
might get information from recent election of percentage
of voters across the political landscape, leading to global
constraints that (y;) should verify. A supervision that gives
information on (y;);<, without giving its precise value is
called weak supervision.

Fartial labelling, also known as “superset learning”, is an
instance of weak supervision, in which, for an input x, we
do not access the precise label y but only a set s of potential
labels, y € s ¢ Y. For example, on a caracal image x, one
might not get the label “caracal” y, but the set s “feline”,
containing all the labels y corresponding to felines. It is
modelled through a distribution v € A y,,y over X' x 2%
generating samples (X, §), which should be compatible with
the fully supervised distribution u € Axxy as formalized
by the following definition.

Definition 1 (Compatibility, Cabannes et al. (2020)). A
Sully supervised distribution u € Axxy is compatible with a
weakly supervised distribution v € Axxy, denoted by yt + v
if there exists an underlying distribution © € A yyy)yov, such
that u, and v, are the respective marginal distributions of ©
over X x Y and X x 2%, and such that y € s for any tuple
(x,y,s) in the support of m (or equivalently rt|y € Ay, with
7|5 denoting the conditional distribution of &t given s).

This definition means that a weakly supervised sample
(X,S) ~ v can be thought as proceeding from a fully
supervised sample (X,Y) ~ u after loosing information on
Y according to the sampling of S ~ «|xy. The goal of
partial labelling is still to learn f* from Eq. (1), yet without
accessing a fully supervised distribution y € A yxy but only
the weakly supervised distribution v € Ay,,». As such,
this is an ill-posed problem, since v does not discriminate
between all ¢« compatible with it. Following lex parsimoniae,
Cabannes et al. (2020) have suggested to look for u such that
the labels are the most deterministic function of the inputs,
which they measure with a loss-based “variance”, leading to
the disambiguation

peargmin inf Eue ((/(X).0)]. @

Uy

and to the definition of the optimal mapping f* : X — Y

freargminExy), [€(f(X),Y)]. 3)
f:X-Y

This principle is motivated by Theorem 1 of Cabannes
et al. (2020) showing that f* in Eq. (3) is characterized by
f* € argming. y_,3 E(x.5)y [infyes £(f(X),y)]. match-
ing a prior formulation based on infimum loss (Cour et al.,
2011; Luo & Orabona, 2010; Hiillermeier, 2014). In prac-
tice, it means that if (S|X = x) has probability 50% to be
the set “feline” and 50% the set “orange with black stripes”,
(Y|X = x) should be considered as 100% “tiger”, rather
than 20% “cat”, 30% “lion” and 50% “orange car with black
stripes”, which could also explain (S|X = x). In other terms,
Eq. (2) creates consensus between the different information
provided on a label. Similarly to supervised learning, partial
labelling consists in retrieving f* without accessing v but

only samples (X;, Si)i<n ~ v®".

Remark 2 (Measure of determinism). Egq. (2) is not the only
variational way to push towards distribution where labels
are deterministic function of the inputs. For example, one
could minimize entropy (e.g., Berthelot et al., 2019; Lienen
& Hiillermeier, 2021). However, a loss-based principle is
appreciable since the loss usually encodes structures of the
output space (Ciliberto et al., 2020), which will allow sample
and computational complexity of consequent algorithms to
scale with an intrinsic dimension of the space rather than
the real one, e.g., m rather than m! when ) = S, and € is a
suitable ranking loss (see Section 5.4 or Nowak-Vila et al.,
2019).

3. Learning Algorithm

In this section, given weakly supervised samples, we present
a disambiguation algorithm to retrieve fully supervised
samples based on an empirical expression of Eq. (2), before
learning a mapping from X to ) based on those fully
supervised samples, according to Eq. (3).

Given a partially labelled dataset D, = (x;, $;);<n, Sampled
accordingly to v®", we retrieve fully supervised samples,
based on the following empirical version of Eq. (2), with
Co=1Ilicnsi € Y"

(9i)i<n € argmin  inf Z a;(x)l(zi,y;), 4
(¥1)i<n €Cn (z)izn €V" i,j=1

where (@;(x));<, 18 a set of weights measuring how much
one should base its prediction for x on the observations
made at x;. This formulation is motivated by the Bayes
approximate rule proposed by Stone (1977), which can be
seen as the approximation of y by n~! 2 o1 @j(x1)6x, ® by,
in Eq. (2). In essence, z; (which corresponds to f(x;)) is
likely to be y;, although Eq. (4) allows for flexibility to avoid
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rigid interpolation. As such Eq. (4) should be understood
as constraining y; € s; to be similar to y; € s; if x; and x;
are close, with the measure of similarity defined by a;(x;).

Once fully supervised samples (x;, y;) have been recollected,
one can learn f, : X — ), approximating f*, with classi-
cal supervised learning techniques. In this work, we will
consider the structured prediction estimator introduced by
Ciliberto et al. (2016), defined as

fu(x) € argmin Z a; (x)C(z, 9;). )
z€Y

i=1

Weighting scheme . For the weighting scheme «, several
choices are appealing. Laplacian diffusion is one of them
as it incorporates a prior on low density separation to boost
learning (Zhu et al., 2003; Zhou et al., 2003; Bengio et al.,
2006; Hein et al., 2007). Kernel ridge regression is another
due to its theoretical guarantees (Ciliberto et al., 2020).
In the theoretical analysis, we will use nearest neighbors.
Assuming X is endowed with a distance d, and assuming,
for readability sake, that ties to define nearest neighbors do
not happen, it is defined as

LI S YRS BT <k
i = j=1 td(xxj) <d(x,x;)
@;(x) { 0 otherwise,

where k is a parameter fixing the number of neighbors. Our
analysis, leading to Theorem 4, also holds for other local
averaging methods such as partitioning or Nadaraya-Watson
estimators.

4. Consistency Result

In this section, we assume ) finite, and prove the convergence
of f, towards f* as n, the number of samples, grows to
infinity. To derive such a consistency result, we introduce
a surrogate problem that we relate to the risk through a
calibration inequality. We later assume that weights are
given by nearest neighbors and review classical assumptions,
that we work to derive exponential convergence rates.

In the following, we are interested in bounding the expected
generalization error, defined as

E(fn) = Ep, R(fu) = R(f7), (6)

where R(f) = E(x,y)~x [€(f(X),Y)], by a quantity that
goes to zero, when n goes to infinity. This implies conver-
gence in probability (the randomness being inherited from
D,) of R(f,) towards inf z. x . R(f), which is referred as
consistency of the learning algorithm. We first introduce a
few objects.

Disambiguation ground truth (y;). Introduce n* €
A xwyxoy expressing the compatibility of u* and v as in

Definition 1. Given samples (x;, §;);<, forming a dataset
Dy, we enrich this dataset by sampling y; ~ 7* |x,,5;» Which
build an underlying dataset (x;, y;, s;) sampled accordingly
(n*)®". Given D,, while a priori, y; are random variables,
sampled accordingly to 7*|y, s;, because of the definition of
M* (2), under basic definition assumptions, they are actually
deterministic, defined as y; = argmin, ., £(f*(x;),y). As
such, they should be seen as ground truth for ;.

Surrogate estimates. The approximate Bayes rule was
successfully analyzed recently through the prism of plug-in
estimators by Ciliberto et al. (2020). While we will not
cast our algorithm as a plug-in estimator, we will leverage
this surrogate approach, introducing two mappings ¢ and
from ) to an Hilbert space # such that

Vz,y €, t(z,y) =W (2),0(y)), (7

Such mappings always exist when ) is finite, and have
been used to encode “problem structure” defined by the loss
¢ (Nowak-Vila et al., 2019). Note that many losses (e.g.
Hamming, Spearman, Kendall in ranking) can be written as
correlation losses which corresponds to ¥ = —¢, yet Eq. (7)
allows to model much more losses, especially asymmetric
losses (e.g. discounted cumulative gain). We introduce
three surrogate quantities that will play a major role in the
following analysis, they map X" to H as

&) =B [pN) X =x],  g(x) = ) ai(0)e(),
i=1

n

gh(x) = > a(x)e(y)). (8)

i=1

It is known that f* and f, are retrieved from g* and g,,
through the decoding, retrieving f : X — Y fromg: X —
H as

f(x) =arg r;lin W (z),g(x)), 9)

which explains the wording of plug-in estimator (Ciliberto
et al., 2020). We now introduce a calibration inequality,
that relates the error between f,, and f* with surrogate error
quantities.

