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Abstract: In the framework of Finite Fracture Mechanics theory, the Coupled Criterion predicts 
crack onset based, totally or partially according to the situation, on an energy condition. Due to 
the smallness of the specimens at the micro-scale, this condition may become difficult to be 
satisfied given the very small volume of the structures, leading to an apparent strengthening. 
The aim of this work is to analyze how the answer brought by the Coupled Criterion evolves 
when descending the scales from the cm-scale, to the µm-scale and even nm-scale. It is based 
on case studies and on comparisons with experiments found in the literature. Obviously, the 
Coupled Criterion still works at the micro-scale. However, due to the lack of energy caused by 
the smallness of the specimens, it is in general much sensitive to the toughness whereas it is 
little sensitive to the tensile strength, making it sometimes difficult to identify this latter 
parameter. In parallel, the difference between displacement and force controlled loading modes 
increases when descending the scales and a notch insensitivity appears. 
 
 
Nomenclature 
a  Notch depth 

, *A A  Scaling coefficients involved in the Coupled Criterion 
d  Notch width 
E  Young’s modulus 
F  Applied force 

cF  Critical applied force at failure 
exp

iF  Measured applied force on specimen i  
sim

iF  Predicted applied force on specimen i using the coupled criterion 
G   Energy release rate 

cG  Fracture energy 

cG  Predicted fracture energy from the minimization process 

cG  Averaged fracture energy from the ciG  

ciG  Predicted fracture energy for specimen i 

incG  Incremental energy release rate 
k  Generalized stress intensity factor 

ck  Critical value of the generalized stress intensity factor 
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IcK  Material toughness 
l  Crack length 
L  Specimen length 

cL  Critical specimen length 

Irwinl  Irwin’s length 
u  Eigenfunction associated to λ  in Williams’ expansion 
U  Elastic displacement field 

dU  Prescribed displacement at failure 
,r θ  Polar coordinates 

t  Specimen thickness 
W  Specimen width 

1 2,x x  Cartesian coordinates 
lδ  Newly created crack length according to the CC (general approach) 
clδ  Newly created crack length according to the CC (asymptotic approach) 
Sδ  Newly created crack surface 

λ  Singularity exponent 
ν  Poisson’s ratio 
ρ  Notch root radius 
σ  Tensile component of the stress tensor 

fσ  Equivalent flexural strength 

cσ  Tensile strength 

cσ  Predicted tensile strength from the minimization process 

cσ  Averaged tensile strength from the ciσ  

ciσ  Predicted tensile strength for specimen i 
ω  Notch opening angle 

kΠ  Kinetic energy 

pΠ  Potential energy 
CC Coupled criterion 
DC Displacement Controlled 
FC Force Controlled 
GSIF Generalized Stress Intensity Factor 
SIF Stress Intensity Factor 
ERR Energy Release Rate 
FE Finite Element 
FFE Full Finite Element 
FFM Finite Fracture Mechanics 
FIB Focused Ion Beam 
IERR Incremental Energy Release Rate 
MAE Matched Asymptotic Expansions 
MD Molecular dynamics 
MEMSMicro-Electro-Mechanical System 
PF Phase field 
SPM Scanning Probe Microscopy 
 
 



