
HAL Id: hal-03383504
https://hal.science/hal-03383504

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heterogeneous multicore SDRAM interference analysis
Alfonso Mascareñas González, Frédéric Boniol, Youcef Bouchebaba,

Jean-Loup Bussenot, Jean-Baptiste Chaudron

To cite this version:
Alfonso Mascareñas González, Frédéric Boniol, Youcef Bouchebaba, Jean-Loup Bussenot, Jean-
Baptiste Chaudron. Heterogeneous multicore SDRAM interference analysis. The 29th International
Conference on Real-Time Networks and Systems (RTNS ’21), Apr 2021, Virtual event, France. pp.12-
23. �hal-03383504�

https://hal.science/hal-03383504
https://hal.archives-ouvertes.fr

�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/28021

https://doi.org/10.1145/3453417.3453426

Mascareñas González, Alfonso and Boniol, Frédéric and Bouchebaba, Youcef and Bussenot, Jean-Loup and

Chaudron, Jean-Baptiste Heterogeneous multicore SDRAM interference analysis. (2021) In: The 29th International

Conference on Real-Time Networks and Systems (RTNS '21), 7 April 2021 - 21 April 2021 (Virtual event, France).

Heterogeneous multicore SDRAM interference analysis
Alfonso Mascareñas González
alfonso.mascarenas-gonzalez@isae-

supaero.fr
ISAE-SUPAERO, Université de

Toulouse
France

Frédéric Boniol
frederic.boniol@onera.fr

ONERA, Université de Toulouse
France

Youcef Bouchebaba
youcef.bouchebaba@onera.fr

ONERA, Université de Toulouse
France

Jean-Loup Bussenot
jean-loup.bussenot@onera.fr

ONERA, Université de Toulouse
France

Jean-Baptiste Chaudron
jean-baptiste.chaudron@isae-

supaero.fr
ISAE-SUPAERO, Université de

Toulouse
France

ABSTRACT
The purpose of this paper is to describe a set of DDR3 SDRAM
interference estimation cost functions. The arbitration system of
the SDRAM controller heavily impact the interference analysis.
In this work, three arbitration are considered, corresponding to
the situations where the accessed memory address belongs to the
same block address, different memory banks and different rows.
The aim of these functions is to estimate the instructions interfer-
ence overhead may suffer when concurrently accessing these three
logical addresses in a SDRAM saturation context. To develop these
interference expressions, specific measurement systems, micro-
benchmarks and theory on SDRAM controllers have been used.

CCS CONCEPTS
•Computer systems organization→Real-time system archi-
tecture;Real-time system specification;Real-time systemar-
chitecture.

KEYWORDS
Multicore, DDR3 SDRAM Controller, WCET, Cost functions

ACM Reference Format:
Alfonso Mascareñas González, Frédéric Boniol, Youcef Bouchebaba, Jean-
Loup Bussenot, and Jean-Baptiste Chaudron. 2021. Heterogeneous multicore
SDRAM interference analysis. In 29th International Conference on Real-Time
Networks and Systems (RTNS’2021), April 7–9, 2021, NANTES, France. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3453417.3453426

1 INTRODUCTION
The pursuit of better computing performance has been a priority
since the first processors. At the beginning, it was mainly focused

RTNS’2021, April 7–9, 2021, NANTES, France
https://doi.org/10.1145/3453417.3453426

on the increase of the clock frequency of these. Afterwards, when
the processor clock speed was sufficiently high and limited by the
barrier of temperature, a new way to increase performance was
studied. Instead of using single core processors, i.e. monocore plat-
forms, new architectures were designed to create processors with
multiple cores, i.e. multicore platform. As a consequence of parallel
computing, overall processing improved. This approach has been
used since the start of the century in general purpose systems. Nev-
ertheless, this has not been the same for safety critical real time
systems. Stacked cores in the same system share resources leading
to the rise of new challenges [21]. Inevitably interference emerge
among the different cores that make up the processor. These have to
be reduced as much as possible so that critical systems can perform
correctly in the required period of time. Many different approaches
have appeared in order to tackle this issue [16], where we can point
out task scheduling [13], cache partitioning [27], timing analysis
[15] or task and memory mapping [6]. These different approaches
are generally synergistic and can be implemented together. This
paper focuses in the latter approach, task-memory mapping on mul-
ticore platforms, which has proven to be not trivial [4]. The way
tasks are mapped can decide the overall behavior of the application
to run, e.g. low energy consumption over performance, increment
parallelism at expense of inter-core communication cost, maximize
the performance, etc... The platform heterogeneity level add extra
complexity when mapping tasks. A homogeneous platform, i.e. a
platform with processors of the same type and symmetric archi-
tecture, are less complex when it comes to behavior modeling. In
addition, it may be considered other challenges such as the level of
criticality of tasks. In a mix-criticality context, interference coming
from non-critical tasks must be considered in order to avoid exceed-
ing the imposed execution time limits of the critical ones [9]. Failing
to execute a task within the imposed time may lead to a system
failure. Therefore, the Worst Case Execution Time (WCET) must
be reduced as much as possible to ensure these timing conditions.
Strategically placing tasks on cores to minimize the interference
among each other should be a priority. As it is done for other op-
timizations in the task mapping context [4, 8], e.g. load, memory
or communication variance, a cost function dedicated to the DDR3
SDRAM interference should also be defined. To do so, in this work,
three groups of expressions are designed to describe the behavior of

https://doi.org/10.1145/3453417.3453426
https://doi.org/10.1145/3453417.3453426

RTNS’2021, April 7–9, 2021, NANTES, France Mascareñas-González, et al.

the SDRAM controller when accessing addresses of the same mem-
ory block, belonging to different banks and to different rows. These
expressions intend to explain the resulting arbitration for each
situation in a WCET context, where priority, commands bursting,
blocking and starvation take place. For elaborating these expres-
sions (Section 7), self-made micro-benchmarks are used for testing
the behavior of the cores, the DDR controller and the instructions
involved (Section 6). Besides, three measurement frameworks are
used for capturing the data which are needed for the expressions
themselves but also for checking their validity (Sections 5 and 7
respectively). Finally, the available information about the SDRAM
controller arbitration system is also used. An extensive SDRAM
overview can be found in [22], e.g. address mapping, reordering
mechanisms. For more specific details related to the controller used
in experimentation, the datasheets and manuals from the manufac-
turer are used [25]. The heterogeneous multicore platform used in
this work is the Texas Instruments (TI) SOC Keystone II [26].

