Supporting information

Impact of N-Truncated Aβ Peptides on Cu- and Cu(Aβ)-Generated ROS: Cu(I) Matters!

C. Esmieu, *^[a] G. Ferrand, ^[a, b] V. Borghesani, ^{[a, b] \neq} and C. Hureau *^[a, b]

Figure S1 : Stopped-flow Kinetic traces of Cu coordination by the peptides $A\beta_{4-16}$ (blue), $A\beta_{11-16}$ (pink) and $A\beta_{1-16}$ (green). Left: Representative stopped-flow traces showing UV-vis changes of the absorbance at 520 nm (λ_{max} of the Cu^{II}($A\beta_{4/11-16}$) upon mixing Cu and $A\beta_{4-16}$ (blue) and $A\beta_{11-16}$ (pink) reflecting the formation of the complexes Cu^{II}($A\beta_{4-16}$) and Cu^{II}($A\beta_{11-16}$). The inset shows the typical evolution of the UV-vis, the arrows indicates the disappearing of the "free" copper and the appearance of the Cu^{II}($A\beta_{4-16}$) complex, only the UV-vis spectra recorded at 0.006, 0.051, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, and 3 s are shown for clarity. *Right:* Representative stopped-flow traces showing UV-vis changes of the absorbance at 630 nm corrected at 440 nm upon mixing Cu and $A\beta_{1-16}$ (green), data recorded for $A\beta_{4-16}$ (blue), $A\beta_{11-16}$ (pink) are shown for comparison. The formation of the Cu^{II}($A\beta_{1-16}$) is too fast to be measured with our system < 10 ms. Experiments were carried out in HEPES (100 mM, pH 7.4). Final Cu concentration was 416.5 µM and final peptide concentration was 500 µM.

Figure S2 : X-band EPR spectra of (a) $Cu^{II}(A\beta_{1-16})$, (b) $Cu^{II}(A\beta_{11-16})$, (c) competition experiments between $A\beta_{1-16}$ and $A\beta_{1-16}$ and $A\beta_{1-16}$, $A\beta_{$

Figure S3 : Cyclic voltammogram (CV) of Cu^{II}(A β_{11-16}) (pink line) and Cu^{II}(A β_{4-16}) (blue line). The dotted black lines are CV measured in oxidation showing no reduction process at 0.24 V vs SCE. The grey line are the CV of the peptide alone (without Cu(II)) [A $\beta_{4/11-16}$] = 0.2 mM, [Cu(II)] = 0.19 mM in [phosphate buffer] = 50 mM at pH 7.4 under Ar. Scan rate = 100 mV.s⁻¹; WE = Glassy carbon, Ref = SCE, CE = Pt wire. First scan are shown starting from the open circuit potential.

Figure S4 : UV-vis spectra of successive additions of $A\beta_{4-16}$ and $A\beta_{11-16}$ (ca. 100 mM per addition) into a solution of $[Cu^{I}(Fz)_{2}]^{3}$. (55 μ M) in HEPES (100 mM, pH 7.4). First spectrum correspond to $[A\beta_{4/11-16}] = 0 \ \mu$ M. The solid arrow indicates the decrease of the 470 nm absorption band characteristic of the $[Cu^{I}(Fz)_{2}]^{3}$ complex. The dashed arrow indicates the increase of the 562 nm absorption band characteristic of the $[Fe^{II}(Fz)_{3}]^{4}$ complex, its formation is due to the presence of very small amount of Fe in the peptide batches. Each experiment has been done in triplicate. As a control the affinity constants of the Cu^I(A\beta_{11-16}) species has been measure the same day and gave consistent data with published results.

Figure S5: Kinetics of ascorbate consumption, followed by UV-visible spectroscopy at 265 nm. Asc alone (dotted black curve), Cu(II) + Asc (black curve), Cu(II) + A β_{1-16} + Asc (green curve), Cu(II) + A β_{1-16} + Asc (blue curve), Cu(II) + A β_{4-16} + Asc (blue curve). [A $\beta_{1/4/11-16}$] = 12 µM, [Cu(II)] = 10 µM, [Asc] = 100 µM, [HEPES] = 100 mM, pH 7.4.

Figure S6 : Kinetics of ascorbate consumption, followed by UV-visible spectroscopy at 265 nm. Asc + Cu(II) + $A\beta_{1.16}$ (dotted green curve), Asc + Cu(II) + $A\beta_{1.16}$ (dotted pink curve), Asc + Cu(II) + $A\beta_{4.16}$ (dotted blue curve). [$A\beta_{1/4/11-16}$] = 20 μ M, [Cu(II)] = 10 μ M, [Asc] = 100 μ M, [HEPES] = 100 mM, pH 7.4. The other curves are the curves of found in figure 3 in the main text for comparison.