1. Introduction 
 
Advances in micro-technology over the past century have highlighted the need for studies to 
understand the mechanical behaviour of materials at the micro-scale. Among the latest 
developments are the evolution of the microelectronics industry, with the manufacture of small 
size components [1], such as inter-layer dielectric and chip passivation films [2]. Furthermore, 
the nuclear industry is also in demand for a better knowledge of the behaviour of fuels such as 
UO2 in pressurized water reactors [5,6]. It is also important to highlight the tendency to mimic 
natural materials like mother-of-pearl to create nacre-like inorganic materials [7,8].  
Experimental tests at small scales can be made following two routes. On the one hand, using 
diminished test rigs in which very small displacements or forces are applied. These techniques 
evolved significantly in the 80’s with the beginning of new technologies for small-scale 
experimentation. According to [3], two types of micro-scale testing appeared at that time: SPM 
(Scanning Probe Microscopy) techniques, which started with the invention of the STM 
(Scanning Tunneling Microscopy) [9] and nano-indentation [10]. The latter was firstly used on 
surfaces in bulk materials or coatings. On the other hand, MEMS (Micro-Electro-Mechanical 
System) technology can be used to fabricate, using lithography techniques, structures in which 
the sensors, the specimen and sometimes the actuator are all integrated [3]. These structures are 
called lab on chip. According to [citaEspinosa], Kahn et al. [citaKahn2000] and Ballarini et al 
[citaBallarini1997] were pioneers on the fracture mechanical analysis with sharp cracks. Both 
performed the tests on polysilicon MEMS devices, using indentation to generate pre-existing 
defects on the specimens. Another example considering MEMS technology can be found in [4]. 
Furthermore, the FIB (Focused Ion Beam) [11] technique is used to fabricate micro-specimens 
of ceramic materials. Since the application of this technology on micro-compression testing by 
Uchic et al. [cita Uchic], it has been deeply applied in many studies, e.g. bending of notched 
and chevron notched micro-cantilever beams in [12-14], and compression on micro-pillars in 
[3,15]. 
Most of the above references are concerned to fracture properties. Then, the question that arises 
is: can fracture mechanics theories be extended to small scales? In this paper we focus on Finite 
Fracture Mechanics (FFM) [16-19] and more precisely on the Coupled Criterion (CC) [18,19] 
which have been successfully used to predict the crack onset at the macro-scale. Attempts to 
use the CC at the micro-scale have been made [1,5] and have brought into evidence how 
important a good knowledge of the fracture parameters (strength and fracture energy or 
toughness) is at this scale.  
The main objective of this paper is to verify the applicability of the CC at the micro-scale 
through case studies and comparisons to experiments. In particular, it discuss the reliability of 
experiments made at the micro- and nano-scale to obtain fracture properties, since an apparent 
strengthening of the material due to its smallness is observed, disregarding any statistical 
consideration on the presence and size of defects.   
It is outlined as follows. Section 2 proposes some reminders on the CC and on the two 
approaches that can be used to predict crack onset: Match Asymptotic Expansions (MAE) and 
Full Finite Element (FFE) computations. Section 3 is dedicated to case studies. It starts by a 
preliminary remark in which a bar in tension is analysed to bring into evidence the differences 
in interpretation of the CC depending on the scale and raises questions about the tensile strength 
parameter. Then, three-point bending tests on V-notched, U-notched and unnotched specimens 
are analyzed at different scales, enlightening the different influences of the fracture energy and 
the tensile strength parameters according to the scale. They also show that there is an increasing 
difference between force and displacement controlled loading modes when descending the 
scales. Finally, in Section 4, comparisons with experiments found in the literature are carried 



out. They highlight again the need but also the difficulty to identify the parameters of rupture 
and especially the tensile strength. 
 
2. The Coupled Criterion 
 
The CC allows predicting crack nucleation in brittle materials. It has been successfully applied 
in several problems at the macro-scale, such as notched specimens, laminates, adhesive joints 
or embedded inclusions [19]. This criterion is corroborated by previous experiments on 
transverse cracking in cross-ply laminates [20].  
According to the CC, two necessary conditions are together sufficient to predict the crack 
nucleation, since fracture occurs when both are simultaneously fulfilled: (i) an energy condition, 
based on an energy balance, and (ii) a stress condition.  
 
(i) The energy balance is obtained considering two states of the loaded structure, prior to and 
following a crack onset. The potential and kinetic energy related to each state is characterized 
by ( )

p
iΠ  and ( )

k
iΠ , where the superscript 0,1i =  is related to the state we are referring to.  The 

initial one, 0i = , elasto-static, is characterized by a potential energy (0)
pΠ  and a zero kinetic 

energy (0)
k 0Π = , whereas the final state, 1i = , is defined after the onset of a new crack or the 

growth of a preexisting one. Hence, we have 
 
 (0) (1) (1)

p p k cG SδΠ = Π +Π +  (1) 

 
where (1)

pΠ  and (1)
kΠ  are the potential and kinetic energy related to the final state, respectively, 

cG   is the fracture energy per unit surface, and 𝛿𝛿𝛿𝛿 is the newly created crack surface. Both the 
final potential and kinetic energy can be defined as (1) (0)

p p pδΠ = Π + Π  and (1)
k kδΠ = Π . 