2 RELATEDWORK
Multicore interference analysis. Multicore interference analy-
sis is an extensive topic which has been the center of the attention
since real-time applications intended to be implemented on these
platforms. Interference may occur in many different places of the
platform as a result of resource sharing, e.g. shared cache, main
memory. Therefore, interference identification [3] and quantifica-
tion are key aspects. To achieve the latter, simple and complex tests
are used. Micro-benchmarks [18, 20] tend to focus on a specific fea-
ture, e.g. how loads or stores affect a certain memory. Benchmarks
have a wider view, stressing multiple features at the same time.
Report [5] evaluates how interference impact tasks execution time
on Linux and RTEMS on ESA’s Next Generation MicroProcessor:
it describes (1) a set of micro-benchmarks, e.g. pointer chasing for
load execution time measurement in different memory hierarchy
levels, and (2) benchmarks, e.g. EEMBC AutoBench. Another impor-
tant aspect is how measurements are retrieved from the platform.
This can be done via hardware performance counters or relying
on high level simulation platforms. Work [7] introduces a new set
of micro-benchmarks to explore the different memory hierarchy
levels and proposes new metrics for quantifying the qualitative
aspects of memory behavior. To overcome the limitation of their
hardware performance counters it implements a profiling tool using
the VALGRIND framework (Simulation Framework). A measure-
ment may often include other undesired factors, specially when
using an operating system. Paper [12] describes how to create a
controlled environment by (1) isolating hardware and operating sys-
tem elements that affect the reliability (frequency throttling, thread
migration, etc), and (2) applying statistics to remove outliers.

SDRAM devices analysis. Paper [1] proposes a DDR2 mem-
ory controller design that is able to upper-bound the latency. For
that purpose, memory access groups are defined and the arbiter
called Credit-Controlled Static-Priority is used. The former con-
sists of read, write and refreshing groups whose efficiency is com-
puted. The latter is an arbiter made up of a rate regulator and a
static-priority scheduler. Similarly, paper [19] describes a DDR2
SDRAM memory controller for obtaining predictable access times.
It offers a more general solution with respect to [1] as it can be

applied to any kind of JEDEC [14] compliant DDRx SDRAM de-
vices. As well, it does not require to set the tasks priorities or
knowing the bandwidth requirements. Besides, their equations are
designed to support mix-criticality. [10] offers great descriptions
of the SDRAM features and memory controllers functioning and
analyzes the SDRAM controller architectures thought for real-time
applications. The proposed memory controllers are analyzed, e.g.
[19], through a benchmark suite (EEMBC) and a simulation engine.
WCET and latency studies are made as function of the benchmarks,
number of requestors or data bus width. Paper [11] introduces a
new perspective: It states that DDR DRAM are not suitable for hard
real-time systems because of (1) highly variable access latencies due
to various factors, e.g. access patterns, and (2) overly pessimistic
latency bounds. Therefore, their paper focuses on the analysis of the
Reduced Latency DRAM (RLDRAM) type of DRAM which seems
(according do them) much more suitable for real-time predictability.
The analysis is based on a set of mathematical descriptions and
formulas as well as some measurements made in the simulation
engine MacSim 1.

Contribution. This work offers a hybrid approach combining
theoretical and experimental aspects to tackle DDR3 SDRAM in-
terference based on the design of cost functions on a Commercial
On The Shelf (COTS) platform. These can estimate the worst case
impact that requests from a specific core suffer from others when
accessing the DDR3. The functions focus on the SDRAM device
functioning, the memory controller scheduling and the heterogene-
ity of the multicore platform. Instead of proposing new controllers
to improve SDRAM predictability like in [1], [19] or those in [10],
this paper analyzes the behavior of the platform memory controller
and describes it as a set of mathematical cost functions which are
validated through measurements. To do so, performance counters
and time stamps are used like in [17] in contrast to [7] and [12]
where simulators are also employed. Moreover, the cost model-
ing includes the heterogeneity effects of the platform, considering
the processors execution time difference and the core packaging
asymmetry.

3 PLATFORM
3.1 Multicore platform architecture
The heterogeneous multicore platform used in this paper is the
Keystone II model TCI6636K2H [26] integrated in the EValuation
Module (EVM) TCIEVMK2H. The main features of this Keystone II
version (see Figure 1) are the following: (I) Four ARM Cortex A15
(architecture version 7), with an out-of-order execution pipeline,
which together make up the ARM pack [2]. We can find an individ-
ual Level 1 instruction cache (L1P) and Level 1 data cache (L1D) of
32KB size each. The Level 2 cache (L2) of 4MB size is shared among
the four cores. (II) Eight Texas Instruments C66x DSPs [23], made
up of two data paths each. The L1D and L1P have also a 32KB capac-
ity each. However, the 1MB L2 cache are dedicated for each core, i.e.
not shared. (III) A Multicore Shared Memory Controller (MSMC) to
where the 12 cores are connected [24]. The ARM pack, i.e. the four
ARM cores, are connected to a single slave port while the DSPs
have their own. A 6MB Multicore Shared Memory (MSM) SRAM
can be found inside the controller. (IV) A 2GB DDR3 memory.
1https://github.com/gthparch/macsim

https://github.com/gthparch/macsim

Heterogeneous multicore SDRAM interference analysis RTNS’2021, April 7–9, 2021, NANTES, France

Figure 1: Keystone II TCI6636K2H platform overview

3.2 External Memory Controller Interface
The TI DDR3 memory controller [25] is used on the Keystone II
to interface with SDRAM devices. These devices are based on the
JEDEC standard JESD79-3E [14], which describes the main speci-
fications that define a DDR3 memory. A vast number of features
are explained, being key aspects the functional description and
commands operation. The DDR3 memory can be seen as a set of
states where the commands are in charge of moving from one to
another. In this work, the most important commands are the Active
(ACT), which opens a row for a given bank, Precharge (PRE), which
deactivates an opened row for a particular bank, Read (RD) for
loading data andWrite (WR) for storing data. The state transition
time vary depending on the current state and the applied command.
Two important transition timings are those from the RD/WR turn-
around and the PRE/ACT sequence. It is crucial to note that the
RD and WR operations, which are burst oriented, need to wait for
an amount of time given by CAS and CWL respectively (see Table
1). This is the elapsed time since the command execution and the
data availability. The data arrives as a burst of length 8 starting
from the targeted address. The JEDEC specification also defines the
addressing. The SDRAM is a 3-dimensional array made up of a set
of banks which are in turn composed of columns and rows. Each
bank has a buffer attached to it, where the last accessed row for
that bank is stored and manipulated. The targeted physical address
bits define to which column, row and bank it is being accessed, e.g.
bits 3-11 of address 0x80014048 define the column.