Lemma 3 (Calibration inequality). When ) is finite, and
the labels are a deterministic function of the input, i.e., when
M|y is a Dirac for all x € supp vy, for any weighting scheme
that sums to one, i.e., 2?21 a;(x) =1 forall x € supp vy,

R(fa) = R(f7) < 4cy Hg;; - gn”L]
gi(X)=g' X)) >9). 10

+ 8C¢,C¢ Px (|

with ¢y = sup.ey W, ¢y = sup.cy eI, and § a
parameter that depend on the geometry of € and its decom-
position through .
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This lemma, proven in Appendix A.1, separates a part read-
ing in ||g,, - g;H due to the disambiguation error between
(¥:) and (y}) together with the stability of the learning algo-
rithm when substituting ($;) for (y7), and a part in | gn—g"
due to the consistency of the fully supervised learning algo-
rithm. The expression of the first part relates to Theorem
7 in Ciliberto et al. (2020) while the second part relates to
Theorem 6 in Cabannes et al. (2021).

4.1. Classical learnability assumptions

In the following, we suppose that the weights « are given by
nearest neighbors, that X’ is a compact metric space endowed
with a distance d, that ) is finite and that ¢ is proper in
the sense that it strictly positive except on the diagonal of
Y x ) diagonal where it is zero. We now review classical
assumptions to prove consistency. First, assume that vy is
regular in the following sense.

Assumption 1 (v well-behaved). Assume that vy is such
that there exists hi, c,,q > 0 satisfying, with B designing
balls in X,

Vx €suppvy, Yr < hy, va(B(x,r)) > cur.
Assumption 1 is useful to make sure that neighbors in
D, are closed with respect to the distance d, it is usually
derived by assuming that X is a subset of R?; that vy has a
density p against the Lebesgue measure A with minimal mass
Pmin in the sense that for any x € suppvy, p(X) > pmin;
and that supp vy has regular boundary in the sense that
A(B(x,r) Nsuppvy) = cA(B(x,r) for any x € supp vy
and r < h (e.g., Audibert & Tsybakov, 2007).

We now switch to a classical assumption in partial labelling,
allowing for population disambiguation.

Assumption 2 (Non ambiguity, Cour et al. (2011)). Assume
the existence of n € [0, 1), such that for any x € supp vy,
there exists y, € ), such that P, (y, € S| X =x) =1, and

Vz#y, P,(zeS|X=x)<n.
Assumption 2 states that when given the full distribution v,
there is one, and only one, label that is coherent with every
observable sets for a given input. It is a classical assumption
in literature about the learnability of the partial labelling
problem (e.g., Liu & Dietterich, 2014). When ¢ is proper,
this implies that y*|, = ¢, , and f*(x) = yx.

Finally, we assume that g* is regular. As we are considering
local averaging method, we will use Lipschitz-continuity,
which is classical in such a setting.!

Assumption 3 (Regularity of g*). Assume that there exists
cg > 0, such that for any x,x’ € X, we have
llg"(x) = 8" (x)llp; < cpd(x,x").

1ts generalization through Hélder-continuity would work too.

It should be noted that regularity of g*, Assumption 3,
together with determinism of y*|, inherited from Assump-
tion 2 implies that classes X, = {x| f*(x) = y} are sepa-
rated in X, in the sense that there exists 4, > 0, such that
for any y,y’ € Y and (x,x’) € X, x Xy, d(x,x") > ho,
which is a classical assumption to derive consistency of
semi-supervised learning algorithm (e.g., Rigollet, 2007).
Those implications results from the fact that separation in )
(hard Tsybakov condition) plus Lipschitzness of g* implies
separation of classes in X, as we details in Appendix A.2.

4.2. Exponential convergence rates

We are now ready to state our convergence result. We
introduce & = min(hy, hy) and p = c,h9, so that for any
x € suppvy, vx(B(x, h)) > p.

Theorem 4 (Exponential convergence rates). When the
weights a are given by nearest neighbors, under Assumptions
1, 2 and 3, the excess of risk in Eq. (6) is bounded by

E(fu) £ 8cycy(n+1)exp (—%)

+8cycomexp (—k |log(m)]), (11)

as soon as k < np/4, with m = #). By taking k, = kon,
Jor ko < p/4, this implies exponential convergence rates

E(f) = O(nexp(—n)).

Sketch for Theorem 4. In essence, based on Lemma 3, The-
orem 4 can be understood as two folds.

* A fully supervised error between g;, and g*. This error
can be controlled in exp(—np) as the non-ambiguity
assumption implies a hard Tsybakov margin condition,
a setting in which the fully supervised estimate g, is
known to converge to the population solution g* with
such rates (Cabannes et al., 2021).

* A weakly disambiguation error, that is exponential too,
since, based on Assumption 2, disambiguating between
z € Y and y, from k sets S sampled accordingly to
v|x can be done in n*, and disambiguating between all
2 # yy and y, in mp* = mexp(=k [log(n)|).

Appendix A.3 provides details. O

Theorem 4 states that under a non-ambiguity assumption
and a regularity assumption implying no-density separation,
one can expect exponential convergence rates of f,, learned
with weakly supervised data to f* the solution of the fully
supervised learning problem, measured with excess of fully
supervised risk. Because of the exponential convergence,
we could derive polynomial convergence rates for a broader
class of problems that are approximated by problems sat-
isfying assumptions of Theorem 4. The derived rates in
nexp(—n) should be compared with rates in n"/> and n=/*,
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respectively derived, under the same assumptions, by Cour
et al. (2011); Cabannes et al. (2020).

4.3. Discussion on Assumptions

While we have retaken classical assumptions from litera-
ture, those assumptions are quite strong, which allows us,
by understanding their strength, to derive exponential con-
vergence rates. Assumptions 1 and 3 are classical in the
nearest neighbor literature with full supervision. If we were
using (reproducing) kernel methods to define the weighting
scheme a, those assumptions would be mainly replaced with
“g* belonging to the RKHS”. Assumption 2 is the strongest
assumption in our view, that we will now discuss.

How to check it in practice ? First, for Assumption 2 to
hold, the labels have to be a deterministic function of the
inputs. In other words, a zero error is achievable. Finally,
Assumption 2 is related to dataset collection. If dealing
with images, weak supervision could take the form of some
information on shape, color, or texture, etc., Assumption 2
supposes that the weak information potentially given on a
specific image x, allows to retrieve the unique label y of the
image (e.g., a “pig” could be recognized from its shape and
its color). This is a reasonable assumption, if, for a given x,
we ask at random a data labeller to provide us information
on shape, color, or texture, etc. However, it will not be
the case, if for some reasons (e.g. the dataset is built from
several weakly annotated datasets), in some regions of the
input space, we only get shape information, and in other
regions, we only get color information. In particular, it is
not verified for semi-supervised learning when the support
of the unlabelled data distribution is not the same as the
support of the labelled input data distribution.

How to relax it and what results to expect? Previous
works used Assumption 2 to derive a calibration inequality
between the infimum loss to the original loss (e.g., see
Proposition 2 by Cabannes et al., 2020). In contrast, we
relate the surrogate and original problem through a refined
calibration inequality (10). This technical progress allows us
to derive exponential convergence rates similarly to the work
of Cabannes et al. (2021). Importantly, in comparison with
previous work, our calibration inequality Lemma 3 can easily
be extended without the determinism assumption provided
by Assumption 2. Essentially, in our work, Assumption
2 is used to simplify the study of (9;);<, given by the
disambiguation algorithm (4), and therefore the study of
the disambiguation error in Eq. (10). The study of (9;);<n
without Assumption 2 would requires other tools than the
one presented in this paper. It could be studied in the
realm of graphical model and message passing algorithm,
or with Wasserstein distance and topological considerations
on measures. With much milder forms of Assumption 2,

we expect the rates to degrade smoothly with respect to a
parameter defining the hardness of the problem, similarly to
the works of Audibert & Tsybakov (2007); Cabannes et al.
(2021).

5. Optimizaton Considerations

In this section, we focus on implementations to solve Eq. (4).
We explain why disambiguation objectives, such as Eq. (2)
are intrinsically non-convex and express a heuristic strategy
to solve Eq. (4) besides non-convexity in classical well-
behaved instances of partial labelling. Note that we do not
study implementations to solve Eq. (5) as this study has
already been done by Nowak-Vila et al. (2019). We end
this section by considering a practical example to make
derivations more concrete.