Therefore, 
 
 p k c 0G Sδ δ δΠ + Π + =  (2) 

 
Since k 0δΠ ≥ , we have  
 
 p c 0G Sδ δΠ + ≤  (3) 

 
which is the necessary energy condition for crack nucleation since it derives from the 
unquestionable energy balance (1).  
In the following, equations will be defined in the 2D domain. It means that the condition can 
be rewritten considering the newly created crack length lδ   
 
 p c 0G lδ δΠ + ≤  (4) 

 
Being understood that pδΠ  is now defined per unit thickness of the specimen. This is 
commonly written, introducing the Incremental Energy Release Rate (IERR) [18], as 
 



 p
inc c( )G l G

l
δ

δ
δ
Π

− = ≥  (5) 

 
In this relationship, lδ  is unknown. Griffith (1921) considered the limit as 0lδ →  
 

 p
cG G

l
∂Π

− = ≥
∂

 (6) 

 
where G is the Energy Release Rate (ERR). However, it is well-known that if there is no pre-
existing crack G = 0, hence, the onset of a crack at a stress concentration point which is not a 
crack tip cannot be predicted using (6). 
 
(ii) On the other hand, the stress condition is based on a maximum tension that a material can 
undergo, known as the tensile strength cσ . According to the CC, the tensile stress in the initial 
state must be higher than the tensile strength all along the presupposed crack path to allow crack 
onset 
 
 2 c 2( )   for  0x x lσ σ δ≥ ≤ ≤  (7) 

where x2 is the coordinate along the expected crack path. As a consequence of the two 
inequalities (5) and (7), it can be shown that the crack nucleation occurs abruptly from 0 to a 
length lδ . It is important to highlight that this incremental form is the foundation of FFM, since 
it assumes the instantaneous formation of cracks of finite size [16-19]. Moreover, in the case of 
the CC this instantaneous crack onset is not an assumption but the consequence of the two 
inequalities (6) and (7) as shown in [18]. 
To sum up, the crack nucleation is predicted by the CC using two necessary and together 
sufficient conditions 
 

 inc

c

( ) 1G l
G
δ

≥  (8) 

 2
2

c

( ) 1  for  0x x lσ δ
σ

≥ ≤ ≤  (9) 

 
Note that, in general, 2( )xσ  is a decreasing function of x2 and the second inequality reduces to 
 

 
c

( ) 1lσ δ
σ

≥  (10) 

Remark: In this approach, the exact amount of kinetic energy that can be produced during the 
initiation process is ignored. It is simply considered as positive (see eqns. (2) and (3)). Its 
influence on the CC was studied by Laschuetza et al. [21] who explained that the load at 
initiation is well captured by the CC (at least in the case they study), only the transient process 
following initiation is not described by the CC. Moreover, in the micro-scale cases studied 
further (Section 4.1), the kinetic energy remains likely very small. Otherwise, it would seem 



difficult to perform tests under force-controlled loading, since most indenters do not allow the 
control of displacements [3]. 

2.1.  Asymptotic approach 

The MAE procedure, is a quasi-analytical formulation that allows to describe the crack 
nucleation at the tip of sharp V-notches under the assumption that the crack nucleation length 

lδ  is small compared to any dimension of the structure (often the notch depth as a reference). 
It is based on Williams’ expansion [21] of the displacements field 1 2( , )U x x  in the 
neighborhood of the singularity generated by a reentrant corner 
 
 1 2( , ) (0,0) ( ) ...U x x U kr uλ θ= + +  (11) 

 
where 𝑈𝑈(0,0) is the rigid displacement of the origin set at the tip of the notch, 1 2,x x  are the 
Cartesian coordinates and ,r θ  the polar ones. The parameter 𝑘𝑘  is the Generalized Stress 
Intensity Factor (GSIF) of the singular term defined by the exponent of the singularity λ  and 
the associated shape function ( ).u θ  The scalar λ  and the function ( )u θ  form the pair 
eigenvalue-eigenfunction of a specific problem [22]. 
Then, the IERR (see (5)), as well as the tensile stress at a distance 𝛿𝛿𝛿𝛿 can be expanded as ( E  is 
the Young modulus and ν  the Poisson ratio) 

 

 

2
2 2 1

inc

1

(1 ) *( ) ...  with 

( ) ...