The TI controller supports different features configuration, e.g.
banks, page size, timings. The most important parameters for the
interference cost functions detailed in Section 7 are summarized in
Table 1. Figure 2 depicts the controller as a set of FIFOs with specific
sizes each of them, e.g. Command FIFO with a depth of 16, Write
Data FIFO with 20, Read Command FIFO with 28 or the SDRAM
Read Data FIFO with 28. The Write Data FIFO stores the data to
store into the SDRAM memory. The Read Command FIFO stores
the read transactions to be issued to the respective requestors. The
SDRAM Read Data FIFO contains the values loaded from the mem-
ory to be delivered. The Command FIFO stores the commands from
the requestors to be issued to the SDRAM. The FIFO elements are
reordered by a command scheduler to optimize the system perfor-
mance according to some rules. Among these it can be pointed out
(1) the reads prioritization over thewrites as the former tends to stall

Figure 2: DDR3 Memory Controller Block Diagram [25]

the processors, (2) the execution of separated size-defined blocks
of write and read commands to reduce the turnaround penalty fre-
quency and (3) the execution of already opened rows commands
before opening new ones to reduce the PRE/ACT commands execu-
tion frequency. Although not explicitly said by TI, this last rule is
similar to an open-page policy. Nevertheless, the put into practice
of the three previous optimizations are conditioned by the physical
addresses being aimed. The location where transactions are point-
ing to can leave us with three arbitration systems that may permit
the application or not of the rules mentioned before. The resultant
arbitrations, inferred via theory and measurements, are:

• Fixed block address: Incoming transactions operate within
the same memory block address. The arbitration works like
a classical First In First Out queue (first come, first served),
neglecting any command priority associated to read/write
requests. This forces the command scheduler to block any
read command (load instruction) in favor of any older write
command (store instruction). Therefore, any read command,
which normally has a higher priority (see priorities in [25]),
waits until the older write commands of the Command FIFO
have been executed. Thus, this arbitration doesn’t use any
of the optimizations recently explained.

• Bank switching: Each arriving transaction aims to a dif-
ferent SDRAM bank, allowing to interleave among them
without penalties. The arbitration works similarly to a pre-
emptive priority queue, where lower priority commands
can be interrupted by higher ones. Therefore, a read com-
mand has priority over the writes (rule 1) unless a starvation
mechanism is triggered, e.g. priority elevation. Furthermore,
command bursts are applied (rule 2). During bursts, a non-
preemptive priority queue policy is applied instead.

• Row switching: Each transaction destination points to a
different SDRAM row within the same bank. The arbitration
system works accordingly to optimization rule 3 unless a
priority elevation from a command in another row is pro-
duced. In this case, the row switch is forced. Therefore, the
arbitration schedules the Command FIFO in line with a non-
preemptive priority policy.

RTNS’2021, April 7–9, 2021, NANTES, France Mascareñas-González, et al.

Figure 3: Command FIFO enqueuing behavior

Table 1: Typical Controller Features - 800 MHz Controller

Feature Value
Number of ranks 1 rank
Number of banks 8 banks
Page size 10 bits
SDRAM width 64 bits
WR to RD 5 cycles
RD to WR 7 cycles
Column Address Strobe (CAS) latency 11 cycles
CAS Write Latency (CWL) 8 cycles
PRE to ACT 11 cycles
ACT to RD/WR command 11 cycles
RD to PRE delay 5 cycles

The way the Command FIFO entries are enqueued is another
key factor of the controller behavior. It was seen through experi-
mentation that MSMC core pack slave requests were equally added
(fair queuing) to the FIFO. However, it was also observed that the
read/write commands ratio remained untouched when having a
fixed number of load requestors and a variable number of store re-
questors. This suggests that either the read enqueuing has priority
or read/write entries addition to the Command FIFO alternates, i.e.
after a write, a read follows and vice versa. Figure 3 depicts the
experimented behavior. Situation 1 shows two MSMC slaves (ARM
pack plus one DSP) interfacing with the DDR3 while Situation 2
considers three slaves (ARM pack plus two DSPs). Internally, the
FIFO changes but the total reads/writes proportion doesn’t.

3.3 Considerations
The measurements, expressions and results presented in this paper
have been obtained under some specific criteria:

• No caches: All the caches except for the instruction ones,
i.e. L2 and L1D, have been disabled. The aim is to ease the
study of the DDR3 behavior by avoiding data caching or
cache maintenance.

• Bare-metal: The work has been carried out without a real
time operating system in order to have more control of the
data traffic among cores as well as the registers configuration.

• Compiler optimization: The compilers optimizations have
been disabled or reduced to CPU register level to assure that
the micro-benchmarks execute as expected (Section 6).

• Single thread: Each core executes a single thread.
• Arbitration: Priority and starvation counters are left as
default, where all cores are equally treated.

• Burst and Saturation: A continuous flow of transactions
able to saturate DDR3 FIFOs is assumed.

• Instructions: Only load and store instructions of 32 bits
size are involved. Instructions are not mixed for the same
core, i.e. either stores or loads are executed but not both.

4 NOTATIONS
Along the paper there are some used terms according to the work-
ing context that should be explained. The processors instructions
considered are the Load (Ld) and the Store (Str). Let us note:

Instruction = {store, load}

Our interference analysis focuses on transactions addressing
the memory. The sources, i.e. the physical entities that start the
transactions, are restricted to the platform cores, i.e. ARMs and
DSPs:

Source = {ARM0, . . . ,ARM3,DSP0, . . . ,DSP7}

The destination of the transactions is the memory region aimed
by the source. Although there are several memories in the Key-
stone II, only the DDR3 SDRAM is used. Inside this memory, we
distinguish among banks and rows.

Destinations = {DDR3_banki_row j | (i = 0..7, j = 0..7)}

A transaction is defined as the execution of an instruction, from
a source to a destination. Let us note tr a transaction defined by:

tr =< inst , src,dest >

where inst ∈ Instructions , src ∈ Sources and dest ∈ Destinations .
In the following tr .inst will denote the instruction of tr , tr .src the
source of tr , and tr .dest the destination of tr .

In this article, we consider that the set of all transactions is given.
Let us note:

Transactions = {tr0, . . . , trN }

In the next sections, the transaction from who the data is ana-
lyzed is called transaction under consideration or under analysis
which will often be identified with an apostrophe tr ′.

The execution time of a burst of N transactions is what the
measurement frameworks records (see Figure 4). The time it takes
for a single transaction to be completed is derived from the previous
recording. We also consider that the execution time in isolation (i.e.
without interference) of each transaction is given by the function:

∆(tr) = Execution time of tr in isolation

Heterogeneous multicore SDRAM interference analysis RTNS’2021, April 7–9, 2021, NANTES, France

5 MEASUREMENT FRAMEWORK
5.1 ARM - Performance Monitor Unit
The measurement framework consists in using the dedicated per-
formance monitor hardware of the ARM, more specifically the
performance counters. In this ARM version, there are a cycle exe-
cution specific counter and 6 general counters where we can set
the event to study from a list (see [2]). In order to obtain the data,
a Start-Stop pattern is used. The main advantage of this pattern
with respect to the Start-Read (see its set up in [17]) is that the
performance counters can be run in parallel for the same execution
(7 events for this ARM version) without introducing extra overhead.
Therefore, data correlations can be established for the same exe-
cution and behavior analysis is eased. This pattern consists in: (1)
Selection of the counter, (2) Selection of the event to keep track of,
(3) Reset counters value, (4) Enable counters, (5) Execute tasks, (6)
Disable counters, (7) Read counters and (8) Check overflows. Steps
1 and 2 are done for the 6 general counters once. Steps 3 to 8 can
be looped as many times as performance data it is wanted to take
from the task.

5.2 DSP - Time Stamp Counter
The DSPs have a time stamp register [23] made up of two 32-bit
registers (TSCL and TSCH), which can be used for studying the
execution time of a task. To start the counter a first write to TSCL
is done. To obtain the correct instant of time, first the TSCL value
must be retrieved, triggering the copy of the counter upper-half to
TSCH. In this way, the 32 MSB can be safely read without the risk
of being incremented. Afterwards, a 32-bit shift has to be done to
the TSCH. The implementation is shown in Algorithm 1.