5.1. Non-convexity of disambiguation objectives

For readability, suppose that & is a singleton, justifying to
remove the dependency on the input in the following. Con-
sider v € A,y a distribution modelling weak supervision.
While the domain {u € Ay | u + v} is convex, a disambigua-
tion objective £ : Ay — R defining p* € argmin,,, (),
similarly to Eq. (2), that is minimized for deterministic dis-
tributions, which correspond to u a Dirac, i.e., minimized
on vertices of its definition domain Ay, can not be convex.
In other terms, any disambiguation objective that pushes
toward distributions where targets are deterministic function
of the input, as mentioned in Remark 2, can not be convex.

Indeed, smooth disambiguation objectives such as entropy
and our piecewise linear loss-based principle (2), reading
pointwise £(u) = inf ey Ey.,[£(z,Y)], are concave. Sim-
ilarly, its quadratic variant £'(u) = Eyy.,[£(Y,Y")], is
concave as soon as (£(y,y’))y,y ey is semi-definite negative.
We illustrate those considerations on a concrete example
with graphical illustration in Appendix C. We should see
how this translates on generic implementations to solve the
empirical objective (4).

5.2. Generic implementation for Eq. (4)

Depending on ¢ and on the type of observed set (s;), Eq. (4)
might be easy to solve. In the following, however, we
will introduce optimization considerations to solve it in a
generic structured prediction fashion. To do so, we recall
the decomposition of ¢ (7) and rewrite Eq. (4) as

n
(Fidisn € argmin inf " o ()wr(2)Tp(y,)-
yni,j:l

(yi) €Cn (zi)e
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Since, given (y;), the objective is linear in (z;), the con-
straint ¢ (z;) € ¥ ()) can be relaxed with {; € Conv y(Y).2
Similarly, with respect to ¢ (y ), this objective is the infimum
of linear functions, therefore is concave, and the constraint
@©(yj) € @(s;), could be relaxed with & € Conv ¢(s;).
Hence, with Hy = Conv (Y) and I', = [] <, Conv ¢(s;),
the optimization is cast as

n

(é)i<n € argmin _inf Z a;(x) 4 €.

(12)
(Et) €y, ((’) E/Hg ij=1

Because of concavity, (£;) will be an extreme point of I,
that could be decoded into §; = ¢! (£;). However, it should
be noted that if only interested in f;, and not in the disam-
biguation (¥;), this decoding can be avoided, since Eq. (5)
can be rewritten as f,(x) € argmin .y, ¥(2)" X1 a; (x)&;.

5.3. Alternative minimization with good initialization

To solve Eq. (12), we suggest to use an alternative mini-
mization scheme. The output of such an scheme is highly
dependent to the variable initialization. In the following,
we introduce well-behaved problem, where (&;);<, can be
initialized smartly, leading to an efficient implementation to
solve Eq. (12).

Definition 5 (Well-behaved partial labelling problem). A
partial labelling problem (€, v) is said to be well-behaved
if for any s € suppv,y, there exists a signed measure
us on Y such that the function from ) to R defined as
77— /y €(z,y) dus(y) is minimized for, and only for, z € s.

We provide a real-world example of a well-behaved problem
in Section 5.4 as well as a synthetic example with graph-
ical illustration in Appendix C. On those problems, we
suggest to solve Eq. (12) by considering the initialization
& i(o) = Ey~y,, [¢(Y)], and performing alternative minimiza-
tion of Eq. (12), until attaining £(*) as the limit of the
alternative minimization scheme (which exists since each
step decreases the value of the objective in Eq. (12) and there
is a finite number of candidates for (&;)). It corresponds to
a disambiguation guess J; = (,o—l(gf"")). Then we suggest
to learn £, from (x;, ;) based on Eq. (5), and existing algo-
rithmic tools for this problem (Nowak-Vila et al., 2019). To
assert the well-groundedness of this heuristic, we refer to
the following proposition, proven in Appendix A.4.
Proposition 6. Under the non-ambiguity hypothesis, As-
sumption 2, the solution of Eq. (3) is characterized by
f* e argming. 5 E(x g)~y [EyWS [¢(f(X), Y)]] . More-
over, if the surrogate function g, : X — H defined as
8n(x) = XLy ai(x)&s,, with & = By~ [@(Y)], converges
towards g°(x) = Eg.,| [és] in L', f° defined through the
decoding Eq. (9) converges in risk towards f*.

2The minimization pushes towards extreme points of the defini-
tion domain.

Given that our algorithm scheme is initialized for fl.(o) = ¢
and / l.(o) = f7(x;) and stopped once having attained fi(oo)
and {l.(w) = fu(x;), fu is arguably better than S, which
given consistency result exposed in Proposition 6, is already
good enough.

Remark 7 (IQP implementation for Eq. (4)). Other heuris-
tics to solve Eq. (4) are conceivable. For example, consid-
ering z; = y; in this equation, we remark that the resulting
problem is isomorphic to an integer quadratic program
(IQP). Similarly to integer linear programming, this problem
can be approached with relaxation of the “integer constraint”
to get a real-valued solution, before “thresholding” it to
recover an integer solution. This heuristic can be seen
as a generalization of the Diffrac algorithm (Bach & Har-
chaoui, 2007; Joulin et al., 2010). we present it in details in
Appendix B.

Remark 8 (Link with EM, (Dempster et al., 1977)). Ar-
guably, our alternative minimization scheme, optimizing
respectively the targets & = ¢(y;) and the function estimates
L = U (fu(xi)) can be seen as the non-parametric version
of the Expectation-Maximization algorithm, popular for
parametric model (Dempster et al., 1977).

5.4. Application: Ranking with partial ordering

Ranking is a problem consisting, for an input x in an input
space X, to learn a total ordering y, belonging to Y = S,
modelling preference over m items. It is usually approach
with the Kendall loss £(y,z) = —¢(y)T ¢(z), with ¢(y) =
(sign (y(@) = y(j)))i,j<m € {-1, 1}”’2 (Kendall, 1938). Full
supervision corresponds, for a given x, to be given a total
ordering of the m items. This is usually not an option, but
one could expect to be given partial ordering that y should
follow (Cao et al., 2007; Hiillermeier et al., 2008; Korba
et al., 2018). Formally, this equates to the observation of
some, but not all, coordinates ¢(y); of the vector ¢(y) for
somei el cC[1,m]*

In this setting, s C ) is a set of total orderings that match
the given partial ordering. It can be represented by a vec-
tor & € H, that satisfies the partial ordering observation,
(é5)1 = ¢(y)1, and that is agnostic on unobserved coordi-
nates, (&;)c; = 0. This vector satisfies that z — ¥ (z) T&; is
minimized for, and only for, z € 5. Hence, it constitutes a
good initialization for the alternative minimization scheme
detailed above. We provide details in Appendix A.5, where
we also show that &, can be formally translated in a yu; to
match the Definition 5, proving that ranking with partial
labelling is a well-behaved problem.

Many real world problems can be formalized as a ranking
problem with partial ordering observations. For example,
x could be a social network user, and the m items could be
posts of her connection that the network would like to order
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Figure 1. Interval regression. See Appendix D for the exact reproducible experimental setup (Left) Setup. The goal is to learn f* : X — R
represented by the dashed line, given samples (x;, s;), where (s;) are intervals represented by the blue segments. (Right) We compare the
Infimum Loss (IL) baseline (13) shown in green, with our Disambiguation Framework (DF), Egs. (4) and (5), shown in orange; with
weights @ given by kernel ridge regression. (DF) retrieves y; before learning a smooth f;, based on (x;, y;), while (IL) implicitly retrieves
9i(x) differently for each input, leading to irregularity of the consequent estimator of f*.

on her feed accordingly to her preferences. One might be
told that the user x prefer posts from her close rather than
from her distant connections, which translates formally as
the constraint that for any i corresponding to a post of a
close connection and j corresponding to a post of a distant
connection, we have ¢(y);; = 1. Nonetheless, designing
non-parametric structured prediction models that scale well
when the intrinsic dimension m of the space ) is very large
(such as the number of post on a social network) remains an
open problem, that this paper does not tackle.

6. Related work

Weakly supervised learning has been approached through
parametric and non-parametric methods. Parametric models
are usually optimized through maximum likelihood (Heitjan
& Rubin, 1991; Jin & Ghahramani, 2002). Hiillermeier
(2014) show that this approach, as formalized by Denoeux
(2013), equates to disambiguating sets by averaging can-
didates, which was shown inconsistent by Cabannes et al.
(2020) when data are not missing at random. Among non-
parametric models, Xu et al. (2004); Bach & Harchaoui
(2007) developed an algorithm for clustering, that has been
cast for weakly supervised learning problem (Joulin et al.,
2010; Alayrac et al., 2016), leading to a disambiguation
algorithm similar than ours, yet without consistency results.
More recently, half-way between theory and practice, Gong
et al. (2018) derived an algorithm geared towards classifi-
cation, based on a disambiguation objective, incorporating
several heuristics, such as class separation, and Laplacian
diffusion. Those heuristics could be incorporated formally
in our model.

