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Abstract

Atrial propagation patterns during atrial fibrillation
(AF) can be characterized by a certain degree of recur-
rence (associated with different types of reentrant circuits
that can drive the arrhythmia). In this study, we inves-
tigated this recurrent activity at the level of the body-
surface, by measuring the level of similarity between pairs
of consecutive atrial vectors. High-density body surface
potential maps (120 anterior, 64 posterior electrodes) were
recorded in 75 patients in persistent AF. For each patient,
atrial vectors were created by taking the samples from all
electrodes at each time instant. Similarity between con-
secutive vectors was measured in terms of the value of the
cosine of the angle between two vectors. In all patients,
the series of cosine values showed a quasi-periodic be-
havior, with atrial vectors alternating between phases of
slow motion, and phases of fast motion. Moreover, the fre-
quency of this behavior is about twice the AF dominant
frequency, which suggests that within one AF cycle there
are two phases of slow motion and two of fast motion, al-
ternating. Finally, the amount of slow phases is positively
correlated with a higher long-term recurrent behavior of
the atrial propagation patterns. This seems to indicate that
atrial vectors may provide a new way to noninvasively in-
vestigate atrial fibrillation dynamics.

1. Introduction

Atrial propagation patterns during atrial fibrillation (AF)
can be characterize by a certain degree of recurrence [1-6],
which can be associated with different types of reentrant
circuits that can drive the arrhythmia. The investigation
of how well this dynamic behavior of atrial activity (AA)
propagation patterns during AF can be noninvasively char-
acterized by analyzing ECG signals is relevant in order to

improve AF patient stratification and treatment selection,
without resorting to invasive analysis. In this respect, pre-
vious studies have shown that propagation of AA during
AF is a process characterized by different short- (or a sin-
gle cycle) and long-term (related to several cycles of prop-
agation) recurrent behaviours [8, 11], while another study
suggested that the time-varying spatio-temporal properties
of this behavior seem mainly due to a spatially uncoordi-
nated propagation of the AF waveforms [9]. In this study,
we investigated this recurrent activity at the level of the
body-surface, by measuring the level of similarity between
pairs of consecutive body-surface atrial vectors. Results
show that body-surface atrial vectors contain information
about AA dynamics during AF, and they may represent an
alternative way to noninvasively analyze AF dynamics.

2. Methods

2.1. BSPM data and pre-processing

Body surface potential maps (BSPMs) were recorded in
75 patients in persistent AF, with 120 anterior and 64 pos-
terior leads (ActiveTwo BSM Panels Carbon Electrodes,
Biosemi B.V., The Netherlands; Fig. 1). All patients un-
derwent electrical cardioversion, and 32 patients showed
AF recurrence 4 to 6 weeks after procedure. ECGs were
sampled at 2048Hz, and downsampled at 256Hz. A one-
minute segment was selected for each subject, low-quality
leads were excluded (low signal-to-noise ratio, poor elec-
trode contact, motion artefacts), and Wilson’s Central Ter-
minal was subtracted in line with conventional ECG anal-
ysis. After band-pass filtering the signals between 1 and
100Hz (3rd order Chebyshev), QRST cancellation was
performed using an adaptive singular value decomposition
method, inspired by [7], with multiple QRST window tem-
plates defined using hierarchical clustering. The extracted
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Figure 1. BSPM electrode configuration, comprising 120
anterior leads and 64 posterior leads. Thick circles: default
positions of the precordial leads V7, ..., V.

AA signals were post-filtered with a zerophase notch filter
at 50Hz to suppress power line noise, and with a 3Hz zero-
phase highpass filter (3rd order Chebyshev) to remove low-
frequency residuals not related to (persistent) AF.

2.2.  Atrial vectors and similarity signal

For each patient, atrial vectors were created as follows:
assuming that all extracted AA signals from a patient (¢
leads, and /N samples) are collected in a matrix X of size
¢ x N, each column of X provides an ¢ x 1 vector x(n),
n = 1,..., N, which represents the overall spatial AA
from all electrodes at a given time instant. x(n) can be
interpreted as a snapshot of atrial potentials reflected on
the body surface at discrete time n (or as a sort of atrial
dipole, defined in a space of dimension ¢, similar to the 3-D
cardiac dipole in vectorcardiography). Similarity between
pairs of consecutive vectors (1 sample apart) can then be
measured in terms of the value of the cosine of the angle
between the two vectors:

T
simy(n) = x(n) x(n+1) ,n=1,....,N—1.
[ (n)ll2][x(n + 1|2 0

simj(n) is expected to give values close to 1 (small an-
gles, or high similarity) for spatial AA wave fronts with
similar morphologies even when their corresponding am-
plitudes are different, in order to highlight the presence
of self-similar patterns in the data. Fig. 2 provides a
schematic representation of the generation of a similarity
signal simj(n) from body-surface AA signals. As it can
be seen in the figure, these signals show a very similar
quasi-periodic behavior, with periods of values close to 1
(similar vectors), and very short periods of values closer to
0 (sometimes negative - not in the figure; dissimilar vec-
tors), and quick transitions between the two. This suggests
that the vectors alternate between phases of slow motion
(values close to 1), and phases of fast motion (values close
to 0). Therefore, it is interesting to analyze the time and
frequency properties of similarity signals, in order to un-
derstand if and to what extent they can provide an alterna-
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Figure 2. Schematic representation of the construction of
a similarity signal sim;(n) (bottom), starting from AA sig-
nals extracted from ECG recordings (top left), and by mea-
suring the level of similarity between consecutive atrial
vectors (defined as the samples from all signals at a spe-
cific time point; top right).