Algorithm 1 DSP measurement framework

TSCL = 0 ; / / I n i t i a t e c o u n t e r
(t1_L , t1_H) = a t om i c _ r e a d (TSCL , TSCH)
t a s k _ e x e c u t i o n () ; / / E x e c u t e t a s k
(t2_L , t2_H) = a t om i c _ r e a d (TSCL , TSCH)
r e s u l t = ((t1_H < <32) + t 1_L) − ((t2_H < <32) + t 2_L) ;

5.3 DDR3 Memory Controller - Performance
Counters

The TI Keystone II DDR3 controller [25] has three performance
counters that are indispensable for understanding the behavior
of data management inside the controller. One of these counters
(PERF_CNT_TIM) is fixed as the controller time counter. The other
two (PERF_CNT_1 and PERF_CNT_2) accept an event chosen from
a list, e.g. number of RDs, WRs or commands priority elevations.
Some of these events can be studied from a system point of view or
filtered by master (MSTID) or memory regions (REGION_SEL). In
this work, these performance counters are used for analyzing the
Command FIFO enqueuing, saturation, arbitrations (see Subsection
3.2) and priority elevations due to starvation.

6 MICRO-BENCHMARKS
Several micro-benchmarks have been designed in order to analyze
and measure different data about the interference impact on the
DDR3 and its behavior. The load and the store micro-benchmarks

are the most important for the development of the interference cost
functions. Both micro-benchmarks are based on the N sequential
execution of the aimed instruction, i.e. store or load. The N value is
varied so that we can see the execution cycles evolve. By doing so,
we achieve two things: (1) to prorate the measurement framework
and the CPUs registers initialization overhead until they are consid-
ered negligible and (2) to obtain the execution times of the targeted
instructions for a core type when accessing the DDR3. To ensure
that the micro-benchmark is working as expected, i.e. only stores or
loads are being executed and nothing more, this must be designed
in a special way like described in [5]. Instead of using loops to easily
manage the executed number of instructions, these must be written
N times one after another. Otherwise, the instructions belonging to
the loop would be executed once per instruction.

In the case of the load micro-benchmark, we have to previously
define the address from where we are loading. This one may vary
depending on the location of the DDR3. For our Keystone II, this
one ranges from the 0x80000000 to 0xFFFFFFFF. As this value is
stored in the CPU register, we must ensure that it is not overwritten
with other values. The store instruction requires, apart from the des-
tination address, a CPU register containing the value to store. The
ARM micro-benchmark for the store instruction implementation is
shown in Algorithm 2.

Algorithm 2 Store micro-benchmark for ARM

/ / Save v a l u e t o s t o r e i n r e g i s t e r
__asm__ (" mov r2 , %0" : "= r " (v a l u e)) ;
/ / S t o r e t a r g e t a d d r e s s i n r e g i s t e r
__asm__ (" mov r1 , %0" : "= r " (a d d r e s s)) ;
/ / S t o r e v a l u e t o t a r g e t N t im e s
__asm__ _ _ v o l a t i l e (" s t r r2 , [r 1] ") ;
. . .
__asm__ _ _ v o l a t i l e (" s t r r2 , [r 1] ") ;
/ / Data S y n c h r o n i z a t i o n B a r r i e r
__asm__ _ _ v o l a t i l e (" d sb ") ;

Optimally speaking, the load and store instructions code should
be written in assembly to avoid any inadequate translation by the
compiler. If not, the compiler optimization level has to be properly
set so that instructions reordering doesn’t take place. Anyway, the
volatile modifier must be added to assure that the code executes as
is. Before running the micro-benchmark, it should be considered to
open or close the DDR3 row it is aimed at.

Figure 4 depicts the average execution cycles of stores and loads
as function of N for the DSP andARM. Themeasurements have been
taken using the corresponding frameworks described in Section
5. At the beginning both execution cycles drop (not visible for the
loads) due to the overhead prorate. The maximum value of both
instructions tends to decrease as N gets bigger. To check the status
of the SDRAM controller, e.g. command FIFO saturation, the DDR3
controller measurement framework was used. Some results are
shown in Figure 5 as cycles per instructions. The time the FIFO
is full when executing stores decreases as function of N tending
to zero, meaning that in isolation achieving the FIFO saturation is
very rare. Note that the Command FIFO is never full when loads are
taking place because at processor pipeline level a limited number
of loads can be concurrently executed. The pending commands per

RTNS’2021, April 7–9, 2021, NANTES, France Mascareñas-González, et al.

Figure 4: DSP/ARM average execution cycles per instruction
as function of N. DDR3 address accessed: 0x88012000

Figure 5: DSP SDRAM command analysis as function of N.
DDR3 address accessed: 0x88012000

instruction, i.e. the time a command has waited before being served,
also decreases but stabilizes at the end.

The results provided by Figure 4 define the value of ∆(tr) in
isolation, which is used by the interference cost functions. The
metric for the value selection depends on the user. In a concurrency
context, if it is assumed that all the instructions involved do always
their worst time, then the value for ∆(tr ′) and ∆(tr) should be
the maximum, else the average. The most pessimistic case would
be to use the maximum for ∆(tr ′) and the average for ∆(tr) (the
minimum is considered as unusual). Furthermore, for choosing
the transaction value it is required to know the total number of
instructions N that are running. The interference cost equations
validation is done with a tr’ running a micro-benchmark with 128
instructions, i.e. N = 128, and the interfering tr running an endless
micro-benchmark, i.e. N ≥ 1024. Table 2 shows the considered
transaction timing values. The execution time values chosen are for
N = 128 and estimations for N → ∞. The latter is done by taking
more measurements with a higher N (up to N = 4096) and then
looking at the figures tendency. The first row data is only used
in isolation or low interference conditions. The latter situation is
found when dealing only with loads as their larger execution time
makes difficult to have several RD commands in the Command
FIFO and hence produce interference, e.g. tr(LD, DSP, DDR) || tr(LD,
DSP, DDR). The second row is used when concurrent transactions
always interfere with each other, e.g. tr(STR, DSP, DDR) || tr(STR,
DSP, DDR) or tr(STR, DSP, DDR) and tr(LD, DSP, DDR). In this last

Table 2: WCET of transaction (∆(tr)) for 2000 measurements

Max Ld, DSP Str, DSP Ld, ARM Str, ARM
N = 128 122.1 13.1 35.7 17.27
N → ∞ 110.57 8.21 27.70 8.36

situation, the ∆(tr ′) behaves like N → ∞, where the max-average
difference is minimal. All this is checked using the DDR3 controller
performance counters.