The infimum loss principle has been considered by several
authors, among them Cour et al. (2011); Luo & Orabona
(2010); Hiillermeier (2014). It was recently analyzed through
the prism of structured prediction by Cabannes et al. (2020),
leading to a consistent non-parametric algorithm that will
constitute the baseline of our experimental comparison. This

principle is interesting as it does not assume knowledge on
the corruption process (S|Y) contrarily to the work of Cid-
Sueiro et al. (2014) or van Rooyen & Williamson (2017).

The non-ambiguity assumption has been introduced by Cour
etal. (2011) and is a classical assumption of learning with
partial labelling (Liu & Dietterich, 2014). Assumptions of
Lipschitzness and minimal mass are classical assumptions
to prove convergence of local averaging method (Audib-
ert & Tsybakov, 2007; Biau & Devroye, 2015). Those
assumptions imply class separation in X', which has been
leverage in semi-supervised learning, justifying Laplacian
regularization (Rigollet, 2007; Zhu et al., 2003).

Note that those assumptions might not hold on raw repre-
sentation of the data, but with appropriate metrics, which
could be learned through unsupervised (Duda et al., 2000)
or self-supervised learning (Doersch & Zisserman, 2017).
Indeed, Wei et al. (2021) provide an analysis akin ours based
on such an assumption. As such, the practitioner might con-
sider weights « given by similarity metrics derived through
such techniques, before computing the disambiguation (4)
and learning f;, from the recollected fully supervised dataset
with deep learning.

7. Experiments

In this section, we review a baseline, and experiments that
showcase the usefulness of our algorithm Egs. (4) and (5).

Baseline. We consider as a baseline the work of Cabannes
et al. (2020), which is a consistent structured prediction
approach to partial labelling through the infimum loss. It is
arguably the state-of-the-art of partial labelling approached
through structured prediction. It follow the same loss-based
variance disambiguation principle, yet in an implicit fashion,
leading to the inference algorithm, f,, : X — ),

n
inf » i) 1
glecll;a,(x)f(z, . (13)

fu(x) € argmin
zey y
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Figure 2. Testing errors as function of the supervision corruption on real dataset corresponding to classification with partial labels. We
split fully supervised LIBSVM datasets into training and testing dataset. We corrupt training data in order to get partial labels. Corruption
is managed through a parameter, represented by the x-axis, that relates to the ambiguity degree i of Assumption 2. For each methods (our
algorithm (DF), the baseline (IL), and the baseline of the baseline (AC, consisting of averaging candidates y; in sets S;)), we consider
weights a given by kernel ridge regression with Gaussian kernel, for which we optimized hyperparameters with cross-validation on the
training set. We then learn an estimate f;, that we evaluate on the testing set, represented by the y-axis, on which we have full supervision.
The figure show the superiority of our method, that achieves error similar to baseline when full supervision (x = 0) or no supervision
(x = 100%) is given, but performs better when only in presence of partial supervision. See Appendix D for reproducibility specifications,
where we also provide Figure 6 showcasing similar empirical results in the case of ranking with partial ordering.

Note that with our proof technique, which overcome the sub-
optimality of calibration inequality (Audibert & Tsybakov,
2007; Cabannes et al., 2021), exponential convergence rates
similar to Theorem 4 could be derived for the baseline. Yet,
as we will see, our algorithm outperforms this state-of-the-
art baseline. This could be explained by the fact that our
algorithm introduce an intrinsically smaller surrogate space
(in essence, Cabannes et al. (2020) introduced surrogate
functions from inputs in X to powersets represented in
R2”, while we look at functions from input in X’ to output
represented in RY).

Disambiguation coherence - Interval regression. The
baseline Eq. (13) implicitly requires to disambiguate (§;(x))
differently for every x € X. This is counter intuitive since
(y7) does not depend on x. It means that (y;) could be
equal to some ()71.(0)) on a subset Ay of X, and to another
(91.(1)) on a disjoint subset X; C X, leading to irregularity
of f, between &y and X]. We illustrate this graphically
on Figure 1. This figure showcases an interval regression
problem, which corresponds to the regression setup () = R,
£(y,2) =y - z|?) of partial labelling, where one does not
observed y € R but an interval s C R containing y. Among
others, this problem appears in physics (Sheppard, 1897)
and economy (Tobin, 1958).

Computation attractiveness - Ranking. Computation-
ally, the baseline requires to solve a disambiguation problem,
recovering (y;(x)) € C, for every x € X for which we want
to infer f,,(x). This is much more costly, than doing the dis-
ambiguation of (y;) € C, once, and solving the supervised
learning inference problem Eq. (5), for every x € X for
which we want to infer f;,(x). To illustrate the computation
attractiveness of our algorithm, consider the case of ranking,

defined in Section 5.4. Fully supervised inference scheme (5)
corresponds to solving a NP-hard problem, equivalent to
the minimum feedback arcset problem (Duchi et al., 2010).
While disambiguation approaches with alternative minimiza-
tion implied by Eq. (4) and Eq. (13) require to solve this
NP-hard problem for each minimization step. In other terms,
the baseline ask to solve multiple NP-hard problem every
time one wants to infer f;, given by Eq. (13) on an input
x € X. Meanwhile, our disambiguation approach asks to
solve multiple NP-hard problem upfront to solve Eq. (4), yet
only require to solve one NP-hard problem to infer f, given
by Eq. (5) on an input x € X.

Better empirical results - Classification. Finally, we
compare our algorithm, our baseline (13) and the base-
line considered by Cabannes et al. (2020) on real datasets
from the LIBSVM dataset (Chang & Lin, 2011). Those
datasets (x;, y;) correspond to fully supervised classification
problem. In this setup, ) = [1,m] for m a number of
classes, and £(y,z) = 1,%;. We “corrupt” labels in order
to create a synthetic weak supervision datasets (x;, s;). We
consider skewed corruption, in the sense that (s;) is gener-
ated by a probability such that 3, ., Ps, (z € S;|y;) depends
on the value of y;. This corruption is parametrized by a
parameter that related with the ambiguity parameter 1 of
Assumption 2. Results on Figure 2 show that, in addition
to having a lower computation cost, our algorithm performs
better in practice than the state-of-the-art baseline.3

Beyond Eq. (2) - Semi-supervised learning. The main
limitation of Eq. (2) is that it is a pointwise principle that
decorrelates inputs, in the sense that the optimization of

3All the code is available online - https://github.com/
VivienCabannes/partial_labelling.
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Semi-supervision setting

DF reconstruction

IL reconstruction

Figure 3. Semi-supervised learning, “concentric circle” instance with four classes (red, green, blue, yellow). Reproducibility details
provided in Appendix D. (Left) We represent points x; € X C R2, there is many unlabelled points (represented by black dots and
corresponding to S; = ), and one labelled point for each class (represented in color, corresponding to S; = {y;}). (Middle) Reconstruction
fn : X = Y given by our algorithm Egs. (4) and (5). Our algorithm succeeds to comprehend the concentric circle structure of the input
distribution and clusters classes accordingly. (Right) Reconstruction f;, : X — ) given by the baseline Eq. (13). The baseline performs as

if only the four supervised data points where given.

u¥|y, for x € X, only depends on v|, and not on what is
happening on X'\ {x}. As such, this principle failed to tackle
semi-supervised learning, where v/, is equal to u|, (in the
sense that 7|, , = dy,)) for x € &} and is equal to 6y for
x € X, := X\A}. In such a setting, for x € X}, u*|, can
be set to any ¢, for y € ). Interestingly, in practice, while
the baseline suffer the same limitation, for our algorithm,
weighting schemes have a regularization effect, that contrasts
with those considerations. We illustrate it on Figure 3.

Real real-world applications. There is areal lack of clean
datasets to experiment with partial labelling. Most theoreti-
cal papers consist in synthetic corruption of fully supervised
dataset (e.g., Korba et al., 2018) as we did. Empirical pa-
pers are built on highly complex datasets that require skilled
pre-processing and tricks beside theoretically-grounded prin-
ciple (e.g., action recognition on Youtube videos). However,
note that the state-of-the-art work of Miech et al. (2019) is
built on heuristics from the Diffrac algorithm, which we gen-
eralized (see Alayrac et al., 2016, for details). We hope that,
by providing theoretical understanding of the problem, our
paper could help to design powerful heuristics in practice,
even though this is out of scope of the present paper.

