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On the largest singular values of certain large
random matrices with application to the
estimation of the minimal dimension of the
state-space representations of high-dimensional
time series.

D. Tieplova, P. Loubaton, Fellow, IEEE,

Abstract

This paper is devoted to the estimation of the minimal dimension P of the state-space realizations of a high-
dimensional time series y, defined as a noisy version (the noise is white and Gaussian) of a useful signal with low
rank rational spectral density, in the high-dimensional asymptotic regime where the number of available samples N
and the dimension of the time series M converge towards infinity at the same rate. In the classical low-dimensional
regime, P is estimated as the number of significant singular values of the empirical autocovariance matrix between
the past and the future of y, or as the number of significant estimated canonical correlation coefficients between
the past and the future of y. Generalizing large random matrix methods developed in the past to analyze classical
spiked models, the behaviour of the above singular values and canonical correlation coefficients is studied in the
high-dimensional regime. It is proved that they are smaller than certain thresholds depending on the statistics of the
noise, except a finite number of outliers that are due to the useful signal. The number of singular values of the sample
autocovariance matrix above the threshold is evaluated, is shown to be almost independent from P in general, and
cannot therefore be used to estimate P accurately. In contrast, the number s of canonical correlation coefficients larger
than the corresponding threshold is shown to be less than or equal to P, and explicit conditions under which it is equal
to P are provided. Under the corresponding assumptions, s is thus a consistent estimate of P in the high-dimensional
regime. The core of the paper is the development of the necessary large random matrix tools.

Index Terms

Minimal state space realization of rational spectrum time series, autocovariance matrix between the past and the
future, canonical correlation coefficients between the past and the future, high-dimensional regime, large Gaussian
random matrix theory, low rank perturbations of large random matrices, Stieltjes transform.

I. INTRODUCTION
A. The addressed problem and the results.

Due to the spectacular development of data acquisition devices and sensor networks, it becomes very common to
be faced with high-dimensional time series in various fields such as digital communications, environmental sensing,
electroencephalography, analysis of financial datas, industrial monitoring, .... In this context, it is not always
possible to collect a large enough number of observations to perform statistical inference because the durations of
the signals are limited and/or because their statistics are not time-invariant over large enough temporal windows.
As a result, fundamental inference schemes do not behave as in the classical low-dimensional regimes. This
stimulated considerably in the ten past years the development of new statistical approaches aiming at mitigating
the above mentioned difficulties.
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In particular, a number of works proposed to use large random matrix theory in the context of high-dimensional
statistical signal processing, traditionally modelled by a double asymptotic regime in which the dimension M of
the time series and the sample size N both converge towards +oc. These contributions addressed, among others,
detection or estimation problems in the context of the so-called narrow band array processing model, also known
in the statistical community as the linear factor model. The AM/—dimensional observation (yy,)n=1,. ~ is a noisy
version of a useful signal (u,)nez that can be written as w, = Hs, where (s,)nez is a K-dimensional non
observable signal and H is a M x K unknown (or partially unknown) deterministic matrix. In this context, some
relevant informations have to be inferred on the useful signal (u,)nez from the available samples y1,. .., yn,
e.g. estimation of K, of the column space of H, the non zero eigenvalues and associated eigenvectors of the
covariance matrix R, = E(u,u’) when (s,)nezis assumed to be a stationary sequence,....The M x N observed
matrix Y collecting the N observations appears as the sum of a full rank random matrix due to the additive noise
with the M x N rank K matrix U = HS where U and S are defined in the same way than Y. In this context, a
number of detection and estimation schemes are based on functionals of the empirical "spatial" covariance matrix
Ry = YTY* In the traditional low dimensional regime where M is fixed while N — +o0, ]:?y behaves as the true
covariance matrix R, = E(y,y;;) of the observation, and this allows to evaluate quite easily the behaviour of the
various algorithms. The main difficulty of the high-dimensional regime follows from the well known observation
that, when M and N converge towards +o0o at the same rate, then Ry is not a good estimator of I, in the
sense that the spectral norm ||]:Ey — R,|| of the estimation error does not converge towards 0. However, when the
rank K does not scale with M and N, an assumption which in practice means that % is small enough, large
random matrix theory results related to the so-called spiked models, characterizing, among others, the eigenvalue
distribution and the K largest eigenvalues and related eigenvectors of ]%y (see e.g. [31, [4], [6], [7], [400), allow
to evaluate the behaviour of the relevant functionals of Ry, to analyze the performance of the traditional schemes,
and, sometimes, to propose improved algorithms (see e.g. [8l, [15], [14] [24], [29], [36], [37], [50], [46], [S1]). In
particular, provided the K non zero eigenvalues of R, are larger than a certain threshold depending on the noise
statistics, then, under certain extra assumptions, K can be estimated consistently as the number of "significant"
eigenvalues of Ry.

In this work, we consider the more general context where the useful signal (u,,),ez coincides with the output of a K
inputs / M outputs filter, X' < M, with unknown causal and causally invertible rational transfer function H(z) driven
by a K dimensional non observable sequence (i, )nez verifying E(i,1xi}) = Ik 0y, which, necessarily, coincides
with a normalized version of the innovation sequence of u defined as the prediction error w,, — t, /Sp(un—k, k > 1).
Normalized version of the innovation means that for each n, the components of 7,, represent an orthonormal basis
of the K—dimensional space generated by the components of w,, — u, /sp(un—_k, k > 1). We remark that, for each
frequency f € [—1/2,1/2], the spectral density of u is a rank K < M matrix, except if >/ is a zero of H(z).
In the following, we denote by P the Mac-Millan degree of H(z), i.e. the minimal dimension of the state-space
representations of H(z) = D+C(z] — A)~'B where A is a P x P matrix with spectral radius p(A) < 1 and where
C,B,D are M x P,P x K, M x M matrices respectively. It is well known (see e.g. [27], [49], [31], Appendix
A) that the minimality of the state-space representation of H(z) is equivalent to (C, A) observable and (A, B)
commandable. We recall that (C, A) observable means that for each L > P, the ML x P observability matrix
O of (C, A) defined by

C

CA

o) = . (L)

cab-!

is a rank P matrix, while, similarly, (A, B) is commandable if the P x M L commandability matrix C(%) of (A, B)
defined by

¢ = (AF1B,AY2B,....B). (1.2)
is rank P as well. Then, u,, can be represented in the state-space form as
Tpy1 = Axy + Biy, up = Czyy + Diy, (1.3)

where the P-dimensional Markovian sequence (z,)nez is called the state-space sequence associated to (L.3).
Moreover, we assume that the observed M-dimensional multivariate time series (y,)nez is given by

Yn = Un + Un, (14)



where (v, )nez 18 a complex Gaussian "noise” term such that E(v,4xv)) = Rdj for some unknown positive
definite matrix R. (v,)nez is of course independent from the useful signal w.

The estimation of the (minimal) dimension P of the state-space representation (L.3) from N avalaible samples
Y1,-..,YN 1s an important problem of multivariate time series analysis in that estimating P first allows to address
the estimation of matrices C' and A, as well as of matrices B, D and R, at least if the three later matrices are
identifiable. In the standard asymptotic regime where N — +oo while M remains fixed, standard estimation
procedures are based on the following well known ingredients (the reader is referred e.g. to [49] and [31]] and the
references therein). First, as (v, )nez is an uncorrelated sequence, the autocovariance sequence (Ry,k) kez defined
by Ry = E(yntryy,) verifies Ry = Ry = E(u,yru)) for each k # 0. Next, the autocovariance sequence R,
of u can be represented as

R, =CAM 1@ (L5)

for each k > 1, where matrix G coincides with G = E(z,1u)), which is also equal to G = E(z,41y.) because
signals v and v are uncorrelated. Moreover, the pair (A4,G) is commandable, and every triple (A’,C’,G’) of
P x P,M x P,P x M matrices for which holds can be obtained from (A, C,G) by a similarity transform.
If we define the autocovariance matrix R]Lc‘p,u between the past and the future of u as

Un+L
I Un+L+1 v .
Rf|P7U =E : (unv Upg1se - 7un+L_1) 1.6)
Un+2L—1
then, it holds that
Ry, =0Wc), L7)

where O(F) is the observability matrix of the pair (C, A) and C%) represents the commandability matrix of (A4, G).
For each L > P, matrices OX) and C'Y) are full rank, so that the rank of R%g ,, remains equal to P, and each
minimal rank factorization of R%z ,, can be written as li for some particular triple (A4, C, G). As matrix R?l oy

%}2 u (f‘p > We deduce from the above properties that P coincides
with the rank of RJI;‘ oy for each integer L > P. Moreover, a particular pair (C, A) can be identified from any
minimal rank factorisation of R, .

In order to estimate P from the available samples y1,...,yn, a standard approach is to estimate P as the number

defined in the same way than R coincides with R

of "significant" singular values of the empirical estimate Rj%lpﬂ/ of the true matrix R%‘p v = Rﬁp ,, defined by
e YrnYw
flpy — N
where matrices Y  and Y}, n are defined as
Y1 Y2 s YN-1 YN
Y2 Y3 s YN YN+1
Y, N = : : : : : (L8)
Y Yo+1 -+ YN+L—2 YN+L-1
and
Yr+1  YL+2  --- YN-14L YN+L
Yr+2 Yr+3 .- YN+L YN+ L41
YiN = : : : : : . (L9)
Y2r  Y2r+1 ... YN+4+2L—2 YN+2L-1

We note that the samples (yN_;,_l)l:l?_“’QL_l are supposed to be available while we have assumed that only
the first N samples are observed. In order to simplify the presentation, this end effect is neglected. We also



notice that a pair (C,A) can also be estimated from the truncated singular value decomposition of RL Fipw
(see [49] and [L1] for a statistical analysis of the corresponding estimates). This approach provrdes consistent
—RE || = 0.

L

flpy “flpy
Another way to estimate P is to resort to the canonical analysis of the observation y. In particular, P coincides
with the number of non zero canonical correlation coefficients between the spaces )V, ; and )y generated
respectively by the components of y, i,k = 0,...,L — 1 and ypyx,k = L,...,2L — 1 for any L > P. We
recall that these coefficients are defined as the singular values of matrix (R})~ 1/ 2Rf|p y(Rﬁ)*l/ * where R
represents the covariance matrix of the M L—dimensional vector (y.,...,yl, Lfl)T' In order to estimate P from
the NV avalaible observations ¥1,...,yn, a standard solution is to estimate the canonical correlation coefficients
between ), 1, and )Yy 1 by the canonical correlation coefficients between the row spaces of matrices Y, y and
Yy n defined by ([.8) and (L.9) respectively, and to estimate P as the number of significant coefﬁcrents ie. as
the number of significant singular values of matrix (RL )y~ 2RL fip, y(RL )~1/2, or equivalently as the number of

flpy(RZ[;» )~ Rf|py(R ) /2 Here, matrices RJLcy and Rﬁy are defined

by R%y = % and Rzey = % respectively. In the standard low-dimensional regime N — 400 and
M, K, P, L are fixed, it holds that ||R}, — R[|| — 0 for i = p, f as well as HRﬂpy flp, | = 0. This
immediately leads to the conclusion that thls approach provides consistent estimates of P. We again refer to [49]
and [31] and the references therein.

significant eigenvalues of (Rﬁy) 2R

If M is large and that the sample size N cannot be arbitrarily larger than M, the ratio M L/N may not be small
enough to make reliable the above statistical analysis, in the sense that it cannot be expected that R ip, and RL s
i = p, f are close enough in the spectral norm sense from the true matrices R% sy and Ry respectrvely. It is
thus relevant to study the behaviour of the above estimators of P in asymptotic regimes where M and N both

converge towards +oo in such a way that ¢y = % converges towards a non zero constant c,. In this context,

matrix R}L‘p is no longer a consistent estimate of the true matrix Rgc‘) in the spectral norm sense. Therefore,

)y have no reasons to behave as those of R;Izz ” and the same conclusion holds for

Rzﬁy)’l/ > and (R})~ 12RL ip, y(qu)’l/ 2. Thus, it appealrjzof fundamental interest to

the singular values of R(I
matrices (R% )~ 1/2Rf|py( ? A
evaluate the behaviour of the singular values of R Flp,y and (R]% )~1/2REL i, y(RZﬁy) , and to study whether the
largest singular values still allow to estimate P consistently, at least if the power of the useful signal v and the
non zero singular values of Rﬁp,u or the non zero canonical correlation coefficients between the spaces U, 1, and
Uy, 1, are large enough.

In this paper, we address these problems when the integers K and P do not scale with M and N, and thus
remain fixed integers. This in practice means that the following results are likely to be useful when the rank
K of the spectral density of w is much smaller than M, and when P is small enough compared to M and
N. As P is supposed to be a fixed integer, the integer L > P will also be assumed to remain fixed when
M and N converge towards +o0o. As explained below, the assumption K, P, L remain fixed implies that the
matrices R% fipy and (]%J% )~1/2RL Fipw (Riy)*l/ 2 are low rank perturbations of the random matrices RJLC‘ o and
(RL) )~ 1/2Rf|p 1)(]%5”)*1/2 built from the noise samples vq, ..., vy instead of yq,...,yx. It is thus in principle
possible to use the perturbation techniques developed in [6], [[7], [40]. However, the random matrix models that
come into play in this paper are considerably more complicated than in [6], [7], [40]. Thus, the following results
cannot be considered as direct consequences of [6], [7]], [40].

We first evaluate in Section |II| the behaviour of the largest singular values of RJ@‘ pyr OF equivalently of the largest

eigenvalues of RL f| » yR Fipww and take benefit of the results in [33] in which the asymptotic behaviour of the
eigenvalues of RL ip, vRﬁ; , 18 characterized. Introducing some extra assumptions, we deduce from [33] that for

each € > 0, almost surely, for NV large enough, all the eigenvalues RL i RL* are less than x , + € for a certain
Ty > 0. Usmg the perturbation techniques developed in [7]] and [40] we obtam that the number of eigenvalues
of RH », yR Fipw that may escape from the interval [0,z .| is between O and 2r where r represents the rank of

the covariance matrix R\ of the vector (ul,...,uly,_1)T. When P =1 and R = ¢ for some o2, for any
r > 1, we indicate how to produce simple examples such that 2r — 1 eigenvalues of RJ%‘ .y ©Scape from [0, x4 «].



This behaviour leads to the conclusion that P cannot be estimated consistently as the number of eigenvalues
that are larger than z , even if the useful u is powerful enough and the non zero singular values of R( flp ) ,, are
large enough. While it would be possible to address the case c, > 1, we will assume that ¢, < 1 to simplify the

exposition. Therefore, cxy verifies ¢y < 1 for each N large enough .

Always under the assumptlon ¢, < 1, using the same approach, we then study in Section [I]] [[T] the largest eigenvalues

(RL ) 1/2Rf|py(RL )~ (Rflpy) (R v /2 which also coincide with those of matrix II, ,I1;, where
Hp,y and Ty, represent the orthogonal pI’OJCCtiOl’l matrices on the spaces generated by the rows of Y, and Y}
respectively. We first study the eigenvalue distribution of II, ,II ., and establish that it converges towards the free
multiplicative convolution product of ¢.d1 + (1 — ¢,)dp with itself. Notice that ¢xd1 + (1 — en)dp coincides with
the eigenvalue distribution of matrices II,, , and IIy,. We also establish that almost surely, for NV large enough,
all the eigenvalues of II,, Iy, lie in a neighbourhood of the support [0,4c. (1 — c.)] U {1}1. 51/2 of its limit
distribution. Using the above mentioned perturbation techniques, we establish that if s represents the number of
eigenvalues of II, ,IT;, that escape from [0, 4c. (1 — c.)] U {1}1., 512, then, s < P, and eventually provide the
explicit conditions under which s = P. These conditions hold if ¢, < 1/2 and if the power of u and the non
zero canonical correlation coefficients between the spaces U4, 1, and Uy ;, are large enough. These results allow to
conclude that, under certain reasonable well defined assumptions, it is possible to estimate P consistently using
the largest singular values of (RJI; )~1/2RL (]A%ZE )~1/2, but that the use of the largest singular values of R%
appears unreliable.

flpy flpy

1/2

It has hard to explain intuitively why the use of the normalized matrix (R% )~1/2RE o (REL )12 allows to

estimate P consistently under certain assumptions, while this is not the case for matrix Rﬁp , We however
mention that matrix (RJ% )~/ 2R o, J(RE)=1/2 defined by replacing y by v does not depend on the covariance

matrix R of the random vectors (Un)nez, while it is of course not the case of matrix R Fipow . This invariance
property appears of course attractive, and plays an important role in the following. We also mention that matrix
(R Fu)” 1/2RL ip, y(Rﬁy) 1/2 is connected with the canonical analysis of the time series y. Generally speaking,
this analysis has well established merits. In particular, it leads to the concept of stochastically balanced state-space
realizations which are known to be useful to derive model reduction algorithms ([49] and [31] and the references
therein).

We believe that the main findings of this paper are of potential interest for statistical signal processing and time
series analysis researchers. However, the large random matrix models that come into play in this paper are rather
complicated, and were almost not considered in previous works. Therefore, new random matrix tools have to be
developed and a number of technical intermediate results have to be established. In order to improve the readability
of this paper, we postpone the most technical steps in the Appendix, and sometimes provide sketches of proof
rather than detailed arguments.

B. On the literature.

We first mention that the problems considered in this paper have connections with the "Generalized Dynamic Factor
Models" introduced in the econometrics field, see e.g. [17], [L8]], [L6]. In these works, the observation is still given
by yn = uy, + v, where u,, = [H(z)]i,, and v,, are called the common component and the idiosyncratic component
respectively. H(z) is not assumed in [[17] and [18] to be rational, while v is not necessarily an uncorrelated time
series. These papers still address estimation problems in the asymptotic regime where M and N converge towards
~+o00, but [17], [18], [16] assume that the eigenvalues of the spectral density matrix of v remain bounded when
M and N increase, while the K non zero eigenvalues of the spectral density of u converge towards +oco. In this
context, it appears possible to estimate consistently from the available samples a number of parameters attached
to the useful signal u. In particular, if H(z) is rational, the estimation of P does not pose any problem (see [16]
devoted to the case H (z) rational). In contrast, the technical assumptions formulated in the present paper imply that
the eigenvalues of the spectral densities of u and v are of the same order of magnitude when M and N increase.
We refer the reader to [41] for a discussion on the practical relevance of the context of the present paper. Therefore,
the solutions developed in [17], [18]], [[L6] cannot be used to design consistent estimates of P under our assumptions.

We next review the existing works that are more directly related to the present paper. The behaviour of the

eigenvalues of matrix R% = RL* was studied in [33], and we refer to this paper for the various references that

flp,v™ " flpw



addressed similar problems when L = 1, in the non Gaussian case, or when the time series (v, )necz is possibly
correlated in the time domain. Apart [30], we are not aware of any previous work addressing the behaviour of
the largest singular values of matrices depending on estimated autocovariance matrices of y at non zero lags in
the presence of a low rank useful signal u. [30] assumes that v is possibly non Gaussian with covariance matrix
R = 0?1, and that the useful signal v is given by u,, = Hs,, where H is a M x K matrix verifying H*H = I and
where the components (s ,,)nez of (Sn)nez are independent times series. Using the above mentioned perturbation

analysis, [30]] studies the eigenvalues of R}f\pyR}pr that escape from the interval [0,z ] introduced above.

We notice that if L = 1, matrix R}‘Ip v coincides with the standard estimate of the autocovariance matrix of y at lag 1.

We finally mention that a number of previous works addressed the behaviour of the canonical correlation coefficients
between the row spaces of two large random matrices. However, the underlying random matrix models are simpler
than in the present paper. More specifically, the structured random matrices Y}, 1 and Yy 1 as well as V}, 1, and V1,
are replaced by mutually independent matrices X; and X5 with i.i.d. elements, a property that is not verified by
Yoo, Yy, Vpr and Vy 1. [33] addressed the case of M x N mutually independent complex Gaussian matrices
X1 and X5 with i.i.d. entries, and derived the corresponding limit distribution of the squared canonical correlation
coefficients. This is equivalent to evaluating the limit eigenvalue distribution of II;IIs where II; and Il represent
the orthogonal matrices on the row spaces of X; and X5. We note that the result of [53] appears as a trivial
consequence of basic free probability theory results (see e.g. [52] [25], [35], as well as [47] for a more engineering
oriented presentation) because under the above hypotheses, 1I; and II; are almost surely asymptotically free. More
recently, [54] extended this result to the case where X; and X» are independent matrices with non Gaussian i.i.d.
entries. We also note that [55] took benefit of this result to propose independence tests between 2 sets of i.i.d.
high-dimensional samples. We mention that*[5] extended the result of [53] to the case where X; and X5 have
Gaussian i.i.d. entries, but this time E{ Xl}\i%} is a non zero low rank matrix. We finally notice that in [44], we
established the convergence of the eigenvalue distribution of II,, ,IIf, by establishing the almost sure freeness of
II, , and II¢,. We however mention that in order to study the largest eigenvalues of II, ,II, using perturbation
techniques, it is also necessary to evaluate the asymptotic behaviour of the resolvent of 11, ,I1f ,,, a more difficult
issue that is solved in the present paper.

C. Assumptions, notations and basic tools.

We now introduce the main assumptions, notations and fundamental tools that will be used throughout this paper.
Assumptions

e We assume that L is a fixed parameter verifying L > P, and that M and NV converge towards 4-oo in such a
way that

ML
cN:T%c*,O<c*<1 (1.10)

This regime will be referred to as N — +oo in the following. In the regime (L.I0), M should be interpreted
as an integer M = M(N) depending on N. The various matrices we have introduced above thus depend on
N and will be denoted Ry ,Ys n,Y, n,.... In order to simplify the notations, the dependency w.r.t. N will
sometimes be omitted. We notice that the results of Section [[I] devoted to the study of the largest eigenvalues
of R?I » yR?l*;y could be generalized to the case c. > 1, but we prefer to assume ¢, < 1 in order to simplify
the presentation of the corresponding results. It therefore holds that ¢y < 1 for each IV large enough.

» The sequence of covariance matrices (Ry)n>1 of M—dimensional vectors (vn)nzlw, ~ is supposed to verify
al <Ry <bI 1.11)

for each IV, where @ > 0 and b > 0 are 2 constants. A\; vy > Ay y > ... > Ap, v represent the eigenvalues of
Ry arranged in the decreasing order and fi w,..., fas,n denote the corresponding eigenvectors. Hypothesis
(I.1T) is obviously equivalent to A7,y > @ and Ay < b for each N.

Notations

e Foreach 1 <i < 2L and 1 < m < M, f™ represents the vector of the canonical basis of C*M% with 1 at
the index m + (i — 1)M and zeros elsewhere. In order to simplify the notations, we mention that if ¢ < L,
vector £ may also represent, depending on the context, the vector of the canonical basis of CML with 1 at
the index m + (¢ — 1)M and zeros elsewhere. Vector e; with 1 < j < N represents the j —th vector of the
canonical basis of CV.



o For each integer [ > 1, we define the [ x [ "shift" matrix J; as
(J1)is = 0j—(i+1)- (L.12)

e RT and R~ represent respectively the set of all non-negative numbers and non-positive numbers, and we
denote R* = R\ {0}, Rt* =Rt \ {0} and R™* = R~ \ {0}. We also define C* = {z € C : Im(z) > 0}.
We finally denote by p(z) the distance from z € C to R, i.e.

p(z) = dist(z,RT) (1.13)

« By a nice constant, we mean a positive deterministic constant which does not depend on the dimensions M
and N nor of the complex variable z that appears in the various Stieltjes transforms introduced in this paper.
In the following, s will represent a generic nice constant whose value may change from one line to the other.
A nice polynomial P(z) is a polynomial whose degree and coefficients are nice constants.

o If (an)n>1 is a sequence of positive real numbers and if € is a domain of C*, we will say that a sequence
of functions (fn(z))n>1 verifies fn(z) = O, (an) for z € Q if there exists two nice polynomials P; and
Py such that |fy(2)| < anPi(|2])Pe(jmy) for each z € Q. If @ = CF, we will just write fy(2) =
O, (an) without mentioning the domain. We notice that if P;, P> and @1, ()2 are nice polynomials, then
Pl(\z|)P2(®) + Q1(|z|)Q2(®) < (PL+Q)(z])(P+ QQ)(ur}T\) from which we conclude that if the
sequences (f1,n)n>1 and (fo n)n>1 are O (an) on £, then it also holds fi n(2) + fo.n(2) = O,(an) on
Q.