AG l Ak l A
E

l k l

λ

λ

νδ δ

σ δ δ

−

−

−
= + =

= +
 (12) 

  
with an appropriate normalization of ( )u θ . In (12), A* is a dimensionless scaling coefficient 
depending on the opening angle ω  (Figure 3). The coefficient 21 ν−  relies on the plane strain 
assumption used throughout this paper. Following [18], the energy condition provides a lower 
bound for admissible crack extension lengths lδ  while the stress condition gives an upper 
bound. Then, using the Irwin length Irwinl  [23], compatibility between the two conditions 
provides the crack initiation length clδ   
 

 Irwin c
c Irwin 2 2

c

  with  
* (1 )

l EGl l
A

δ
ν σ

= =
−

 (13) 

 
To ensure the validity of the asymptotic expansions, its smallness is checked afterward. 
Finally, the CC takes the following form, involving the critical value ck  of the GSIF k  
 

 
1

2 1c
c c2(1 ) *

EGk k
A

λ
λσ

ν

−

− 
≥ =  − 

 (14) 

 
This holds true disregarding the way of loading. 



Table 1 reports the length at initiation clδ  and the critical GSIF ck  for various opening angles 
(material data are for alumina-zirconia ceramic as given in Section 3.1). Note that no length is 
given for a crack (ω =0 deg.), since Griffith’s criterion [24] (with which the CC coincides for 
a crack) does not involve any length. Indeed, observe that 2 1λ − = 0 in (12) so that no lower 
bound exists for admissible crack extension lengths. Thus, any infinitely small extension can 
be considered which justifies the use of the derivative in (6) in case of preexisting crack.  
 
Table 1. CC parameters extracted from the asymptotic approach. Let us recall that for a crack  
( 0 deg.)ω = 1/2

c Ic 38.23 MPa mmk K= =  (derived from cG  using Irwin’s formula) and for a 
straight edge (ω =  180 deg.) c ck σ= =  400 MPa. 

 (deg.)ω  0 30 60 90 120 150 
λ  0.500 0.502 0.512 0.545 0.616 0.752 
A* 6.28 6.16 5.82 5.18 4.25 3.03 

c  (µm)lδ   9.3 9.7 11.1 13.5 18.9 
1

c  (MPa mm )k λ−  38.23 38.98 41.99 51.57 76.59 149.58 
 
2.4 Full Finite Element approach 
 
In some cases the assumption of smallness of clδ  may not be verified, the Full Finite Element 
(FFE) approach [25] gets rid of this limitation. The whole structure under consideration is 
modelled by FE either under a prescribed displacement or a prescribed force. In a first step an 
undamaged configuration is considered, i.e. with no new crack in the structure. The tensile 
stress 2( )xσ along the expected crack path is computed together with the potential energy 

p (0)Π . Then, nodes along the crack path are released one after the other, generating a virtual 
crack with increasing length lδ  and allowing the computation of p ( )lδΠ  and then inc ( )G lδ . 