8. Conclusion

In this work, we have introduced a structured prediction al-
gorithm Eqs. (4) and (5), to tackle partial labelling. We have
derived exponential convergence rates for the nearest neigh-
bors instance of this algorithm under classical learnability
assumptions. We provided optimization considerations to
implement this algorithm in practice, and have successfully
compared it with the state-of-the-art. Several open problems
offer prospective follow-up of this works.

o Semi-supervised learning and beyond. While we only
proved convergence in situation where u* of Eq. (2) is
uniquely defined, therefore excluding semi-supervised
learning, Figure 3 suggests that our algorithm (4) could
be analyzed in a broader setting than the one consid-

ered in this paper. Among others, the non-ambiguity
assumption could be replaced by a cluster assump-
tion (Rigollet, 2007) together with a non-ambiguity
assumption cluster-wise in Theorem 4.

* Hard-coded weak supervision. Variational principles
Egs. (2) and (3) could be extended beyond partial
labelling to any type of hard-coded weak supervision,
which is when weak supervision can be cast as a set of
hard constraint that g should satisfy, formally written
as a set of fully supervised distributions compatible
with weak information. Hard-coded weak supervision
includes label proportion (Quadrianto et al., 2009;
Dulac-Arnold et al., 2019), but excludes supervision of
the type “80% of the experts say this nose is broken,
and 20% say it is not”. Providing a unifying framework
for those problems would make an important step in the
theoretical foundation of weakly supervised learning.

* Missing input data. While weak supervision assumes
that only y is partially known, in many applications of
machine learning, x is also only partially known, espe-
cially when the feature vector x is built from various
source of information, leading to missing data. While
we only considered a principle to fill missing output in-
formation, similar principles could be formalized to fill
missing input information. This would be particularly
valuable when data are not missing at random (Rubin,
1976; Muzellec et al., 2020).
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A. Proofs

Mathematical assumptions. To make formal what should be seen as implicit assumptions heretofore, we consider X" and
Y Polish spaces, ) compact, £ : J X ) — R continuous, H a separable Hilbert space, ¢ measurable, and ¢ continuous. We
also assume that for v,-almost every x € X, and any u + v, that the pushforward measure ¢, u|, has a second moment. This
is the sufficient setup in order to be able to define formally objects and solutions considered all along the paper.

Notations. Beside standard notations, we use #) to design the cardinality of )/, and 2% to design the set of subsets of ).
Regarding measures, we use py and u|, respectively the marginal over X’ and the conditional accordingly to x of u € Axxy.
We denote by u®" the distribution of the random variable (Z1, - - - , Z,), where the Z; are sampled independently according
to u. For A a Polish space, we consider A, the set of Borel probability measures on this space. For ¢ : ) — H and S C ),
we denote by ¢(S) the set {¢(y) |y € S}. For a family of sets (S;), we denote by [] S; the Cartesian product S| X S X - - -,
also defined as the set of points (y;) such that y; € S; for all index i, and by )" the Cartesian product [ ], V. Finally, for E
a subset of a vector space E’, Conv E denotes the convex hull of E and Span(E) its span.

Abuse of notations. For readability sake, we have abused notations. For a signed measure u, we denote by E, [ X] the
integral / x du(x), extending this notation usually reserved to probability measure. More importantly, when considering 2%,
we should actually restrict ourselves to the subspace S ¢ 2 of closed subsets of )V, as S is a Polish space (metrizable by the
Hausdorff distance) while 2Y is not always. However, when ) is finite, those two spaces are equals, 2Y =8,

A.1. Proof of Lemma 3

From Lemma 3 in Cabannes et al. (2021), we pulled the calibration inequality

R(f3) = R(f*) < 2¢y E [Lg,0)-¢*(x) I15d(e* (x),F) 182 (X) = g“ O] -

Where F is defined as the set of points & € Conv ¢())) leading to two decodings

F= {f € Conv p()) '#argmin W(z),¢&) > 1},
ze)Y

and d is defined as the extension of the norm distance to sets, for & € H
(& F) = inf lIg = &lly.

Using that [|g,(X) = g"(X)]l < [|gx(X) = g, ()| +]

g5(X) — g*(X)|| and that, if a < b +c,

lissa < 1pyessb+c < 125up(b,c)>62 supb,c =2 sup 1.s5e < 21p55b + 21.55c.
eeb,c

We get the refined inequality
R(f) = R(&*) < 4y B [Lajg, (x)-g5x0) 1>d(g (x).5) |80 (X) = &n (| + Lajigs 00—+ 0 1>ate x0.5) [|€n (X)) = g"(X)]]] -
The first term is bounded with
E [La)jg, (x)-gs (0) =" (x),5) ||g2(X) = g2 (XO|] < [lgn = &2l -

While for the second term, we proceed with

E [L2jg;00-¢ 001-dte 0.0 820 = g K] < flg = &7l Px |2 [len (X0 g (X[ > it d(g"(X), F)].

When weights sum to one, that is .7 | @;(X) = 1, both g, (X) and g*(X) are averaging of ¢(y) for y € ), therefore

llgn = &7l < 2.

Finally, when the labels are a deterministic function of the input, g*(X) = ¢(f*(X)), and d(g"(X), F) < sup, .y, d(¢(y), F).
Defining ¢ := sup,.cy, d(¢(y), F)/2, and adding everything together leads to Lemma 3.
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A.2. Implication of Assumptions 2 and 3

Assume that Assumption 2 holds, consider x € supp v.x, let us show that f*(x) = y, and u*|, = &, . First of all, notice that
Nssesuppvl, = 1¥x}; that &y, + vy, as it corresponds to 7 s = 0y, € Ag, for all S in the support of v|,; and that, because ¢
is well-behaved,

inf £(z,yx) = €(yx, yx) = 0.
zey

This infimum is only achieved for z = y,, hence if we prove that u*|; = ¢, , we directly have that f*(x) = y,. Finally,
suppose that u|, + v|, charges y # y,. Because y does not belong to all sets charged by v|,, u|; should charge an other
y’ € ), and therefore

inf By, [€(z, )] > inf ulc(y)€(z,y) + plc(y)(z,y") > 0.
zey zey
Which shows that [, = §, . We deduce that g*(x) = y,.

Now suppose that Assumption 3 holds too, and consider two x, x” € supp vy belonging to two different classes f(x) = y and
f(x") =y’. We have that g*(x) = ¢(y) and g*(x”) = ¢(y’), therefore,

dx,x’) 2 ¢ le) = o(3)lly -

Define hy = infy4 cHey) - @(¥")|l%. Let us now show that i, > 0. When ) is finite, this infimum is a minimum,
therefore, i, = 0, only if there exists a y # y’, such that ¢(y) = ¢(y’), which would implies that £(-,y) = €(-,y’) and
therefore £(y, y") = €(y, y) which is impossible when ¢ is proper.

A.3. Proof of Theorem 4

Reusing Lemma 3, we have

E(fa) <4cyEp, x ||

We will first prove that

8n(X) = 8a(X)||;,] +8cycy En, x [Ljg; 005 0)1155] -

np
Ep, [1jgx)-¢ (x)1>5] < exp (—;)

as long as k < np/2. The error between g* and g, relates to classical supervised learning of g* from samples (X;, Y;) ~ u*.
We invite the reader who would like more insights on this fully supervised part of the proof to refer to the several monographs
written on local averaging methods and, in particular, nearest neighbors, such as Biau & Devroye (2015). Because of class
separation, we know that, if k points fall at distance at most /2 of x € supp v, g;:(x) = k™! ZixeN () i) = () = g7 (%),
where N (x) designs the k-nearest neighbors of x in (X;). Because the probability of falling at distance & of x for each X; is
lower bounded by p, we have that

Pp, (g5(x) # g*(x)) < P(Bernouilli(n, p) < k).

This can be upper bound by exp(—np/8) as soon as k < np/2, based on Chernoff multiplicative bound (see Biau & Devroye,
2015, for a reference), meaning

Ep, x [1g;x)-¢*(x)125] < exp(=np/8).