« For any matrix A, ||A|| and || A|| r represent its spectral norm and Frobenius norm respectively. The transpose,
conjugate, and conjugate transpose of A are respectively denoted by AT ,A and A*. If A is a square matrix,
Im(A) is the Hermitian matrix defined by Im(A) = A;LA* . If A and B are Hermitian matrices, A > B stands
for A — B non-negative definite.

e C°(R,R) represents the set of all C* real-valued compactly supported functions defined on R.

o If £ is a random variable, we denote by £° the zero mean random variable defined by

¢° = ¢ — Ee. (114)

Fundamentals tools

If n is a positive integer, then a n X n matrix-valued positive measure w is a o—additive function from the Borel sets
of R onto the set of all positive n x n matrices (see e.g. [42], Chapter 1 for more details). If w is a n X n matrix-
valued positive finite [1_] measure, the Stieltjes transform S,, of w is the function defined for each z € C\ Supp(w)
by
dw(X)
Sw(z) = | ——= I.15
0= [ 3 w1s)

In the following, if B is a Borel set of R, we denote by S,,(B) the set of all Stieltjes transforms of n x n matrix-valued
positive finite measures carried by B. S;(B) is denoted S(B). We just mention the following useful properties of
the elements of S,,(R) and S,,(RT): if S € S,,(R) and if w represents its associated n x n matrix-valued positive
finite measure , then, S is analytic on C \ R and verifies

[w(®R)|
Imz

1S(2)] < , ImS(2) > 0 (L16)

if z € C*. Moreover, w(R) = lim,_,; oo —iyS(iy). When the positive matrix w(R) is positive definite, ImS(z) > 0
on C*. If S € §,,(R™), then S is analytic on C — R™ and also satisfies

ImzS(z) >0, 2 € CH, ||S(2)| < M,ze@—ﬂ@' (1.17)

p(2)

When w(R;) > 0, we also have ImzS(z) > 0 on C*. We refer the reader to Proposition 4.1 in [33] for other
useful properties, and for a converse of (I.16] [[.17). We finally mention the following immediate properties:

S eS8, (RT) = SeS,(R) (L.18)

Hfinite means that Tr (w(R)) < +oo



where S(z) is defined for z € C* by S(z) = 25(z2). Moreover, if w and w are the positive matrix-valued measures
associated to S and S, the following equality holds:

w(RT) = w(R) (1.19)

If Ais a n X n matrix, the resolvent of A is defined as the matrix-valued function Q4 defined on C —
{Al(A)av)‘n(A)} by 1
Qalz)=(A—2zI)" (1.20)

If A is Hermitian, it is clear that ) 4 coincides with the Stieltjes transform of the n X n positive matrix-valued
measure w4 given by

wa =Y 0Ox,(a)fe(A)fe(A)*

k=1
where (f(A))k=1,....n represent the eigenvectors of A. We notice that w4 (R) = I, so that (I.16) leads to
< — 1.21
lQ4() < (121)
on CT and L
Qa2 < — 1.22)
Q4 < o5
on C —R* if A > 0. We also mention that () 4 satisfies the "resolvent identity"
I+2Qa(2) =Qa(2) A= AQa(z) 1.23)
for each 2. If vy = %Zzzl dx,(4) represents the empirical eigenvalue distribution of A, %Tr Qa(z) is the

Stieltjes transform of v 4.

We recall that if (Ayx)n>1 is a sequence of N x N Hermitian (possibly random) matrices, a convenient way to
study the behaviour of the sequence of probability measures (4, )n>1 when N — +oo is to study the asymptotic
behaviour of the corresponding Stieltjes transforms S, (2) = +Tr (Qa, (2)) because the weak convergence of
sequence (va,)n>1 towards a probability measure v, is equivalent to the convergence of S, (2) towards the
Stieltjes transform of v, for each z € C*. This explains why Stieltjes transforms and resolvents play an important
role in large random matrix theory. We refer the reader to e.g. [2]], [39], [S6]. See also [13] and [47/] for more
engineering oriented books.

We also recall Montel’s theorem (see e.g. [12]), also called the Normal Family Theorem, which is frequently
used in the large random matrix literature. If (sy(z))n>1 is a sequence of functions that are holomorphic on a
domain €, and such that, for each compact set K C €, supy~; sup,cx [sn(z)| < +oo, then it is possible to
extract from (sy(z))n>1 a subsequence converging uniformly on each compact subset of ) towards a function
$«(z) holomorphic on €. Note in particular that if for each N > 1, sy is the Stieltjes transform of a probability
measure, then (sy(z))n>1 verifies the above assumptions for 3 = CT because |sy(z)| < 12> on C* for each
N >1.

In this paper, we will consider frequently 2n x 2n matrices A given by

(8 0)

where B and C' are n x n matrices. The resolvent Qa of A is given by

_( #Qpc(2*) Qpc(:*)B
Qa(z) = ( CQpc(2?)  2Qcp(2?) ) (1.24)

If the eigenvalues of BC' are real and positive, the eigenvalues of A are the + (s/)\k(BC)>
k=

We finally recall the two Gaussian tools that will be used in the sequel in order to evaluate the asymptotic behaviour
of certain resolvents.



Proposition 1.1. (Integration by parts formula.) Let £ = [¢1,...,¢ K]T_ be a complex Gaussian random vector
such that E{¢} = 0, E{¢€T} = 0 and E{¢¢*} = Q. If T : (&) v T(&,€) is a C* complex function polynomially
bounded together with its derivatives, then

Ten =S [ OTE
E{&F(ﬁ)}—éﬁw{ o, } (1.25)

Proposition L2. (Poincaré-Nash inequality.) Let £ = [&q,...,& E}T be a complex Gaussian random vector such
that E{¢} = 0, E{¢¢T} = 0 and B{¢€*} = Q. If T : (§) =€) isaCt complexfunction polynomially bounded

together with its derivatives, then, noting V¢I' = [651 . %] and V¢l = [(95 yeees %]T

Var{T'(¢)} <E {vgr(g)TQvfr(g } +E{V(6)* V() (1.26)

The combination of these two tools was first proposed in [38], see also [39] for an exhaustive reference. We also
mention [22] in which Propositions [[.T] and [[.2] are used in order to study the capacity of large MIMO channels.

II. THE LARGEST SINGULAR VALUES OF THE EMPIRICAL AUTOCOVARIANCE MATRIX.
A. Review of the zero signal case.

In this paragraph, we briefly present the useful results from [33] concerning the study of the singular values of
matrix RL‘p or equivalently of the eigenvalues of RL f‘ . U(Rflp )" All along Section we will denote by W), n
and Wy y the ML x N normalized matrices defined by

1 1
Wpn = ﬁvp,N» Win = ﬁvf,N (IL.1)
and by Wy the 2M L x N matrix given by
_( Wen
W = ( Wi N > 2
We first mention that matrices W; n, @ = p, f verify the following property.
There exists a nice constant x such that, almost surely, for each N large enough, |W; n|| < K (11.3)

If Rx was equal to I, this property would be an immediate consequence of Theorem 1.1 in [32]. In the general
case, it is an immediate consequence of Eq. (3.1) in [33] and of (L.IT).

In order to study the asymptotic behaviour of the eigenvalues of Wy v W y W, W7 . [33] studied the behaviour
of the resolvent, denoted @ n,w (2), of the ML x ML matrix Wy nW, NW NWE N, e

Qnw (2) = (Win Wiy Wy n Wiy — 21) 7 (IL4)
The entries of QQn,w are easily seen to concentrate almost surely around their mathematical expectations.
Therefore, it is sufficient to study the behaviour of E(Qn,w(z)) using Propositions and As the entries
of Wy nWy xWp nW7 y are bi-quadratic functions of the entries of Wy, the Gaussian calculations that allow to
evaluate E(Qn,w(z)) are very complicated. Therefore, [33] used the well-known linearization trick that consists
in studying the resolvent Qx w (z) of the 2M L x 2M L hermitized version

0 Wi W, N
WpnW5 N 0

Formula (I.24) allows eventually to deduce E(Qn,w (2)) from the first diagonal block of Q n,w (). This linearization
trick will also be used extensively in the present paper. In the following, every 2M L x 2M L matrix G such as

Qn (z) will be written
Gpp Gt
G—(Gpr Go
(Gfp Gﬂ") ’

where the 4 matrices (G, ;)i jep,s are ML x ML. Sometimes, the blocks will be denoted G(pp), G(pf), ....



In order to introduce the main results of [33]], we recall Proposition 6.1 in [33]): for each z € C*, the equation

zenty(2) )1
_EONINYY Ry
1 — 2c4 1%, (2)

1

tN(Z) = MTrRN (ZI}V] - (HS)

has a unique solution for which ¢y (z) and 2ty (z) belongs to C*. Moreovoer, ¢y is the Stieltjes transform of a
positive measure p carried by RT, and the M x M matrix-valued function Ty (z) defined by

. -1
Ty (z) = — (ZIM + %RN) , (IL6)

belongs to Sys(RT). Its associated positive matrix-valued measure, denoted v%, verifies vL(RT) = I. We also
define ty(z) and Tx(z) by
tn(z) = 2tn(2%) (IL7)

and

—1
CNtN(Z)
To(2) = 2T (s2) = (—apy, — —NtN(2) 1.8

o) =1 = (st~ g ) -
which, by (1.18), belong to S(R) and Sy/(R) respectively. Moreover, the positive matrix-valued measure vy
associated to Ty verifies v (R) = v5(RT) = I. Then, the following Proposition can be deduced from the results
of [33].

Proposition IL.1. We consider sequences of deterministic ML x ML and 2ML x 2M L matrices (Ax)n>1 and
(AN)N>1 verifying supy ||An|| < +00 and supy ||[An|| < 4o00. Then, we have

ﬁTr (Qn(2) — I ® T (2))Ax) = 0 (IL9)
and
2]\4[;,[‘1‘(((91\/(2’) 7[2L®TN(Z))AN) — 0 (I1.10)

where the convergence holds almost surely and uniformly on the compact subsets of C\R™" and of C\R respectively.
Moreover, if (an)n>1, and (by)n>1 (resp. (an)n>1, (bn)n>1) represent sequences of M L-dimensional (resp.
2M L-dimensional) deterministic vectors verifying supy |lan|| < +00 and supy ||bn || < +oo (resp. supy |lan|| <
+00 and supy ||by|| < +00), we also have

ay (Qn(2) = Iy @ Tn(2)) by — 0 IL11)

and
ay (Qn(z) — I, ® Tn(z)) by =0 (IL.12)

almost surely and uniformly on the compact subsets of C\ R and C\ R respectively.

We denote in the following 7 the empirical eigenvalue distribution of matrix Wy nW yWp W7 . The use of
for Ay = I leads to the conclusion that if vy represents the probability measure defined by
1
VN = M
then ny — vy — 0 weakly almost surely. Therefore, the empirical eigenvalue distribution 7y of
W nWy nWp NW5 v has a deterministic behaviour when N — 400, and measure vy will be referred to as
the deterministic equivalent of 7y in the following. [33] also characterized the support of v, or equivalently the
support of p because Assumption implies that vy and p are absolutely continuous one with respect to
each other. For this, the behaviour of ¢x(z) when z converges towards the real axis is studied in [33]. It is shown
that for each x > 0, the limit of ¢y (z) when z € C* converges towards = exists and is finite. This limit is still
denoted ¢ (z) in the following. This property implies that u and vy are absolutely continuous w.r.t. the Lebesgue
measure (see e.g. Theorem 2.1 in [43]). Moreover, it is shown that the corresponding densities converge towards

~+o0o0 when & — 0,2 > 0. In order to analyse the common support Sy of uy and vy, the function wy(2) defined
by

Trvk (I1.13)

1

11.14
CNtN(Z) ( )

wn(z) = zentn(z) —



is introduced. For each z € C — R™, wy(z) is solution of the equation ¢n(wpy(2)) = z where ¢y (w) is the
function defined by

on(w) = eyw? %TrRN (Ry —wI)™" (CN %TrRN (Ry —wI)™ " — 1) : (IL15)

To understand the equation ¢ (wn(z)) = z, we remark that Ty (z) can be written in terms of wy(z) as

Tn(z) = wNZ @) Ry = wn(z)D) ! (IL16)
so that ¢y (2) = 7 Tr RyTy () is equal to
tn(z) = wNZ (2) %Tr (Ry(Ry —wn (2)1)™") (IL.17)

Plugging into leads to ¢ (wn(2)) = z. Moreover, if we define by wy(x) for z > 0 the limit of
wy(z) when z — z,z € C*, the equality ¢n(wn(z)) = z is also valid on RT. It is proved that = € S if
and only Im(wy (z)) > 0 (S¥ represents the interior of Sy) and that z € (S%) if and only if wy () is real.
Moreover, w’y(z) > 0 for each x € (Sy)°. Finally, if x € (Sx)*, it holds that

on(wn (@) =2, ¢ (wn(x)) > 0, wy(2) %TrRN (Ry —wn(2)) " <0. (IL18)

This property allows to prove that the support Sy of px contains 0, and coincides with the union of intervals whose
end points, apart 0, are the extrema of ¢ whose arguments verify %’ITRN (Ry —wI )_1 < 0, see Corollary 7.2
in [33]]. If we denote by . n the largest element of Sy, then, 24 v = ¢y (w4 n) Where wi v > A N = A1 (Ry)
is the largest solution of ¢y (w) = 0. It is established that supy~; 24 v < 400 and supys; wy y < +00. A
sufficient condition on the eigenvalues of Ry ensuring that the support of sy is reduced to the single interval
[0,24 n] is formulated (see Lemma 7.7 in [33]]). Using the Haagerup-Thorbjornsen approach ([20]), it is finally
proved that if d > 0 verifies [d, +00) N Un>n, Sy = 0 for some integer Ny, almost surely, for N large enough,
all the eigenvalues of Wy nW) v W), nW7} v are smaller than d. When Sy is reduced to [0,z v, this property
implies that for each e > 0, for each IV large enough, then all the eigenvalues of W n W Wy nW7  are smaller
than sup > n, +,n + € where N is a large enough integer.

B. Signal model and first assumptions

Now we pass to the case when signal (u,)nez is present, and evaluate its influence on the eigenvalues of matrix
YY) (YY)
N N

* . . . . Ypvr o .
) . For this, we use a classical approach based on the observation that matrix % is a finite rank

perturbation of matrix % due to the noise (vy,)nez. It will be assumed that for each N large enough, the support
Sy of measure 1y associated to ¢y (z) is reduced to the single interval Sy = [0,z 4], see Assumptionbelow.

We recall that the useful signal (uy)necz is generated by the minimal state-space representation (L3). As M is
supposed to increase towards oo, it is first necessary to precise how the parameters of (I.3) depend on M. We
formulate the following assumptions:

Assumption IL1.  « (iy,),cz is a K—dimensional white noise sequence such that E(i,i%) = I, and which is
independent of M and N
o The dimension P of the state-space does not scale with M and N and matrices A and B are independent of
M and N.
e Matrices C = Cn and D = Dy depend of M and thus on N, and are supposed to verify

sup ||Cn|| < o0, sup ||Dy|| < 00 (I1.19)
N N



We recall that L > P. As a consequence of Assumption the P—dimensional Markovian signal (x,,)ncz is
independent of M and N. We define matrix Hy as the M L x KL block-Toeplitz matrix defined by

Dy 0 . ... 0
CnyB Dy 0o . 0
Hy = : CnB : (11.20)
CnAL—3B
CNyAY2B CyA' 3B '-. CyB Dy

Then, it is easy to check that the M L—dimensional vector uZ = (ul

noy

Sulp_1)T can be written as

uy = (On, M) ( ";-CL ) (I1.21)
n

where % is defined as uZ and where we recall that the observability matrix Oy is defined by . We formulate

the following assumption:

Assumption IL2. The rank r < P + KL of matrix (O, H ) remains constant for N large enough.

In the following, we denote by Uy n and U,y the ML x N matrices defined as the analogues of Yy n
and Y, y obtained by replacing the M—dimensional vectors (yn)n=1,... nN+21—1 by the M-dimensional vectors
(Un)n=1,....N+22—1. We also denote by R% \, = E(uluk*) the covariance matrix of u);, and recall that E(ul, ; u-*)
coincides with R, = E(y), 1y5*). We also recall that Rank(R}, ) = P for each L > P and claim that
Assumption implies that for N large enough, Rank(Ri ) = r for each L > P . This is because Ri N 18
given by

R, 0 .
RS,N—(ON,HN)< 0 Ixp >(0N,HN) (11.22)

where R, = E(x,z) coincides with
o0
R, =Y A*BB*A™
k=0
R, is positive definite because the minimality of the state-space representation ([.3) of u implies that the pair

(A, B) is commandable. Therefore, Assumption implies that Rank(Rﬁ’n) = r for each N large enough. In the
following, we denote by

Rl v = ONALO) (11.23)

the eigenvalue / eigenvector decomposition of Rl n where A% = Diag(d7 y,...,07 y) where (67 y)r=1,...r
are the eigenvalues of R,f_ n arranged in the decreasing order and where O is the ML x r orthogonal matrix
corresponding to the eigenvectors.

. . . Ui, nU} .
We now take benefit of Assumptions and to evaluate the properties of matrices # for i =p, f and
Ur NU n
—.

Proposition I1.2. The following convergence result hold:

UinU; N

HN _RS’NH -0 (11.24)
UsnUp N

H N~ RJ%|P’NH -0 (I1.25)

Jori=p,f.

Proof. In the following, we denote by X y and X111 n the P x N matrices defined by

Xl,N = (xl,l‘z,. .. ,CL’N), XL+1,N = ($L+1,I‘L+2, e ,xN+L) (1126)



and by Iy n and I, y the KL x N matrices defined as the analogues of Yy y and Y}, ; obtained by replacing the
M—dimensional vectors (Yn)n=1,... N+2r—1 by the K—dimensional vectors (i )n=1,.. nt2r—1. It is easy to check
that
Upn=0OnX1+HNIpn, Upn =On Xpian +Hy g N (1.27)
As P, K, L remain fixed, matrix
1 Xl,N * *
N( LN )(Xl,N I,N)

converges almost surely towards the covariance matrix of vector ( ; T ), i.e. matrix

n
R, O
0 Ikr
As the rank of this matrix is obviously P + KL, the same property holds for ( )I(I’N > for N large enough.
Moreover, (ILT9) implies that

p,N

st;fp |(On, HN)|| < +o0 (11.28)
Using the equation
U, NU> & 1/ X ) . .
Pin, = (On,HnN) N( I;}i;v ) ( Xin Ipn ) (On,HN)™,
(I22) and (IT.28) imply that
r_UnUpn
| Ry n — TH —0 (I1.29)
It holds similarly that -
|RE n — 7”?\, L (I1.30)

Moreover, the column space of matrices U, y and Uy n both coincide with the r—dimensional column space of
(On,Hn) for N large enough. Therefore, Rank #) = r almost surely for IV large enough. We also

remark that
1 . { , v * gLk E T x:mlﬁ*
N( I )(Xl,NIp,N) eEK i ) (a, ik )} _ [ (onsn(25187) ]

Therefore, using (IL28), we obtain that
Lx

1 X £ 7 O3 E (2, n
HN(ON,Hm( i ) (X7 vTp ) ( A ) (ON,HN)< (e e ) )H —~0 31

because (I1.21) holds. It is easily seen that matrix E (2,4 u’*) coincides with Cy = (AL71G, ..., G) (we recall
that G = E(x,,.1u}), see Paragraph . Moroever, as R?Ip,N = E(uk, juk*) is equal to OxCy, we obtain that

E n Lx
(ONaHN)( (z +OL ) ) = OnCn = Rfj, n

Therefore, (II.31)) implies that (II.25) holds. B

. . o . Up.n Usin .
We introduce the singular value decompositions of matrices TN and Nk

Up,n A« Urn A

\;N - (-)p,N AP,N@p7N7 W - @ﬁ]\/‘ Af,N@f,N (1132)
where @Z—,N,ALN,(:)LN are ML x r, » x r, N X r matrices that of course depend on N for
i = p,f. We deduce from (I.25) that Rank (%) = P for each N large enough. As

UfﬁN U;,N
N

coincides with @f,NAf,Né?’Nép,NAp,NG;,N7 we obtain that Rank (Af,Né?NC:)p,NAp,N) = P,
Rank (ANé?7Nép7NAN) = P and that Rank (é’;ﬁNépﬁN) = P for each N large enough. As in the previous



works devoted to the study of conventional spiked models (see e.g. [7]], [10]), it is necessary to introduce assumptions
concerning the existence of limits of certain terms depending on the statistics of the useful signal u. In particular,
we will need the following assumption.

Assumption IL.3. r x r matrices Ay and @}Rﬁp NON converge towards matrices A, and T, respectively. It is
moreover assumed that A, > 0.

We notice that Rank(T',) = P. As seen below, the proofs of the main results of this paper appear simpler when
we assume the following condition
O > oo > Ops (IL.33)

where (0 +)r=1, .. represent the diagonal entries of A,. Therefore, in the following, we will assume that condition

holds, and discuss briefly in Sections @ and |H_IT| below how the results can be extended to the case where
some of the diagonal entries of A, > 0 coincide. In order to explain why condition (I.33) allows to simplify the
following arguments, we establish the following result.

Proposition IL.3. For i = p, f, matrices (A; n)N>1 verify

|Ain —An| — 0a.s. (11.34)
Moreover, if condition (21.33 holds, and if the r left singular vectors (ai,N,k)k:L...,r of [{}% are chosen in such
a way that 0y ,.0; i is real and positive, then we have

©in —On| — 0a.s. (I1.35)

Ui,NUi*,N _

Proof. (I1.34) is a consequence of (I1.24) and of the Weyl inequalities which imply that |67  , =03, ;.| < [[ =55
Ri ~ |- We thus notice that (I1.34) holds even when Assumption 1j is not verified. In order to verify (I1.35), we

first remark that (I.24), Assumption (IL3) and (IL.34) imply that
10:,NAZO; y — ONATOX| = 0 (I1.36)

*

when N — +oc. Condition (.33) implies that the eigenvalues of matrices ©; A0} y and ONAZO} have
multiplicity 1. Therefore, standard results of perturbation theory of Hermitian matrices lead to the conclusion that

10i,8,£0; N, — ON KON k]l — 0

for k =1,...,r. This implies that ||60; nr — (07\7,k9i71\77k) On.k|| — 0 as well as |97V,k0i,N-,k‘2 — 1. The condition
(03 x0i,n,k) real positive leads to (0% ,0i,nx) — 1 and to

10;. Nk — Onkl — 0

for each K = 1,...,r. This completes the proof of (II.35). H

Condition ([I.33) allows to replace matrices A; y and ©; x for ¢ = p, f by matrices Ay and ©x up to error

terms that converge towards 0. In particular, % = ®f7NAf,N(:)}7N(:)p,NAp}N®;’N verifies ||W -
@NAN@}’NGP,NANG*NH — 0. We introduce the rank P matrix I'y given by
I'y = ANO} vO, NAN (11.37)
Then, (IL.23) implies that
1Rf, x — ONTNON | = 0 (IL38)
and that, under condition (I1.33)),
lim I'y =T, (I1.39)

N—+oco
We notice that if some of the entries of A, coincide, then (I.39) does no longer hold. This point will be explained
in Section [[I-F If we consider the singular value decomposition

Iy = TNENTY (IL.40)

of matrix I'y, then, (IL.38) implies that the P non zero singular values of R]%‘p n have the same asymptotic
behaviour than the P non zero singular values (xx n)k=1,....p of 'y, and converge towards the singular values of

.....



matrix I',.

We finally notice that the canonical correlation coefficients between the row spaces of U, y and Uy y, i.e. the
singular values of matrix ©% yOp v, and the canonical correlation coefficients between the spaces U, and
Uy 1, generated by the components of (wn+r)n=0,...r—1 and (Upt1)n=r, .. 20—1, i.¢. the singular values of matrix

A#@*NRJ%'Z)’N@NA;, have the same asymp.totic behaviour. For this, we just use (II.38)), (I.39) as well as the
convergence of Ay towards A, > 0, and obtain that

AN ONRf, yONAN — OF xOp | = 0 (11.41)

C. General approach

We first briefly explain the general approach that will be used in the following to evaluate the behaviour of

the eigenvalues of Ys ’NA}/’;N YP’NNYf L In order to simplify the notations, we denote by X, x and W, y matrices
YiN = % and W; y = ‘\//NN for i = p, f. It is easy to check that
. ) ~ A;O%50,A, I, o
Ny, = WiW, + (O, WsO,A,) < ! ?T P 0 ) ( Af(:)jlpW; ) (I1.42)
We denote by A and B the matrices defined by
A= (0, W,6,4,) (IL43)
and -~
B= (0, W,6,4/) < Ap@’}@f B IO ) (IL44)
Then, an easy calculation leads to
—ZI* Zpr _ -z I* Wpr n A 0 0 I A O* (11.45)
X% —z1 WpyWs  —=z1 0 B I, O 0 B
. 0 WWw> . .
We recall that Quy (z) represents the resolvent of matrix W 0 P ). Consider a positive real number
P f
. . 0 Ww> ..
y such that y is not eigenvalue of W 0 p for each N large enough (some conditions on such an
P f

eigenvalue will be precised below). For z =y, the left handside of ([I.45) can also be written as
-yl X35\ -yl  WiW; A 0 0 I A* 0
( soor —yl )T\ wwy Syl ) (Bt Qv@ (g 5 ) g, o 0 B
(I.46)

DIFDIN
0 7= ) if and only the determinant of the second term of the right

5,50
f
handside of (I1.46) vanishes. Using the identity det(I + E'F) = det(I + F'E), we obtain that y is an eigenvalue of

( 0 X2y ) if and only

5550
A0 A 0 0 I \) _
det <I47.+< 0 B )Qw(y)< 0 B ) ( Ly 0 )) =0 (IL.47)

det Iy + Fx(y)) = 0 (IL48)

Therefore, y is eigenvalue of

or equivalently if

where Fy(z) is the 4r x 4r matrix-valued function given by

_ A*QW f(Z)B A*QW7 (Z).A
FN(Z)‘(B*QW,Z@)B B*Qw,?’ﬁ(z)A) (L45)

We will see that under certain technical assumptions, Fiy(y) converges towards a deterministic matrix F(y) and
that the solutions of (I1.48) converge towards the solutions of the deterministic equation det (I, + Fi(y)) = 0,
which, fortunately, can be analyzed.



D. New assumptions and their consequences.
We need to distinguish two kinds of extra-assumptions.
o Assumptions on the asymptotic behaviour of the eigenvalue distribution of matrix Ry.

Assumption I14. If wy = ﬁ Zi\il Oy, 18 the eigenvalue distribution of matrix Ry, it is assumed that

Hm Ay =M. lim Ayy=A_. (IL.50)
N—+o0 N—o4oo

We note that A_ . > a > 0 and A1 . < b where a and b are defined by . Moreover, sequence (UJN)NZI is
assumed to converge weakly towards a probability measure w.,, which, necessarily, is carried by [A_ ., A .]

