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ABSTRACT
In this demo, we introduce Exathlon – a new benchmarking plat-
form for explainable anomaly detection over high-dimensional
time series. We designed Exathlon to support data scientists and
researchers in developing and evaluating learned models and algo-
rithms for detecting anomalous patterns as well as discovering their
explanations. This demo will showcase Exathlon’s curated anomaly
dataset, novel benchmarking methodology, and end-to-end data
science pipeline in action via example usage scenarios.

1 INTRODUCTION
Recent advances in machine learning (ML) and data science led
to a surge of interest in advanced analytics techniques over large
and complex datasets. Detecting and explaining anomalous pat-
terns in high-dimensional time series data is a prominent example.
Despite growing efforts, the diversity of time series applications
from IoT to finance, often noisy nature of the collected datasets,
and the contextual variations in anomaly types and instances chal-
lenge the creation of robust and generalizable solutions. As a result,
there is a wide variety of anomaly detection (AD) and explanation
discovery (ED) techniques that differ in their functionality and per-
formance. Lack of high-quality data repositories and benchmarking
tools makes it hard to repeat, evaluate, and compare these current
solutions as well as designing new ones in a well-informed manner.

As a community resource to support data scientists and engi-
neers, we have recently proposed Exathlon, the first comprehensive
benchmark for explainable AD over high-dimensional time series
data [7]. Exathlon focuses on the familiar domain of metric monitor-
ing in large-scale computing systems, and provides a benchmarking
platform that consists of: (i) a curated anomaly dataset, (ii) a novel
benchmarking methodology for AD and ED, and (iii) an end-to-end
data science pipeline for implementing and evaluating AD and ED
algorithms based on the provided dataset and methodology.

In this demo, we present our benchmarking platform and illus-
trate its practical use via two different scenarios: (i) as an experi-
mentation tool by an ML researcher interested in developing and
comparing two alternative deep learning (DL) models for AD in
terms of their predictive performance and explainability, (ii) as a
data analysis tool by an application engineer interested in choosing
an AD and ED solution to deploy for improving the performance
of his real-time e-commerce applications. Exathlon provides a mod-
ular and extensible data science pipeline and an interactive visual
frontend to productively support these kinds of exploratory tasks.
Our key goal is to introduce this new public resource to the database
community for interactive experience and feedback.

Both benchmarking platforms and time series analytics tools
have been subjects of past demos at database venues (e.g., [4, 5,

9, 14]). This demo will present a new platform for a novel bench-
mark. While there are several ML/DL-based analytics benchmarks
(e.g., ADABench [10], DAWNBench [3]), there is only one public
benchmark that specializes on time series AD (NAB [8]), yet with a
much narrower focus than Exathlon (streaming AD over univariate
time series). For ED as well as explainable AD, Exathlon is the first
public benchmark to our knowledge. In what follows, we provide a
brief overview of Exathlon and describe the two demo scenarios
that we are planning to show at the conference.

2 EXATHLON OVERVIEW
Exathlon consists of three key components: a labeled dataset, an
evaluation framework, and a data science pipeline. We summarize
each, with more emphasis on the pipeline, which forms the basis of
our platform implementation. Further details are in our paper [7].
Anomaly Dataset. Exathlon’s dataset has been systematically
constructed based on real data traces collected from 93 repeated
executions of 10 distributed streaming applications on a 4-node
Spark cluster over a period of 2.5 months. Each of these executions
includes 5 randomly selected applications running concurrently.
During each execution, we collected metrics from both Spark’s
monitoring and instrumentation interface and the underlying op-
erating system. All in all, each trace consists of a total of 2,283
metrics recorded once per second for 7 hours on average, consti-
tuting a multi-dimensional time series of 24.6GB in size. We first
collected 59 undisturbed traces to characterize the normal execution
behavior of our Spark applications; we then introduced various
anomalous events, via a disruptive event generator (DEG), during
Spark’s job execution to generate 34 disturbed traces. There are 6
types of anomalous events: T1: bursty input, T2: bursty input until
crash, T3: stalled input, T4: CPU contention, T5: driver failure, T6:
executor failure, and a total of 97 anomaly instances in the whole
dataset. For each of these anomalies, we provide ground truth labels
for both the root cause interval (time period during which a DEG
was running) as well as the corresponding extended effect interval
(post-DEG time period until system returned to normal or crashed).
Evaluation Framework. Exathlon evaluates AD and ED algo-
rithms in terms of both functionality and computational perfor-
mance, using a well-defined set of criteria and metrics.