Notice that several calculations are required to build the function inc ( )G lδ   in the FFE approach. 
Obviously, the computational cost is higher than in the MAE approach. But, of course, this 
procedure is valid without restrictions, whereas the MAE approach needs a smallness 
assumption. In any case, whatever the approach, the numerical effort remains small compared 
to other approaches involving the resolution of non-linear problems like cohesive zone models 
[26] or phase field method [27,28].  
Different cases that could be met when implementing the CC are illustrated in Figure 1 and 
refer to coming examples. The load is gradually increased so that a first point fulfilling the two 
conditions of the CC appears (black arrow). Figure 1a is the classically encountered situation 
where c/σ σ  is a decreasing function while inc c/G G  is monotonically increasing. In Figure 1b, 

c/σ σ  is still decreasing but inc c/G G  is no longer monotonically increasing, it goes through a 
maximum and then decreases. On the contrary, in Figure 1c, it is c/σ σ  which is no longer 
monotonically decreasing while inc c/G G  is increasing. These situations were already discussed 
in [30,31]. 
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Figure 1. Examples of implementation of the CC. (a) The U-notched specimen at the µ-scale 
under FC loading (Section 3.5). (b) The U-notched specimen at the µ-scale under DC loading 
(Section 3.5). (c) The double edge notched specimen at the nm-scale under DC loading (Section 
4.3). Stress condition (10): red solid line, energy condition (8): blue solid line. The horizontal 
axis is the crack length normalized by the ligament width. The arrow shows the point that meets 
the two conditions. Refer to Section 3 for DC and FC meaning. 
 
3. Case studies 
 
The purpose of this section is to highlight the differences in interpretation of the CC depending 
on the scale at which the simulations are conducted, it is based on case studies. Comparisons 
with experiments taken from the literature will be made in the next section.  
 
3.1 A preliminary remark 
 
An elastic bar in tension with length L and cross-section surface S is submitted to a tensile force 
F (Figure 2). 
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Figure 2. A bar in tension. 
 
Since there is no longer any potential energy once the bar is broken, the change in potential 
energy pΠ  between the unbroken and the broken state is 
 

 
2

p p
1(0) ( )
2

S LS
E
σ

Π −Π =   (15) 

where /F Sσ = . The energy dissipated during failure is cG S  and the energy condition gives 
  

 
2

c
c

1 2  
2

EGLS G S
E L
σ σ≥ ⇒ ≥   (16) 

 
According to the CC, the stress condition (7) must be added and clearly governs provided L is 
large enough, i.e. larger than Lc  
 

 c
c 2

c

2EGL L
σ

> =   (17) 

Then, under a monotonic loading, failure occurs for c cF F Sσ= = .  
But if L is smaller than the critical value Lc, it is now the energy condition that takes precedence 
and failure occurs at a load such that c ,σ σ>  which may be erroneously interpreted as a 
strengthening effect in short bars while it is a size effect only due to a lack of energy. Note that 
the surface of the cross-section plays no role, while the length does. 
 
For an alumina-zirconia ceramic, Young’s modulus, Poisson’s ratio, tensile strength and 
fracture energy are reported in [29] to be: E = 380 GPa, ν = 0.22, σc = 400 MPa, Gc = 0.023 
MPa mm (23 J m-2). It gives Lc = 109 µm, thus, a 10 µm long bar will break in tension for σ  = 
1322 MPa which should not be confused with the tensile strength set here at 400 MPa. Note 
that this result would remain unchanged as long as cσ ≤ 1322 MPa.  
Obviously, this kind of experiment seems poorly appropriate to determine a tensile strength (by 
the way, Dehm et al. [3] use the word “strength” in quotation marks). This reasoning is also 
valid for compression tests on micro-pillars [3,15] although the configuration is not in general 
used to test fracture properties. 



 
3.2 Bending tests 
 
From the CC perspective, bending tests differ significantly from tensile tests because a part of 
the specimen is under tension while the other one is in compression; thus, the stress condition 
cannot be fulfilled throughout the specimen. Failure occurs in two stages: crack initiation 
followed by crack growth, leading or not to the complete failure. 
In the following, mm-scale (resp. µm-scale) means that units for the dimensions of the 
specimens (as shown in Figure 3) are mm (resp. µm). These two scales are the most relevant to 
ceramic testing. However, side studies to the cm- or nm-scale will also be made as well as to 
intermediate scales. 

 

Figure 3. 3-point bending tests. (a) V-notched specimen, (b) U-notched specimen, (c) plain 
specimen: L = 8, W = 2, t = 2, a = 0.4. Units are not specified, they vary depending on the 
selected scale.  
 