Assumption ILS. It is assumed that for each N large enough, it exists a nice constant xk > 0 such that the
eigenvalues (A, N)k=1,... M satisfy

E— 1\ Y2
Ao, v — An| < K <|M|> (11.51)

Jor each pair (k,1), 1 < k <1< M, so that the support Sy of un is equal to Sy = [0,x4 n| (see Lemma
7.7 in [33|]). Moreover, we add the following condition: for each N large enough,

k—1

AMN = AN <K (11.52)

for some nice constant k.
o Assumptions on the asymptotic behaviour of matrices depending both of the useful signal and the noise.

Assumption IL6. We recall that (fi n)k=1,... M represent the eigenvectors of matrix Ry. We consider the
M x M matrix-valued function positive measure wﬁ defined by

M
R
Wy = Z(SAI@.N fk,Nfl:,N

k=1

and introduce the r X r positive matrix-valued measure yn defined by
dyn(A) = 0% (I ® dwi(N)) On (IL.53)

Then it is assumed that the sequence (YN)N>1 converges weakly towards a certain measure ..
It is clear that Assumptions look rather strong (notice however that the assumptions are satisfied
when Ry = o2 for some o2 > 0). This does not limit the usefulness of the results of Section . because
our goal is to establish that, despite the above strong Assumptions, the number of largest eigenvalues of
thwR Tlow = =Xy %,X% that escape from [0, 24 ] is not at all related to P. Therefore, the conclusion of the
results of Sectlorj 1s that, even if strong Assumptions hold, the largest eigenvalues of Rf|p7yR Flp,y cannot be
used to estimate P consistently.

We now state some consequences of Assumption and Assumption [[I.5] which, in some sense, show that
T4 N,wy N, functions tx (%), wn (%) and measure p have, when N — o0, limits that satisfy the same properties
that their finite N equivalents. We recall that w; y > 0 is defined by wi v = wy(z4 n) and verifies x4 n =
dn(wi n), ¢Py(wen) =0 and wy ny > Ay (we recall that wy and ¢y are defined by and (IL13)).
We omit the proof of the two following Propositions, and refer the reader to the proofs of Proposition 4.1 and
Proposition 4.2 in the Thesis [45]].

Proposition IL4. Sequences (wy n)n>1 and (x4 n)Nn>1 converge towards finite limits w , and T . respectively.
Moreover, wy . verifies wy . > Ay .. If ¢ (w) is the function defined on C — [)\,,*7 )\+_,*] by

Afs 2 Mg
du(w) = (cow)? (/ ' Aiw*(;)> +c*w“'/+ %"&’\) (IL.54)
A - A -

— % — %

then, ¢n(w) — ¢«(w) uniformly on the compact subsets of C — [A_ ., Ay .]. Moreover, it holds that

Thw = du(wy ) (IL55)



The sequence (un)N>1 converges weakly towards a probability measure (1. The support S, of . is included into
[0, 24 ], and the Stieltjes transform t.(z) of . verifies the equation

Mg A
b(2) = / S dw.(\) (11.56)
A *Z(lJF%)

for each z € C — [0, x4 .]. Moreover, tn(z) converges uniformly towards t.(z) on the compact subsets of C —
[0, 24 .]. If wi(2) is the function defined on C — [0, x4 .] by

1

Wy (2) = cuztu(2) —
then, w, is holomorphic on C — [0, x4 .] and wy(z) converges uniformly towards w.(z) on the compact subsets

of C— [0, x4 .]. wi(2) satisfies
P(ws(2)) =2 (I1.58)

for each z € C — [0, x4 .. Finally,

lim t.(x) exists, is finite, is still denoted t.(x .), and Eq. holds for z = x4 , (I1.59)

LT p 4, T
Moreover, we have

Wi s = Wi (T 4) (I.60)

We recall that v%; is the M x M matrix-valued positive measure associated to matrix-valued Stieltjes transform
Tn(z), and introduce for each N the r x r matrix-valued measure Sy defined by

dBN(N) = Ox (I @ dvi (M) On (IL61)

We notice that v (R*) = I implies that By (RT) = I. Using the identity (II.16), we obtain immediately that the
Stieltjes transform T}, (z) of Sn is given by

wn(z) [ _dyn(d)
z A —wy(2)

Tay(2) = (11.62)

Then, the following result is a consequence of Assumption [[T.6]

Proposition IL5. The sequence of measures (Bn)n>1 converges weakly towards a measure (3. whose support is
included into 0,z .], and which verifies 5,([0, 2 .]) = B.(R") = I. The Stieltjes transform Tp_(z) of B is
given by

i
Ts,(2) = w*z(z) / ACZ_A/’;S()Z) (IL63)

for each z € C — [0, x4 .]. Moreover, it holds that

A=
. . Wy dy. (A
Tp(apo) = lm  Tp(e)= lim Tpy(ern) == A () (IL64)

LT 4 4, E>Ty T4 % A— W4«

We finally conclude this paragraph by the following result.
Proposition I11.6. Assume that y > /T .. Then, for each N large enough, y is not eigenvalue of matrix

0 We W

( Wy x W7y f’NO pN ) and y? is not eigenvalue of WiWoW, Wi

Proof. As y > ,/T; . and that imy_{ T4 N = T4 ., it exists No such that y > . /Z1 § and y* > x4 y for
each N > Nj. Therefore, 4% does not belong to Un>n,Sn. Theorem 8.1 in [33]] thus implies that y? and y cannot

0 WinWy N > for N > Ny

be one of the eigenvalues of matrices Wy W W, NWF  and ( "
SN, NP NN Wy N W7 x

respectively. l



E. Asymptotic behaviour of the eigenvalues of 3 ¥ ¥,37%.

In this paragraph, we characterize the possible eigenvalues of ¥ ;>.73.,37% that escape from the interval [0, x4 4]
0 YNy N )

Yo NEF N 0

that are almost surely, for N large enough, strictly greater than /x4 , + 0. We first mention that Theorem

8.1 in [33] implies that the resolvent Qu (z) of Wy NWy xWp nWF v and the resolvent Qw (z) of matrix

For this, for each 6 > 0 small enough, we study the positive eigenvalues of (

0 WenW* . .
N PN PN ) are almost surely, for each N large enough, holomorphic in C — [0,z y] and in
Wy NnWiN ’
C — [-/ZTf N, /T+ N]| respectively. Therefore, almost surely, for each N large enough, function Fi(z) defined

by (IL.49) is holomorphic on C — [—,/Z¥ N, /T+.N|- As Imy_ 400 T4 N = T4 4, Fn(2) is also holomorphic on
C—[—\/wys+0,\/xy .+ 0] for each § > 0 for N large enough.

We first establish that the sequence of analytic functions (Fn(z))n>1 almost surely converges uniformly on
each compact subset of C — [~,/Zy ., /71 .| towards a deterministic function F.(z) which is analtyic in
C - [—\/m , \/m] Adapting the stability results of the zeros of certain analytic functions proved in [6]] and
[10], we obtain that for § small enough, the solutions of the equation det(I + Fy(y)) = 0, y > /x4 . +9,
converge towards the solutions of the limit equation det(I + Fi(y)) =0, y > /¢ ..

In order to study the asymptotic behaviour of Fly, we first consider the asymptotic behaviour of matrix
A*Qw,n (pf)B, which is given by

i o ~ A,O:0;A; I,
A" Qw,n(pf)B = ( Apégw}k > Qw,n(pf) (@pva@fAf) ( b ’_}Tf ! 0 >

In order to study matrix A*Qw,n(pf)B when N — 400, it is necessary to evaluate the asymptotic behaviour of

sesquilinear forms of matrices Qw,n (pf), WJ’FQW,N(pf), Qw,~n (pf)Wp and Wi Qw,n(pf)W,. The following
result holds.

Lemma IL1. For each z € C — [~ /T5 4, /1] and for each bounded sequences (ay,by)n>1 and (ax,by) of
M L—dimensional and N—dimensional deterministic vectors, it holds that

e afy Qw.n(pf) by — 0 almost surely

o ay Wi Qw.n(pf)bn — 0 almost surely

o aly Qwn(pf) W,bn — 0 almost surelzy )

o an Wy Qw,n(pf) Wy by + % anbn — 0 almost surely.

Moreover, the convergence is uniform over each compact subset of C — [—\/m , \/m] and it holds that, almost
surely
. 0 0
A" QwN(Pf)B = | _ _(extn® pe o | 70 (I11.65)
1—(CNtN(Z))2 N

the convergence being uniform on compact subsets of C — [—,/ZT1 1, \/T+.x). Finally, the above properties hold if
an,bn,an, by are random bounded vectors that are independent from the noise sequence (Vy)n>1, i.e. from the
entries of matrices (Wn)n>1.

Sketch of proof. The proof of this result uses ingredients that are very similar to the calculations of Section 5
and Paragraph 6.2 in [33]. We therefore only provide a sketch of proof. When z € CT, the first item follows from
and from the observation that (I2;, ® T (2)) (pf) = 0. The convergence for each z € C— [~ /T &, /T ]
follows from the observation that almost surely, for each ¢ > 0, functions (a’% Qw,n(pf)bn) are analytic on

C-[- \/ Tqx+0, \/ x4 . + 0] for N large enough. The use of Montel’s theorem allows to prove the almost sure
convergence for each z € C — [,\/m ,/T+.+), as well as the uniformity of the convergence on each compact

subset of C — [—,/Ty «, /ZT+ |- To establish the second and the third item of Lemma when z € Ct, we first
show that E(W7 Qw,pr) = 0 and E(Qw,ps Wp) = 0 using the invariance of the distribution of (v, )nez under
the transformation v,, — e%v,, for each 6, and use the Poincaré-Nash inequality. We finally prove the uniform
convergence on compact subsets of C — [—,/Z ., /Tt .| using Montel’s theorem. We note that the sequences of
functions defined in item (ii) and (iii) are almost surely bounded on each compact subsets of C — [—,/T¢ «, \/T+ )



because matrices Wy and W, are almost surely bounded, see (I1.3).

We denote by an(z) and an(z) the functions defined by

ax(2) = B (5T (02 & Ry)Quex (2] (1L66)
and )
ay(z)=E (mTr (I ® RN)Qw,N(pp)(z)]> (11.67)

We notice that e (2) = zay (2?). The proof of the fourth item of Lemmalll. 1| needs to use the Gaussian calculations
of Section 5 in [33] to establish that

(evon(2)® ., :

————————anxby = 0 a.s.

1 (eyan(z)? NN TS

for each z € C™. It is proved in Paragraph 5.2 in [33] that an(z) — tx(2) — 0 for each z € C*. As ay(z) =

zan(2%) and ty(z) = 2tn(2?), this implies that ay (2) —ty(2) — 0 if Arg(z) €]0, 7/2[. This convergence domain

can be extended to CT using classical arguments based Montel’s theorem. From this, we deduce immediately that

(evan(2))®  (entn(2))?

1—(enan(2))? 11— (entn(2))?

for each z € C*, and that, for each z € CT,

anN Wi Quw,n(pf) Wy by +

—0

2 -

Matrices Wy and W), are almost surely bounded. Therefore, for each & > 0, ay W7 Qw,n(pf) W) by

ay Wi Quw,n(pf) Wy by +

and % are analytic on C — [—/24 , +0,/24 , +0] and bounded on each compact subset of
C — [=\/T+ %, \/T+ ). Montel’s theorem thus implies that (IL.68) holds for each z € C — [—,/T5 «, /T «)-
Moreover, the convergence is uniform on each compact subset of C — [—,/T5 «, /Tt .«]-

We now assume that ay,by,an, by are random bounded vectors independent from the (v,,),>1, and just verify
that ay Qw,n(pf)bn — 0 almost surely still holds. We denote by (Q,4,P,s) and (€,,P,) the probability
spaces on which (an,bn)n>1 and the random variables (v,,),>1 are defined. We consider the event A on which
a’Qw.n(pf)by does not converge towards zero, and justify that P(A) = 0 where P = P, ;, ® P,,. For each element
Wa,b € Qqp, We denote by A, , the event

Awa,b = {w’U € vi (wa,bawv) S A}

Then, the Fubini theorem leads to
P(A) :/ P(Awayb)]}”a,b(dwa,b) (I1.69)
Qab

As the sequence of realizations (an(wqp))n>1 and (b (wep))n>1 are bounded vectors, item (i) implies that
ay (wWa,b)Qw,N (Pf)bN (wWa,p) — 0 almost surely, or equivalently, P(A,,, ,) = 0. (IL69) leads to the conclusion that
P(A) = 0 as expected.

is an immediate consequence of the statements of items (i) to (iv) and their generalization to the context of
random vectors (an,bn,an,bn) (because the columns of ©; n, éi, ~ are bounded random vectors for i = p, f
and the entries of A; x are bounded random variables), as well as of Condition which implies that r x r
diagonal matrices A, y and Ay y (resp. orthogonal M L x r matrices © ¢ y and ©, y) have the same asymptotic
behaviour than matrix Ay (resp. matrix Oy). B

Using the same kind of arguments as in the proof of Lemma [[I] it is possible to establish the following result.

Proposition IL.7. For each z € C — [—,/T1 +, \/T1.+), it holds that

-1
_O* entn(2)
A" Qw,n(pp) A — N <ZI T entn Gy 12 © RN) On 0 —~0as.  (IL70)
0 cntn(z) A2

I-(entn(2))2TN
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1
* O* cntn(z)
B*Qwn(ff)B— by 1 O (ZI T T=(entn (=) I ® RN) Oy 0 Tv 1 — 0 a.s.
’ I 0 I 0 I 0

(IL.71)
0 __(entn())? p
B*Qwn(ff)A— 0 Hcmg(z»? Nl S 0as. (I1.72)
The convergence is moreover uniform on each compact subset of C — [—, /Ty 1, /Ty 4]

Lemma and Proposition imply that for each z € C — [—,/T+.x, /T1 ), almost surely, matrix Fy(z) has
the same asymptotic behaviour than the 4r x 4r matrix Fy n(z) defined by

[ FiN(z) Fyn(z)
Fan(z) = ( Fin(z) Frx(2) (11.73)

where the 2r x 2r blocks of Fy y(z) are characterized in Lemma and in Proposition The assumptions
formulated in Paragraph imply that matrix Fy n(z) converges for each z € C — [—,/Ty ., /T, towards
a limit F,(z), the convergence being uniform on each compact subset of C — [—,/Z ., /T «|. More precisely,
tn(z) converges towards ¢, (z) uniformly on each compact subset of C — [0,z ,], which implies that ty(z) =
ztn(2%) converges uniformly on each compact subset of C — [—,/T} +, /Z7 . towards t.(z) = zt.(z%). We

1—(entn(2))?

z [y %@2(”. We denote by T, () the function defined by Ts, () = 273, (22), which can also be written
as

~1
notice that matrix — (ZI + MIL ® RN) coincides with matrix I;, @ Ty (z) = I ® 2Tn(22%) =

ON(L ® Tn(2))On = Tpy (2)

and which, by (LI8), coincides with the Stieltjes transform of a positive matrix-valued measure carried by
—/T1.N,+/T+.N|. Proposition implies that Tgs, (z) converges uniformly on each compact subset of

C\ [=\/Tx %, /T+.«] towards the r X r matrix Tpg, (z) defined by
Tps.(2) = 215, (%) (I1.74)

where we recall that T, (z) = fOer‘* (163\7}? is the Stieltjes transform of the positive matrix-valued measure 3. Tpg,
is an element of S,.(R), its associated positive measure, denoted 3, is carried by [—,/Z1 ., /T¥.«], and verifies

Bu([—/T5 %, /T5.4)) = B+(R) = I because £, ([0, 24 .| = B.(RT) = I (see (L.18) and (.19)). All this imply that

F(Ll)(z) _ . 0 5 0 N Fl’l(z) _ . 0 R 0
d,N 71(CN ~N(2)) FTV 0 * (cxti(2)) FI 0

—(entn(2))? - I-(eta(2))?

Tpy (2) 0 Ts.(2) 0
P2y [ TN — F1?(2) = ] ot

T I 'y I I, I Iy I
o= (T o) Ese (g ) me= (T )me ()

 lentn(2)? (eate(2))?
Fi’f\,(z) = < 8 1—(CNt(z)v(Z>)2FN > — F22(z) = ( 8 1—(c*t0*(z))2r* )

where we recall that T, is defined by Assumption [[L3] The previous results show that (Fx(z))n>1 converge
uniformly towards F.(z) over each compact subset of C — [,/ ., /T «]. It is thus reasonable to expect that
for ¢ > 0 small enough, the solutions of the equation det(I + Fn(y)) = 0 satisfying y > /x . + ¢ will converge
towards the roots of det( + Fi(y)) = 0 satisfying y > /77 ..
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We now study the solutions of det(I + F,(y)) =0, y > /Tt . For y > ,/T1 ., we express in a more convenient
manner the equation det(I + F,(y)) = 0. This equation holds if and only

det (( ! o >(I+F*(y))< o0 >) —0 (IL75)

-1
r, I (0 T
o= (o) = (7 )

The matrix whose determinant vanishes in ([I1.75) is equal to

where

0 I Ts, (2) 0
o ) A2
I T—(c.t.(2))° 0 T (ent. (27 2% (11.76)
Tps.(2) 0 0 I
citu (2 r.
0 ﬁy 1 T (et (22

As the lower diagonal 27 x 2r block of this matrix is invertible, its determinant is O if and only the determinant of its
Schur complement is 0. After some calculations, we obtain that det(I+F,(y)) = 0 if and only if det(I— K, (y)) =0
where K, (z) is the 2r x 2r matrix-valued function defined for each z € C — [—,/Z1 », \/Z1 +] by

c*t*(z) A2T (Z) F:
_ T—(Crty(2))2 ok - B - (c*t*(z))z
K.(z)= ( Tﬁ*(ng*Tg* (2) catn(2) 5. (2) A2 > (11.77)
T—(cata(2))? (.t o7 1 6. (2) A

K, (#) can be factorized as

city(2) r*
K.()=(1 O SOy E R Ts.(2) 0O
- 0 Tp.(2) I, RACHYN. 0 I

1—(cat«(2))? 1—(caty(2)

For each y > ,/T1 .., T, (y) can be written as

Ty, (y) = / df *(z)

VT4

and verifies Tpg (y) < —ﬁ B[ /TF /T3 4) = —ﬁ because we recall that
Bi([—/Zx+,/T1+]) = B«(R) = I. Therefore, Tp,(y) is negative definite, and thus invertible. Hence,
det(I — K.(y)) = 0 if and only

_eatly) A2 IO -
dot [ [ Tetwrds Teewer | ( (Ta@) 0 ~0 (IL.78)
. cute(y) A2 0 (Te. ()"
T—(cxts (9))? I—=(exta(y))® =% i
In the following, we denote by H.(z) the 2r x 27 matrix-valued function defined on C — [, /77 ., /T ;] by
_et(z) A2 -1 o
H,.(z) = (et (a7 2% — (Te.(2)) 1= (cxta(2))? (I1.79)
* _r. et A2 (T, (2))7} )
(et (2))° T—(cxtx (2))2 B

H,(z) is of course holomorphic on C — [~,/T7 ., /T ], and the solutions of det(I + Fi(y)) =0, y > /Ty .,
coincide with the solutions of
det (H,(y)) =0 (IL.80)

where y > /T . In order to characterize the roots of (II.80), we first establish the following Proposition.

Proposition IL8. For each z € C*, Im(H.(z)) > 0, and function y — H.(y) is increasing in the sense of the
partial order defined on the set of all Hermitian matrices on the interval [\/Ty ., +ocl.

Proof. As B3, (R) = I, Im(T4, (z)) is positive definite for z € C* and Im ((Tg, (z)) ") < 0. Therefore, in order
to establish that Im(H.(z)) > 0 on C*, it is sufficient to prove that Im(H, ;(z)) > 0 on C* where H, 1(2) is the

(2))
function defined by
city(2) A2 I
H,.1(z) = ( I—(cata(2))? 7% 1—(cx t*(Z))2 ) )

T, city(2)
T@h@)? T (et
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After some calculations, we obtain that

- ) = 1 Im(cats(2))(1 + |eata(2)]?) A2 Im ((cst.(2))%) I';
mHea (@) = T e ( Im (et ()2 Te Im(eta())(1+ fente(2)[2)A2 >

It is clear that Im(c.t.(2))(1 + |cet.(2)|*)A2 > 0. Therefore, Im(H, 1(2)) > 0 if and only if

[ (et 22" L
Im(cata(2))(1 + |cata(2)?) A2 — (et () 1+ |C* P AT, >0

or equivalently, if and only if
2

I e (2))?
- [ ((exte (2))%)] CATITIATINLAT > 0 (IL81)
[Im(c.ts(2)) (1 + |ests(2)]2)]
We first claim that A 'T3A2D, A < 1. To verify this, we notice that for each N, matrix AVTHAVTNAY
coincides with 6;,]\,@1,7]\;@;7]\,@}« ~ Wwhich is less than I. Therefore,

lim AN TRAVTNAR = ATITIAT AT < T
N—+oco

[Im((c*t*(z))2>]2
(st () (e 2e () 2]

7 is equal to

2

[Im ((eut.(2))?)] 4 [Re(c.t.(2)))”
Mm(eat ()1 + et ()2 (L F [eata(2)]?)?

For z € C*, Im(t,(z)) > 0. Therefore, it holds that (Re(c,t.(2)))* < |e.t.(z)[? and that
2
Y (CO)) M A
[Mm(cat, (2))(1 + |t (2)2)]? (1 |et(2)[2)? ~
This establishes ([L.81) and Im(H,.(z)) > 0. &

We now prove that y — H,(y) is increasing on the interval [,/T+ ., +oo[. For this, we use the following
representation of holomorphic matrix-valued functions whose imaginary part is positive on C* (see e.g. [19]):

14+ Az do())
H., =A+B
() = A+ ”/ N2 TN
where A is Hermitian, B > 0 and o is a positive matrix-valued measure for which

do ()
Tr (1 n )\2) < 400

(I1.82)

*(zy)

B =limy_, is easily seen to be equal to

_ TB»T (iy) 0
B= ygl}rloo Oy TGy | T Iar

iy
while for any interval [y1, 2], it holds that
1 . Y2 )
o([y1,92]) = = lim Im(H.(y + i€))dy

T e—0 y

As Im(H.(y)) = 0 if |[y| > /z ., the support of o is included into [—,/Z7y .,/ «|. Therefore, we get
immediately from that y — H.(y) is strictly increasing on |,/ ., +oo] ie. Hi(y2) > Hio(y1) if y2 > y1.
We also notice that the last item of Proposition |IL.4] as well as Proposition [IL.5[ imply that lim,, m— H.(y) =
H.(\/Zy ) exists and is finite. Moreover, it hols that H.(\/zy.) < Hi(y) fory > /o7

Corollary IL.1. The eigenvalues (arranged in the decreasing order) (Mg «(y))k=1,... 2r of matrix H,(y) are strictly
increasing functions of y on [\/Ty ., +00|, Le., for each k =1,...,2r, it holds that

Mex (Y1) < A (92) I /T2 <1 < 92 (IL.83)



Moreover, the number s of solutions of (taking into account their multiplicities) for which y > /T,
belongs to {0,1,...,2r}, and coincides with the number of strictly negative eigenvalues of matrix H, (/T »).

Proof. We have shown that if /7, < y1 < ya, then H,.(y1) < H.(y2). The Weyl’s inequalities (see e.g.
[26], Paragraph 4.3) thus imply that holds. Moreover, as matrix B in is equal to Io,., it is clear
that for each k = 1,...,2r, Ay .(y) converges towards +oco when y — +oo. For k = 1,...,2r, the equation
Aky(y) = 0 has thus 1 solution y > /Z1, if A.(z4.) < 0 and no solution if A .(z4.) > 0.
holds if and only if one of the eigenvalues of H.,(y) is equal to 0. Therefore, if we denote by § the number of
positive eigenvalues of H*(\/m), for j = 1,...,8, it must hold that \;.(y) > 0 for y > @+« Moroever,
Ast1,#(y/T5 %) < 0 implies that the equation Az11.(y) = 0 has a unique solution y; . > /7 . Similarly, the
equation As12.(y) = 0 has a unique solution denoted y2 .. Moreover, as Az+2.+(y) < Asy1..(y) for each y, we
deduce that Asyo . (y1,+) < Asy1(y1,+) = 0. If Asyo4(y1.4) < 0, yo. must be strictly greater than y; .. As
a root of , y1,» has thus multiplicity 1. If /\g+27*(y17*) = 0, the multiplicity of y; . as a root of
is at least equal to 2. Iterating the process, we obtain that the number of solutions s (taking into account the
multiplicities) of is equal to s = 2r — 5. Moreover, solutions ¥y ., ..., Ys,« satisfy y1 » < yo. < ... <y, .. W

Corollary implies that Eq. det(I + Fi(y)) = 0 has s (0 < s < 2r) solutions (yj «)k=1,... s strictly greater than
T+« We recall that, almost surely, the sequence of functions (Fn(2))n>1 converges uniformly on each compact
subset of C — [,/ &, /T «| towards F,(z). We now take benefit of the arguments used in [6], Lemma 6.1 and
in the proof of Theorem 2.1 in [10] to derive the following result.