7 INTERFERENCE IMPACT
7.1 Impact calculation
The context where the interference impact calculation takes place is
where the DDR3 controller is saturated by transactions from differ-
ent sources. The same type of interfering transactions is assumed to
try to access the controller continuously one after another. In order
to determine the most affected transaction for a given scenario we
need to analyze how each of them is affected by the others. This
implies analyzing the tr’ according to its composition i.e. its instruc-
tion (Ld/Str), source (ARM/DSP) and destination (DDR3), and the
data arbitration rules for the given scenario. To carry out this task,
we rely on the design of mathematical expressions that can describe
the overall functioning of the DDR3 controller and more specifically
its Command FIFO. This FIFO behaves as a deterministic queue
(D/D/1) and its behavior is ruled by the scheduling policy applied
by the arbitration (see Subsection 3.2). The arrival rate depends
on the time of transaction (Table 2) and the queue saturation. The
service rate is conditioned by the previously executed command,
the actual command and the effective data and command burst size.
Independently of the controller arbitration, there are other aspects
that affect the cost function design. The next are considered:

• Turnaround Time: Total time that it takes from switching
from a read command to a write command (RTWC) and vice
versa (WTRC). The delay for a single switch is given by the
expressions T_RTW + 1 and T_WTR + 1 + CAS respectively
(provided by TI [25])2. The designed expression for denoting
the Turnaround Time Cost (TTC) is Equation 1.

TTC =

{
RTWC + WTRC if N & M > 0.
0 otherwise.

(1)

Where N and M are the number of transactions with loads
and stores working concurrently (tr’ included).

• Platform Heterogeneity: In heterogeneous platforms, it
is dealt with different type of processors. Their internal ar-
chitecture differ and so their performance. Therefore, it is
necessary to handle the possible DDR3 access time difference
of these (ARMs and DSPs), especially for load instructions
(store execution times are similar). The Average Heterogene-
ity Rate (AHR) is implemented to sort out this execution
difference. AHR is shown in Equation 2.

AHR (tr, I) =min
©­­­­«

∆(tr)
Avд tri .instr = I

tri , tr
(∆(tri))

, 1
ª®®®®¬

(2)

2TI nomenclature for it is T_WTR + 1 + CL, being CL the CAS latency.

Heterogeneous multicore SDRAM interference analysis RTNS’2021, April 7–9, 2021, NANTES, France

Furthermore, the platform asymmetry must be considered.
The ARMs behave as a single pack due to its unified L2
controller and pack slave in the MSMC unlike the DSPs. This
causes transactions coming from ARMs to suffer from extra
interference when there are other ARMs transactions. This
also affects the Command FIFO enqueuing, where the DSPs
can request concurrently while ARMs jsut can one at a time.

• Number of Commands in Line: The Generalized Number
of Commands in Line (GNCL) is a function that returns the
number of interfering transactions (aggressors) that the Com-
mand FIFO takes for a given transaction used as reference.
This gives information about the number of interfering com-
mands executing per tr command. This quantity is computed
with Equation 3.

GNCL (tr, I) =min
©­­­«

∑
tri .instr = I

t ri , tr

∆(tr)
∆(tri)

, CFS
ª®®®¬ (3)

The parameter tr denotes a transaction (tri or tr’) and I the
instruction type used by tri . Therefore, if I is a store, the in-
terfering transactions involved are those with stores and vice
versa. If I is a store and a load then both are considered. The
maximum interfering transactions that a given transaction
waits for before it is served is limited by the Command FIFO
Size (CFS), i.e. 16 transactions. Hence, if the GNCL value
is higher it should be cast to the FIFO size. The effect that
the common ARM slave port has on Equation 3 vary. In this
work, the impact is computed through experimentation, e.g.
for a tr (Ld,ARM,DDR3) interfered by tri (Str ,ARM,DDR3)
the value of ∆(tr) is updated to ∆(tr) + ∆(tri). Its effects
should be extensively analyzed in a future work.
The GNCL function alone is not sufficient to explain the
enqueuing behavior of the Command FIFO. The Scheduled
GNCL (SGNCL), shown in Equation 4, describes this conduct
according to the explanations in Subsection 3.2. The first line
returns the number of identical commands than the selected
tr executing before it. The second line does the same but
with commands of different type.

SGNCL(tr, I1, I2) =min[GNCL(tr, I1)+
(GNCL(tr, I1) + 1) ∗ AHR(tr, I2) , CFS]

(4)

Where tr is the reference transaction. I1 and I2 are two pa-
rameters that indicate the instruction types to use, i.e. store
or load. I1 contains the same instruction type as tr while
I2 , I1, e.g. SGNCL(tr’, Ld, Str) being tr’.instr equal to Ld.

• Column Address Strobe latency: It is the delay time after
the execution of the RD/WR command and themomentwhen
data is actually available. The RD andWR latencies are set in
the CAS and CWL fields respectively (see Table 1). Keystone
II register: SDRAM Configuration Register (SDCFG).

• SDRAM Timing Registers: These values configure the
DDR3 controller to match the parameters of the DDR3 device
and, therefore, setting the transitions cost, e.g. WR to RD
delay (T_WTR), RD to WR delay (T_RTW) or PRE to ACT.
Some of these values are found in Table 1 or fully in [25].
Keystone II registers: SDTIM1, SDTIM2, SDTIM3, SDTIM4.

Subsections 7.1.1, 7.1.2 and 7.1.3 describe the interfering cost
functions, whose quantity goes as function of the number of arbi-
trations (fixed block address, bank switching and row switching)
and commands (RD and WR), making a total of 6 functions.

7.1.1 Fixed block address. The key point of this situation is the
arbitration, which implies no read/write reordering inside the Com-
mand FIFO, and hence prioritizing the executing of the older instruc-
tions first, i.e. it behaves as a classical First In First Out. Therefore,
waiting for the execution of other commands turns to be a compul-
sory source of interference independently of the command type.

Along with Equation 4, two other equations are defined. R1 and
R2 (Equations 5 and 6) describe the percentage of transactions
with stores and loads that may be inside the Command FIFO when
the transaction tr’ arrives. Although transactions with loads takes
much longer than the stores and hence its presence in the FIFO
may be outnumbered by stores, its interference impact weight is
fairly represented by applying these two equations.

R1(tr, I1, I2) =
SGNCL(tr, I1, I2) − GNCL(tr, I1)

SGNCL(tr, I1, I2)
(5)

R2(tr, I1, I2) = 1 − R1(tr, I1, I2) =
GNCL(tr, I1)

SGNCL(tr, I1, I2))
(6)

The expressions that explain the behavior of those transactions
that point to the same destination address are Equations 7 and 8.
The two first lines of both equations describe the time cost due to
the arbitration and the third represents the turnaround cost. The
latter is always present when the tr’ operation is a load owing to
the faster memory access speed of the store (check Figure 4). The
turnaround cost produced among the interfering transactions them-
selves and which may indirectly affect tr’ is considered inmin(n,m)

or n, followed by the turnaround impact. n and m represent the
number of interfering transactions (aggressors) involved in the in-
terference scenario with loads and stores instructions respectively.
AHR returns the average instruction periodicity of the interfering
transactions. Note that C(tr ′) is the cost function.