The analysis is performed in 2D plane strain elasticity. Using the above material data (Section 
3.1), FE computations can be carried out once and for all whatever the scale, being aware that 
units for lengths vary. The only change to bring during the post-processing analysis is to modify 
the value of cG  (e.g. 0.023 MPa mm = 23 MPa µm) which reduces significantly the numerical 
effort. 
Computations are conducted either with a prescribed vertical displacement d 1U = − to simulate 
displacement-controlled (DC) loading mode or with a prescribed vertical force 1F = −  for 
force-controlled (FC) loading mode (in both cases without prescribing the units). Thus, the 
stress field is unchanged whatever the units but the stress gradient through the specimen 
increases drastically descending the scales. 
 
In addition, we introduce a physically significant parameter fσ , baptized equivalent flexural 
strength, that allows comparisons between the various cases, it is the tensile stress that would 
prevail in the middle of the bottom face of the plain specimen (Figure 3c) undergoing the same 
bending load.  
 
3.3 Bending of a V-notched specimen 
 
Figure 4 compare the GSIF k at failure computed by the FFE approach (FC loading mode) to 
its critical value ck  deriving of the asymptotic procedure (Table 1) for sharp V-notched 



specimens under 3-point bending. Not surprisingly, the two curves ω =0 deg. and ω =30 deg. 
merge because the singularity exponents are very close to each other (Table 1). 
 

 

Figure 4. The ratio c/k k between the GSIF at failure computed by FE (FC loading) and its 
asymptotic value for various opening angles. 
 
Clearly, the asymptotic approach works well for any opening angle ω  at the cm- and mm-scale. 
This is because the crack increment length at initiation lδ  remains smaller than 1 % of the 
ligament width W a−  and thus satisfies the smallness condition which validates the asymptotic 
expansions (Figure 5). Obviously, k  deviates more and more significantly from ck  for scales 
below the mm-scale because the ratio of the initiation length lδ  to the ligament width no longer 
meets the condition of smallness. Indeed, the FFE approach considers the whole elastic solution, 
thus, higher terms in William’s expansion (11), ignored in the asymptotic approach which retain 
only the leading term, become predominant as lδ  becomes bigger.  
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Figure 5. The ratio / ( )l W aδ −  at various scales for ω =90 deg. (FC loading). The error bars 
correspond to the mesh size. 

This is obviously also true for a crack, as a consequence, using formulas derived from Griffith’s 
criterion to determine the material toughness at the µm-scale risks to be unreliable. The same 
above trends exist but are less exacerbated in case of DC loading mode. 
 
Table 2 summarizes the results obtained with a sharp V-notched specimen under FC loading 
mode. As already observed in Figure 4, the two cases ω = 0 deg. and ω = 30 deg. merge. 
Obviously, smaller the scale and smaller the influence of the geometry (this is more and more 
true when descending to the nm-scale although not shown here).  
 
Table 2. The equivalent flexural stress fσ  at failure for the V-notch specimen under FC loading 
mode for different opening angles. 

Scale (mm) 10 1 0.1 0.01 0.001 
f  (MPa)σ  ω =0 deg. 26.6 83.5 252.3 675.5 1786.7 

f  (MPa)σ ω =30 deg. 26.6 83.7 252.3 675.5 1786.7 

f  (MPa)σ ω =60 deg. 28.1 85.3 253.4 675.5 1786.7 

f  (MPa)σ ω =90 deg. 32.7 92.4 258.2 677.7 1786.7 

f  (MPa)σ ω =120 deg. 46.8 111.3 272.4 675.5 1786.7 

f  (MPa)σ ω =150 deg. 82.6 145.6 283.3 675.5 1765.0 
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3.4 Bending of an unnotched specimen 
 
It is in this configuration that the effects of the stress gradient are most noticeable (Figure 6) as 
can be observed in Table 3 with the dramatic increase of eq cσ σ σ= >  when moving from the 
cm-scale to the µm-scale.  
 

 

Figure 6. Schematic view of the stress gradient effects in a bending test. The red solid line is 
the tensile component of the stress tensor along the middle axis. It is positive on the bottom 
face and negative above. 
 