Corollary IL2. For each § > 0 small enough, almost surely, for N large enough, Eq. det(I + Fn(y)) = 0
has s solutions 1 N < Yo, N ... < Ys,N Such that yp N > /24« + 9, and for each k = 1,...,s, it holds that
My oo Y, N = Yk -

Proof. We just provide a sketch of proof because we follow the arguments in [6] and [10]. In order to simplify
the exposition, we assume that y; . < ... < ys ., but the following arguments can be extended immediately to the
case where some (Y, «)k=1,..,s coincide. We first justify that almost surely, for N large enough, the solutions of
det(I+ Fn(y)) =0,y > /x4 .« + ¢ are bounded by a nice constant. To verify this, we remark that implies
that it exists a nice constant x for which, almost surely, | An|| < x and ||[By|| < & for each N large enough.
We recall that Ay and By are defined by @ and (I1.44). Moreover, for y > /x4 . + 9, the inequality
1 — — - .
1Qw (W) < Ry holds. Therefore, matrix Fv(y) verifies || En(y)|| < P for some nice constant

. i . K - Tt 1
&, and all the eigenvalues of Fiv(y) satisfy |A;(Fn(y))| < Y o for j =1,...,2r. For y larger than a nice

constant Yz, det(ly + Fy(y)) cannot therefore vanish. This imf)lies that almost surely, for N large enough, the
solutions of det(I + Fn(y)) =0, y > y/4 .« + 0 belong to (/T4 « + 9, Ymaz ). We choose J in such a way that
/T4« +0 < y1,. We consider any open interval (a1, az) such that (a1,a2) C (/T4 « + 0, max(Ymaz, Ys,«) +6)
and a; # yi,« for i = 1,2 and k = 1,...,s. Then, using the arguments in the proof of Theorem 2.1 in [10], we
obtain that the equations det(I+ Fn(y)) = 0 and det(I + F,(y)) = 0 have the same number of solutions located in
(a1, a2). Choosing (a1, a2) = (\/T+ « + 0, MaxX(Ymaa, Ys,«) + 0) leads to the conclusion that det(f + Fn(y)) =0
has s solutions y1 n,...,ysn larger than /x4 .+ 0. We fix k € {1,2,...,s} and establish that yx N — Y ..
For this, we choose € > 0 arbitrarily small, and choose (a1,a2) = (Yi+ — €, Yk« + €). Then, [10] implies that
almost surely, for N large enough, det(I + Fx(y)) = 0 has 1 solution yg n in (Y.« — €, Yk« + €), and that
|yk,N — Y| < €. This is equivalent to impy_, oo Yk, N = Yk, as expected. H.

Remark II.1. We notice that the existence of the limits A, Ty, t,, By« introduced in the various Assumptions of
Section [I] allows to establish that Fyn(z) converges towards the deterministic and independent of N function
F.(z), and to prove that the solutions of det(I + Fn(y)) = 0 larger than /x4 . + 6 converge towards the
corresponding solutions of det(I + F,(y)) = 0. If the above limits are not supposed to exist, we can just establish
that Fy(z) has the same asymptotic behaviour that the term Fy n(z) introduced in (IL73). As Fy n(z) depends
on N, it is not possible to adapt the arguments in the proof of Theorem 2.1 in [|10] to establish rigorously that the
solutions of det(I + Fn(y)) = 0 larger than VZ+.N have the same behaviour than the corresponding solutions of
det(I + Fy n(y)) = 0. However, the existence of A, T, t., B« can be considered as purely technical assumptions
that allow to derive well founded mathematical results. In particular, even if the limits are not supposed to exist, in
practice, for N large enough, the eigenvalues of Yy n¥) X, NZ}Z) N that escape from [0,z n| should be close
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from the solutions of det(I + Fy n(y)) = 0 larger than x n in a number of scenarios. However, the derivation
of reasonable alternative conditions under which this behaviour holds seems difficult.

We have thus established the Theorem:

Theorem II.1. Almost surely, for each N large enough, the s largest eigenvalues ;\1, N> 5\5’ N of matrix
Yy N2y, yXp Ny escape from the interval [0, 21 .], and converge towards p1 . > ... > ps . > Ty . defined by
Phx = yf_H_k,* for k=1,...,s. Moreover, for each § > 0, the eigenvalues (Xk,N)kszrl belong to [0, x4 . + 0].

yens

It is thus more appropriate to evaluate the asymptotic behaviour of the largest eigenvalues of Xy NX7 3, N2%
by using a finite N equivalent of H,(z). We thus define function Hy(z) by

entn (%)) 2 _ -1 A
Hy(z) = [ Tlentnr A ~ (Taw(2) T Centn ()2 (IL84)
Iy cNtn(2) A2 _ (T (Z))_l
T (entn(2)2 T (entn(2)2 N AN

For each IV large enough and for each 6 > 0, Hy () is holomorphic in C—[—/z . + 8, /x4 . + 6] and converges
uniformly on each compact subset of C — [~/ ., /T .| towards function H.,(z). Using again the approach of
(6] and [10], we obtain that, for each N large enough, the equation det(Hx(y)) = 0 has s solutions y; y . <
... < ys N« strictly larger than /x4 n + d for some § > 0 small enough, and which satisfy yi v« — Yi,« — 0
when N — +00. Moreover, the convergence of x4 n and wy y towards x4 . = ¢ (wy ) and wi .« = Wi (T4 4)
imply that tx (x4 n) converge towards t.(z4 .). Therefore, leads to the following Corollary.

Corollary IL3. Hy(,/Tx nN) converges towards H,.(\/Tx ). Moreover, if det(H.(\/Tx.)) # 0, for N large
enough, s also coincides with the number of strictly negative eigenvalues of matrix Hy(,/T1 n). Finally, if we

define py, N by pp, N = y§+17k7N,* for k=1,...,s, then it holds that 5\;671\/ — pr,n — 0 almost surely.

Proof. It just remains to remark that if 0 is not eigenvalue of H,.(,/Tt ), then, for each N large enough, s is
equal to the number of strictly negative eigenvalues of matrix Hy(,/Zy n). B

Matrix Hy (,/ZT+,n) can be written in a more explicit way, so that s can be evaluated using the following alternative
formulation.

Corollary I1.4. Define G as the v X r matrix given by

1 ]
Gy = SN SRy (wa ] — B) ™) (O (1L ® (win - Rx)™0N) T =A%) @uss)

o T+ N M

Then, if det(H.(,/T+.%)) # 0, for each N large enough, s coincides with the number of strictly negative eigenvalues

of the 2r x 2r matrix
Gy Ty
(& 1) aso

Proof. Writing t(z) as tx(2) = 2tx(22), and using the expression (II.17) of ¢x(z) in terms of wy(z), we obtain
after some algebra that matrix Hy(,/Z1 n) is given by

1 *
() = (14 e TiR(os vl = ) ) (G G0 ) (1187)

As Wy N > )\LN, we have %’I‘I‘(RN(UJJF’NI - RN)_l >0and 1+ CN%T]?(RN(’U}J“NI - RN)_l) > 0. s thus
coincides with the number of strictly negative eigenvalues of (I1.86). W

F. When Condition ([I.33) does not hold.

We now consider the case where Condition does not hold, and briefly indicate how the above results have
to be modified. For this, we denote by & the number of different diagonal entries of A, and by m;, ..., my their
multiplicities, which also coincide with the multiplicities of the k different eigenvalues of matrices O yA,©% and
O NALO] y fori=p, f. If (ONn())i=1,....k and (©; n(1))i=1,... x represent the M L x m; matrices for defined by
On = (On(1),...,0n(k)) and O; v = (O; N (1),...,0; n(k)), then, and standard results of perturbation
theory imply that

1©:,n(1)Oi,n ()" —ON(DOND)|| =0 (I1.88)
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for each [ = 1,..., k. We denote by X; y() the m; x m; random matrix defined by X; n(I) = On(1)*O; N (1),
and deduce from (IL.88) that

[©in (1) —ONOXiN(D] =0 (11.89)

as well as

Xi,N(l>*Xi,N(l) — Iml — O7 XZ‘,N(Z)XZ"N(Z)* — Iml —0 (1190)

Therefore, matrix ©; x can be replaced up to error terms by matrix ©X; y where X, y represents the r x r
block diagonal matrix with diagonal blocks X; n(1),..., X; v (k). It is useful to notice that the very definition of
X; v implies that the equality

XinA, =AXin (IL91)

holds. Another consequence of ([[.90) is related to the asymptotic behaviour of matrix I'y. In particular, (IT.39)
does no longer hold, and we rather have

Iy — X; 3 T X, ¥ = Oas. (IL92)

To justify (I1.92), we notice that (IL.23) leads to
7VR][;|p,N@N — @Ref,NANé;,Nép,NAN@;N@N — 0

Therefore, (IL.89) leads to
Xf’NFNX;’N —I,—=0

and to @ Therefore, I'y does not converge towards a deterministic matrix, and rather behaves as the random
matrix X]? N X, ~- Moreover, the reader may check that the convergence results (I1.70) and (I1.71) have to be
modified as follows: in ([I.70), matrix

-1
t
Oy (zl—i- evtw(z) s 1L ®RN> Oy = Tpsy(2)

1—(entn(2))
has to be replaced by X7 yTpy (2) Xy N while in (IL71), Tpg, (2) has to be exchanged with X v Tps, (2)Xp n.
Matrix Fy n is thus modified. The modified matrix, still denoted Fyy n(2), does no longer converge towards matrix
F.(z) introduced after Proposition but appears to have almost surely the same asymptotic behaviour than the
random matrix F, n(z) obtained by replacing I'y by XJ;}VF*X;;‘V, and Tp, in the definitions of F?(z) and
F2'(2) by XinTp. ()X and X yTp, (2)X, n respectively. However, after some algebra, it is easily seen
that det(I + Fi n(z)) = 0 if and only if det(I — K, n(2)) = 0, where K, y is defined by

-1 * —
e X T X X Iy X
Z (z) Ai ;A\/ B (Z) p, N —_r L5

Kon(z)= | letG) (1= (exta(2))? (IL.93)
’ L (2) D Tp, (2)Xp, ot (2 *
- Blf(zc*t*(zﬂ))ZZ = k&ftf(;))zXf,NTﬂ* (2) XN A2
Using (I.90) and (IT.9T), we obtain that
Xpv 0 Xpov 0
( 0 X ) (I - K.n(2)) ( i xi ) I—K.(2) (IL.94)

where K,(z) is defined by . The solutions y > /Ty, of the equation det(l — K.(y)) = 0 are the
(Yk,%)k=1,....s introduced in Section Using the arguments in [6] and [10], we obtain from that for
d > 0 small enough, the equation det(! — K, y(y)) = 0, or equivalently the equation det(I + F n(y)) = 0 has
s solutions (yx n,«)k=1,...,s larger than (/x4 . + ¢ and verifying yi v+« — yi. for each k = 1,...,s. [6] and
[10] imply that the equations det(I + Fy n(y)) = 0 and det(I + Fn(y)) = 0 have also s solutions larger than
/@4 . + 0 and converging almost surely towards the (yg «)x=1, .. s. This, in turn, shows that Theoremﬂremains
still valid when condition (I.33)) does not hold.
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G. Farticular cases and examples
In order to get some insights on the number of eigenvalues s that escape from Sy = [0, 24 n] for each N large
enough, we first study informally the behaviour of s when cy — 0. Intuitively, we should recover the results
corresponding to the traditional reglme i.e. that s = P. For this, we use Corollary [II.4] H and remark that wy y,
which depends on cy, satisfies ¢ (wy n) = 0. Using ¢N(w+ ~) = 0 and followmg the proof of Proposition
7.7 in [33] for wo = w4 n until Eq. (7.59), we obtain that —Tr(RN(whNI Ry)™Y) < 1. As Ry > al (see
Assumption (L.TI])), we obtain that
1
il Z < =
a

w+N_)\kN

holds for each «c¢y. This implies that liminf., yowyn — AN > 0, and that matrix
(@}‘V(IL®(w+7NI—RN)_1)@N)_1 remains bounded when cy — 0. As 1 ny = ¢n(wy n), it is easy

to checok that 4y y = O(cn). Therefore, % = O(y/en), and Gy — 0 when ¢y — 0. Therefore, when
cn — U,

Hy(JZrN) = ( F(jv ng )

As mentioned previously, matrix I'yy has rank P < r. Therefore, the eigenvalues of matrix ( FO Fév are 0
N

with mutiplicity 2(r — P), (X#)k=1,....p and —(xx)k=1,...,p Where we recall that (x)r=1,.. p represent the P non
zero singular values of matrix I' . Therefore, when ¢y — 0, s converges towards P. This is in accordance with the
traditional asymptotic regime where N’ — +o0 and M is fixed. Indeed, in this context, matrix X¢ y 37 3 N 2T §

converges towards the rank P matrix RJI%| » (Rjelp , Le. for NV large enough, matrix Xy yX7 3, n2% v has P
eigenvalues that are significantly larger the M — P smallest ones.

When cy does not converge towards 0, the presence of matrix Gy in the expression in general
deeply modifies the value of s. In particular, the value of s depends on the singular values (xx n)k=1,.. P
of matrix I'py, but also on the diagonal entries (5,2 ~N)k=1,...r of matrix A2 or equivalently, on the non
zero eigenvalues of REZ N = = E(ufuzl). In contrast with the context of the usual spiked empirical covariance
matrix models, s may ‘be larger than the number P of non zero eigenvalues of the true matrix Rf‘pR’Ji‘ >
This implies that if cy is not small enough, then estimating the rank P of matrix Rf|pR;.|p by the number
s of eigenvalues of ¥y y37 3, X7  that escape from [0,z x| does not lead to a consistent estimation scheme.

We now construct explicit examples where Ry = 02Iy; for some 02 > 0, P = L = 1 and for which s does not
coincide with P = 1. In particular, we now establish that for each r» > 2, there exists useful signals » for which
Rank(R; y) = Rank(E(uy,u;,)) = r and s = 2r — 1. Moreover, we show that the non zero eigenvalues of R, r as
well as the non zero singular value of R}l p,N Can be arbitrarily large. In the following, matrices R}h n and R;|P7 N will

be denoted R, v and Ry, n. We define K = r—1 and we consider a M x r matrix Oy =(Cn,DiN,....Dr.N)
verifying O30y = I, and a K—dimensional white noise sequence (i, )nez verifying E(i,i}) =Ix. ff0<a <1
and by,...,bx are real numbers, we define the signal (u,)nez by
K
Tnt+l = ATn + Z by ik,n
k=1
K
Uy = CN Ty + Z 5k+1 DkJ\[ ikﬂ (11.95)
k=1
where ds, . .., d, are strictly positive real numbers. As the state-space sequence is 1-dimensional, P coincides with

1. We denote by §; the positive real number such that

>
(|$n‘ ) lk 1 - (52
Then, if we denote by A? the r x r diagonal matrix Diag(d?,...,62), we obtain immediately that
K
Ry n =ONA’Oy =01 CNCh + Y 04y DinDi x
k=1
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coincides with the eigenvalue/ eigenvector decomposition of R,, n. We observe that the eigenvalues (07 )x—1,.. , do
not depend on N. Therefore, matrix Ay coincides for each N with A = A,. The matrix Ry, v = E(uny1uy,) is
given by

K

Rf|p7N = CN (aéf C;[ + Z bk5k+1 D;;,N)

k=1

Therefore, Ry, v can we written as
Rypp = ONT.O

where 'y = O3 Ry, NOn is equal to

F* = e (a&%,blég, .. '7bK6K+1) = XTT*

1/2 _
where e; is the first vector of the canonical basis of C", T = eq, x = (aé%)Q + Zi(:l(bk(SkH,l)Q) and Y is the

unit norm vector Y = l(a&%, b1do,...,bK6 KH)T. x thus represents the non zero singular value of rank 1 matrix
Ryp,n. Using (I1.38), we obtain immediately that matrix I'y coincides with limy o, I'nv where I'y is defined

by (I1.37). As Rx = 0?1y, and that H,(\/T+ ) = imy_— 100 Hy(y/T1.N), it is easy to check using (I1.87) that

s coincides with the number of strictly negative eigenvalues of matrix ?* g* where G, is defined by
e 1/2 -1
G. = u . —0?) I, — A?
(w+,*0’2(10*)) (g0 =) )

Here, wy » = limy_, {00 wy v is equal to
W =

2<1+1+\/1+8C*>
2

(see the expression of w, n, Eq. (7-54) in [33]). It is easily checked that all the previous required Assumptions
are verified by the present model. We now indicate how it is possible to choose the various parameters in order

that s coincides with 2r — 1. We first fix parameters (0x)k—1.. ., in such a way that 67 > 45 > ... > 42 and
62 > (w4« — 0?) for each k = 1,...,r while we consider in the following (by)x=1,. i verifying
1- L >0
62
and choose

K 9 1/2
= 196
1

Therefore, we of course have 67 = E(|z,,|?). We claim that with these set of parameters, s = 2r — 1. For this, we
G. T%

I'. G.

is equal to 2r — 1 or to 2r. Using the Schur complement trick twice, we obtain after some algebra that s = 2r — 1
if and only

first remark that matrix G, < 0. As Rank(I",) = 1, the number s of stricty negative eigenvalues of

TG > - (rrertr) T

a condition equivalent to

2 2\ 2 2
9 0 Cy 1 Wy s —O by
at > =3 2 - 52 2w | T
O°Cx + Wy x — O 1 = o1 1 — Wi

Using that a® = 1 — Z’“ 2 bi as well as 67 > 47 41 foreach k =1,... K, we obtain that the above condition

holds, and, therefore, that s = 2r — 1. We also mention that the condition 5 > Wq oy — o2 for eachk=1,...,r

Zk 21 k
61

(I1.97)

does not induce any power limitation on the useful signal «. Moreover, using a? = 1 — , we obtain that the

non zero singular value x of Ry, n is given by

cest (- Bg%) S
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As the (07)k=1,. , can take any large values, the same property holds for x. In sum, even for powerful enough
signals u for which the largest singular value of R flp,N is large, s may be strictly larger than P.

We illustrate the above analysis by numerical simulations in which N = 1200 and cy = % The parameters
of model are chosen as above by replacing ¢, by cy. Figures [I] and 2] plot an histogram of the
eigenvalues of a realization of matrix Xy N3} yYp N2% y, as well as the graph of the density gy of the
deterministic equivalent measure vy of the empirical eigenvalue n of Wy, NW; N W, NW]’{ - In the context
of Fig. |I » = 2 and it is seen that s = 3 eigenvalues of Xy yX7 3, NX% v escape from the support of
vn. In the context of Fig. 2} » = 3 and s = 5 as expected. We mention that in both figures, the largest
eigenvalue, which, in some sense, is due to the useful signal, appears much larger than the other spurious ones.
It can be checked that, as expected, for smaller values of cy, the spurious eigenvalues that escape from the
support of v tend to become closer from x, n. This will be confirmed in Section IIEI where more exhaustive
Monte Carlo simulation results evaluate the behaviour of two estimates of s when s = 5 and ¢y = i. It will
be seen that the estimates of s belong to {2, 3,4,5,6, 7,8}, fail to detect s = 5 very often, but never take the value 1.

25

2.0

15

Figure 1. Histogram of the eigenvalues and graph of g, 7 =2, s =3

The above examples show that s can take any odd value larger than 3. We finally show that s can also be equal to
2, and consider the following simple case. We assume that P = K = 1, and that the scalar state-space sequence
(Zn)nez is given by 41 = ax,, + bi,, where a €]0,1[, b > 0, and (i, )nez is scalar unit variance i.i.d. sequence.
Moreover, u, is given by

Uy = 9an+1 =afnx, +bONi, (I1.98)

where 0y is a unit norm M—dimensional vector. Therefore, matrices C'y and D coincide with vectors af and
bo N respectively. We also consider the case where L = 1. The covariance matrix R, y = E (upul) is of course
equal to 62 On0% where 62 = E(|z,|?) = 1‘5'22, so that » = P = 1. We also mention that in the present case,
62 does not depend on N. Moreover, Rypn = E(zpi12f) = a(520N9}‘V. Therefore, matrix I',, is reduced to the
scalar ad2, which also coincides with the non zero singular value x of Rypn- As 7= P =1, s may take the

values 0, 1, 2. In the following, we justify that it is possible to find a and b for which s = 2.
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Figure 2. Histogram of the eigenvalues and graph of gy, r =3, s =5

It is easily seen that s = 2 if 6% > w, . — 02 and

a? < i T : (1L.99)
o2c, + (wy . —0?) 52 '

In order to find a €]0,1[ and b for which these conditions hold, we fix 6% > w, . — o2, then choose a €]0,1]
such that (I1.99) holds, and finally select b in such a way that |b|> = §2(1 — a?). We again mention that §° and

1/2 2
X = ad? can take arbitrarily large values, x being however less than §2 (m) <1 - “"4’5—2%)

We again illustrate the above example by Fig. [3| obtained when N = 1200, cy = %, and where it is seen that
§=2.
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Figure 3. Histogram of the eigenvalues and graph of gy, r =1, s =2
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III. THE CANONICAL CORRELATION COEFFICIENTS BETWEEN THE PAST AND THE FUTURE

We showed in Section [II| that the number of eigenvalues of RflpR;'lp that escape from the interval [0,z n]

is in general not a consistent estimator of the dimension P of the minimal state space representation (I.3). In
. . . o YYP Ly YiYy YY) o .

this section, we thus study the largest singular values of matrix ( ) = () , or equivalently the

. YY) YiYE YY1 YY) YYF . .

largest eigenvalues of matrix ( .fo )_1./2 L () .pr (=5£)7Y/2 It is clear that apart 0, the eigenvalues

of the above matrix coincide with the eigenvalues of matrix IL, ,II¢, where for each i = p, f, Il; , represents the

orthogonal projection matrix on the row space of matrix Y;, i.e.

- _Y(YY>Y
WOVNUN ) UN

We remark that the eigenvalues of I, II¢, of course belong to [0,1]. We follow the same approach than in
Section |[Il. We first study the eigenvalues of 1I, .11 ,, where 1I; , is obtained from II;, by replacing y by the
noise v. Under certain assumptions on the useful signal u (that appear simpler than in Section [[l), we study the
largest eigenvalues of II, ,II¢, by remarking that II, ,II;, is a low rank perturbation of II, ,II;,, and use the
approach developed in [6], [7], [40]. We again mention that, while this general approach appears classical, as
in Section [lIf the complexity of the random matrix models that come into play makes the following results not
obvious at all.

(1L 1)

In the following, for the sake of simplicity, we will often use the same notations as in Section [[I] to represent
different objects. This will not introduce any confusion because Section and Section [II| are independent. In
particular, if (o) n>1 18 a sequence of positive numbers, we will say in this section that function fy(2) = O, (an)
on a domain 2 C C\ R™ if there exists two nice polynomials P; and P» such that | fx(2)| < aNPl(\zDPg(ﬁ)
for each 2 € Q, where p(z) = dist(z,RT). If Q = C\ R*, we will just write fy(z) = O,(ay) without
mentioning the domain. For any diagonal K x K matrix A(z), by A(z) = OX(ay), we mean that each diagonal
element of A(z) is O.(an). Finally, we will use a lot the notation fy(z) = O,2(an) without mentioning
the domain, which will mean that |fy(2)| < aNP1(|22\)P2(ﬁ) for some nice polynomials P, P, when
22 € C\ R, or equivalently, when z € C\ R. We notice that if Py, P> and @1, Q2 are nice polynomials, then
P1(|z|)P2($) + Q1(|z|)Q2(ﬁ) < (P +Q1)(|z)(P + Qg)(ﬁ), from which we conclude that if functions

f1 and f are O,(ay) then also fi(z) + f2(z) = O, (an).

A. In the absence of signal

In this paragraph, we study the behaviour of the eigenvalues of II, ,Il;,. Due to the Gaussianity of the i.i.d.
vectors (vp,)n>1, it exists ii.d. NV.(0, ) distributed vectors (viid.n)n>1 such that E(Uiid,nyfid,n) = Iy verifying
Uy = R}\{Zviid,n. It is clear that the row spaces of V, and V} coincide with the row spaces of the block Hankel
matrices Vj, ;i and Vy ;4 defined from vectors (vp iid)n=1,...,N+2r—1. Therefore, the projection matrices II; ,, and

IL; »,,, coincide for ¢ = p, f and there is thus no restriction to assume in Section [[II-Al that Ry = Ij;.

As before, we denote by W, W, the matrices defined by W, = \/—INVP and W; = ﬁVf. In order to

simplify the notations of this Section, matrices II; ., ¢ = p, f are denoted 1I;, ¢ = p, f. Therefore, we have
I, = Wy (W,Wy)"'W, and Ty = W (W;W;)~"W;. We recall that Wy is the 2M L x N matrix

_ WPJV
Wy = (Wf,N> , (I11.2)

As Ry is supposed to be equal to Iy, the elements (W,L-7Z)i§2L7jSN7mSA{ of Wiy satisfy
m m/ 1
E{Wi,jWi’7j'} =N Om—m' Qi j—(i'+5")- (I11.3)

where W™ represents the element which lies on the (m + M (i — 1))-th line and j-th column for 1 < m < M,

1 <i<2Land1 < j < N.Foreach j =1,...,N{w;}}L,, {w,;}}L, and {wy;}, are the column of
matrices W, W,, and W respectively.
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We first verify that, almost surely, for N large enough, matrices W; nW;"y are invertible, so that the orthogonal
projection matrices II;, ¢ = p, f are well defined. For this, we mention that [32]] (see Theorem 1.1) established
that the empirical eigenvalue distribution of W; Wy for i = {p, f} converges towards the Marcenko-Pastur
distribution with parameter c., and that almost surely, for N greater than a random integer, its eigenvalues are
located in a neighbourhood of [(1 — \/c;)?, (1 + \/¢x)?]. Therefore, almost surely, for N large enough, matrices
Wy nW5 n and W, NWT - are invertible. Matrices II; v are thus well defined for IV large enough.

We next use again the results of [32]] to show the following Lemma which will be useful to establish Theorem [I1I.1
below.