Figure S7 : Kinetics of ascorbate consumption, followed by UV-visible spectroscopy at 265 nm. Cu(II) + Asc (black curve), Cu(II) + Asc + A β_{1-16} (green curve), Cu(II) + Asc + A β_{1-16} (pink curve), Cu(II) + Asc + A β_{4-16} (blue curve). [A $\beta_{1/4/11-16}$] = 12 μ M, [Cu(II)] = 10 μ M, [Asc] = 100 μ M, [HEPES] = 100 mM, pH 7.4. All the solutions were deoxygenated by bubbling argon and were added to a sealed UV-vis cuvette under a little overpressure of argon in order to keep Cu under its +I oxidation state, generated by the reduction of the Cu(II) initially present by ascorbate. The cuvette was open at 1120 s and air bubble inside.

Figure S8 : Kinetics of ascorbate consumption, followed by UV-visible spectroscopy at 265 nm. Cu(II) + $A\beta_{11-16}$ + Asc (dashed pink curve), Cu(II) + $A\beta_{4-16}$ + Asc (dashed blue curve), Cu(II) + equimolar mixture of $A\beta_{11-16}$ + Asc (pink curve), Cu(II) + equimolar mixture of $A\beta_{4-16}$ + Asc (dashed blue curve), Cu(II) + equimolar mixture of $A\beta_{1-16}$ + Asc (pink curve), Cu(II) + equimolar mixture of $A\beta_{4-16}$ and $A\beta_{1-16}$ + Asc (blue curve). [$A\beta_{1/4/11-16}$] = 12 µM, [Cu(II)] = 10 µM, [Asc] = 100 µM, [HEPES] = 100 mM, pH 7.4. The dotted lines are the data presented in Figure S6 (Cu(II) + peptides), for comparison purpose.

Figure S9 : Stopped-flow Kinetic traces of Cu coordination by the peptides $A\beta_{4-16}$ (blue) and $A\beta_{11-16}$ (pink). Representative stopped-flow traces showing UV-vis changes of the absorbance at 520 nm upon mixing Cu and $A\beta_{4-16}$ (blue) and $A\beta_{11-16}$ (pink) reflecting the formation of the complexes Cu^{II}($A\beta_{4-16}$) and Cu^{II}($A\beta_{11-16}$). Experiments were carried out in HEPES (100 mM, pH 7.4). Final Cu concentration was 500 µM and final peptide concentration was 500 µM.

Figure S10 : Kinetics of ascorbate consumption, followed by UV-visible spectroscopy at 265 nm. Asc + Cu(II) + $A\beta_{1.16}$ + $A\beta_{1.16}$ (pink curve), Asc + Cu(II) + $A\beta_{4.16}$ + $A\beta_{1.16}$ (blue curve). The arrows indicate the order and time of the different addition into the UV-vis cuvette. [$A\beta_{1/4/1-16}$] = 12 μ M, [Cu(II)] = 10 μ M, [Asc] = 100 μ M, [HEPES] = 100 mM, pH 7.4. The grey lines are data equivalent to the one presented Figure 3 (Cu(II/I) + peptides), for comparison purpose.

Figure S11 : Kinetics of ascorbate consumption, followed by UV-visible spectroscopy at 265 nm. Cu^I(A β_{1-16}) + A β_{4-16} (blue curve) and Cu^I(A β_{1-16}) + A β_{11-16} (pink curve). All the solutions were deoxygenated by bubbling argon and were added to a sealed UV-vis cuvette under a little overpressure of argon in order to keep Cu under its +I oxidation state. The Cu^I(A β_{1-16}) complex was generated *is situ* from the reduction of Cu^{II}(A β_{1-16}) by ascorbate, the N-truncated peptides were added at 600 s and the UV-vis cuvette was open to air at 950 s, air was then bubbled into the cuvette. [A $\beta_{1/4/11-16}$] = 12 µM, [Cu(II)] = 10 µM, [Asc] = 100 µM, [HEPES] = 100 mM, pH 7.4.

Figure S12 : Kinetics of ascorbate consumption, followed by UV-visible spectroscopy at 265 nm. Asc + Cu(II) (black curve), Asc + Cu(II) + A β_{1-16} (green curve), Asc + Cu(II) + A β_{1-16} (pink curve), Asc + Cu(II) + A β_{4-16} (blue curve). [A $\beta_{1/4/11-16}$] = 12 μ M, [Cu(II)] = 10 μ M, [Asc] = 500 μ M, [HEPES] = 100 mM, pH 7.4, the experiments were realized in a 2 mm path length UV-vis cuvette. The arrows indicate the time of additions.