For AD, there are four criteria in increasing level of difficulty:
AD1: anomaly existence, AD2: range detection, AD3: early detection,
and AD4: exactly-once detection. These are all evaluated in terms
of range-based precision and recall metrics [13]. Further, Exathlon
offers 4 learning settings (LS1-LS4) to capture how well a learned
AD model generalizes to different Spark workload characteristics,
by selecting the training and test datasets accordingly. LS1 and
LS3 train the AD models on a single-app trace basis, whereas LS2



Figure 1: Exathlon’s data science pipeline for anomaly detection (AD) and explanation discovery (ED)

and LS4 do so with multiple-app traces together. Similarly, LS3 and
LS4 use only undisturbed traces in training and all disturbed traces
in testing, while LS1 and LS2 allow the model to peek into small
non-anomalous segments from the disturbed traces during training
to capture some Spark workload context from the test traces.

Once an anomaly is flagged by an AD method, then its expla-
nation can be generated using an ED method. ED methods can
be model-dependent [11] or model-free [1, 15]. Furthermore, they
can generate local explanations for each anomaly as well as global
explanations for multiple anomalies appearing across a larger trace.
Accordingly, for ED, we define two benchmarking criteria: ED1:
local explanation and ED2: global explanation. These are measured
using three key metrics: conciseness (number of features used in an
explanation), consistency (common set of features in explanations
of similar anomalies), and accuracy (precision/recall of an anomaly
explanation vs. the ground truth if applied as a predictive model).

For computational performance, there are 3 criteria that can be
evaluated by varying dimensionality and size of the dataset: AD
training scalability, AD inference efficiency, and ED efficiency.
Data Science Pipeline. We designed and implemented an end-to-
end pipeline for explainable time series AD. This pipeline includes
all data processing steps necessary to turn our raw datasets into AD
and ED results together with their benchmark scores. Our design
is modular and extensible, making it easy to add new AD and ED
techniques, as well as allowing the creation of multiple variants of
the pipeline steps to experiment with and compare. For example,
training data preparation for different AD learning settings (LS1-
LS4) or scoring AD results for different criteria levels (AD1-AD4)
can be easily configured, run, and compared in our pipeline.

Figure 1 shows an overview of Exathlon’s full pipeline. First, the
raw input traces are partitioned (1) and transformed (2) for prepar-
ing the datasets, 𝐷 ′

𝑡𝑟𝑎𝑖𝑛
and 𝐷 ′

𝑡𝑒𝑠𝑡 , for model training and testing,
respectively. The Data Partitioning module (1) handles initial data
selection, cleaning, and splitting, whereas the Data Transformation
module (2) applies further resampling, dimensionality reduction,
and rescaling as needed by the experiment. The resulting 𝐷 ′

𝑡𝑟𝑎𝑖𝑛
consists of undisturbed traces and is used for AD normality mod-
eling along with outlier score derivation and threshold selection
(3). This AD Modeling step (3) results in a pair of functions (𝑔, 𝑓 ),
respectively, that will assign outlier scores and binary predictions
to the records in each trace of𝐷 ′

𝑡𝑒𝑠𝑡 . These functions are for predict-
ing anomalous ranges 𝑋𝑡,𝑤 in 𝐷 ′

𝑡𝑒𝑠𝑡 through the AD Inference step
(4), which are evaluated vs. the ground truth (real anomaly ranges)
using the AD evaluation criteria (AD1-AD4) in AD Evaluation (5).

After anomalous ranges are detected, they are provided as inputs
to the ED Execution module (6) to derive explanations 𝐹𝑡,𝑤 . These
explanations can then be evaluated according to the chosen ED
evaluation criteria (ED1-ED2) by the ED Evaluation module (7).

We implemented this pipeline design using Python. To turn it
into an easy-to-use platform,we also added some utilities, such as an
interactive frontend to configure pipelines as well as visualizing and
exploring the results on demand. We provide further details on this
frontend as part of the demo scenarios described in the next section.
The dataset, code, and documentation for Exathlon are publicly
available at https://github.com/exathlonbenchmark/exathlon.