Lemma IIL.1. If ¢, > % then, almost surely, for N large enough, 1 is eigenvalue of 11, NILy N with multiplicity
2ML— N

Proof. It is clear that the eigenspace of II, yII; N associated to the eigenvalue 1 coincides with
sp,(Wp n) Nsp,.(Wy, n), where for a matrix A, sp,.(A) represents the space generated by the rows of A. We have
thus to verify that if ¢, > 1/2, then almost surely, for N large enough, dim (sp,. (W, v) Nsp, (W n)) =2ML—N.
For this, we use again [32]]. The eigenvalue distribution of WxW3; converges towards the Marcenko-Pastur
distribution with parameter 2c,, and if c, > 2, i.e. if 2c, > 1, then, for each € > 0, 0 is eigenvalue of WxWy;
with multiplicity 2M L — N and the remaining N eigenvalues are located almost surely for each N large enough
n [(1—+/2¢.)? — €, (14 +/2¢,)? + €]. Therefore, we obtain that dim(sp,. (Wx)) = N while we already know that
dim(sp, (Wy n)) + dim(sp, (Wy n)) = 2ML. As sp,(Wn) = sp,(Wp ~) + sp,.(Wy n), we obtain as expected
that dim (sp,.(Wp,~) Nsp,(Wsn)) =2ML - N. R

1) Preliminary results: In order to be able to use the perturbation approach developed in [6], [[7], [40], it appears
necessary to evaluate the asymptotic behaviour of the resolvent of matrix II,II¢. The corresponding results will also
provide a characterization of the eigenvalues of II,II;. For this, we use in the following the integration by parts
formula and the Poincaré-Nash inequality (see Propositions [L.T, [[.2). The resolvent of IT,IT; will be interpreted as
a function of the entries of matrix Wy . However, this approach needs some care because, considered as a function
of the entries of Wy, matrices II,, and Il are not differentiable everywhere. In particular, for ¢ = p, f, II; is not
differentiable when the rank of W; x is less than M L. But, we have seen that almost surely, for /N large enough,
matrices WyW; and W, W are invertible. In order to take benefit of this property, we use in the following a
regularization term 7 already introduced in [23] in a different context. Another problem posed by the evaluation
of the resolvent of IL,II; is due to the observation that, while matrix II,II; has real eigenvalues that belong to
[0,1], it is not Hermitian. Some basic properties of the resolvent of II,II; thus do not hold, in particular the upper
bound ([.22). In this paragraph, we first present the regularization term 7y as well as some extra useful properties.
a) Regularization term: We define ny by

nN = det [(i)(Wf_’NW;yN)]det [(;S(WpyNW;’N)], (HI4)
where ¢ is a smooth function such that
¢(\) = Tfor A€ [(1—+/c)? =), [(1+ /) +¢, (IIL5)
p(N) = Ofor X € [—o0, (1 — /c2)? = 2] U [(1 4 /cx)? + 2¢, +o<]

and ¢()) € (0, 1) elsewhere. Here, € verifies (1 — \/c,)? — 2e > 0. Taking into account the almost sure behaviour
of the eigenvalues of matrices W, W and W;W73, ny =1 and

1
1 < ML )
A N T

almost surely for each N larger than a random integer. We first mention the following useful property.

Lemma IIL.2. For each I,k € N it holds that

E{ny}=1+0 <N1k> (I11.7)

Moreover, if X is a bounded random variable, we have for each integer | > 1

E(n'X) =E(X)+0 (1&k> (IIL8)

(WinWin (111.6)
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for each integer k.

Proof. Denote
En = {one of the eigenvalues of W, W or W;W} escapes from the [(1 — Ven)? — e (1+ /)2 +¢} (1L9)

and define another smooth function ¢ as

é ()\)7 Ofor A € [(1_\/a)2’ (1—"_\/07*)2]’
A Lfor A € [—o0, (1 — /)2 — €] U[(1 + /cx)? + €, +00)

and ¢o(A) € (0, 1) elsewhere. Then we have

P(En) < P (Tego(W,W;) > 1) <E { (Trsbo(WpW;))%}

for all £ € N. In order to evaluate £ { (’I‘rqﬁo(WpW;))%}, one can use the same steps as in the proof of Lemma 3.2

[33] and get immediately that E { (TrqSO(WpW;))%} =0 (

) and therefore that P(Ey) = O (55 ) for each
k. To show (IIL7) we write

1
N2k
E{ny — 1}1> = E{(x = DA +... 40y D <E{iy = DDE{(L+... + 0y )%}
< RE{(nn — 1)*1e5}
because 7 —1 = 0 on £5;. Since by definition ¢()\) € [0, 1], we conclude that 0 < ny < 1land 0 < (npy—1)% < 1.

1
This allows us to write that kE{(ny —1)?1¢, } < kE{lg, } = kP(En) = O (]\f%)’ which completes the proof.
To verify (IIL.8), we remark that

Bl ~ DX < B0 = i PYE{IX} = (1 -2 (14 O ) 4 14 0 4) =0 (57 )

b) Linearisation: It is clear that almost surely, nyIl; y = II; y for each N large enough. Therefore, in order
to evaluate the almost sure behaviour of the resolvent of IL, yII y, it is sufficient to study the behaviour of the
resolvent Qn (z) of nyIl, nnIlf v defined by

Qn(z) = (I, NnTlp N — 20) 7

As the direct study of Qx(z) is not obvious, we rather use, as in Section [lI} the linearisation trick and introduce
the resolvent Qu (z) of the 2N x 2N block matrix

O nNHp,N
nnIly N 0 '
which can be written as

( (Qpp)n(2) (Qpe)n(2) ) _ 2Qn(2?) Qn (NIl N
QN(*”)‘( (Qu)n()  (Qu)n(z) )‘(nan,NQN<z2> 2On(22) ) (HL-10)

where Q ~(2) is the resolvent of matrix nyII; nnnII, n. Since Qn(z) and Qn (%) are resolvents of non Hermitian
matrices, the usual bound ([.22)) is not necessarily verified. A more specific control is thus needed.

Lemma IIL3. [fImz # 0 (i.e. 22 € C\R"), then |Q(2)| = O.2(1).

Proof. It is sufficient to bound each of the four blocks of Q. We start with Qp¢. For this we use expression (I11.10)
for Qpe, the fact that IT, = I12 and that (AB —x)"'A = A(BA —x)~! in the case A = 1II,, B = nII,II;. This
leads to

Qpr = (njszpr - 22)7177NH;DHP = nNHP(n?VHPHfHP - Zz)ilnp' (IL11)
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(% ML I (1L, — 2%)~! is the resolvent of a positive Hermitian matrix evaluated at z? € C \ R™, so that its norm
can be bounded by (p(z2))~! (see (1.22)). Since ||IL,|| <1 and nx < 1, we have

1
|Qptll < 5 (11L.12)

(2?)
It is easily seen that ||Qgp|| can be evaluated similarly. In order to address Qpp, we use again (II.10) and the
resolvent identity ([.23), and observe that:

1
(—In + 11, Qtp)

_ 1 _
Qpp = Z(nfvﬂpﬂf - 22) b= (—In +n12vaHf(n12VHpr - 22) 1) =3

z

It obviously holds that || —In +7n 11, Qgpll < 1+ﬁ. To show that |271| < P(p(2%)~!) for some nice polynomial
P, we write

1 1 1 1 \?
— < <1 <1+ — 1I1.13
2E S 0@ S T ( +p<z2>> (13

This brings us to the conclusion that ||Qpp|| = O,2(1) and so for Qg. This completes the proof of the Lemma. H

Remark IIL.1. It is worth to remark that in the course of the proof, we obtained that —O.2(1) is still O,2(1).

2|
Since |z| < (1 + |z|?) holds, we also have |z]|0,2(1) = O,2(1).

Remark IIL2. While Qy(z) is not the resolvent of an Hermitian matrix, 1 TrQn (2) coincides with the Stieltjes
transform of the empirical eigenvalue distribution Uy of matrix n?11,11¢, which, of course, is a probability measure
carried by [0,1], and thus by R*. Therefore, and property imply %Tr Qpp(z) = %Tr Qg (2)
coincide with the Stieltjes transform of a probability measure carried by [—1, 1] which appears to be the eigenvalue
NIl v

distribution of matrix
4 Iy N 0

The proof of Lemma [[TI.3] also leads to the following useful Corollary.

Corollary IIL1. N~ 'TrQp¢(z) and N~ TrQgp(2) coincide with the value taken at 2* by the Stieltjes transforms
of some positive measures carried by RY. The same property holds for E{N ' TrQyp¢(2)} and E{N "1 TrQg,(2)},
and the mass of the corresponding measures can be written as cy + O(N~F) for each k € N.

Proof. We just establish the properties of N~ 1TrQpe(2). (na 1,111, — 2%)~! is the resolvent of a positive
Hermitian matrix evaluated at point z2. Therefore, N ' TryyIL,(n% L1111, — 22) 7L, = N7'TrQpe(2) (see
Eq. ) coincides with the Stieltjes transform of a positive measure carried by R of total mass N~ Trn NH?) =
N~TTryyIl, evaluated at 2. This implies that N 'E{TrQp¢} has the same property, and that the mass of the
corresponding measure is equal to N 'E{TrnyIl,}. We claim that

NT'EB{TrynII,} = ex + O(N7F) (II1.14)

for each integer k. To justify (II1.14), we first use (IL.8) and obtain that N~ 'E{TrnyII,} = N‘lE{TrHii +
111.9)

O(N ‘k). It is clear that N~ 1Tr I, = cy on the event £F;, where we recall that £y is the set defined by (
Writing

NT'E{TeI,} = NT'E{TeIl,1¢gc } + NT'E{TrIl,1¢, } = cn P(E) + N 'E{TrII,1¢, }

and using that P(Ey) = O(N~F) for each k, we obtain that N *E{TrIl,1¢,} = O(N~*) for each k and that
N7IE{TrII,} = ¢y + O(N~F). This completes the proof of (IIL.14). B
¢) Properties based on the invariance of the complex Gaussian distribution :

Lemma IIL4. The matrix E{nn(W;W;7)~"'} is block diagonal and matrices E{nnyIL;}, E{Qj},
E{nnQs;} E{nnI1,Qs} and E{nnQiW;(WyW;)"2W,,} are diagonal, for i,j,h = {p, f}. Moreover,
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E(nny Wi (WuW5)™h) = E(ny Qi Wy (WaW5)™1) = E(nn Ty Qi3 Wi (W, W)™ = 0 for i,5,h,k = {p, f}.
Finally, if i,5,h = {p, f}.for each n =1,..., N, we have

]E{( ' )n n} E{( )N+1 n,N+1— n} (IH.]S)
E{nn (I1,Qs5)™ "} = E{nn (IT;, Q) V1 -7} (IL.16)
TrE{Qy;} = TPE{Qg}, (IIL.17)
TrE{nn11,Qi} = TrE{nn1I; Qg}, (I11.18)

“w~

where changes index to opposite: p — f, f — p.

The proof is postponed to the Appendix. To establish the first statements of the Lemma, we remark that for each
6, the probability distribution of (v,,),cz coincides with the probability distribution of (z,),cz where z is chosen
as z, = vp,e " for each n. We use the same trick when z,, = v_n+N+2r for each n to prove (III.15) —(III.18).

We now establish that the diagonal matrices E{ny (W;W;)~'} and E{nyIl;} are multiples of the identity matrix
up to error terms.

Lemma IILS. For i = {p, f}, we have:

1
T -1 — ML
Blaw(WiW5) ™} = 3 — e + 0 <N3/2> (I1.19)
1
E{nnTL} = enIy + OV <N3 /2> : (I11.20)

Moreover, (ML) ' TrE{ny (W;W;)™'} = (1 —cn) ™t 4+ O(52)-

The proof of Lemma uses the integration by parts formula and the Poincaré-Nash inequality, and is provided
in the Appendix.

2) Expression of matrix E{Q} obtained using the integration by parts formula: We now establish that matrices
Q;; are, up to error terms, multiples of I, and characterize the asymptotic behaviour of their common diagonal
terms. For this, we state the following Proposition that is proved by using the integration by parts formula and the
Poincaré-Nash inequality.

Proposition IIL.1. The following equalities hold for each z € Ct.

E{Qppnﬂp} :CNE{Qpp} —(1- cN)E{nQpp (W, W)W, p}%]E{Tr (71T Q) } Ay, (IL21)
E{Qpenll, } =CNE{pr} (1-ecn) {nQppW (W, W) 2w, p}%]E{TY T Qe) }+ Ay (IIL22)
]E{Qppnﬂf} :czv]E{Qpp} (1—cn) {nprWf (WeW5) 2Wf}%]E{Tr (n11+ Qpp) } +AL,  (11.23)
E{prnnf} :CN]E{pr} (1—cn) {nprWf (W W)~ 2Wf}%E{Tr (711F Qpe) } +AL (124)

where matrices App, Apt, App, Alf are diagonal matrices whose entries are O 2 (N73/2) terms, and whose
normalized traces are O 2 ( terms.

)
(IL.2T) is proved in the Appendix. ([II.22} [[IL.23] [[I1.24) are established similarly.

In order to introduce the next result, we denote by wy(z) the function defined by

1 1
wy(z) =1+ N]E{Tf (NI Qep)} =1+ NE{TI" (nv1I7 Qpe)} (IIL.25)

where the equality between the second term and the third term in ([IL25) comes from (IIL.18). We claim that
1
2

5 = 0,2(1 1.2
A — 22w 0= (1) (I1-26)
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To verify (I1.26), we first notice that (IIL11) implies that - E{Tr (nNH]%prH]%)} = +E{Tr (nNH]%pr)} (the
equality follows from Hj; = (Hj%)z) coincides with the value taken at point z2 by the Stieltjes transform of a

positive measure carried by R™. Proposition 5.1, item 4 in [2]] thus implies that function — (22w N(z))f1 has
the same property. Mogeover, the converse of ([.16] [LI7) in Proposition 4.1 in [33]] leads to the conclusion that

2
— (zz(wN — Zf—iZN)) also coincides with the value taken at point 22 by the Stieltjes transform of a positive
measure carried by RT. Writing |c3 — 22w%/| 7! as
1 B 1 ‘ |2 1
2 2,12 2 - 2
cy — 2w 2 cy z22w cy
N N sz( sz+wN> N sz+wN)

leads to (II1.26). We are in position to precise the behaviour of the diagonal matrices E(Qj;).
Proposition II1.2. For i = p, f, and for i # j, we have

L)) = LU y(_ L
E(Qii(2)) — Gun () In+ O ( 3 /2) (I1.27)
E(Qi(2)) = %m + 0% (Ni/?) (111.28)

where the normalized traces of the Oévz (ﬁ) error terms are O,z (%) terms.

Proof. We just establish for i = p and for i = p,j = f because, due to ([IL.13), (I1.27) and (TIT.28))
for i = f and for i = f,j = p, respectively, are consequences of for i = p and fori=p,j = f. We
consider Proposition [[Il.T} and begin by showing that the use of ([IL.21)) and (MIL.22) allows to obtain the following
relationship between E(Qpp) and E(Qp¢)

B(Qpr(2)) un(2) = B Quo(2) + O (57 (1129)

where the normalized trace of the Oi\é (ﬁ) error term is a O,2 (%) term. To check ([II.29), we first notice

that (III0) and ([.23) lead to the equality
1 1 1
L2 2y—=1, 17l _ 1 2 3 1\ _ 1
QeelTE = 221, — 22) "Il = - <_z2"HP + S OPITL, — 22) 7y I, T > = —_yll;  (IL30)

(IL14) implies that N~'E (TrpIly) = (1 — cn) + O(g) for each k. Therefore, (I1.30) leads to
E{N'TrQgnlL}} = — =) 4 O(L) for each k. Moreover, (IL10) and H2 IL, lead to E(QpenIl,)
E(nQp¢), which, using again (II1.8), also be written as F(Qpf) + O (5 ) for each k. Therefore, (I11.22)

implies that

1
NF
can

{77Qpp (W W )~ 2Wp} :%E{pr} - Apr +

o ( Nk) + E{nQup Wy (W, 173) W, } 0. (1@ |

It is easily seen that E{nQpp W, (W,W;) "2W,}O.2(5r) = ON(F). We next notice that (II.10) implies that

Qppnll, = 2Qp¢. Plugging this and the above expression of E{nQppW; (WpWy)~ 2W, ¢ into (IIL.21), we obtain
easily (IIL.29). Moreover, the property of the normalized trace of the error term in follows 1mmediately
from £ Tr App = 0.2 (7z) and +Tr Aps = O,2 (5= ).

We now use in a similar way ([I1.23) and ([I1.24) to obtain another relationship between E(Qpp) and E(Qp¢). We
first notice that by (IILI8) and (IIL.30),

E{N " TrQppnlTE} = BN TrQunitt } = L —N) | o L)

— NF (I11.31)
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for each k. We then remark that (III.20) implies that

1 1 B 1
E{Qppnnf} = ZE{(_ZE + ;(nfvﬂpﬂf - 22) 17712VHpr)77NHf} = _;E{UNHf}
1 c 1
+ ;E{menf} + ON(NF) = —7NIN + ;E{menf} + ON(N3/2)

for each k. Moreover, it holds that E{Qpenlls} = E{(n*IL,I1; — 2%) " 'n’IL,11;} = Iy + 2E{Qpp }- thus
allows to obtain that
(1= en)E{nQpe W7 (WyW) Wy} = In + 2E(Qpp) + OZ(N /%)
(TIT.24) eventually leads to
(In + 2E(Qpp)) wn(2) = cNE(Qpp) + OX(N?/?) (IIL32)

where the normalized trace of the OZ; (s7z) error term is a O,2 (§=z) term. (II1.27), (II1.28), and the property
of the normalized traces of the error terms then follow from ([I.29) and (I1.32). W

Finally, to complete this paragraph, we denote

_ 1 1
1 1
an = E(TrQpr} = E{TrQsp} (IIL34)
and remark that taking the normalized traces of (I11.27)) and (I11.28) implies that & (z) = % +0.:2 (§z)
N

and ay(z) = CN“’N(Z)))Z + O% (§=)- We have thus shown the following Corollary.

%, —(zwn (2

Corollary IIL2. For i = p, f, and for i # j, we have

E(Qi(2)) = an(2)Iy+ OX (Ni/z> (I11.35)
E(Qi(2)) = an(z)In+ O (Ni/2> (I11.36)

where the normalized traces of the (92@ (ﬁ) error terms are O 2 (ﬁ)

We now establish a relationship between o and oy and take benefit of this to show that & is a solution of a
perturbed degree 2 polynomial equation. We will deduce from this that E (%Tr@ N(z)) verifies a similar equation.
This property will be useful to evaluate the limit eigenvalue distribution of IL,II;. We notice that

1 1 _ 1
NTI'WH?QPP = NTI" (nQpp - nNHfZ(n2Hpr - 22) 1) = NTY (1Qpp — 2Qtp)

1
Taking the expectation from the both sides, using (III.17) and replacing 1 by 1 in ﬁTr (nQpp), we get that

1 1
NIE{nTrH?Qpp} =a—za+ 0, () (11.37)
for each k. (IIL.31)) thus implies that
A — 1

Taking the normalized trace of (I.29) leads to

1
enan(z) = zay(2)wn(z) + O, <N2> (111.39)
We now express wy in terms of ay and é . For this we use Qg, = nllf(n*IL,I1; — 22)~! and write
NT'E{Tr(nIT, Qgp)} = N 'B{Tr(nQsp)} — N 'E{Tr(n’*TL,IT; (n° I, I — 2*)~ 1)}

1 1
=a—1-2N'E{Tr(Qpp)} + 0.2 (Nk) =a—1—za+ 0, (Nk) (111.40)
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1
Therefore, we obtain that w(z) = a(z) — z&(z) + O,z <Nk> for each k. Plugging this into (I11.39) and using
(I11.38)), we obtain after some algebra that

(1—2%)a% + (2(12@) - z> an + (1;%)2 =0, <]32> . (I1L.41)

We define an(z) and ay(z) by
an(z) = %E{T@N(z)} (I11.42)
an(z) = BT, Q (=)} (111.43)

for each z € C \ R*. (IIL.10) implies that &y (z) = zan(22) and ay(z) = ay(2?) if Imz # 0 or equivalently if
2?2 € C\ R*. Therefore, we deduce from ([IL41) that &y () is a solution of the perturbed equation

(1 - )63 + (20— en) — ) () + T2 o, (;) .

The 1.h.s of this equation is a function of 22 € C\ R¥, thus the error term at the r.h.s is also a function of z2. By
exchanging z? with z we have

1—cn)? 1
(1 —2)zax(2) + (2(1 — en) — 2) an(z) + % =0, (]W) (IIL.44)
on C\ R*. Moreover, from (I11.38), we obtain that
N 1—c 1

on C\ R™ for each integer k > 1.

Remark II1.3. Corollary implies that ay is the Stieltjes transform of a positive measure carried by R™ with
mass cy + O, (N~F). This is in accordance with ([IL.45) because & is the Stieltjes transform of a probability
measure carried by R (i.e. the expectation of the empirical eigenvalue distribution of nQHpH t) and —1*% is
the Stieltjes transform of measure (1 — cy)do.

3) Limiting distribution and almost sure localisation of the eigenvalues of 11,11 In this paragraph, we evaluate
the almost sure asymptotic behaviour of the empirical eigenvalue distribution 7 of matrix I1L,II;. As ny =1
almost surely for N large enough, this can be done by evaluating the almost sure behaviour of %Tr(Q ~(2)) where
we recall that Qy(z) is the resolvent of the regularized matrix n3,11,11;. We first notice that, in conjunction with
the Borel-Cantelli Lemma, Lemma [A.2] Eq. (A.23), applied for ¢ = j = p and F' = I, implies immediately that

%Tr(QN(z)) —E (]bTr(QN(z))> — 0 a.s. (1IL.46)

for each 2 € C\IRT. We are thus back to the evaluation of the asymptotic behaviour of y(z) = E (1 Tr(Qn(2))).
For this, we introduce the probability measure 7 defined by

Un = (en01 + (1 —en)do) B (endy + (1 — en)do) (I11.47)

where X represents the free multiplicative convolution product operator (see e.g. [52]] Section 3.6). We recall that
if II; and II; are orthogonal projection matrices onto the rows of two mutually independent random Gaussian
ML x N matrices with i.i.d. standard Gaussian entries, then the results of [52] imply that the empirical eigenvalue
distribution of II;II> has the same asymptotic behaviour than 7. In the following, we establish that, while IIL,
and IIy are not generated as II; and IIy, D behaves as vy

For this, we denote by #, the Stieltjes transform of 7y. The expression and the properties of ¢y and of Uy are

well-known, see for example Example 3.6.7. [52]]. If z € C¥, iy is given by

- z2—2(1—cn) +V2(z —den(1—cn))
tn(z) = 2(1 —2)z ’

(IIL.48)
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where we define function z — /z for z = |z|e?, 6 € [0,27) as v/z = /[z[¢??/2. In particular, if z € R and
z = xze" then /2 m vz and /2 ;/—2—» —+/z. Then one can easily obtain that lim,_,, ,cc+ tn(2) exists for
T

x € (—00,0) N (4en (1 — en),+00) and x # 1. This limit is still denoted ¢, (), and
z—2(1—cn)—a(xr —den(1 —cn))

2(1 — 2)x , #<0
tn(z) = pu (I11.49)
—2(1 - —den(1—
=21~ cy) + val@ — dew( CN)), x>4deny(l—cen)yz #1
21 — x)x
Moreover, 7y = (en01 + (1 — en)do) B (end1 + (1 — en)do) is given by
- A 4CN 1-— CN) — A
din(A) = VA m(u - A)) )1[0,4%(1_%”(& + (1 — en)do + max(2cy — 1,0)6;. (I1.50)
The support of 7y, denoted by Sy, is thus given by
Sy =[0,4en (1 —en)] U {1} 1oy 510 (IIL.51)
Finally, ) satisfies the equation ([I1.44), but in which the term O, (N~2) is replaced by 0, i.e.
~ 1— 2
21— 2)B(2) + (2(1 — en) — 2)in(2) + % =0 (I11.52)

a property which suggests that @y (z) — tx(z) — 0. In order to establish this formally, we establish the following
Proposition.

Proposition IIL3. ayn(z) can be written as

an(2) = tn(2) +7n(2), (I11.53)
where Ty is holomorphic in C\ R, and verifies
1 1
< el | — 11154
(9 < 3PP (5 ) a1.54)

for each z € Ct, where P1 and P are two nice polynomials.

The proof is given in the Appendix.

As cn — €, In(2) — £.(2) where £,(2) is obtained from £x(2) by replacing cy by c. in Eq. ([IL48). £, is of
course the Stieljes transform of the measure 7, given by

_ Vel (1 —co) = A)
2rA(1 = ))

and the support S, of 7, is obtained by replacing ¢y by ¢, in (IL51). Sequence (7 )n>1 of course converges
weakly towards the probability measure .. We deduce from this and from Proposition [[IL.3] the following Theorem
which states that (¥ )n>1 converges weakly almost surely towards 7,. Moreover, all the eigenvalues of II,II; are
almost surely localised in a neighbourhood of S..

dv, () 1j0,4¢. (1—c,)]AA 4 (1 = ¢4)do + max(2¢. — 1,0)d; (TIL.55)

Theorem IIL.1. The empirical eigenvalue distribution Uy of 11, N11f n verifies
UN — Uy (I11.56)

weakly almost surely. If c, < %, for each € > 0, almost surely, for each N large enough, all the eigenvalues of
II,I1; belong to [0,4c, (1 —ci) +€]. If ¢ > % 1 is eigenvalue of 11,11 with multiplicity 2M L — N, and for each
€ > 0, the 2(N — M L) remaining eigenvalues are almost surely located in [0,4c.(1 — c.) + €] for N large enough.