For the disambiguation part in ||g,, - g;H 1> We distinguish two types of datasets, the ones where for any input X; its
k-neighbors at are distance at least 4, ensuring that disambiguation can be done by clusters, and datasets that does not verify
this property. Consider the event

D= {(Xi)iSn

sup d(Xi, X (k) (X)) < h}
1
where X (i) (x) design the k-th nearest neighbor of x in (X;);<,. We proceed with

Ep,x [|lgn(X) = gx(X)||,] < sup |l — &nll Pp, (X)) € D) +Ep, x |

g:(X) - gn(X)”H i (Xt) € D] s

Which is based on E[Z] = P(Z € A)E[Z|A] + P(Z ¢ A)E[Z|°A]. For the term corresponding to bad datasets, we can
bound the disambiguation error with the maximum error. Similarly to the derivation for Lemma 3, because g} (x) and g} (X),
are averaging of ¢(y), we have that

sup ”gn(x) - g;(x)“ < 2¢4.

XESupp vy
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Indeed, we allow ourselves to pay the worst error on those datasets as their probability is really small, which can be proved
based on the following derivation.

Pp, ((Xi)i<n & D) = P(x,) (sup d(Xi, X(x) (X)) = h) = Prx,) (Viza {d(X;, X(1) (X)) = h})

n

< P(X,.) (d(X,',X(k) (X)) = h) =nPxop, (d(X, X (X)) = /’l) .

i=1

This last probability has already been work out when dealing with the fully supervised part, and was bounded as

Pxp, (d(X, X (X)) > h) <exp(-(n—-1)p/8).

as long as k < (n— 1)p/2. Finally we have

sup lgi = gul| . Pp, (Xi)i<n € D) < 2cynexp (—(n—1)p/8).
€

For the expectation term, corresponding to datasets, D, € DD, that cluster data accordingly to classes, we have to make sure
that §; = y7 is the only acceptable solution of Eq. (4), which is true as soon as the intersection of S}, for x; the neighbors of
x;, only contained y*. To work out the disambiguation algorithm, notice that

llen = gnll, = /X

=k D Py (X e NCO) [|e(51) - 0(3))
i=1

D a(@)e@) - ()| dva(x) < /X ') Iew o0 = o)) dvae (x)
=1 i=1

< 26¢k_1 Z Px (X; € N(X)) 190(5‘1')#900?)'
i=1

Finally we have, after proper conditionning, considering the variability in S; while fixing X; first,

Ep,.x [|

gn(X) = g (O, | (X)) € D] = 2¢,k " Exy | Y Px (Xi € N(X)) Es,) [lsﬁ(fi)iso(yf) ) (Xi)] (X)) €D

i=1

(X)) | (X)) e D|.

n
=2c,k™ Ex) x [Z Ixenx Pesy (090) 2 0037)
i=1

We design D, because when this event holds, we know that the k-th nearest neighbor of any input X; is at distance at most &
of X;, meaning the because of class separation, y,, € S; for any X; € N/(X;). This mean that outputting ($;) = (y;) and
zj = yj, will lead to an optimal error in Eq. (4). Now suppose that there is an other solution for Eq. (4) such that y; # y7, it
should also achieve an optimal error, therefore it should verify z; = J; for all j as well as §; = J; for all j such that X is one
of the k nearest neighbors of X;. This implies that $; € Nj.x;eA(x;) S, Which happen with probability

P(S/)_f:x;'e/\/(x;)(az # i,z €N;S;) <mPs(z € Sp* < mn* = mexp(=k [log(n)]).

With m = #) the number of element in ). We deduce that

P, (e(9i) # o(y)) | (Xi)) < mexp(—k [log(n)]).

And because 3" | 1x,enr(x) = k, we conclude that

(X)) - g"(X)HH | (X;) € D] < 2cymexp(—k [log(n)]).

Finally, adding everything together we get

Ep,.x ||

-1
E(fu) < 8cypey exp (—%) +8cycynexp (—%) +8c,cymexp (—k [log(m)]) .

as long as k < (n — 1)p/2, which implies Theorem 4 as long as n > 2.



Disambiguation of weak supervision with exponential convergence rates

Remark 9 (Other approaches). While we have proceed with analysis based on local averaging methods, other paths could be
explored to prove convergence results of the algorithm provided Eq. (4) and (5). For example, one could prove Wasserstein
convergence of .| 0y, s,) towards 3\, 6 (x,97)» together with some continuity of the learning algorithm as a function of
those distributions.# This analysis could be understood as tripartite:

* A disambiguation error, comparing 9; to y;.
* A stability / robustness measure of the algorithm to learn f, from data when substituting y; by 9;.
* A consistency result regarding f, learnt on (x;, y;).

Our analysis followed a similar path, yet with the first two parts tackled jointly.

A 4. Proof of Proposition 6

Under the non-ambiguity hypothesis (Assumption 2), the solution of Eq. (3) is characterized pointwise by f*(x) = y, for
all x € supp vx. Similarly under Assumption 2, we have the characterization f*(x) € Ngequppv|,S- With the notation of
Definition 5, since f*(x) minimizes z — Ey.,[{(z,Y)] for all § € supp v/, it also minimizes z — Eg.,| Ey.,[£(z,Y)].

For the second part of the proposition, we use the structured prediction framework of Ciliberto et al. (2020). Define
the signed measure u° defined as uS, := vy and p°|; = Eg.y) Ey.ys[dy], and f° : & — Y the solution f° €
argming. y_,y E(x y)~pe [€(f(X),Y)] = argming. x5 E(x y)~y [EYN#S [¢(f(X), Y)]] . The first part of the proposition tells
us that f° = f* under Assumption 2. The framework of Ciliberto et al. (2020), tells us that f° is obtained after decoding,
Eq. (9), of g° : X — H, and that if g converges to g° with the L' norm, f° converges to f° in term of the u°-risk. Under
Assumption 2 and mild hypothesis on 1°, it is possible to prove that convergence in term of the u°-risk implies convergence
in term of the u-risk (for example through calibration inequality similar to Proposition 2 of Cabannes et al. (2020)).

A.5. Ranking with Partial ordering is a well behaved problem

Here, we discuss about building directly &5 to initialize our alternative minimization scheme or considering us given by the
definition of well-behaved problem (Definition 5). Since the existence of pg implying &5 defined as Ey.,,;[¢(Y)], we will
only study when £g can be cast as a ug.

In ranking, we have that ¢ = —¢, which corresponds to “correlation losses”. In this setting, we have that Span(¢())) =
Span(y())). More generally, looking at a “minimal” representation of ¢, one can always assume the equality of those
spans, as what happens on the orthogonal of the intersection of those spans, does not modify the scalar product ¢(y) "¢ (z).
Similarly, £ can be restricted to Span(y(Y)), and therefore Span(¢())), which exactly the image by 1 — Ey., [¢(Y)] of
the set of signed measures, showing the existence of a pg matching Definition 5.

B. IQP implementation for Eq. (4)

In this section, we introduce an IQP implementation to solve for Eq. (4). We first mention that our alternative minimization
scheme is not restricted to well-behaved problem, before motivating the introduction of the IQP algorithm in two different
ways, and finally describing its implementation.

B.1. Initialization of alternative minimization for non well-behaved problem

Before describing the IQP implementation to solve Eq. (12), we would like to stress that, even for non well-behaved partial
labelling problems, it is possible to search for smart ways to initialize variables of the alternative minimization scheme. For
example, one could look at zi(o) € NjixjeNy, S;, where N designs the k nearest neighbors of x; in (x;);<,, and k; is chosen
such that this intersection is a singleton.

4The Wasserstein metric is useful to think in term of distributions, which is natural when considering partial supervision that can be
cast as a set of admissible fully supervised distributions. This approach has been successfully followed by Perchet & Quincampoix (2015)
to deal with partial monitoring in games.
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B.2. Link with Diffrac and empirical risk minimization

Our IQP algorithm is similar to an existing disambiguation algorithm known as the Diffrac algorithm (Bach & Harchaoui,
2007; Joulin et al., 2010).5 This algorithm was derived by implicitly following empirical risk minimization of Eq. (2). This
approach leads to algorithms written as

n
;) € argmin inf C(f(x),yi) +AQ(f),
(9) € arg mit fef; (f (), yi) +AQ(f)

for F a space of functions, and Q : 7 — R, a measure of complexity. Under some conditions, it is possible to simplify the
dependency in f (e.g., Xu et al., 2004; Bach & Harchaoui, 2007). For example, if £(y, z) can be written as ||¢(y) — o(2)|?
for a mapping ¢ : X — ), e.g. the Kendall loss detailed in Section 5.4,° and the search of ¢(f) : X — ¢(}) is relaxed as a
g : X — H. With Q and F linked with kernel regression on the surrogate functional space X — H,, it is possible to solve
the minimization with respect to g as g(x;) = Z;le a;(x;)p(y;), with & given by kernel ridge regression (Ciliberto et al.,
2016), and to obtain a disambiguation algorithm written as

n

argmin ) | > a; (e () - e[
1

yi€Si =

Jj=1

This IQP is a special case of the one we will detail. As such, our IQP is a generalization of the Diffrac algorithm, and this
paper provides, to our knowledge, the first consistency result for Diffrac.