tive way to look at AA propagation dynamics during atrial
fibrillation, as reflected on the body-surface. Moreover, it
is also relevant to investigate their relation to the recurrent
behavior of those dynamics, which we already described
in previous studies [8—11]. Indeed, in [8] we suggested
that AA propagation as recorded on the body surface is
a process characterized by short- and long-term recurrent
behaviors. Namely, an early phase characterized by a de-
crease of the similarity between an atrial vector and the
following so many vectors within approximately one AF
cycle, and a later phase characterized by an approximately
constant similarity. The long-term recurrent behavior in
particular can be considered as a measure of long-term re-
current behaviour of AA propagation in a patient, and it is
assumed to be related to the overall AF substrate complex-
ity (with a higher value to be related to a lower degree of
electro-structural remodelling) [9, 11].

3. Analyses and Results

Fig. 3 shows the percent of points close to 1 (phases
of slow motion) and close to 0 (phases of fast motion) for
all patients. It can be noticed that phases of slow motion
are more prevalent in all patients than phases of fast mo-
tion (although there is a large variability in the amount of
phases of slow motion among patients). We then identi-
fied the 3% of largest absolute vector similarities in each
patient, selected the corresponding subset of k& columns of
matrix X, and decomposed the corresponding submatrix
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Figure 3. Boxplots of percent of points in a similarity

signal close to 1 (threshold 0.9) and close to O (threshold
0.1).
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Figure 4. Example of distribution of the values of the first
principal component PC1 of submatrix ¢ x k of X collect-
ing the samples associated with the most relevant vector
similarities in a patient from the data set. The distribu-
tion is bimodal, with the two main modes located at the
extremes (black bars).

of size ¢ x k by means of singular value decomposition.
In general, we noticed that the values of the first principal
component of the submatrix ¢ x k show a bimodal distribu-
tion, with values concentrated at the negative and positive
extremes (see Fig. 4, which depicts the distribution of the
first principal component for the same patient as in Fig.
2). Spatially, that means that vectors from two consecu-
tive slow regions are in opposition of phase. Fig. 5 shows
the percent of points in the first principal component of
the submatrix ¢ x k which are located at the extremes of
the distribution (first and last ten bins), for all patients. It
can be noticed that in all patients at least more than 50 %
of the points are located at the extremes of the distribu-
tion. When looking at the frequency content of a simi-
larity signal, we noticed that in general such signals show
a dominant frequency which is about twice the dominant
frequency of the AF in a patient. A representative example
is given in Fig. 6, which shows the average power spec-
tral densities of the body-surface AA signals and of the
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Figure 5. Boxplots of percent of points in the first prin-
cipal component PC1 of the submatrix ¢ x k which are
located at the extremes of the distribution (first and last ten
bins), for all patients.
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Figure 6. Power spectral densities of the body-surface AA

signals (continuous line; average for all signals) and of the

similarity signal (dashed line) for the same patient as in

Fig. 2.

similarity signal for the same patient as in Fig. 2. Fig. 7
shows the boxplots of dominant frequencies of the AA sig-
nals and similarity signals for all patients, which confirms
that in general the frequency of the periodic alternation be-
tween phases of slow motion and phases of fast motion in a
similarity signal is about twice the AF dominant frequency
(13.6(1.8) Hz vs. 6.6(1.1) Hz, respectively; median(IQR)).
Together with the results presented in Fig. 4 and 5, this
suggests that within one AF cycle there are two phases of
slow motion and two of fast motion, alternating. Finally,
we found a positive correlation between the long-term re-
currence of the AA during AF, as defined in [8,9, 11], and
the amount of slow phases in a patient (0.59, p < 10%);
Fig. 8; no significant association with electrical cardiover-
sion outcome).

4. Conclusions

This study investigated whether AA dynamics during
AF can be characterized by measuring the level of similar-
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Figure 7. Boxplots of dominant frequencies of the AA
signals and similarity signals for all patients.
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Figure 8. Scatter plot of the amount of slow phases vs. the
long-term recurrence. The corresponding line of best fit
and the Pearson correlation coefficients r are also shown.

ity between pairs of atrial vectors. The similarity signals
obtained by measuring similarity of consecutive atrial vec-
tors showed a quasi-period behavior in all patients, with
periods of slow motion (similar vectors) alternating with
periods of fast motion (dissimilar vectors), with a fre-
quency of about twice the AF dominant frequency. This
suggests that within one AF cycle there are two phases of
slow motion and two of fast motion, alternating, with the
two phases of slow motion in opposition of phase. In gen-
eral, we found that there are more phases of slow motion
than of fast motion in a patient, and that the amount of time
spent in phases of slow motion positively correlates with
the long-term recurrent behavior of the atrial propagation
patterns. Overall, this seems to suggest that atrial vectors
are able to capture to some extent information about AA
dynamics during AF, as reflected on the body-surface, and
therefore they may represent an alternative way to nonin-
vasively analyze AF dynamics, and the organization of the
underlying AA propagation patterns.
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