Proof. (11.46) and Proposition [lIL.3| imply that

%Tr(QN(z)) —tn(2) = 0 a.s. (I11.57)

for each z € CT. As ty(z) — £.(z) on CT, we obtain that 3 Tr(Qn(z)) — .(z) — 0 almost surely on C*, and

that ([TL.36) holds.
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We remark that if ¢, = %, the support S, of U, is equal to the whole interval [0, 1]. As we know that the eigenvalues
of IT,II; belong to [0, 1], the knowledge of S, does not provide any valuable information of the almost sure location
of these eigenvalues if ¢, = % Ifc, # %, the almost sure localisation of the eigenvalues of 11,11 can be established
using the Haagerup-Thornbjornsen approach ([20]) using decomposition of apy(z). As the corresponding
proof is rather standard, we just provide a sketch of proof. We first mention that implies that if ¢ is a Co

function constant on the complementary of a compact subset, then, we have

- 1
E(Tr (6(ILI) = N [ (0 don () +O() (II.58)
SN
(see Proposition 6.2 in [20] or Proposition 4.6 in [9]]). If moreover ¢ vanishes on Sy, we obtain that
1
E(Tr (¢ (IL,I15))) = O(N) (I11.59)

while if ¢’ vanishes on Sy, the Poincaré-Nash inequality allows to establish that Tr(¢(IL,II;) —
E (Tr (¢(II,IIf))) — O almost surely. Therefore, (II1.58) implies that Tr (¢ (I1,II¢) — N fSN Y(A)don(A) = 0
almost surely if ¢/’ vanishes on Sy. We consider € > 0 small enough, and a function 1), € C., that verifies:

1/)1(>\) =lif A € ([0’40*(]‘ - C*) + 6] U [1 -6 1+ 6]]-c*>1/2>c
Y1(A) =0if A € [0,4e.(1 —cx) +€/2]U[1 —€/2,1+€/2]11c 512
1 (N\) €[0, 1] elsewhere

As ¢y — ¢, 1 (and therefore ¢}) vanishes on Sy for N large enough, so that Tr (¢ (IL,II;)) — 0. The
number of eigenvalues of II,IT; located into € ([0,4¢, (1 —c.) + €U [l —e, 1+ e]lc*>1/2)c is clearly less than
Tr (41 (II,I1¢)) which converges towards 0. Therefore, almost surely, for each N large enough, all the eigenvalues
of II,IT; belong to [0,4c.(1 —c.) 4+ €] U [1 —¢€,1 4 €]1, ~1/2. This completes the proof of Theorem when
¢« < 1/2. In order to address the case ¢, > 1/2, we consider a function )2 € C, satisfying

Yo(N) =1if A€ [l —e,1+¢]
1[}2()\) =0if \ € [1 — 26,1+ 26]0
o () €[0, 1] elsewhere

Y5 vanishes of Sy, and [5 12()) din(A) = 2 — 1. Therefore, we obtain that Tr (2 (I, I1;)) = (2ML—N) — 0
almost surely. As there is no eigenvalue of IT,II¢ in [1 — 2¢,1 — €), Tr (¢p2(II,I1f)) coincides with the number
of eigenvalues of IL,II, located into [1 — ¢, 1]. As Tr (¢po(IL,I1;)) — (2M L — N) — 0 almost surely, we obtain
that for N large enough, IT,ITI; has 2M L — N eigenvalues located in [1 — ¢, 1]. Lemma implies that 1 is
eigenvalue of II,IT; with multiplicity 2M L — N, from which we get that if ¢, > 1/2, the eigenvalues of IT,II;
belong to [0,4c.(1 —c.) +€eJU{1}. W

In the following, it will be useful to introduce the measure v, defined by

Lo Lo l-eng  VAen(I —cen) = A)
NicN N CN 0= 2ren A(1 = A)

10.40n (1—ex) N + max(2cy — 1,0)8; (I1L.60)

It is easily seen that v is the probability measure carried by Sy with Stieltjes transform ¢y (z) defined on C\ Sy
by

fN(Z> + 1-— CN

tn(z) = (II1.61)
CN CNZ
After some algebra, we obtain that
2(2ey — 1) + /2(z — 4en(1 — cn))
n(z) 2en(1—2)z » %€
:U(QCN—I);\/:101(96—401\;(1—CN))7 2 <0
ty(z) = en(l—a)z (111.62)

z(2en — 1) + /x(z — den (1 —cn))
2cn(1 — )z

, z>4deny(l—cn)yz#1
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We also define ty(z) = 2fn(22) and ty(z) = tn(22) which are related by

ty(z 1—c
ty(z) = tn(z) + év
CNZ CNZ

(IIL.63)

ll implies that t is the Stieljes transform of a probability measure whose support is clearly the set S defined
by

Sy =[-VAen (1 —en), VAen (1 — ) U{E1 e 510 (I11.64)

While ty is not a Stieltjes transform, we however mention that ty is also holomorphic outside Sp. Then, we
deduce from ([IT.43) and ([I1.53) the following obvious, but useful properties.

Corollary IIL3. The sequence (an(2))n>1 verifies
an(z) —entny(z) =0
for z€ C\ R*. Moreover, we also have
ay(z) —entn(z) =0 (IIL.65)
an(z) —En(z) = 0 (IL.66)
on Ct.

We also denote by v, and ¢.(z) the limits of vy and ty(z) when N — +o0, i.e. their expressions are obtained
by replacing ¢y by ¢, in (L.60) and (II1.62). We have of course 7. = cyvi + (1 — ¢)dp. We also remark that
if 7 represents the eigenvalue distribution of matrix (W, W;)~"/2W,W (W W)~ W, W; (W, W)~ /2, then
Un = enVliy 4 (1 —cen)do. Therefore, the relation o, = eyvi + (1 — ¢, )dp and the convergence result imply
that

Dy = vy (I1.67)

almost surely.

In the following, we also denote by t.(z) and t.(2) the functions t.(2?) and zt,(22) respectively, that can also be
seen as the limits of ty(z) and ty(z) when N — +o00. t.(z) is of course the Stieltjes transform of a probability
measure carried by the set S, obtained by replacing cy by ¢, in (II1.64).

We finally conclude this section by a result which can be seen as the counterpart of Lemma [[.T] derived in Section
m

Lemma IIL6. Foreach z € C\S., i # j € {p, f} and for each bounded sequences (an,bn)n>1 of N—dimensional
deterministic vectors, it holds that

aky (Qi)n(2) by — tn(2)aby — 0 almost surely (TI1.68)
ay (Qij)n(2) by — entn(2)ayby — 0 almost surely (11.69)

Moreover, these convergences hold uniformly on each compact subset of C\ S.. The properties are still valid if
an,bn are random bounded vectors that are independent from the noise sequence (vy,)n>1.

The proof is given in the Appendix.

B. In the presence of signal

In this section we assume that signal (u,)nez is present, and evaluate its influence on the eigenvalues of matrix
11, 11y ,. For this, we notice that matrices II,, , and 117, are finite rank perturbation of matrices 11, , and II¢ , due
to the noise (vy, )nez,- Therefore, 1L, 411, is itself a finite rank perturbation of II,, , I, We can thus use the same
approach as in the previous chapter. Since the useful signal (u,,),cz is generated by the same minimal state-space
representation li we keep the notations from the Section [lI-B| As before, we denote XJ; y = }:/NN =W, n+ [{/% .
I1;,, and II; ,, are denoted respectively II; and HEV for i = p, f from now on. We remind that in the presence of
signal, we cannot assume that Ry = Iy, thus W; = (I ® RN)I/QWZ»,M where matrix W; ;;4 is built from i.i.d.
N.(0,I,s) distributed random vector (vy, jid)n=1,...n+2r—1. However, we recall that oy = H;/V“d fori=op, f. In
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the following, we will denote by 7y (rather than 7y ;;q) the regularization term defined by (IIL.4) by replacing W
by W;;q in order to simplify the notations.

We also keep Assumptions and [[1.2] as well as Assumption on the limits of Ay and @}VR?\ NON

. . .. p7 .

related to the signal model. As'in Section [[I'E| we derive the following results under condition ([[.33), and briefly
justify that Theorem [[IT.2] remains valid if some of the entries of matrix A, coincide. Finally, it appears that the
more involved Assumptions [[[4] [IT.3] and [[T.] are not needed here and can be replaced with the following milder
one.

Assumption IIL1. r x r matrix Gy = O% (I, ® R;,l)@ N converge towards some matrix G ..

We now take benefit of Proposition [[I.2] to evaluate the behaviour of the canonical correlation coefficients between
the row spaces of matrices U, x and Uy ny when N — 4o00. For this, we recall that I, represents the limit of

@}*\,RJE‘p’N@N, as well as, under condition (I1.33), the limit of of I'y = AN(:)}?’NGP,NAN (see Eq. (I1.37) for the
definition of T'nx). As Ay — A, > 0, @}7 NOp. v converges towards the matrix €2, given by

O, = AT A (I1.70)
Q. of course verifies ||Q.|| <1 and Rank(Q2,) = P.
We are now in position to formulate the main result of this Section. For this, we denote by F, the rank P r X r

matrix defined by
F,=Q (I + AJ'GP AL + AT G A ) (I11.71)

As matrix Q. verifies ||2.]| < 1, matrix F satisfies || F|| < 1. Moreover, the eigenvalues of F are real and belong
to [0, 1).

Theorem IIL2. o The function f.(x) defined by
- 2
ti(x
* = — 111.72
ro =2 (= 5) (7
is strictly increasing on [4c. (1 — c.), 1], verifies fi(dcs(1 —c.)) = 12, f(1) = 1if e < L and f(1) =

1—cy’
2 1
Cx . 1
(170*) if ex > 2°

o If cu > %, the equation

det (fu(z) I, — Fy) =0 (L.73)

has no solution in (4¢.(1—cy), 1), and for each § > 0, almost surely, for N large enough, all the eigenvalues of
II,I1; belong to [0, 4c.(1—c.)+0]U[1—6, 1]. Among the eigenvalues contained in [1—6,1], 2M L—N +O(1)
are equal to 1, and, possibly, o(N) other eigenvalues converge towards 1.

o If i < % the equation ‘III.73 has 0 < s < P solutions that belong to (4c.(1 — c.),1) where s is the
number of eigenvalues (taking into account the multiplicities) of Fy that are striclty larger than —~— < 1. If

1—c.
Pls,- -+ Ps,x are the corresponding solutions, then the s largest eigenvalues of 11,11y converge almost surely
towards pi «,...,psx and, for each § > 0, almost surely, for N large enough, the remaining N — s ones

belong to [0,4c.(1 — ci) + 4.

Proof. The properties of function f, are proved in the Appendix. © € (4c.(1 — ¢4),1) is solution of equation
2

I11.72) if and only f.(x) coincides with one of the eigenvalues of Fi. If ¢, > %, falz) € [+= L ) ] if

l1—cye’ \ 1—c.
x € [deo (1 —cy),1]. As ﬁ > 1 and the eigenvalues of F belong to [0,1), equation ([I.72)) has no solution in
(dei(1 = ¢,),1). If ¢, < &, fi ((4eu(1 — i), 1) coincides with the interval (122, 1). Therefore, equation (I11.72)

has s solutions, where s represents the number of eigenvalues of F strictly larger than +=-.

We now establish the last statements of Theorem related to the possible eigenvalues of II,II; that
escape from S, = [0,4c.(1 — c,)] U {1}1,,51/2. We first present the general approach of the proof. As

before, we study the squares of the positive eigenvalues of the linearised version (l’? 1_(I)p ) that escape form
f
[0,2y/cx(1 — ex)JU{1}1,, ~1 /2. For this, for each § > 0 small enough, we consider y € (y/4c.(1 —c.) +6,1—0)
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if ¢, > % and y € (\/4eo (1 —cu) +6,1] if ¢ < %, which by Theorem , cannot be, almost surely, for NV large

, (0 w . -
enough, an eigenvalue of matrix W P ). We take benefit of this property to express det yInv 1
II f 0 11 f 7yI N
. —yly IV . v .
in terms of det W P and of the resolvent of matrix W P ] evaluated at y, which is well
IT —yln I 0

defined. As we estab{ish almost sure convergence results in the following, we notice that the regularisation term
nn defined by (IIL4) by exchanging W; by W, ;iq4, ¢ = p, f, can be considered to be equal to 1. Therefore, the
later resolvent coincides with QW (y) = QWi (y) defined by (II1.10) for z = y. We then evaluate the asymptotic

. —yIN 1T
beh f det 4
ehaviour of de ( Hf _yly

, and deduce from this the last statements of Theorem |III.2]

The key point is to use that —yIn I, is a low rank perturbation of —yIn HZV In order to evaluate
yP Iy —yly P oY —yly)

the corresponding low-rank matrix, we have first to evaluate IT; — II}V for i = p, f. It is easy to see that 3,3} can
be expressed as

5SS = WWr 4+ (WA, 0;) (IO ig) (Ai%‘*wi >
T P

where we recall that UN = @iAié;‘ is the singular value decomposition of % (see Eq. (I1.32)).
We first establish that, almost surely, for N large enough, matrix ;37 is invertible. For this, we need the following
Lemma proved in the Appendix.

Lemma IIL.7. We define E; as the 2r x 2r matrix given by

—1 ~ ~ ~
Ei= (Ir Af) (127" + (IT A?) (@j(WiWi")‘lWiéiAi o1 (W) e, (74

Then, we have

—(1 —cn)AZ I, )
E; — N _ — 0 almost surel I1.75
( I L0341, ® R3O y ({L.75)
The determinant of the second term of the left hand side of (IIL.75)) is equal to
1
det (—(1 — en)A%) det (1 p (O (Ir ® RyH)ON + A&2)>
—CN

and thus converges towards a non zero term. Therefore, almost surely, for N large enough, matrix E; is invertible.
In the following, we denote by D; = E,” ! the inverse of F;. The Woodbury’s identity implies that 3;37 is almost
surely invertible for each N large enough, and that

~ Q* * : *)—1

CHUA o
After some algebra, we obtain that
I — IV = —A; D, A7,
where
A = (ZIT 00, W (W) ey) (I11.76)

From this, we immediately get that

—yIn W, \ _ (—yln HZV (A, O D, 0 0 A
( 1Ty _yIN> B < H}V —yln 0 A 0 Dj .A;Z 0 (I11.77)
or equivalently

—yly T, \ _ (~yIy 1LY w, (A 0N (D, 0\[0 A
(Hf —yIpN)_<H;V _y’}N> (IQN—Q (y)<0p Af)(o” Df) ( A 0”)) (I11.78)
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I,

Therefore, y is an eigenvalue of 1_([) 0 ) if and only if the determinant of the second term at the r.h.s. of
f

(L11.78) vanishes, or equivalently if

[ AQE () A, A;QE"@)M) <Dp 0))_
det (Ig,. <A}Qpp(y)~’4p A;Z g\f{(y)Af 0 Df =0 (IIL.79)
or
E, 0\ (AQN WA, A*QX#@W))
d p — P P =0 TI1.80
“ ((0 Ef> (A;Q}iwp A5QY (y) Ay (11.30)

We now establish that for each y € (y/4c.(1 — ¢4), 1), the left hand side of (II1.80) converges towards a deterministic
term. In particular, we have the following result.

Lemma IIL8. For each z € C\ 8., where 8, = (=2+/c.(1 —c.), 2¢/c.(1 —c.)) U{£1}1. 10 and i # j €
{p, f} we have:

_(l—cN)(l—l—zEN(z))A?v 0

o ATQYA; - stn(z) +1—cn |+ En(2)2 — 0 almost surely
0 i ON L @ Ry)ey
en(l—cn)
_ (1 —cn)? 0
. A}Qg‘{,/lp - 22t (2) N — 0 almost surely
0 0
(T—en)?
. A;ngflf - 22t (2) — 0 almost surely
0 0

Moreover, almost surely, the three convergence items hold uniformly on each compact subset of C\ S..

Proof. The proof of this Lemma is postponed to the Section

We remind that ©% (1, ®R&1)® ~ is denoted by G . After trivial algebra, Lemma (I11.8) implies that asymptotically,
for N — oo, the "limiting form" of Eq. ([IL.80) is

(]. - CN)CN AQ (1 - CN)2 *

—_— I, = r 0
ztn(2) +1—cn _ 2in(z) N
1- t
I ——CJE’IJ“ : N)(Z) G 0 0
det cy(l —cn =0
¢ (L—en)® 0 (1—cn)eny s .
ZQEN(Z) ZEN(Z)—i—l—cN r~
1—
0 0 I 3 en + 2ty (2) N
CN(l — CN)
(IL.81)

Replacing 2t (2) 4+ 1 —cy by z2entn(2) (see (IIL63)) and taking the limits of the various terms when N — 400
(due to Assumptions [[.2] [[.3] [I.T)), we can expect that the solutions of equation (IIL.80) tend to the solutions of
the limiting equation, i.e.

].2 Cy i Ir (1 t C*)2 r* 0
Y2t (y) , y2t.(y)
I, Ay 0 0
L l—e. e —0. (I1.82)
¥t (y) () I
0 0 I y*t.(y) a.
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We now study the solutions of (LII.82). If we interchange the second and third row blocks and second and third
column blocks, the determinant will not change and using the Schur complement formula, the lh.s. of
becomes

1
- (Cy) G. 0
det Bt 2 X
t.
0 v o
1—cs
I1—ce 5 (l—c*)2 ; yzt*(y) -1
det | | 70, Y2t (y) | 1o )
(1—cy) 1—ci o 0 CyTt(y)
Yt (y) yr(y) " 1—c.
Since det 0* —yit*(y) . # 0, Eq. (I11.82) is equivalent to
1—c 1—c)?
Ao arpay Ul
“t(y) T t(y)
det Y *(:ly_c)z 1_2 «\Y =0
SN (AT G
Yt (y) Yt ()
Using again the Schur complement formula, we obtain that the limiting form of Eq. (LIL.80) is
(1—c)® o —1 (1—cu)? 2 —1y—1 )
det | ———(AZ+G,") — ——LTi(AZ+ G, r.) =0,
(ar TR )
or equivalently,
1 E2(3/) 2 —1\—1 2 —1\—1
det | ——— =< —TIAZ+ G r.(A; +G =0. 111.83
ot (o -~ THA 4 G (A2 4 67 m83)

We write that t.(y) = yt.(y?) and t.(y) = t.(y?), and put 2 = 3 € (4c.(1 — ¢.),1). Then, using (I11.70), Eq.

(MT.83) leads to equation ([IL.73).

In order to complete the proof of Theorem [[II.2] it remains to resort to the stability arguments in [6] and [10]. For
this, it is sufficient to use exactly the same arguments as in the proof of Corollary [[.2] We thus omit the details.
We just justify the statements related to the number of eigenvalues located into [1 — d,1] when ¢, > % Lemma
III.1| implies that 1 is eigenvalue of HZV H?V with multiplicity 2M L — N. As 11,,II; is a finite rank perturbation of
11, HJVUV, 1 is eigenvalue of IL,IT; with a multiplicity equal to 2M L — N + O(1). The stability arguments in [6]
and [[10] do not preclude the existence of other eigenvalues of 1I,II; that converge towards 1. As the eigenvalue
distribution of II,IT; has the same limit as the eigenvalue distribution of HZVH}/V, i.e. measure v,, for each 6 > 0
small enough, &#{\;(II,1I5) € [6,1]} — #.([6,1]) = 2c, — 1. Therefore, the number of remaining eigenvalues
converging towards 1 is a o(IN) term, as expected. H

Theorem allows to derive immediately the conditions under which it is possible to estimate consistently P by
the number of eigenvalues of II,II¢ that escape from S.,.

Corollary IIL.4. P coincides with the number of eigenvalues that escape from S, if and only if ¢, < % and if the

P non zero eigenvalues of F, are strictly larger than 132*

Cx

The condition that the non zero eigenvalues of F are bigger than %= implies that the singular values of €2, and
the eigenvalues of A, are large enough. In practice, this means that the canonical correlation coefficients between
the past and the future of u are large enough (thus making the singular values of €2, large) and the r eigenvalues
of Ri ~ are also large enough (thus making matrix A;! small). It is interesting to notice that if c. > %, the
largest eigenvalues of II,II; cannot be used to estimate P.
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We finally mention that, as in the context of Corollary Theorem [III.2| can be formulated in terms of the finite
N equivalents of matrix F} and function f,(z) defined by

Fy = AN TNAG (I + AV G AR AR TNAY (I + AR GRIAY) ! (I11.84)
and
i@ Y
N
r)=x | 111.85
e =+ (=) (e

It is easily seen that the properties of function fy are similar to the properties of f, stated in item (i) of Theorem

parameter cy replacing c,. We thus have the following result.

Corollary IILS. If c,. < %, and if § > 0 is small enough, for N large enough, s coincides with the number of
solutions of the equation det(fn(x) — Fy) = 0 that belong to (4ey(1 — cn) + 0,1), as well as with the number
of eigenvalues of Fn that are strictly larger than 1EJ‘C’N +r < 1 for some k > 0 small enough. If p1 N,...,ps N
are the corresponding solutions, then p1 n,...,ps N converge almost surely towards p1 s, ..., ps . The s largest
eigenvalues of 11,11y have the same asymptotic behaviour than p1 v, ..., ps N, and for each § > 0, almost surely,

for N large enough, the remaining N — s ones belong to [0,4cn(1 —cn) + 6.

We illustrate the above discussion by numerical experiments showing that eigenvalues outside the bulk indeed
tend to thesolutions of equation ([IL.73). We consider a simple case, when P = 2, K = 1 and A is diagonal
with eigenvalues a; and ao. Figures [} [3] represent histograms of the eigenvalues of realizations of the matrix
(R%)y)71/2R§|p,y(Rﬁvy)i{Rﬁl* (RL)y)’1 2, as well as the graph of the density of measure vy = %DN - lZﬁN o
and the solutions of equation .

We take N = 2000, M = 130 and L = 4, so cy = 0.26. The eigenvalues of matrix Ry are defined by

Ak,N = 1/2+ % cos g’r(k_l)> for k=1,..., M, so that matrix Ry verifies ﬁTr(RN) ~ 1. FigureHcorresponds

oM
to a choice of (aj,az) for which s = 1, while s = 2 in the context of Figure

Figure 4. Histogram of the eigenvalues and graph of the density of v with 1 outlier

C. When condition does not hold.

We briefly justify that Theorem [[IL.2] remains valid when some of the entries of A, coincide. For this, we use the
same notations as in Section [[I-F] The reader may check that when condition (IL.33) does not hold, the limiting
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2 X X
1 | |
0 in =
0.6 0.8 1.0
Figure 5. Histogram of the eigenvalues and graph of the density of v with 2 outliers
equation ([II1.82) is replaced by
1 Cx 2 (1 B C*)2 —1 — %
1, —X X 0
Y2t (y) " r y2t. (y) p,N=*2f,N
2
t.
I, W e X,y 0 0
det 1 2 1= Cx 1 =0.
(L—c)” o1 p x—r 0 A2 I
y2t*(y) fs s v2t.(y) * . .
Yty
0 0 I — S XN G X g
(I11.86)

Following the same steps as in the proof of Theorem we obtain that (IIL.86) is equivalent to

1 EE Y — * Yy —* * —1\— - —% * —1\—
det (mﬁéy; CXITEX (AL (K30 XX (A 4 (X2GL X)) 1) -0
(111.87)

or to

1 Ez(y) * Yk 2 * —1\—-1yv-—1 — % 2 * —1\—1y—1

(I1L.88)
We remark that for i = p, f

X7HAZH (X GX) )T = (GAZXT + 67T = (AT + 6
because we recall that X;A, = A, X;. As X¢7NX1."‘7N — I, (see ), it appears the limiting form of is
(TIT:83), i.e. the final equation derived in the proof of Theorem Using again the stability arguments in [6] and

[10], we deduce that Theorem [[II.7] remains valid.

D. Example.

We now consider the particular models defined by (I1.95) and assume that Ry = o®I);. We use again the notations
introduced to derive the properties of (II.95), and evaluate the conditions under which s = P = 1. For this, we
have first to compute matrix €2,.. We notice that

(Ru,n)# V2R (Ry n)*1/2 = ONATITLATION = ONAT KT A Oy
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where we recall that T coincides witl~1 the flrst vector e of the canonical basis of C”. Therefore, a simple calculation
leads to the conclusion that matrix ©% y©, y converges towards (), given by

1
Q*:—el (aé%,blég,...,bK(sK+1)A;1 = €1 a, — bl bK
01 6, 6y

The non zero singular value of €, is thus equal a? + Hb” , which, by ([1.96)), coincides with 1. We notice that
this is not surprising because it is easily seen that the 1ntersect10n of the row spaces of matrices U, and Uy is not
reduced to 0, and coincides with the one dimensional space generated by (z2,...,2n41). As Gy = 2, matrix F,
is thus given by

a
1 & b b
51 —
F, = _ , (a ! K) (I+02a72)7" (I11.89)
1+ % : "0y
! bk
01

and the non zero eigenvalue A\ (F,) of F, is given by

1 a? o1
Al(F*):<1+"2> (1+"2>+Z521+"2
52 52 k=11 52

We conclude that s = P = 1 if and only ¢, < % and A\ (Fy) 1f*p*

condition, we assume that the (dy)x=1, all coincide with d. In this context, the ratio g—z can be interpreted as the
signal to noise ratio. Then, A1 (F) > £ is equivalent to

1—cs
1 2
N (I11.90)
1+ ‘g—Q 1—c,

52 - 1 B N /el —c)
02 (1_0*)1/2_17\/170*7@7 1—2¢,

Cx

or to

(IIL.91)

.. . . . Ui Uy . .
It is interesting to notice that for ¢ = p, f, Y; y = U; v + V; v, where % is a rank r matrix whose r non

zero eigenvalues converge towards 2. Therefore, usual results related to spiked models imply that the r largest

eigenvalues of TY escape from the support of the Marcenko-Pastur distribution [0(1 — /¢y )2, 0%(1+
if and only if the signal to noise ratio j—i is larger than the threshold ,/c,. Not surprisingly, condition (IIL 9

2 - .
appears stronger than % > ,/c.. However, if ¢, is small enough, \/%07 Nl ~ ,/c, and the 2 conditions are

nearly equivalent.