3 DEMO SCENARIOS
This demo will showcase Exathlon’s benchmarking platform for
explainable AD in action via two example usage scenarios.

3.1 Exathlon as an Experimentation Tool
Our first scenario shows how Exathlon can be used as an experi-
mentation tool by data science and machine learning researchers.

Alice is an ML researcher interested in time series AD. With
a focus on DL-based AD methods, she is curious to find out how
forecasting-based approaches compare against reconstruction-based
ones in terms of their accuracy and explainability. She picks one
popular deep neural network (DNN) architecture from each cat-
egory, Long Short-Term Memory (LSTM) [2] and Auto-Encoder
(AE) [6] respectively, to implement and experimentally compare.
Data Preparation. The first step is to prepare the datasets to be
used in model training and testing. Knowing that most AD ap-
proaches focus on capturing normality in their models, she decides
to use Exathlon’s 59 undisturbed traces for training. The remain-
ing 34 disturbed traces with anomalies will be used for testing.
These dataset selection and partitioning steps can be handled using
Exathlon’s Data Partitioning module. Then Alice quickly realizes
that there are too many dimensions in the data and decides to apply
dimensionality reduction. Exathlon provides her with a few options
as part of its Data Transformation module; she settles on custom
feature-set selection, reducing the number of dimensions to 19.
Model Building and Evaluation. Once the datasets are ready,
Alice can now train her LSTM and AE models in two separate
pipeline deployments. Her models are implemented by extending
the AD Modeling module of Exathlon’s pipeline, including outlier
score derivation and threshold selection. The resulting models are
stored in a model repository provided by Exathlon. To see how they
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perform, each model is tested using the AD Inference module with
the test dataset and evaluated using the AD Evaluation module.
AD Method Comparison. Exathlon’s visual frontend reports the
evaluation results. For example, Figure 2(a) shows the performance
metrics reported for LSTM and AE evaluated at different AD levels
of the benchmark. Alice observes that for AD1 (anomaly existence),
LSTM outperforms AE in precision, recall, and F1-score. However,
for AD2 (range detection) and AD3 (early detection), AE performs
better than LSTM in recall and F1-score. Finally, for AD4 (exactly-
once detection), LSTM loses even more performance than AE.
Method Analysis. Alice then wants to analyze LSTM and understand
why it starts to lose performance for AD2-AD4. She clicks on the
“Separation Ability” tab to obtain additional profiling results. As
shown in Figure 2(b), Exathlon’s frontend offers separation metrics
(Area Under Precision-Recall Curve, AUPRC) and separation plots
at the global level (all test traces), at the application level (test
traces of a specific Spark application), or at the trace level. Each
separation plot shows the outlier scores assigned to the normal
records, as well as those of the anomalous records of each anomaly
type. At the global level, the outlier scores of normal records overlap
significantly with some of the anomalous records, hence yielding
poor separation power. To understand why, Alice asks for trace-
level separation, for which Exathlon shows a table of trace-level
AUPRC scores, one row for each trace. When Alice clicks on a
specific row (trace), Exathlon shows a line plot of the outlier scores
assigned to different records. She then sees that the outlier scores
produced by LSTM often exhibit discontinuous spikes. For range
detection (AD2), such frequent mixes of high and low values make it
hard to produce continuous ranges of high outlier scores, penalizing
recall when the outlier threshold is set high, or precision when the
threshold is set low. Alice further wants to analyze the AE method
to understand why its F1-score is not high. Similarly, she clicks on
the “Separation Ability” tab to compare the separation plots at the
global, application, and trace levels, as shown in Figure 2(c). While
the trace level separation is quite good, as soon as the same AD
model is run over different test traces, the outlier scores assigned
to normal records in different traces start to spread widely, hence
increasing the overlap with the scores of anomalous records.
Anomaly Type Analysis. Exathlon further allows Alice to filter the
evaluation results by anomaly type, so that she can understand how
well a particular AD method is able to detect anomaly types T1-T6.
Explainability Comparison. Besides the accuracy of the two AD
models, Alice is also interested in comparing them in explainability,
e.g., whether the anomalies detected by eachmodel can be explained
well. Among the available ED methods, Alice chooses LIME [11],
a well-known method for explaining model predictions. For both
methods, LSTM-LIME and AE-LIME, Exathlon’s frontend reports a
table of evaluation metrics for discovered explanations, including
conciseness, consistency, and running time. In addition, Alice can
choose a specific trace and examine the explanations returned for
individual anomalies (e.g., see Figure 2(d)), as well as the related ED
measures of such local explanations; she can further examine the
ED measures of global explanations by choosing a subset of traces
and anomalies of interest to her. From all of these results, Alice
observes that AE-LIME generates more concise, locally stable, and
globally consistent explanations for detected anomalies than LSTM-
LIME. This observation is consistent with the earlier observation