If the tr’ has a load as instruction:
C(tr ′) =R1(tr ′, Ld, Str) ∗ SGNCL(tr ′, Ld, Str) ∗ CW L +

R2(tr ′, Ld, Str) ∗ SGNCL(tr ′, Ld, Str) ∗ CAS +

TTC ∗ (min(1,m) + min(n,m) ∗ AHR(tr ′, Ld))

(7)

If the tr’ has a store as instruction:
C(tr ′) =R2(tr ′, Str, Ld) ∗ SGNCL(tr ′, Str, Ld) ∗ CW L +

R1(tr ′, Str, Ld) ∗ SGNCL(tr ′, Str, Ld) ∗ CAS +

n ∗ AHR(tr ′, Ld) ∗ TTC

(8)

7.1.2 Bank switching. When transactions point to different banks,
the arbitration is based on the default priority levels of the com-
mands, where the read commands go first unless a burst is ongoing.
The command burst size of the store and load play an important
role in the arbitration. It may happen that the read commands gets
blocked or forced to constantly switch to the write commands. This
occurs if the burst size value of the former is very low compared
to the size of the latter while having a considerable read command
traffic. The burst size is set in the Read/Write Execution Threshold
(RWET) register. The default value used by this controller is 5 for
the reads and 3 for the writes, which avoids the described problem.

Since bursts take place, the tr’ may stack and execute one af-
ter another (limited by RWET). The stack of load commands are

RTNS’2021, April 7–9, 2021, NANTES, France Mascareñas-González, et al.

quite volatile, depending on previous executions due to is relatively
lower execution frequency, i.e. the execution of other commands
make time for tr’ to stack. This is contemplated by the Load Com-
mand Burst Size (LCBS) function. LCBS returns the number of load
commands that might have been stacked inside the Command FIFO.

LCBS (tr) =max
(
1,
TTC +WRTH ∗ CW L + GNCL(tr, Ld) ∗ CAS

∆(tr)

)
Where WRTH is the threshold for write command bursts. The
bursts also happen for the interfering transactions, provoking the
commands to stack in groups of a size given by RWET. Equation
Write Command Burst Cost (WCBC) and Read Command Burst Cost
(RCBC) return the cost produced from write and read command
stacking. The worst case for tr’ would be that in its arrival a burst
has just started and thus suffering a temporal block. From the
point of view of a read command, the arbitration would temporally
behave as in the Fixed Block Address situation, forcing to wait for
the WR CAS latency (CWL). The number of commands to wait
for is determined by the threshold value WRTH, i.e. the command
write burst size. If the interfering burst involves read commands,
owing to their larger execution periodicity (see Figure 4), jointly
with their higher priority and the default burst size, it would be
rare to stack the same transaction more than once. In consequence,
it is assumed that the cost is the RD CAS latency itself by the times
it enters the Command FIFO with respect to tr’.

WCBC =

{
WRTH ∗ CW L if m > 0
0 otherwise

RCBC (tr) =

{
GNCL(tr, Ld) ∗ CAS if n > 0
0 otherwise

Where n andm are the number of interfering transactions with load
and store instructions respectively. Expressions 9 and 10 describe
the behavior of the interference impact in a bank switching context.
It is assumed that each tr, belongs to a different bank. For Equation 9,
the first line represents the reordering cost due to a higher priority.
The second line computes the cost due to command bursts per tr’.
The LCBS is used for computing from the point of view of a single tr’
rather from the point of view of tr’ bursts. The load burst is already
assumed to be made of a single command. The last line belongs to
the turnaround cost. In Equation 10, the first line represents the cost
coming from the execution of write commands. The second line
considers the cost from the execution of load commands, command
reordering and turnaround.

If the tr’ instruction is a load:
C(tr ′) =Reorder inд +

LCBS (tr ′)−1 ∗ WCBC + RCBC(tr ′)+

TTC ∗ (LCBS (tr ′)−1 + h)

(9)

If the tr’ instruction is a store:
C(tr ′) =m ∗ CW L +

n ∗ AHR(tr ′, Ld) ∗ (CAS + Reorder inд + TTC)
(10)

Where Reordering is the cost coming from the rescheduling forced
by a higher priority command when entering the FIFO, e.g. read
command. This value is estimated via measurements. h is a boolean
whose value is one when tr’(Ld, DSP, DDR3) and zero when tr’(Ld,
ARM, DDR3). This differentiation is due to the command stacking
capacity of each core type resulting from the ∆(tr) difference. It
is noticed that the controller behaves as if a read command from
an ARM executes together with one from a DSP (if any) but not

vice versa. This is appreciated when using the DDR3 controller
performance counters.

7.1.3 Row switching. The memory controller avoids switching be-
tween rows for performance purposes. This arbitration can lead to
temporal transactions starvation from other rows which is avoided
by the priority raise counter. The controller manages this counter
in the PR_OLD_COUNT field of the VBUSM_CONFIG register. The
number of cycles to wait until the priority is raised is given by the
formula: Priority Elevation Cycles (PEC) = PR_OLD_COUNT * 16
clocks, resulting in 4096 in our case.

Each time there is a row switch, there are some associated de-
lays (RD/WR to PRE, PRE to ACT and ACT to RD/WR). These are
computed by the equation Row Switch Cost (RSC).

RSC =RDW R2PRE + PRE2ACT + ACT 2RDW R

To compute the execution cycles of all the commands for a specific
row, the actual commands in the Command FIFO and those that
may enter during the execution these are considered. The equation
that returns this value is the Row Transaction Exhausting Ratio
(RTER), where the transaction whose length is to analyze is passed
as an argument. This can be any tr from the Transactions set.

RT ER(tr) =max ©­«
N th∑
n=1

CFS
(GNCL(tr, Str, Ld) + 1)n

, 1ª®¬
The higher the value used for N th the higher the accuracy. In this
work a value of 3 has been used.
The CAS and CWL latency from the interfering commands must be
included as these impact ∆(tr ′). Thus, the RTER Cost (RTERC) is
defined. This equation assumes the worst case and hence that the
tr’ is always facing the fastest interfering transaction from the set.

RT ERC = Lat ∗ min(RT ER(trmin), LOOC)

where trmin = tri s .t . ∆(tri) =min tr j , tr ′ (∆(tr j))

LOOC stands for Load Out of Order Capacity, which indicates
the maximum number of loads the processor can execute without
stalling. The value of the latency Lat equals CWL (8 cycles) if trmin
belongs to a store or CAS (11 cycles) if it belongs to a load. When
there is a single store interfering, it may happen that transactions
with loads get starved until a priority elevation is triggered. If this
happens, it is considered that RTERC = 2 ∗ PEC/LOOC .

It is assumed a scenario where each transaction points to a dif-
ferent row of the same bank. Equations 11 and 12 explain the arbi-
tration that rules row switching from a load and store perspective.
Equation 11 first line describes the cost of waiting for the fastest
transaction for a given row to be depleted and the row switching
cost from interfering transactions and tr’ itself. RTER(tr ′)−1 trans-
forms the row cost to a single tr’ cost, i.e. cost per tr’. The second
line returns the row switching cost caused by interfering loads,
i.e. the row switch cost and operation latency. Equation 12 shows
the write command perspective. The first line computes the cost
of rows with write command bursts, i.e. the row switching cost
per tr’ and operation latency. The second line computes the row
switching and operation delay caused by read commands, which
are produced once per write transaction.