IV. MONTE CARLO SIMULATIONS

Our theoretical results allow to evaluate the number s of eigenvalues of Y X.7%.,5% and of II,IIf that escape
from the support of the limit eigenvalue distribution of WyW W, W and H;’V H?’ respectively. In this section,
using Monte Carlo simulation results, we evaluate the behaviour of two estimates of s, and check whether the
true value of s is in practice well estimated. We still consider the simple model defined by ([I.95), and choose the
various parameters in such a way that s = 2r —1 and s = P = 1 in the context of matrices Xy 3,37% and I, 11,
respectively. More precisely, we take cy = 0.25, Ry = I (that is 0 = 1), K = 2 and therefore r = K +1 =3
and s = 5. a is chosen equal to 0.2, and we choose §; = d2 = §3 = d and by = by = b = %5(1 — a2)1/2.

1+\/1+86N)
2

§ is chosen equal to § = (wy y — 0?)Y/2 + 0.3 where w, xy = o2 (1 + , so that the signal

to noise ratio 3—22 is equal to 3.3dB. Our goal is twofold. While we know that s = 2r — 1 = 5, we first check
that in the context of X¢¥73),37%, the probability of estimating s by P = 1 is very low, thus confirming that
estimating P from the largest eigenvalues of Y >.7%.,5% is irrelevant both theoretically and practically. Second,
in the context of matrix 1I,,IT;, we evaluate the empirical probability that the estimates of s take the value s = P = 1.
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1000 realisations of matrices 3 ;>.7%.,%% and II,II; were generated. Table reports the results corresponding to
the estimation of s in the context of matrix X fE;ZpZ’J’Z. The first estimate § of s is the number of eigenvalues of
EfE;EpZ; that are larger than x4 n(14€;) for €; = 0.01. The second estimate, §, already used in [51]] and [30],
is defined by

§:argmin{@ >1—62}—1 (IV.1)

k Ak

for e = 0.05. § appears to be more realistic than S because, in practice, the noise variance o2, and thus T4 N, are
not necessarily known. Table [I] provides the empirical probabilities that § and § equal to 0,1,2,3,4,5,6,7,8 for
various values of M and N and Figure 6| represents the ratios of eigenvalues A;11/A; of a realisation of ¥ ¢¥7%, 5%
in terms of i — 1 when (M, N) = (600,2400). Figure [6] indicates that the largest eigenvalue A; is much larger

1.04

0.91

0.8

0.6 4

0.5

0.4

0.39

Figure 6. Ratios of eigenvalues A\;41/)\; of EfE;EpE} wrt. 71— 1

than the next four ones because ’A\—f < 0.1. Moreover, Ag is nearly equal to 1.3 A3, and the next eigenvalues appear
to be much closer one from each others. This confirms what we already noticed in the context of the numerical
experiment of Section as cy = i is rather small, the largest eigenvalue corresponds to the useful signal, and
appears much larger than the other 4 spurious outliers. Table [I| tends to confirm that (\;);=3 45 are likely to be
close from z n while Ay is very often significantly larger than x » thus explaining that 5 and 5 do not take the
value 1, and that s and § take the values 2,3,4,5 (and § sometimes 6,7,8) . These experiments tend to indicate
that the true value of s is difficult to estimate, and more importantly, that the estimates are never equal to P = 1.

This confirms that P cannot be estimated reliably from the largest eigenvalues of X373, 5%,

Table 1
BEHAVIOUR OF § AND § FOR MATRIX Xy 337,33, 3%

M=100 | M=200 | M=400 | M=600 M=100 | M=200 | M=400 | M=600

N=400 | N=800 | N=1600 | N=2400 N=400 | N=800 | N=1600 | N=2400
5=8 0 0 0 0 5=8 0.061 0 0 0
s=1 0 0 0 0 5=17 0.128 0 0 0
$=6 0 0 0 0 3=6 0.179 0.01 0 0
5=5 0 0.005 0.09 0.27 5=5 0.25 0.335 0.097 0
5=4 0.235 0.56 0.86 0.72 5=4 0.247 0.298 0.357 0.033
5=3 0.745 0.425 0.05 0.01 5=3 0.12 0.21 0.32 0.287
5=2 0.02 0.01 0 0 5=2 0.005 0.147 0.226 0.68
5=1 0 0 0 0 5=1 0.01 0 0 0
5=0 0 0 0 0 5=0 0 0 0 0

Table [l] is related to the estimation of s in the context of matrix II,II;. €; and e, being still equal to 0.01 and
0.05, § represents this time the number of eigenvalues of II,II; that are larger than 4cn (1 — cn)(1 + €1), while §
is defined by

A
§= argmin{ﬂ > 1 —62} -1
k Ak
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in terms of ¢ — 1 when (M, N) =

(600, 2400). The largest eigenvalue appears s1gn1ﬁcantly larger than A2, and the other eigenvalues are quite close
one from each others. This behaviour is confirmed by the behaviour of s and § which take the value 1 with high
probability, thus confirming the relevance of the estimate of P based on the largest eigenvalues of II,II;. We notice
that in the context of matrix IL,II,, the estimate § is in practice relevant because 4cy (1 —cy) is of course known.

Table 11
BEHAVIOUR OF 5 AND 3 FOR MATRIX II,I1

M=100 | M=200 | M=400 M=600 M=100 | M=200 | M=400 M=600

N=400 | N=800 | N=1600 | N=2400 N=400 | N=800 | N=1600 | N=2400
s=4 0 0 0 0 s§=4 0 0.007 0.007 0.008
§=3 0 0 0 0 §=2 0 0.013 0.008 0.017
s=2 0.001 0 0 0 §=2 0.07 0.012 0 0.01
s=1 0.999 1 1 1 s5=1 0.91 0.966 0.974 0.965
s=0 0 0 0 0 5=0 0.02 0.002 0.011 0

0.99

0.98

0.96

0.95

Figure 7. Ratios of eigenvalues A\;y1/A; of ITp ,I1¢ , wrt. i — 1

V. CONCLUSION

In this paper, motivated by the problem of estimating consistently the minimal dimension P of the state space
realizations of the high-dimensional time series y, we have studied the behaviour of the largest singular values of
the empirical autocovariance matrix R flpy @ well as of its normalized version (R )Y 2RL o, y(RL )~Y2 In
the high-dimensional asymptotic reglme defined in Section [[-C| and under certain techmcal assumptions, we have
shown that all the singular values of RL flp.y are less than a certain threshold, except a finite number s of outliers.
Unfortunately, s is not related to P, and, when P = 1, we have built simple examples for which s can take any odd
value. We also showed that the singular values of the normalized matrix (]A%J@ )~1/2REL flow (]A%]ﬁy)*l/ 2 lie almost

surely in a neighbourhood of the interval [0,24/c.(1 — ¢, )], but this time, we proved that the number s of outliers
belong to {O 1,...,P}, and that s = P if ¢, < % and if the P non zero eigenvalues of the rank P matrix F}
defined by are larger than 2. Under this condition, which, in practice, means that the useful signal u
is powerful enough and its non zero canomcal correlation coefficients between the past and the future are large
enough, P can be estimated consistently by the number of singular values of (Rk )=/ QRﬂp y(RL )~1/2 that

are larger than 24/c.(1 — ¢.)(1 + €) for a certain parameter ¢ small enough. These results are established using a
general approach already proposed in the literature in the context of simple large random matrix models. However,
the random matrix models considered in the present paper are quite complicated, and we needed to solve a number
of non obvious new technical issues. We have also provided numerical simulation results that confirm the practical
relevance of our theoretical results. We finally mention that the existence of a consistent estimate of P allows to
consider the problem of estimating other parameters of the state space realizations of the useful signal u. This is
a topic for future research.
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APPENDIX

A. Proof of Lemma

To prove that matrices E{Qs;}, 7,7 = p, f are diagonal, we consider the new set of vectors z, = e v and
construct the matrices Z,, Zy in the same way as W, and W;. It is clear that sequence (z,),cz has the same
probability distribution that (v, )nez. Z, and Z; can be expressed as

—ik0

e Iy ... 0 1 ... 0
Zy = Wy | : )
0 Loe bty 0 ... e (N
e Oy ... 0 1 ... 0
Zf:efLiO : . Wy
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Then
e Iy ... 0 eIy ... 0
Z,Z} = : : W W : : , (A.1)
0 ooe bty 0 coelifry,
e Iy ... 0 eIy ... 0
(Zzp)T = v )T (A2)
0 L 0 . el

as well as ¢(Z;Z}) = ¢(W;W75) and ¢(Z,Z};) = ¢(W,,W,;) where ¢ is defined by (IIL5). Therefore, 1* coincides
with 7. Next we define 117 = Z(Z,ZF)~ 1Z1, i={p, f}. The equality

1 ... 0 1 ... 0
M=(: o W (A3)
0 ... V-1 0 ... e WW-1b

—zImr 17105

-1
holds for i = {p, f}. We define matrix Q% = ( DT ) and obtain immediately that

—zImrL

se”) - (5 4)E@ (G ) Emes = () Ysma (1)

where the N x N matrix A is defined as

A: . . .
0 ... eWN-Dib

Obviously for each N x N block E{Q;;*}, 7,7 = {p, f}, we have
E{Qy"} = AE{Qy} A", E{nnQy;"} = AE{nnQy} A"
and
E{nnII;Qi”} = AE{nnI1,Qy} A"

for h = {p, f}. Since E{Q%} = E{Q}, E{nnQ%} = E{nnQ}, and E{nn1I; Q;;*} = E{nn11,Qj;}, for 1 <
k,l < N and 4,j,h = {p, f}, we have

E{Qy*!} = b= DIR{Qy) e~ (-1i0 — ((-DilR[Q k)

E{nNQiij} _ e(k—l)iGE{nNQijk,l}e—(l—l)i9 _ e(k:—l)iQE{nNQijk,l}

E{nn (T, Qs5)""} = e DR ny (11,Qy) " e~ 7D = e =DOE{ny (11,Qy) "'}
This proves that E{Q;"'} = 0, E{nyQi;;"'} = 0 and E{ny(I1,Q;;)*'} = 0 if k # I, as expected.
We can prove similarly that matrices E{ny(W;W;)~'}, E{nnIL;} and E{nyQyuW; (W, W) 2W,} are di-

agonal. We just verify that E(nyW(W,W,)~') = 0, and omit the proof of E(ny Qy Wy (W,W;)™!) =
E(nn O Qi3 Wi (W, W;)~1) = 0. It is clear that

1 ... 0 eIy ... 0
Z;(ZPZ;)71 = W;(prg)il : . :
0 ... N 0 ... ebitry,
The equalities 7° = 1 and E(n*Z}(Z,Z;)"! ) =  E@W;(W,W;)~') lead immediately to

(E(nW;(WpW;)_l))M = eln1+D0 (E (MW (W, W) ) yforeach 1 < n < Nand 1 <1 < L. As

n,

0 can be chosen arbitrarily, we obtain that ( (nW ))n , = 0 as expected.
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To prove (IL15) to (IIL.18), we consider the sequence (z,),cz defined by z, = v_, 4 y1or, for each n. Again, the
distributions of z and v coincide, and it is easy to see that for ¢ € {p, f}, Z; is given by

0 ... Iy 0o ... 1
Zi=| o wa E
Iyy ... O 1 ... 0
and as consequence
0 ... Ipg 0 ... Iy
727 = | L | :
Iy ... 0 Iy ... 0

Therefore, Z; Z; and W;W-" have the same eigenvalues, which implies that ¢(Z;Z;) = ¢(W;W-"), and that the
new regularization term n* = det ¢(Z,Z,)det ¢(Z;Z7) will remain the same, i.e. n* = 7. It is easy to see that
0 ... 1
H; = AllyA and Hjc = All, A, where this time A = . |. From this, we obtain that
1 ... 0

-1
A0 —zI I A 0
Zy _ N iy }
E{Q%} = (O A> E{ ( NI, —ZIN> (O A> ’
Using the inverse block matrix formula and the fact that E{Q%} = E{Q}, we obtain that E{Qp,} = AE{Qg}A
and E{Qps} = AE{Qgp}A. This immediately implies that for every 1 < k < N and h,i,j = {p, f}

we have E{(Qy)"*} = E{(Qg)" """ 1"*} and E{ny (I1,Qy)""} = E{ny (I, Q) V- HV¥ 1 7F} As a
consequence, E{TrQ;;} = E{TrQ }and E{nn11,Qy} = E{nn1I;Qg} as expected.

B. Proof of Lemma

The lemma is established using the integration by parts formula and the Poincaré-Nash inequality. As the partial
derivatives of 7 with respect to elements of W, W, will appear, we first state the following useful lemma. We
recall that ¢ and £y are defined respectively by (I11.5) and (LIL.9).

Lemma A.l. Let € be the event defined by:

Q = En N {all eigenvalues of W,W, and W;W} € Supp(¢)}. (A4
Then it holds that
3171\/ c
W = 0 on Q (A.5)
0.
and
onn B 1
E AR 0) (Nk) (A.6)

forall1<m < M, 1<i<2L 1<j5<N and each k.

The proof of the lemma is an adaptation of Lemma 11 and calculations from Proposition 4 of [23]].

We just prove Lemma for i = p. In the following, we drop index i and denote G = (WW*)~!. To prove the
lemma, we apply the 1ntegrat10n by parts formula lb to NG W, W;ﬁ considered as a function of the
entries of the 2M L x N matrix W whose elements are the complex conjugates of those of Wy. We recall that
the correlation structure of the elements of Wy is given by (IIL.3).

E{nNGmlmg Wm2 Wm3 _ Z E{ng W’HL }

1112 22,32 7 J1,%3 J1st3 "
m/7il,j/

£ O gmmayyma g by OO s L b e W L) 5
X 8W7,nl~/ 1112 12,72 + TN awyln’v 12772 + 1112 aWTIn/ ( : )
V] Y] i3’
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Lemma implies that the first term of the r.h.s of (A.7) is of order O(N~*) for each k. Indeed,

69771V m1m: m 6977]V' mi1m m
E { oW Gi1i12 2W12 52} =K {1 awm’ Ghllz 2W2232
Zl,j,

where we recall that Q is defined by (A:4). The Schwartz inequality leads to

8771\7 mim m
E {19 GWT,” y Gy, 2W1232 }

2 2
onn

’
oWy,

1112 12,72

<E'

E{ 1oy [*) (A3)

On Q, the eigenvalues of WW* belong to ((1 — /cx)? — 2¢, (1 + \/cx)? + 2€), so that |G1lg]| and |[W1g]| are
bounded by a nice constant. Therefore |19GZ’1’Z{2’”2 sz ’ has the same property. After some calculations, li
becomes

mimsz ma m3 —
E{UNGHQ ng 2 ]1 i3 E : O ,m3 13+J1 i35

x ( {nNGZL;m (W* G);"z2wg;2} F E{ING 28ty By 06 51 }) +O < le) (A.9)

Defining | = i3 — i = j' — j; which runs from —L + 1 to L — 1 and taking into_account ([.12), we get

Ot ms it ju it 457 = (J( ) ® IM)Z’Z;%(J%))JU/ Then, after summing over 4’, 5" and m/, li becomes

mi1m m 1 l m 7n
E{/”]NGll’Ll2 Zwlzjz Jl,zs} - _NE {UN (G(‘]( : @ Im )) ( )W G)J1212 1232}

1113
mim l maom. {1 1
+ E{U Gz1;2 2( ()®I )12123 3( ))]1]2}+O(Nk)
Summing both sides over i3, mo, we obtain that

1 L—-1

l m1m !
E{nn (GW)i, W) = -+ > E{n(GUY © L) (J§ W0 |
l=—(L-1)

! ) myms | (0 1

At this point, in order to prove (IIL.19), we take jo = j; and sum over this index. Since GWW* = I, we have

L-1 L-1

Elm}a =— 3 {nNG( © Inr)— Tr(valm)} _ {nNG( 0 @ L) Tr } 1o (A}k>

I=—(L-1) I=—(L-1)

Obviously %TrJI(\p is equal to O for [ # 0 and to 1 if I = 0, and, as was discussed above, we can replace E{ny}
by 1 on the Lh.s. and ny by 7% on the first term of the rh.s. while adding a O(N~*) term. Then

L-1

Inp = — Z E{va ®IM)} {;[Tr(nNJfV”H)}— > {nNG( ®IM)]17Tr(nNJ](\?H)°}

I=—(L—-1) I=—(L—1)

1
+E{nnG}+ O <Nk> (A.11)

1
Lemma [[I1.4] implies that E{nyII} is diagonal, so E NTr(nNJ](\f)H)} = 0 for all [ # 0 and moreover since
+TrIl = cy it is easy to see that E { £ Tr(nyIl)} = ey + O(N~F) for each k. Thus, (A.11) leads to

L—-1

1 1 1
B (VW) = ot Y B{nGOY @ o)y o b0 (1) i
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Finally, we show that each element of matrix > E {nNG(Jg) ® IM)%Tr(J](\? (nNH)O)} is of order O(N—3/2).
For this, we apply the Schwartz inequality:

1 1/2
’]E{(ffl“) InG(J >®1M)fm2NTr(nNJ§V”HO)H < (Var () v G @ I)Ep? ) Var (NTr(nNJ%)H)>>

In order to evaluate these variances, one should follow the steps of the proof of Proposition 3.1 in [32]. In [32],
matrix G is replaced by the resolvent of WIV* evaluated at z € CT. The proof of Proposition 3.1 in [32] uses
the fact that the norm of this resolvent is bounded by ﬁ, a result that is of course not true in the present context.
However, the above upper bound is replaced by nyG < Iy (see ([IL6)). This allows to obtain the same estimations
as in Proposition 3.1 in [32]:

my\* ) ma\ _ i
Var ((fil )'nG(Jy” @ I, ) =0 (N)
1 1
Var (NTr(UNJ](\?H)> =0 (]\72)
1
Var (TrnNG( ® IM)) =0 (N?>

and to conclude that ([I.T9) holds.
To estimate the expectation of (ML)~ Trnx(WW*)~! we take the normalized trace from both sides of (A.12)
and use again the Schwartz inequality:

1 1 1 1 1/2
‘E {Tr(??NG(Jg) ® IM))NTr(nNJ}@H%H < (Var <TrnNG(J§” ® IM)> Var <NTr(77NJ](\?H)>)

ML ML
-o(w)
= e
Then we get immediately (ML) ' TrE{ny (W;W;)™'} = (1 —cn) ™t + O(7z)-
Finally, to prove ([IL.20) we return to equation (A:I0) but this time we take mi = mg, 11 = 13 and sum both sides
over these indexes:

L—-1

1
Bt =—ev >, E{ 5 TGO @ )|
I=—(L—1)

v S Bf e o ) o (k)

I=—(L-1)

Analogous to what we have seen above, we replace 1y by 7% in the first term of the rh.s. and remark that
IE{Tr(nNG( D @ Iy ))} = 0 for all [ # 0, since E{nxG} is block diagonal. Moreover E{(M L)~ 'Tr(nyG)} =
(1—cny)~t+ (’)( ~=z)» so that, after trivial algebra, we get

L-1
1 Z 1 ! ° !

The Schwartz inequality allows to obtain (IIL.20).

C. Proof of Proposition

We just establish (III.21). For this, we evaluate each entry of E (Qppnll,) by using the integration by parts formula
(L.25)). In this formula, each entry E{(QppnIl,), . } of E(QppnIl,) is considered as a function of the entries of
the 2M L x N matrix W whose elements are the complex conjugate of those of Wiy.
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N L M
E{(Qepnlly), =D > > E{Quunym, (W) ™) wie } = S R Wi

t=1 11,i2=1m1,mo=1

o (Qpon (W) )" W )Y g oW
1117 ) _ rt x\ —1)M1m2 ,128
X ]E{ aW’ZIS 2 } - N ZE{amhmséh‘Ft’iz#’qupn ((Wpr) )iliz aVViy:}
0 ((W W*)—l)ZL;WQ mao 0Qy; * mimz Wme mimsa ma
+Qpp n 8Wm3 WP Z2s+an3 ((W W ) )11i2 P, 12$+Qpp an3 ((W W ) )“7;2 Wp,igs
33U 33U 13U

(A.13)

Here we take the derivative with respect to each element of W = (WT WT) so index 73 takes values from 1 to
2L. We denote each term of the r.h.s. of (A.13) without expectation by (T1)7~s, (T2)rss (T3)rs, (T4)rs respectively
and treat them separately. In order to s1mp11fy the notations, for ¢ = 1,2,3,4, we denote (7;),s by T; in the
following calculations.

1 r *\ — mim 8W,rn;/2§ 1 T *\ —
T = N Z5m1,m35m+t,z‘3+qutpn ((Wpr) 1)“;2 2 aV[fmi =% 25m1,Mz6i1+t,iz+sttp77 ((Wpr) 1)

33U

mims

1192

We define | = iy — 42 and rewrite 0j, 44,45 = 0iy—ip,105—t1 = (J](Llf))izil(J%))ts. Taking into account 1i we
obtain

L-1
1 l l mom *\—1\ymim l 1 l £\ —
Ty = NZ(J}V))H(Q)@I V™ Qe (W W) ™)™ =y (Qppjfv))rs T ((J£>®IM)77(WPWP) 1)
I=—(L—1)
(A.14)
We take the expectation and obtain
L—1
! 1 ! o —
Eniy = Y E{(Qee/V) JrE{m (U2 nomw,w ) |
I=—(L-1) )

5 w{(@a) g (e nonn) )

I=—(L—1)

We denote the second term of the r.h.s by 7. According to (III.19), E{(ML)_lTTn(WpW;)_l} =
Therefore, if [ = 0 we have

(72

2‘»—*

1 o1y, C 1
NELTOV, W) = 25 40 (N)

and if | # 0, we have %E{T&r ((J(” ® L)y (W,,W;)—l) } = 0 by Lemma [[IL4] Lemma [IIL.3| thus leads to

E{T1} =

{ (Qpp),s } + 0. (N2> +TY. (A.15)

— CN

For second term, we have

’Ll’L

1 w\—_1\mim « m
1T = _N Z 67'L17m35’i1+t,i3+qupn ((WPWp) ) o (W (W W ) )u22 Wp,izzs

We define [ = iy — i3. Then, ;, +¢,i54u = 04y —ig,10u—t,1 = (JZ(VZI))Z-gil(J%))m. This gives us

L—-1
L=- Y (1Qep/i'1,) %Tr (U9 @ noyw,w) ™) (A.16)

I=—(L-1)
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Taking the expectation and replacing 1 by n?, we have for each k > 1,

E{T>} = — Z E{ (nQPP‘]J(\pHP>M }%E{Tr (W(Jg) ® IM)(WPWJ)A) }
I=—(L—-1) )

_ LZ_I Bl (1Qpp VML) T (o7 © )W)~ ) |+ 0. (1\1’“)
I=—(L-1)

As previously, we denote the second term of the r.h.s. by 7§ and notice that in the first term of the r.h.s., according
to Lemma [[1.4] all the terms corresponding to I # 0 are zeros, and E{(M L)~ Ten(W,W;) "'} = — (7z)-
Therefore, we obtain that

CN £ 1
E{Ty} = — = CNE{ (1QppTTy),, | +T§ + Oz <N2> (A.17)
To deal with the third term, 73, we first should find the derivatives of the resolvent w.r.t. the entries of W. For
this, we write

Wﬂp) Q=— (pra(nnf)Qpp + Qppd(N1p)Qep  Qprd(nlly)Qpe + Qppa(nnp)Qﬂ")
Qed(nllf)Qpp + Qepd (M) Qe Qe d(Nlly)Qpr + Qepd(nlly) Qe
(A.18)

0
Q= -Qo <?7H

and evaluate the derivative with respect to the element W;'?. As was discussed before, since || Q|| and |[IL;]|, i = p, f,

are bounded (see Lemma [[II.3)), the expectation of the entries of the terms containing 8V‘?/7,’n3 are 0,2(N~F) terms
. . . . . 7'3u .

for each £ > 1. This jusfifies that we gather all this terms together in a matrix, denoted £, whose entries are

O.>(N~F) for any k. We also need to evaluate the derivative of projectors II, and IIy. For this, we use classical

perturbation theory results ([28]], see also Theorem 6 in [1] for the statement of the result), and obtain

SIL, = T S(WE W, ) (W W) # + (WiW) # 6 (W W, )IL; (A.19)

where (W W, )# is the pseudoinverse of W W), which, in this case, is equal to W (W, W) ~2W,,. The expression
of 01l is similar. The derivative with respect to Wg@j is thus given by
8H * oM, * *\— * m
e = (T Wt e W (W W) 2 W, + Wi (W, W) W, Wi eIl ) Tig<r.