that LSTM often produces outlier scores in discontinuous spikes,
hence preventing concise and consistent explanations.

3.2 Exathlon as a Data Analysis Tool
Our second scenario demonstrates how Exathlon can be used as a
data analysis tool by application users or domain experts.

Bob is an application performance engineer of an e-commerce
platform, who wants to identify and remove performance bottle-
necks for large-scale streaming applications running on Spark. He
thinks the majority of such bottlenecks are due to input-related
anomalies, such as bursty or stalled inputs (e.g., T1-T2-T3 anomalies
in Exathlon). These anomalies lead to high latencies, which is un-
acceptable for real-time streaming applications that affect business
decisions about sales strategies and inventory management. Bob
aims to find the right AD and ED methods to use which can meet
the following requirements: (1) early online AD, preferably with no
duplicate detection results; (2) efficient online ED for each detected
anomaly, which points to the root cause in the underlying system
and hence can enable timely corrective action; (3) consistent expla-
nations of anomalies of the same type, so that Bob can examine
anomalies from multiple traces offline and recognize the common
anomaly patterns in the system. Bob runs the Exathlon pipeline in
order to find the most suitable AD and ED methods for deployment.

Consider the AD methods first. This demo will have a number
of pre-trained AD models, including LSTM [2], AE [6], and Bi-
GAN [12], withmultiple variants trained under different benchmark
settings (i.e., LS1-LS4). Their performance for T1-T2-T3 anomalies
is reported in the Exathlon frontend like the table in Figure 2(a). By
comparing AD3 (early detection) and AD4 (exactly-once detection)
results, as well as checking detailed profiling results, Bob chooses
the AE method as it meets requirement (1) the best.

Bob then investigates various ED methods, both model-free
(e.g., EXstream [15], MacroBase [1]) and model-dependent (e.g.,
LIME [11]). Exathlon’s frontend allows Bob to compare these meth-
ods in several ways: (𝑖) Form of explanation: For each ED method,
Bob selects a specific test trace and examines the individual expla-
nations returned for detected anomalies. He sees that LIME returns
explanations as feature importance scores between [0, 1], while
EXstream and MacroBase return explicit logical formulas. An ex-
ample explanation from MacroBase is shown in Figure 2(d) for a
bursty input anomaly, which has caused significant scheduling de-
lay because existing resources were not sufficient for handling the
input rate. It states that the newly received (processed) records by
the running application were greater than 7.96M (8.33M) during the
anomaly period (and one can check that such values should indeed
be around 7.80M for this trace). Bob finds such explanations to be
much more informative than feature importance scores. (𝑖𝑖) Effi-
ciency and local consistency: Between EXstream and MacroBase,
Exathlon’s reported metrics show that EXstream can return an ex-
planation with an avg. delay of 0.01 sec, while MacroBase requires
1-18 sec on avg. Further, explanations returned by EXstream are
more succinct and locally stable in the face of small perturbation
of data. Considering these, Bob prefers EXstream as it better meets
requirement (2). (𝑖𝑖𝑖) Global consistency: Finally, Bob examines all
the traces that contain a specific anomaly type and sees that Mac-
roBase achieves the best global consistency scores. Since it is offline



(a) Anomaly detection results (b) Separation ability of LSTM

(c) Separation ability of AE (d) Explanation of a detected anomaly

Figure 2: Exathlon’s visual frontend

analysis, the longer running time of MacroBase is acceptable. There-
fore, Bob chooses MacroBase to generate such explanations and
summarizes them into a small set of patterns in his business report.
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