If the tr’ instruction is a load:
C(tr ′) =RSC + RT ER(tr ′)−1 ∗ (RT ERC +m ∗ RSC)+

RT ER(tr ′)−1 ∗ n ∗ (RSC + CAS)
(11)

Heterogeneous multicore SDRAM interference analysis RTNS’2021, April 7–9, 2021, NANTES, France

If the tr’ instruction is a store:

C(tr ′) = m ∗ (RT ER(tr ′)−1 ∗ RSC + CW L)+

n ∗ m ∗ RT ER(tr ′)−1 ∗ (RSC + AHR(tr (Ld), Ld) ∗ CAS)
(12)

Being n and m the number of interfering transactions with load
and store instructions respectively.

7.2 Testing
The validity of Expressions 7 to 12 are checked with the measure-
ments obtained by applying in parallel the micro-benchmarks ex-
plained in Section 6. In order to have a direct comparison, the
different interference cost function estimations must be multiplied
by a frequency conversion factor as the SDRAM controller and
the ARMs/DSPs clock frequency differs one from each other. The
result is then added to the execution time of the instruction be-
longing to tr’ in isolation conditions, i.e. the theoretical interfer-
ence impact is added to the measured tr’ in isolation. Hence, the
test expression remains as follows: Inter f ered∆(tr ′) = ∆(tr ′) +
f requency conversion ∗ C(tr ′), where the conversion is 1.5 for the
actual configuration. The validation tests consist of three sets of
experiments where the impact to ∆(tr ′) is analyzed as function of
the number of aggressors, i.e. the activation of interfering transac-
tions. The experiments test the interference impact on transactions
of type tr’(LD, DSP, DDR), tr’(LD, ARM, DDR) and tr’(STR, DSP,
DDR). These scenarios are carried out for each of the three SDRAM
memory situations so that the resultant behaviors can be directly
compared. Subsequently, it is evaluated how well the interference
cost functions perform.

7.2.1 Fixed block address. Figure 6 shows how the execution time
per instruction (Y axis) of a transaction of loads from a DSP is
affected when involving other transaction also coming from DSPs
(X axis). In this specific scenario, the platform would behave as if it
were homogeneous. The figure depicts how the interference cost,
shown in orange, upper bounds the the worst case of the measured
data in grey. This means that Equation 7 works for this scenario
despite that it overestimates the results. The reason may be the
pessimistic assumption for the tr’ turnaround. It is assumed that the
RD toWR transition latency affects the next tr’ RD command which
may not be necessarily true for the actual DSP configuration. In
Figure 7, the loads from an ARM are analyzed. It can be seen that the
increments in time are done correctly although the last experiment
(DSP: 2 Strs, 2 Lds; ARM: 1 Str) is a bit more pessimistic than the
other experiments. This fact, which should be checked as a future
improvement, is maybe due to a not fully accurate interpretation
of the platform heterogeneity. Besides, the first experiment (DSP: 1
Ld) theoretical value is optimistic. The interference impact caused
by the DSP is well modeled with respect to the isolated scenario
(increment of 2.88 cycles) but the experiment isolated value ∆(tr ′)
and the one used for the theoretical output (see Table 2) data differ
in 5.32 cycles. This difference might come from the higher number
of measurements taken for these experiments. Figure 8 shows the
case where the tr’ is a DSP executing a store. The theoretical cost
manages to upper bound the measurements WCET, being extra
pessimistic in the increment from experiments 4 to 5 (DSP: 2 Lds;
ARM: 3 Strs) and 5 to 6 (DSP: 3 Lds; ARM: 3 Strs).

Figure 6: tr’(LD, DSP, DDR) interfered at the same address

Figure 7: tr’(LD, ARM, DDR) interfered at the same address

Figure 8: tr’(STR, DSP, DDR) interfered at the same address

7.2.2 Bank switching. The experiments measurements shown in
the three scenarios for the Fixed Block Address (Figures 6, 7 and
8) are retaken but using a different memory bank each. All the
experiments in Figure 9 scene offer again the desirable response,
upper bounding the WCET with a bit of overestimation. Figure
10, shows how Equation 9 is overall a bit pessimistic, what is not
necessarily incorrect as we are aiming the worst case. However, in
experiment 5 (DSP: 2 Strs, 2 Lds; ARM: 1 Str), the ARM addition
interference is underestimated. Equation 10 apparently behaves
correctly for the experiments found in Figure 11.

7.2.3 Row switching. Figure 12 depicts how row switching differs
from the other two situations when it comes to impact. Note that

RTNS’2021, April 7–9, 2021, NANTES, France Mascareñas-González, et al.

Figure 9: tr’(LD, DSP, DDR) interfered from diff. banks

Figure 10: tr’(LD, ARM, DDR) interfered from diff. banks

Figure 11: tr’(STR, DSP, DDR) interfered from diff. banks

the execution cycles (Y axis) is in logarithmic scale. The integrated
table of the figures may result very useful. Equation 11 manages
to adequately upper bound the results. The first experiment (DSP:
1 STR) depicts a prioritization starvation situation. By analyzing
the DDR controller priority elevations, it could be appreciated that
each tr’ was starved. The fourth experiment (DSP: 3 Strs, 1 Ld) is
pessimistic, despite that its behavior is correctly modeled (its value
decreases with respect to the previous and posterior experiments).
This amplitude reduction is due to the faster row switch provoked
by the new transaction addition. This does not happen for the
last experiment because the switches are produced before tr’ is
available. Figure 13 shows the theoretical cost evolving according
to themeasured cost. Nonetheless, there is a clear overestimation for

Figure 12: tr’(LD, DSP, DDR) interfered from diff. rows

Figure 13: tr’(LD, ARM, DDR) interfered from diff. rows

Figure 14: tr’(STR, DSP, DDR) interfered from diff. rows

the last experiment (65.71 theoretical increment against 14.78 with
respect to the previous experiment(DSP: 2 Strs, 2 Lds)). Equation
12 describes correctly the experiments in Figure 14. The effect of
loads on the ARMs stores provokes the exponential behavior.

7.2.4 Validation. To assure the right applicability of the equations
presented in this paper for its use in a task mapping evaluation,
these should be directly compared in a figure. Therefore, the three
situations outcome aremerged into a single figure, resulting in three
figures. In Figures 15 and 16, where the tr’ instruction is a load,
we can observe that from best to worst arbitration we have Bank
Switching, Fixed Block Address and Row Switching. Compar-
ing the theoretical output with the measurement based output and

Heterogeneous multicore SDRAM interference analysis RTNS’2021, April 7–9, 2021, NANTES, France

Figure 15: tr’(LD, DSP, DDR) WCET and theoretical cost

Figure 16: tr’(LD, ARM, DDR) WCET and theoretical cost

Figure 17: tr’(STR, DSP, DDR) WCET and theoretical cost

the theory, the equations seems correct in general. Nonetheless,
it can be seen that the Fixed Block Address overestimates and
it should be revised if the turnaround cost are unnecessarily pes-
simistic. Note that these figures Y axis scale is in base 2. Figure 17
ranks the arbitration from best to worst in the following way: Fixed
BlockAddress,Bank Switching andRowSwitching, indicating
that, from the point of view of a store, the Fixed Block Address
arbitration is the best option. This is rational as in this arbitration
the stores don’t suffer from loads higher priority blocking.