B.3. Link with an other determinism measure
While we have considered the measure of determinism given by Eq. (2), we could have considered its quadratic variant

* L ’
u* € argmin f:}?iy Ex-vx [Evyu, [€Y.Y)]].

urv

This correspond to the right drawing of Figure 4. We could arguably translate it experimentally as

n

(9:) € argmin »" a;(x;)€(yi, ¥)), (14)
(i) eC

n i j=1
and still derive Theorem 4 when substituting Eq. (4) by Eq. (14). When the loss is a correlation loss £(y,z) = —¢(y) T ¢(z).
This leads to the quadratic problem

n

() € argmin— > @;(x))p(3) e ().
OneCn {501

B.4. IQP Implementation
In order to make our implementation possible for any symmetric loss £ : Y X ) — R, on a finite space ), we introduce the
following decomposition.
Proposition 10 (Quadratic decomposition). When ) is finite, any proper symmetric loss € admits a decomposition with two
mappings ¢ : Y - R", ¢y : Y - R", foram € Nand a c € R, reading

Vy,zel, ) =v(0)¥@-ee()  with  lleWl =gl =c (15)

Proof. Consider Y = y1,+, ym and L = (((yi, y;))i.j<m € R™™. L is a symmetric matrix, diagonalizable as L = 3" | ;u; ® u;, with
(u;) a orthonormal basis of R™, and A; € R its eigen values. We have, with (e;) the Cartesian basis of R™,

€(yj.yk) = Ljx = (ej, Leg) = Z(/li)+ (ej.ui) (e, ui) - Z(ﬂi)— (ej.ui) (e, ui) .
i=1 i=1

5The Diffrac algorithm was first introduced for clustering, which is a classical approach to unsupervised learning. In practice, it
consists to change the constraint set C, = [] S; by a set of the type C;, = arg max ey Z;lj=1 1y,+y; in Egs. (4) and (14), meaning that
(y;) should be disambiguated into different classes.

6Since ||¢(y)|| is constant.
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We build the decomposition

G0 = (Vs erm)) o and g = (V- (e ),
i<m i<m
It satisfies €(y;, yk) =¥ (») ¥ (z) — $(») T ¢(z). We only need to show that we can consider ¢ of constant norm. For this, first consider
C = max; |1;|, we have ||zZ(yk)||2 = Z;’;l(/li)+ (uj,ex)?> < C Z:.il (uj, ex)? = C |lex|I* = C The last equalities being due to the fact that

(u;) is orthonormal. Now, introduce the correction vector & : ) — R™, &(y;) = 4/C — ||z/~/(y)“2ei. And consider ¢ = (f), W= ('g) By

construction, ¥ is of constant norm being equal to C and that £(y, z) = ¥ (y)T ¥ (2) — ¢(y)T ¢(z). Finally, because é’(y;z) =0, we also
have ¢ of constant norm. O

Using the decomposition Eq. (15), Eq. (14) reads, withy = (y;)

§ € argmin ) ar(x W (Y () = ). ei(x)e(r)e(y))-
i=1

yeC, i=1
By defining the matrix A = (@;(x;))ij<n € R™", W(y) = (Y (3i))i<n € R™™ and ®(y) = (¢(yi))i<n € R, we cast it as

y €arg IélinTr (AYM¥(Y)T) - Tr (AD(y)P(y)T) -
yetn

Objective convexification. As @;(x;) is a measure of similarity between x; and x;, A is usually symmetric positive definite,
making this objective convex in ¥ and concave in ®. However, recalling Eq. (15), we have Tr ®®" = Tr ¥¥7 = nc, therefore
considering the spectral norm of A, we convexify the objective as

ye argrélinTr (AL T+ APWEMY ) + Te (Al T - HR(y)O(y) ') .-
yetn

Considering
s lAllLI+A 0 ww)

0 JAlz-a) aw=@@)

allow to simplify this objective as
§ € argminTr (BE(y)E(y) ") .
yeC,
When parametrized by & = E(y), this is an optimization problem with a convex quadratic objective and “integer-like”
constraint ¢ € E(C,), identifying to an integer quadratic program (IQP).

Relaxation. IQP are known to be NP-hard, several tools exists in literature and optimization library implementing them.
The most classical approach consists in relaxing the integer constraint & € E(C,) into the convex constraint ¢ € Conv(E(Cy)),
solving the resulting convex quadratic program, and projecting back the solution towards an extreme of the convex set.
Arguably, our alternative minimization approach is a better grounded heuristic to solve our specific disambiguation problem.

C. Example with graphical illustrations

To ease the understanding of the disambiguation principle (2), we provide a toy example with a graphical illustration, Figure 4.
Since Eq. (2) decorrelates inputs, we will consider X" to be a singleton, in order to remove the dependency to X. In the
following, we consider ) = {a, b, ¢}, with the loss given by

01 1
L=(0,2)yeey=| 1 0 2
1 20

This problem can be represented on a triangle through the embedding of probability measures reading & : Ay — Ry —
u(a)e; + u(b)ey + u(c)es, and onto the triangle {z eR3 | 7'l = 1}. Note that ¢ can be extended from any signed measure
of total mass normalized to one onto the plane {z eR3 | 7'1=1 }, as well as the drawings Figure 4 can be extended onto
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Figure 4. Exposition of a pointwise problem in the simplex Ay, with ) = {a, b, ¢} and a proper symmetric loss defined by £(a, b) =
l(a,c) =€(b,c)/2. (Left) Representation of the decision regions R; = {,u €Ay |z € argming ¢y By, [£(z, y)]} .forz € Y. Middle
Left) Representation of R, = {,u €Ay \,u F v} for v = (S50(4pcy +0(cy +0{ac) + (b)) /8 (Middle Right) Level curves of the
piecewise function Ay, — R;u — mingey Ey-,[£(z,Y)] corresponding to Eq. (2). (Right) Level curves of the quadratic function
Ay — Ryu — By yr~, [€(Y,Y’)]. Our disambiguation (2) corresponds to minimizing the concave function represented on the middle
right drawing on the convex domain represented on the middle left drawing.

the affine span of the represented triangles. The objective (2) reads pointwise as Ay — R;pu — min;<3 e L£ (1), while
its quadratic version reads Ay — Y; u — £(u) " L£(u). Note that while L is not definite negative, one can check that the
restriction of R? — R; z — z7 Lz to the definition domain {z eR3 | 7'l = 1} is concave, as suggested by the right drawing
of Figure 4.

It should be noted that (¢, v) being a well-behaved partial labelling problem can be understood graphically, as having the
intersection of the decision regions N5 R, non-empty for any set S in the support of v. As such, it is easy to see that our toy
problem is well-behaved for any distribution v. Formally, to match Definition 5, we can define .} = . for e € {a, b, c} and

MHia,b} = 56, + .56, MHia,c} = S56p + .56, MHib,c}y = 0p+0. —0g4, MHia,b,c} = S0, +.56,.

Graphically &(u14,53) can be chosen as any points on the horizontal dashed line on the middle right drawing of Figure 4
(similarly for &uy, o)), while é(p (4 5.¢)) has to be chosen has the intersection .5e, + .5e3, and while &(u 1) has to be
chosen outside the simplex on the half-line leaving .5e;, + .Se3 supported by the perpendicular bisector of [e3, 3] and not
containing ej.

D. Experiments

While our results are much more theoretical than experimental, out of principle, as well as for reproducibility, comparison
and usage sake, we detail our experiments.