33U

In this context, fi’? is a vector of the canonical basis of CMZL rather than of CZML Since H;;W; = 0 the first
term disappears and we obtain

oll,
= W*(W W ) 1f7:m3eZHL].Z <L

ow;ne 3 p s
For I the formula is analogous, but f;** is replaced by £ |

oIl . "

s = Wi W Wi e ey Ly

33U
Putting these expressions in (A.1§)), we get that
0Q = —nli<r (QPP(W*(W o) 1fm3e*HleP Qpp<Wp (WpWp)~ 1f?3e*HLQH>
oW U=\ Qe (W (W W)~ 1f2”3 *HLpr Qs (W, (W, W) et L Qe

Cnlier (pr(Wf (Wfo) 1fm3LeuHJ'Qpp pf(W}k(Wfo) 1fm3LeuHJ'pr
i3

s~ f ia- E (A20
fo(Wf(Wfo) 1f ® reully Qpp Qe(W (Wfo) 1f 2reull pr) " ( :

We are now ready to address the term 75. We first we sum over 42, ms, and obtain that 75 can be written as

T3 =—— Zéml,mg i1+t,is+ul] (QPP (W W ) ) 1: (H;_pr)ut ((WpW ) W )’L s “<L

N Z5m1,m35i1+t,i3+u77 (QueWF(WeWi) M (5 Qpp) ,, (W W) ' W,) "

T3

"1, + & (A21)

18
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where &3 represents the contribution of matrix £ to T5. In order to express the first term of the r.h.s. of @),
we again define | = 41 — i3 which belongs to {—(L —1),..., L — 1} and notice that 0;, +¢,is+u = 0iy—is,10u—t,] =
(Jg))m-l (JJ(\?)W. As for second term of the r.h.s. of , we first exchange 73 > L by i3 — L which runs from
1 to L. The second term becomes

1 * *\—1\m, *\ — m
NZ6m1,m36i1+t,i3+L+un2(prWf (Wfo) 1)ri§(H}_Qpp)ut((Wpr) 1WP)i1é1i3<L

We again put [ = 41 — ¢3 and remark that 6;, 4+ o4+ L4+u = iy —is,10u—ti—L = (Jg))iwl(J](é_L))m. Therefore, we

obtain that T3 is equal to

L—-1

. =1/ 70l - 1 !
T3 = — Z 772 (Qppr (Wpr) I(Jé) ® IM)(Wpr) IWP)TS NTT (HéQfPJz(V))
I=—(L-1)
L-1 1
* *) — l *\ — I-L
- Z 772 (prWf(Wfo) I(Jé) ® IM)(Wpr) IWP)M NTr (H}_QPPJJ(V )> + &3
I=—(L-1)
Taking the expectation, we obtain that
L1 1
* *\— l *\ — l

B{Te} == > E{n(QuW;(W,W,) (UL @ )W) W) PE{Tr (nQeIy)) }

I=—(L-1)
L-1

_ Z ]E{n (prW;(WfW;)*l(Jél) ® IM)(WpWJTIWp)M }%E{Tr (UH?QppJJ(\ﬁ_L)> }
I=—(L-1) .

+E{&} + 1%,
where, as above, Tzf is defined by

(o)

* *\ — *\ — ]- °
75 =Y E [(nQppr(Wpr) I © D)WW TW,) T (I Qe ) ]+
l

> Wr(WyW;)~ W )~ ° 1 o
’ Knpr FOVAW) T @ L) (VW)W )T (11 Qe i) }

1
According to Lemma -III.4 E{nIl;; Qsp} and E{nIl} Qpp} are diagonal. Therefore, the traces of these matrices

multiplied by J ](\f ) for k # 0 are zeros. This leads to

E{T3} = —E{n (Qup W, (W, W) 2 W) }%E{Tr (NI Qgp) } +E{&} +TF. (A22)

Finally, the various terms of 7} contain the terms (r?/’ln3 )1-3:17___,2L,m3:1,,,_, . Therefore, T, is denoted &4, and
igu
E(Ty) = E(&4) = O,2(N~F) for each k.

Combining (A.13), (A.17), (A.22), we have thus obtained that

E{ (Qopnlly)rs } = 7 E{ (Qpp)ra | = 7 E{n(Quplly): |

T 1_cn 1

_ E{U(QPPW;(WpW;)72Wp)rs}%E{Tr (nH;-pr) } 4+

where (App)rs represents the term

(App)rs = (1 —cn) {E{Tlg F TS+ TEY + B{&) + E{&) + OZQ(]\}Z)]



59

obtained by gathering the various error terms defined in the evaluation of (7});=1,2,3,4. Therefore, we eventually
get the following expression of matrix ]E{Qppnﬂp}:

T R

B0 Qup W (W, ;) 210, } L E{ T (41T Q) } +

1

— A
1—CN PP

which leads immediately to ([IL.2T).

It remains to establish the properties of matrix Ap,. According to Lemma E{QppnL,},E{Qpp} and
E{nQppW, (W,W; ) 2W,} are diagonal. Therefore, (1121 implies that Ay, is also diagonal. In order to evaluate
the order of magnitude of the entries of Ap, and of Tr(App), we first prove the next lemma which is based
on the Poincaré-Nash inequality.

Lemma A.2. Let (FN)NEI and (GN)NE
supy |G| < k, and consider sequences of deterministic N—dimensional vectors (a1, n)N>1, (a2 N)N>1 Such
that supy||la; N|| < k for i = 1,2. Then, for each z € C* and i,j,h = {p, [}, it holds that

1 1

Var { TrFQ,J} 0.2 (1\72) , (A.23)

1
{ TrQ,JFnNHhG} 0,2 <N2> , (A.24)

1 1
{NTrQianNH,fG} =0, (N?) , (A.25)
{]thrnQijW;f(WhW;f)1F(WkW,;*)1Wk} =0,2 (;f) , (A.26)

1
Var (a{nQuW; (W, W) ' F(WeW;) ™" Wiag) = O, <N> , (A.27)
Var {anijag} = Ozz (]b) s (A.28)
1

Var [(a’l‘Qijag — ]E(GIQija2>)2} =0, (]\72> , (A.29)
Var {a]QijFnnIlras} = O,2 (if) . (A.30)

Proof. We just prove (A.23) for Qpp. The proofs of the other items are omitted. We denote by £ the term
¢ = ¥ TrFQpp. The Poincaré-Nash inequality leads to

o0& —ms o0&
Var{g} < Z E { (W) E{ i1 glwig,jz}awmg }

i1,71,M1 i1,J1 12,72
i2,j2,M2
oc '\
my yr72
+ Z E{ {Wh,hWiQ,jz} (aWWu) }
11,]1,m1 117J1 12,72
12,j2,M2

We just evaluate the second term of the r.h.s., denoted by ¢. The derivative of ¢ can be found with the help of

(A.20):

ag n * *\—1emy _* 1
W T _NTYFQppr(Wpr) £iel 1L Qepli <1

t1J1

* m 1
—%TYFprWf(Wfo) el I Qppl 11>L+O( )



60

¢ is clearly the sum of four similar terms. We just evaluate

> O maOis 4 in i E {075, Ty Qep FQpp Wy (W, Wy )~ 7 £ (W, W) ' W, Qp, F Qi e,
11,J1,M1
12,j2,M2

(A31)
where 1 < 41,45 < L. Now we again denote [ = iy — is = jo — j1; which lies in ( L+1,L —1) and remark that
Dy i i O Oy —ip 1 £5 £ 2T = (J( ) @ In) as well as D7, o 0j,—j, 1€5,€5, = J( ) This allows to rewrite
(A3]) as

L—1
1 2 1 * s\—1, 7(0) 1 * (l)
DY E {0 Qe FQpp Wy (W, W) (1) @ L) (W, W) 7 W, Qpp P QT I L (A32)
l=—(L-1)

For each N x M L matrices A and B, the Schwartz inequality and the inequality between arithmetic and geometric
means lead to

) 1 ) 1 ,
TrA(Iy @ J;Y B3 < o A ® Jr0 gy 4x 4 ﬁTrBJNmJI(V”B*.

e

Therefore, since Iy ® JE(Z)JS) < Ipg and J;Q(Z)J](\? < Iy, the inequality

N

LAy @ Jz(”)B*J}‘V(”’ < %(TrA*A +TeB*B). (A33)

holds. We take A = B = HLprFQppW* (W,W;)~', and have to check that N~ 1E{TrAA*} = (02%(1). For
this, we remark that nW; W, < ((1+,/c.)* + 26)IN and P (WpWr) =2 < ((1—y/ex)? —2¢) *Iprp (see .)
Therefore, Wn* (W, W*) W, < kly, and

NIE {TrIL; Qep F Qpp W, n* (W W) 2 W, Qi F* Qi I } = O%(1) (A34)
as expected. This completes the proof of (A23). W
We return to the evaluation of the (diagonal) entries of App. As the terms E(€3) and E(&,) are O? for each
k, it remains to evaluate the order of magnitude of the terms (7)., for i = 1,2, 3 defined by |-i
respectively when 7 = s. We start with (7€), and use Schwartz inequality:

L—1
a0i=| 5 o{(aa), (s o) |
I=—(L-1)
S 1 1/2
< l_%:l) <Var ((Qppjx))w) Var (NTr ((]M ® JJ(\?)U(WPW;)l)>)

We apply (A.28) for a; = e, and as = J](\;)er and take into account that Var(%Tr((IM ® J](\f[))n(WpW;)_l)) =
O(N~2). Then

1
(Tf)r] < O2 <N3/2> (A.35)
As for (T¥),.., we have
L—1 o 1
1 ! o=
(Tl =| Y E{(nQpsz(v)Hp)” T (I & T m(W, ;) )}‘
I=—(L—1)

L—-1

< ¥ <Var ((nQppm,) ) Var <J{[Tr (e Jﬁ?)n(WpWZ)l)»m

I=—(L-1)
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From (A30) we get immediately

1
|(T5)rr| = O2 ( 3 /2> (A.36)
For T% we obtain
L—-1 o 1
l ) — l
@l =| X B (e 085 s S0, L (T Q) |
l*—(L 1)

. o ! o ° 1 I-L

+ Z {(nprWf<Wfo> o @ W W) T W,) T (naf >H]+Qpp)}|
I=—(L—1)

L—-1

< Z <VaI‘ ((nQpp o (W W)™ "In ® JJ(\?)(WPW;)_1WP> rr) Var (;Tr <nJ](\§)H$QfP)>)1/2

lzf(L 1)
+ Z (Var ((nQueW 7 (WeWi)™ (s @ I (W, W)W, ) ) Var (ifTr (nJ%)H]%Qpp)>)1/2
—(L-1)
from what, using again (A:27) and (A25), we immediately get
(T5 )| = O2 ( Ni /2> (A37)

To evaluate the normalized trace of App, we still use the Schwartz inequality, and take benefit of the estimates
E to improve the rate of convergence of ~ TrApp.

D. Proof of Proposition [ITI.3]

In order to evaluate &y — ¢y, it is natural to take the difference between equations (II1.44) and (II1.52):

(Gn —tn) ((1 —2)z(an +tn) +2(1 —cen) — z) =0, <J\;>

We remind that &y = ay — 1*% + O,(N *k) (see (IL.45)) and rewrite the last equation as

(ay —tn) (L —2)zany — (1 —2) (1 —en) + (1 — 2)zty +2(1 —en) — 2+ O (N F)) = O, (1\12>

or equivalently as
(an—tn) (1= 2)zany — (1 —2)(1 —cn) + (1 — 2)2tn +2(1 —en) — 2) + (an — 1) O (]\;) =0, <]\}2>

Since Ay, tn and ay (see Remark are the Stieltjes transforms of a positive measures carried by RT, we
obtain that ay = O,(1), ay = O, (1) tN = 0,(1), and that (ay — t§)O,(N7F) = O,(N~F%). (ax —ty) can
thus be written as
- 0. (N?)
ay —ty = =
(I=2)zay—(1—2)1—cn)+ (1 —2)2tn +2(1 —cn) — 2

We now evaluate the denominator for z € C*. For this, we return to (II1.52) and write:

- 1— 2
(I=2)zty+2(1—cn)— 2= ,ﬂ
ZtN
Moreover, since y is the Stieltjes transform of azpositive measure carried by R, Imzty > 0 for z € C* (see
- 1-—
lb and Im((1 — 2)zty) = Imz — Im% > Imz. We rewrite the denominator as
ZUN

(1—2)zany — (1 —2)(1 —cn)+ (1 —2)2ziy +2(1 —cny) — 2= (1 — 2) (zaN—(l—cN)— (1_01\[)2)

(1—2)ztn
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Imzay > 0 for z € CT because oy is the Stieltjes transform of a positive measure curried by RT. Thus

—(1—cn)? (1 —cn)?Im((1 — 2)2ty)

(1 -2)zany — (1 —2)(1—cn) + (1 —2)zty +2(1 —cn) — 2| > |1 — z|Im =

(1—2)ztn 11— z||2|2|tn |2
As Im((1 — 2)2ty) > Imz and |ty (2)] < (Imz)~! on C7, and that
‘oz (;)) < <z Prllz) P (1m12>
on CT (because ﬁ < L on C), we obtain that
- ~ 1 1
lan(z) —tn(2)| < N2 Pi(|z]) Py (Imz) (A.38)

for each z € CT. This completes the proof of Proposition [[II.3

E. Proof of Lemma

We first justify and when z € C*. For this, we mention that and imply that the
fourth order moments of ajy (Qii)n(2) by — E(aky (Qiui)n(2)by) and a’y (Qi3)n(2) by — E(aky (Qij)n(2) )
are 0,2 (§z) terms. Borel-Cantelli’s Lemma thus implies that a’y (Qii)n(2) by — E(ak (Qii)n(2) by) and
a’y (Qij)n(2) by —E(a (Qi5)n(2) by) converge almost surely towards 0 . ([I.35) and (TT1.36)) as well as Corollary
I11.3| complete the proof of and on CT. In order to extend the convergence to C \ S,, we
remark that Theorem implies that almost surely, for N large enough, a% (Qii)n(2) by — ta(2)a’by and
ay (Qij)n(2) by — entn(2)aiyby are holomorphic on C\ 8, and bounded on each compact subset of C \ S..
Therefore, Montel’s theorem implies that (II1.35) and (II1.36) holds for each z € C\ S, and uniformly on the
compact subsets of C\ S.. The extension to the context of random vectors (ay, by ) is justified using the arguments
used in the course of the proof of Lemma [[I1}

E. Proof of the properties of function f,. defined by
(IIL.61) implies that c,at. () = 2t.(z) + 1 — ¢, for each x € (4e,(1 — c.), 1). As Z, is the Stieltjes transform of
a positive measure supported by S,, function z — xt,(z) is increasing on (4c.(1 — ¢,),1). As we also have

t, 1—c.
@ _,, 1z (A.39)
() xty(x)
. te
we obtain that z — t*gg is increasing on (4c¢.(1 — ¢4),1). Using ([I1.62), we check that xt,(x) and ; Ex; are
. (z
well defined at 4¢,(1 — ¢,) and that
4ei(1—c)(2e, —1) 21—, t 2c,—1 1
(xt*(x)) _=¢ ( C )( c ) _ ( Cx) - (-73) e - c 1
z=4c.(1—c.) 2¢4(2¢4 — 1)2 2¢c, — 1 ty(2) lz=4c. (1-c.) 2 2

ti(z)

. . 2
This shows that =2 is positive on [4c.(1 — ¢4),1) and that x — tgg , and thus © — f.(z), are increasing
on [4c, (1 — ¢4),1). Moreover, it is easily checked that f,(4c.(1 — c.

) = 2. It remains to show that f, is well

1—cy
defined at 1, and to evaluate f,(1). For this, we remark that if ¢, < 1/2, then due to ([IL.49) and (II1.62), we have
() . cd(1—e)?(1—y) (w(Qc* — 1) — /2(z —de, (1 - c*))) o
= 11 = — Cx
te(z) le=1 yo1 (1 — x)des (1 —¢y) (a: —2(1—c,) — Va(r —4de, (1 - c*))>

and for ¢, > 1/2

G (m—2(1—c*)+\/x(a:—4c*(1—c*))>
= lim
e=1 221 p(2e. — 1) + Va(r — deo(1 = ¢))

:C*

2
This leads to f.(1) =1 if ¢, < 3 and f.(1) = (f_—’;) if c. >1/2.
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G. Proof of Lemma

We express E; as

A2 O TIV O, A, O*W*(W.W*)1O,
E( A? Ir> <@*(Al®lﬂl 0,4,  AOTWr (W W) 92> (A40)

I, 0 W,WH)'WieA; ex(W W) Tle,

We remind that, as ny = 1 almost surely for N large enough, it is possible to introduce 77 whenever it is useful
without modifying the almost sure behaviour of the various terms. Lemma implies thatE{nW (W, W)~} =
E{n(W,W;)"'W;} = 0 for i = p,f while - lead to E{nIIV} = cnI, + O(N*) and
E{n(W;W;)~'} = (1 —en)" (I ® Ry') + O(N—F) for each k € N. Combining these evaluations with the
Poincaré-Nash inequality, we obtain immediately (IIL.75).

H. Proof of Lemma

We just provide a brief justification of the first item of Lemma [[II.§] For this, we notice that the 2r x 27 matrix
Af Q};V.A,» is given by

AQYA; = ( —AGIL ) W (I e AL W (Wavy) e (A41)
AT ety ) T B R |
We recall that, as ny = 1 for each N large enough, we can add ny everywhere in the 4 r x r blocks of
Al Q};VA,; without modifying their almost sure behaviour. We first justify that the two r X r non diagonal blocks
of .A;;*Q.‘;VAi converge almost surely towards 0. For this, we first notice that, using the same arguments as in
Lemma it can be easily shown that E{H}’VQJ.‘;VUWZ.*(WZ-WZ»*)*} = E{QJ.‘;VT;WZ.*(WZ-WZ»*)*} = 0. Using

the Poincaré-Nash inequality, it is possible 2to prove that Var{a}‘VHfV’lQi‘jvnWi*(WiWi*)_le} = 0.2(%)
and Var{ (a}“\,H?/’J‘Qi‘J’.VnWi*(WiWi*)’le) } = 0,2(7), where ay (resp. by) is a N dimensional (resp.
M L-dimensional) deterministic vector such that supy ||an|| < +oo (resp. supy [|bn || < +00). This immediately
i IVt iVJ.VnW;(M/m/;)-le‘4 = 0.2(5=) and that o}y 11" QYW W (W;W;) by, and thus

a}"VHfV’J‘QiVjVWi*(WiWi*)*lb ~ converge almost surely towards 0. The extension of these properties to the context
of bounded random vectors (ay,by) independent from the sequence (v, )nez (see the proof of Lemma [IL.1) leads
to the conclusion that the two r x r non diagonal blocks of A} QJ-ViV.Ai converge almost surely towards 0 as expected.

implies that E

We now evaluate the almost sure behaviour of the two 7 x r diagonal blocks of A Q}{VAZ-, and consider the case
i = p, j = f without loss of generality. In the expression of (A*Q¥ A,)11 = A0V QNI LO,A,, it is
possible to replace IV~ = I —II)V by I — nIL}"". Using (II1.10) and the resolvent identity

W _ oW P — p w
I+:2Q% =Q ( UH?/ 0 > = ( nH‘;V 0 Q (A.42)
we obtain easily that

(I =g QY (I — ) = QW — Iy — 2QW, — In — 2QY + 01V + 22QY

Using the Poincaré-Nash inequality, it is easy to check that if ay and by are two deterministic N—dimensional
vectors for which supy [lax|| < +oo and supy [by || < 400, then, it holds that Var{a}nIL}' by} = O(4) and
Var{ (a3n11W by — E(aynI1Vby))*} = O(3%). Therefore, E (ajynI1¥ by — E(aynI1Wby))* = O(5), so that
a’]"\,anV by — E(a}“VnHE/bN) — 0 almost surely. (II1.20) thus leads to the conclusion that

afvnHZVbN —cnayby — 0 a.s.

The use of Lemma [IL.6implies that a} 11"+ Qg I by — (14 22)enty (2)—1 —22tn(2)—(1—cn))akby — 0.
Moreover, this property also holds when (ay,by) are bounded random vectors (an,by) independent from the
sequence (Vy,)necz. We deduce from this that

(A;ngAp)u — (1 + 2%)entn(2) =1 —22E5(2) — (1 —cn)) Ax — 0 a.s.
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holds. In order to obtain the expression stated in the Lemma, we refer to (II1.63) and replace cxty(2) by entn(2) =
tn(z) l—cn.
fnle) | logn.

z z

- ~ 1 1-
(14 2¥entn(2) =1 —22tn5(2) — (1 —en) = tn(2) (z - z> + Z2CN -1 (A43)
Let us remind that t satisfies Eq. (IIL.41) but in which term O>(N~2) is replaced with 0, i.e.
- 2(1 - - 1-— 2
(1—2t%(2) + <(ch) - z) ta(z) + % =0 (A.44)

In order to simplify (A43) we rewrite Eq. (A:44) as

(ZEn(2) + (1 - cx) (EN(Z) C - z) 41 N 1) + (1= en) + 2(1 — en)in(2) = 0

(1—cn)(142EN (2))

and get immediately that the r.h.s. of (A.43) is equal to — T ()T (en)

in the Lemma.

. This establishes the expression stated

We finally evaluate the behaviour of (ASQY A,)20 = O5(W, W) ' W,QN Wy (W, W) =10, We recall that
W,=(I® Rl/z)Wiyiid for i = p, f, so that

05 (W W, ) T W, QI Wy (W, W) 710, = O3 (IQR™Y2) (W iaWy iia) ™ Wi,iid Qi tp Wi iia W,isaWi i)~ IOR™Y?)0,
because Qiidfp = pr. It is thus sufficient to study the behaviour of
a}KVnN(WPJ"LdW ud) Wp,iiin‘;‘t;,fp ;,iid(WpJ’idW;,iid)_le

where ap, by are deterministic M L—dimensional vectors such that sup y ||an|| < 400 and supy ||by|| < +oo. We
also recall that the regularization term 7 is built from matrix Wj;4. In order to simplify the notations, we prefer
to denote W; ;;4 by W; in the following. After some calculations, the Poincaré-Nash inequality leads to

aynn (WpW) " " W,Qey nWy (W, W)~ on — E (ayny (W W) ™' W,Qey nWy (W, W)~ 'bn) — 0 a.s.

It is thus sufficient to evaluate E{(nW,W;)~'W, pr nWy (W, W;)~'} using the integration by parts formula.
By Lemma [[IT.4] this matrix is diagonal, and we therefore consider its diagonal elements. For this, we need to
repeat the calculations of Section [[lI-A2] In order to avoid to reproduce another tedious and similar calculations,
we provide only the ideas and main steps. It is first necessary to apply the integration by parts formula for
D vt mnia E{nQY W, (WW;)~1)"m2W 2 } and follow the calculations of Section using similar

fp ¢ pyial 1112 Pp,iaT
arguments. We first obtain

mi1my )\ — mim 1
E{(n(W, V) " WoQEWy), 0 = E{n((W, W) D™ 5 (B{TrQg} - E{Tr Qi nIL)"})

2121 2171

*\ — * x\—1\mMa1m 1 _
—E{n (W, W) W Qi Wy (W, ;) ™)™ | CE{ToIL Qi } + 0N (N2

111
Since E{n(W,W;)~'} = (1 —cn) 'y + ON(N~%/2) and that the equality Q¥ nIL}V = Iy + 2QY’ holds (see
(A42)), we can simplify the r.h.s. of the last equation:

mimi 1
E{n ((WPW ) 'w, pr )2111 } T 1—

~-E {n ((prg)*1WZ,Q};‘,’77W5(WPW§)*1)T”?”“} (ay —1—zay) + 0.2(N"%2)  (A45)

1?1

(aN —1- ZdN)
cN

We express E{n ((W,W;) ' W, Q¢ W, )mlml} similarly:

E{n (W,W;) " W,QE W;)"2 "} = E{n(W, W)~ >"“"“} (E{Tr QY } — E{TrQy' nI1} })

11?1

—E{n (W, ;)" W, QE gy (W, W)~ )m”’”} ~E{ToyIl 4 QY } + 0.2(N~3/?)

1141
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We remark that N 7 'E{TrQ¥ nIlV:+} = —2'E{N19TrI[}/"+} = —1=% + 0. (N*) for each integer k (see
(T.30)). The last equation can thus be rewritten as

£\ — £\ Mm1m 1
E{n (W,W,) " W,Qg' W;) "™} = -
1— CN mimi

+

E {n (W) W, QW (W, W) 7)™ 4 0.2(N3/2) - (A46)

1171

Moreover, using the resolvent identity, (W, W)™ *W,Q¥ W, can be rewritten as (W, W) *Wp(—z"1Iy +

VIR — 2T VI )Wy = —z My + 27 H(W,W) T W,Qi¥ Il W, Using the obvious identity
HZVW; = W, and comparing 1i and lb we that:
£\ — % £\ —1\m1m aN—l—sz _
E{(n(W, W)~ "W, Q¥ nW (W, W) 1)m?l "= + O0,(N3/?)

 (I—en)(I—cn) +ay —1—zay)

As we can see, all diagonal elements of E{n(W,W;)~'W, }g’nW;(WpW;)_l} are equal up to an error term.
Therefore, the matrix E{n(W, W, )*IWPQ};‘)’UW;‘ (W,W;)~'} is a multiple of Iy up to an error term. We thus
conclude that
_ _ tN —-1- ZEN
ay (W, W)~ W, QW W (W, W) by — N —ayby = 0. (A47
N (ol )= W Qe Wy (W, Wy )b (1—en)(1—cn) +enty —1—zty) ¥ (A47)

After replacing cyty with EN% + 165 we find that cyty — 1 — 2ty = EN(Z)(% — 2) + 1% — 1 which is also
the expression obtained in (A.43). We remind that

- (1 >+1—CN - (1 —en)(1+ 2tn(2))

tn(z) P

22 2tn(2) + (1 —cn)

Plugging this expression into (A.47), and remarking that (A.47) still holds when (ay,bx) are random bounded
vectors independent from (v;,),>1, we obtain the asymptotic behaviour (A;‘,Q};’Ap)zz stated in the Lemma.
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