8 CONCLUSION AND FUTUREWORK
In this paper we study the interference overhead caused by the
DDR3 accesses in heterogeneous multicore platforms which de-
pends on the Command FIFO enqueuing and its reordering arbitra-
tion. To describe the resulting memory controller behavior, a set of
equations, which are able to estimate the resulting impact, has been
elaborated. These equations consider the command under analy-
sis type, reordering arbitration, operational costs and enqueuing
scheduling. As future work, these cost functions can be integrated
into task/memory mapping tools as well as extending them to other
memory controllers by generalizing them. In principle, to do this
generalization, the SDRAM features specified by JEDEC will remain
untouched but it may not be necessarily the case for the memory
controller arbitration and platform heterogeneity. The memory con-
troller may share the command burst technique, open row policy
and load prioritization, but may have a different queuing policy or
extra optimization techniques. The platform heterogeneity model-
ing is unique for each board, e.g. unified ARM slave port, processors.
Furthermore, it should be researched about how to model situations
where several Command FIFO arbitrations are applied at the same
time, e.g. bank and row switching. Finally, there are some pending
behaviors to be studied further, e.g. ARM single coherent slave port.

ACKNOWLEDGMENTS
This work was supported by the Defense Innovation Agency (AID)
of the French Ministry of Defense (research project CONCORDE
N° 2019 65 0090004707501) and the French Civil Aviation Authority
(DGAC) (research project PHYLOG).

REFERENCES
[1] B. Akesson et al. 2007. Predator: A predictable SDRAM memory controller. In

2007 5th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS).

[2] ARM 2012. Cortex-A15 MPCore - Technical Reference Manual. ARM.
[3] Frédéric Boniol et al. 2020. PHYLOG certification methodology: a sane way to

embed multi-core processors. In 10th European Congress on Embedded Real Time
Software and Systems (ERTS 2020). Toulouse, France.

[4] Youcef Bouchebaba et al. 2010. MpAssign: A framework for solving themany-core
platform mapping problem. 1 – 7.

[5] Francisco J. Cazorla, Roberto Gioiosa, Mikel Fernandez, and Eduardo Quiñones.
2012. Multicore OS Benchmark. Technical Report.

[6] Wei Chen. 2009. Task Partitioning and Mapping Algorithms for Multi-core Packet
Processing Systems. Master’s thesis. University of Massachusetts Amhers.

[7] Cédric Courtaud et al. 2019. Improving Prediction Accuracy of Memory Inter-
ferences for Multicore Platforms. In RTSS 2019 - 40th IEEE Real-Time Systems
Symposium. IEEE.

[8] Hamid Reza Faragardi et al. 2014. An efficient scheduling of AUTOSAR runnables
to minimize communication cost in multi-core systems. 2014 7th International
Symposium on Telecommunications, IST 2014, 41–48.

[9] G. Giannopoulou et al. 2014. Mappingmixed-criticality applications onmulti-core
architectures. In 2014 Design, Automation Test in Europe Conference Exhibition
(DATE). 1–6.

[10] Danlu Guo et al. 2018. A Comparative Study of Predictable DRAM Controllers.
17, 2 (2018).

[11] M. Hassan. 2018. On the Off-Chip Memory Latency of Real-Time Systems: Is
DDR DRAM Really the Best Option?. In 2018 IEEE Real-Time Systems Symposium
(RTSS).

[12] D. Iorga et al. 2020. Slow and Steady: Measuring and Tuning Multicore In-
terference. In 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS).

[13] Philipp Ittershagen et al. 2013. Hierarchical Real-Time Scheduling in the
Multi-Core Era – An Overview. 16th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC 2013.

[14] JEDEC ASSOCIATION 2008. JEDEC STANDARD - DDR3 SDRAM - JESD79-3C.
JEDEC ASSOCIATION.

RTNS’2021, April 7–9, 2021, NANTES, France Mascareñas-González, et al.

[15] Andreas Löfwenmark and Simin Nadjm-Tehrani. 2018. Fault and timing analysis
in critical multi-core systems: A survey with an avionics perspective. Journal of
Systems Architecture 87 (2018), 1 – 11.

[16] Claire Maiza et al. 2018. A Survey of Timing Verification Techniques for Multi-Core
Real-Time Systems. Technical Report TR-2018-9. Verimag Research Report.

[17] Alfonso Mascareñas González et al. 2020. Multicore shared memory interference
analysis through hardware performance counters. 10th European Congress on
Embedded RealTime Software and Systems (ERTS 2020), Toulouse, France.

[18] Jan Nowotsch and Michael Paulitsch. 2012. Leveraging Multi-core Computing
Architectures in Avionics. In 2012 Ninth European Dependable Computing Con-
ference, Sibiu, Romania, May 8-11, 2012, Cristian Constantinescu and Miguel P.
Correia (Eds.). IEEE Computer Society, 132–143.

[19] Marco Paolieri et al. 2010. An analyzable memory controller for hard real-time
CMPs. IEEE embedded systems letters (01 2010).

[20] Petar Radojkovic et al. 2012. On the evaluation of the impact of shared resources
in multithreaded COTS processors in time-critical environments. ACM Trans.

Archit. Code Optim. 8, 4 (2012), 34:1–34:25.
[21] Selma Saidi et al. 2015. The Shift to Multicores in Real-Time and Safety-Critical

Systems.
[22] Jun Shao. 2006. Reducing main memory access latency through SDRAM address

mapping techniques and access reordering mechanisms. Ph.D. Dissertation. Michi-
gan Technological University.

[23] Texas Instruments 2010. TMS320C66x DSP CPU and Instruction Set. Texas Instru-
ments.

[24] Texas Instruments 2012. KeyStone II Multicore Shared Memory Controller. Texas
Instruments.

[25] Texas Instruments 2015. Keystone II Architecture DDR3 Memory Controller. Texas
Instruments.

[26] Texas Instruments 2017. 66AK2Hxx Multicore KeyStone II System-on-Chip. Texas
Instruments.

[27] H. Yun and P. Valsan. 2015. Evaluating the Isolation Effect of Cache Partitioning
on COTS Multicore Platforms.

	Abstract
	1 Introduction
	2 Related work
	3 Platform
	3.1 Multicore platform architecture
	3.2 External Memory Controller Interface
	3.3 Considerations

	4 Notations
	5 Measurement framework
	5.1 ARM - Performance Monitor Unit
	5.2 DSP - Time Stamp Counter
	5.3 DDR3 Memory Controller - Performance Counters

	6 Micro-benchmarks
	7 Interference impact
	7.1 Impact calculation
	7.2 Testing

	8 Conclusion and future work
	Acknowledgments
	References