D.1. Interval regression - Figure 1

Figure 1 corresponds to the regression setup consisting of learning f* : [0, 1] — R;x — sin(wx), with w = 10 = 3x. The
dataset represented on Figure 1 is collected in the following way. We sample (x;);<, with n = 10, uniformly at random on
X = [0, 1], after fixing a random seed for reproducibility. We collect y; = f(x;). We create (s;) by sampling u; uniformly
on [0, 1], defining r; = r — y log(u;), with r = 1 and y = 37!, sampling ¢; uniformly at random on [0, 7;], and defining
s; = y; +sign(y;) - ¢; + [—r;, ri]. The corruption is skewed on purpose to showcase disambiguation instability of the baseline

(13) compared to our method. We solve Eq. (4) with alternative minimization, initialized by taking yl.(o) at the center
of s;, and stopping the minimization scheme when };, | yl.('“) - yi(t)| < & for £ a stopping criterion fixed to 107°. For
x € X, the inference Egs. (5) and (13) is done through grid search, considering, for f,(x), 1000 guesses dividing uniformly
[-6,6] c YV = R. We consider weights a given by kernel ridge regression with Gaussian kernel, defined as
_ -1 n _ nxn _ n " _ ||X _-x/”2
a(x) = (K+nAl)" K, e R", K= (k(xi,x;))ij<n € R™™, Ky = (k(xi,%))i<n €R",  k(x,x") =exp |[——=——],

202

with A a regularization parameter, and o a standard deviation parameter. In our simulation, we fix o = .1 based on simple
considerations on the data, while we consider A € [10’], 1073, 10’6]. The evaluation of the mean square error between f;,
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Underlying scores Ground truth

Scores
Items preferences

X X

Figure 5. Ranking setting. We consider X" an interval of R, and ) = S, with m = 4 on the figure. (Right) To create a ranking dataset, we
sample randomly m lines in R2, embedding a value, or equivalently a score, associated to each items as a function of the input x. (Left) By
ordering those lines, we create preferences between items as a function of x. On the figure, when x is small, the “red” item is prefered over
the “orange” item, itself prefered over the “blue” item, itself prefered over the “green” item. While when x is big, “green” is prefered over
“blue”, prefered over “orange”, prefered over “red”. We create a partial labelling dataset by sampling (x;) € X", and providing only partial
ordering that the (y;) follow. For example, for a small x, we might only give the partial information that “red” is prefered over “blue”.

and f*, which is equivalent to evaluating the risk with the regression loss £(y, z) = ||y — z||?, is done by considering 200
points dividing uniformly X' = [0, 1] and evaluating f,, and f* on it. The best hyperparameter A is chosen by minimizing this
error. It leads to A = 107! for the baseline (13), and A = 107° for our algorithm (4) and (5). This difference in A is normal
since both methods are not estimating the same surrogate quantities. The fact that A is smaller for our algorithm is natural as
our disambiguation objective (4) already has a regularization effect on the solution.” Note that we used the same weights «
for Eq. (4) and Eq. (5), which is suboptimal, but fair to the baseline, as, consequently, both methods have the same number
of hyperparameters.

D.2. Classification - Figure 2

Figure 2 corresponds to classification problems, based on real dataset from the LIBSVM datasets repository. At the time
of writing, the datasets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
multiclass.html. We present results on the “Dna” and “Svmguide2” datasets, that both have 3 classes (m = 3), and
respectively have 4000 samples with 180 features (n = 4000,d = 180) and 391 samples with 20 features (n = 391, d = 20).

In term of complexity, when Y = [1,m] = {1,2,--- ,m}, and weights based on kernel ridge regression with Gaussian
kernel as described in the last paragraph the complexity of performing inference for Egs. (5) and (13) can be done in O (nm)
in time and O (n + m) in space, where n is the number of training samples (Nowak-Vila et al., 2019; Cabannes et al., 2020).
The disambiguation (4) performed with alternative minimization is done in O(cn®m) in time and in O(n(n + m)) in space,
with ¢ the number of steps in the alternative minimization scheme. In practice, c is really small, which can be understood
since we are minimizing a concave function and each step leads to a guess on the border of the constraint domain.

Based on the dataset (x;, y;), we create (s;) by sampling it accordingly to ydy,) + 1 — ¥y, y,}, With y the most present labels
in the dataset (indeed we choose the two datasets because they were not too big and presenting unequal labels proportion),
and y € [0, 1] the corruption parameter represented in percentage on the x-axis of Figure 2. This skewed corruption allows
to distinguish methods and invalidate the simple approach consisting to averaging candidate (AC) in set to recover y; from
si, which works well when data are missing at random (Heitjan & Rubin, 1991). We separate (x;, s;) in 8 folds, consider
o ed-[1,.1,.01], where d is the dimension of X', and 1 € nl/2. [1, 1073, 10‘6], where n is the number of data. We test
the different hyperparameter setup and reported the best error for each corruption parameter on Figure 2. Those errors are
measured with the 0-1 loss, computed as averaged over the 8 folds, i.e. cross-validated, which standard deviation represented
as errorbars on the figure. The best hyperparameter generally corresponds to o = .1 and A = 10~ when the corruption is
small and o = 1, 2 = 1073 when the corruption is big. Differences between cross-validated error and testing error were
small, and we presented the first one out of simplicity.

In term of energy cost, the experiments were run on a personal laptop that has two processors, each of them running
2.3 billion instructions per second. During experiments, all the data were stored on the random access memory of 8GB.

"Moreover, the analysis in Cabannes et al. (2020) suggests that the baseline is estimating a surrogate function in X — 2R while our
method is estimating a function in X — R, which is a much smaller function space, hence needing less regularization. However, those
reflections are based on upper bounds, that might be sub-optimal, which could invalidate those considerations.
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Figure 6. Performance of our algorithm for ranking with partial ordering. This figure is similar to Figure 2, but is based on the ranking
problem illustrated on Figure 5. For this figure, we consider m = 10, as it is arguably the limit where the LP relaxation provided by
Cabannes et al. (2020) of the NP-hard minimum feedback arcset problem still performs well. The corruption parameter corresponds to the
proportion of coordinates lost in the Kendall embedding when creating s; from y;. Because the Kendall embedding satisfies transitivity
constraints, a corruption smaller than 50% is almost ineffective to remove any information. In this figure, we observe a similar behavior for
ranking to the one observed for classification on Figure 2, suggesting that those empirical findings are not spurious.

Experiments were run on Python, extensively relying on the NumPy library (Harris et al., 2020). The heaviest computation is
Figure 2. Its total runtime, cross-validation included, was around 70 seconds. This paper is the results of experimentations,
we evaluate the total cost of our experimentations to be three orders of magnitude higher than the cost of reproducing the
final computations presented on Figure 1, 2 and 3. The total computational energy cost is very negligible.

D.3. Semi-supervised learning - Figure 3

On Figure 3, we review a semi-supervised classification problem with ) = [1,4], X = [-4.5,4.5]%, ux only charging
{x=(x1,x) e R? |x% +x35 € N*} and the solution f* : X — ) being defined almost everywhere as f*(x) = x? + x3. We
collect a dataset (x;, s;), by sampling 2000 points §; uniformly at random on [0, 1], as well as r; uniformly at random in
[1,4] = {1,2,3,4}, before building x; = r; - (cos(278;), sin(276;)) € X, and s; = ). We add four labelled points to this
dataset xp00; = (—2\/§, 2) with sp001 = {4}, X2001 = (1, —2\/5) with s7002 = {3}, X2001 = (—\/g, —1) with sp003 = {2} and
x2001 = (—1,0) with sp004 = {1}. We designed the weights a in Eq. (4) with k-nearest neighbors, with & = 20, and solve this
equation with a variant of alternative minimization, leading to the optimal solution §; = y;. In order to be able to compute
the baseline (13), we design weights a for the inference task based on Nadaraya-Watson estimators with Gaussian kernel,

defined as a;(x) = exp (le —xi? /h), with & = .08. We solve the inference task on a grid of X composed of 2500 points,

and artificially recreate the observation to make them neat and reduce the resulting pdf size. Note that it is possible to design
weights « that capture the cluster structure of the data, which, in this case, will lead to a nice behavior of the baseline as well
as our algorithm. Arguably, this experiment showcase a regularization property of our algorithm (4).

D.4. Ranking with partial ordering

To conclude this experiment section, we look at ranking with partial ordering. We refer to Section 5.4 for a clear description
of this instance of partial labelling. We provide to the reader eager to use our method, an implementation of our algorithm,
available onlineathttps://github.com/VivienCabannes/partial_labelling. Itisbased on LP relaxation
of the NP-hard minimum feedback arcset problem. This relaxation was proven exact when m < 6 by Cabannes et al.
(2020). The LP implementation relies on CPLEX (IBM, 2017). As complementary experiments, we will not provide much
reproducibility details, those details would be really similar to the previous paragraphs, and the curious reader could run our
code instead. We present our ranking setup on Figure 5 and our results on Figure 6.


https://github.com/VivienCabannes/partial_labelling