Similar conclusions to the preliminary remark (Section 3.1) can be drawn. It is difficult to 
interpret these values as representative of a material bending strength. One can note that even 
at the cm-and µm-scale, σ  differs from the tensile strength cσ  as was already highlighted in 
[30]. This was also observed in [31], although the study was conducted at the macroscopic 
scale, the thickness of a specimen in bending was varied and the effects of the stress gradient 
were evidenced. 
 
Table 3. The tensile stress eqσ σ=  that prevails at failure of the plain specimen in the middle 
of the bottom face.  

Scale (mm) 10 1 0.1 0.01 0.001 
σ  (MPa) FC 401.4 414.0 518.6 980.5 2375.1 
σ  (MPa) DC 401.5 413.9 522.9 1122.7 3909.9 

 

Without any statistical consideration on the presence and size of defects [32], we can observe 
in Table 3 an apparent strengthening of the material due to its smallness. Moreover FC and DC 
loading modes differ more and more significantly descending the scales. 
 
3.5 Bending of a U-notched specimen 
 
We will now focus on U-notched specimens (Figure 3b) which is the geometrical configuration 
closest to the fracture test conditions on ceramic specimens at both mm and µm scales.  
 



 
Figure 7. The stress fσ  at failure for the U-notch specimen with ρ = 0.02 at different scales.  
 
Figure 7 shows the equivalent flexural stress fσ  at failure for U-notched specimens with ρ =
0.02 (i.e. 0.02 mm at the mm-scale and 0.02 µm at the µm-scale). Results do not depend on 
how the load is applied at the cm- and mm-scale but the gap widens at smaller scales as already 
observed in Table 3. This result that could surprise can be explained by two different failure 
mechanisms. In the DC case, the IERR curve grows slowly and even pass through a maximum 
before decreasing. Then, there is initiation followed by a possible crack arrest at a shorter and 
shorter distance descending the scales because there is less and less energy to be released (see 
Figure 1b). While under FC loading mode, the IERR curve grows rapidly without further decay. 
There is initiation followed by unstable crack growth until complete failure (see Figure 1a).   
However, this is strongly related to the value of cσ . If cσ  is higher, the red curve moves to the 
left in Figures 1a and 1b, then the situation becomes more classical with an increasing energy 
curve and a decreasing stress curve and the gap between the approaches tends to vanish. Let us 
add that this difference between DC and FC loading modes is not reserved to microscopic 
scales, the same phenomenon can be observed at macroscopic scale if cσ  is small and 
consequently the initiation length is large. 
 
Table 4 summarizes the results for two different notch blunting (ρ = 0.25×a = 0.1 and ρ = 0.05×a 
= 0.02). Obviously, the influence of the blunting is more prominent at the larger scales. At the 
µm-scale the results almost merge with those of the V-notches (see Table 3). 
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Table 4. The equivalent flexural stress fσ  (MPa) at failure for the U-notch specimen under FC 
loading mode with ρ = 0.1 and ρ = 0.02 (units depend on the scale). 

Scale (mm) 10 1 0.1 0.01 0.001 
f  (MPa)σ  0.1ρ =  88.6 122.0 268.0 675.5 1765.0 

f  (MPa)σ  0.02ρ =  49.9 97.0 257.1 679.8 1786.7 
 
One conclusion to be drawn from these results is that at the µm-scale the exact shape of the 
notch plays a minor role. Only its depth a  or more precisely the width of the remaining 
ligament W a−  is decisive. This conclusion is reinforced by a computation on a plain specimen 
whose width is W a−  instead of W, under FC loading mode it gives fσ =1660.4 MPa not far 
from the above values (Table 4). We draw attention to the fact that this value is not the one that 
prevails on the outer face of this thin plain specimen (usually denoted σ ) but the one that would 
prevail on the thick plain specimen under the same load. This remarkable feature is also visible 
in Figures 8 and 9 below.  
Such a property was already observed in [33] where it is noted that below a length scale the 
material (nacre) becomes insensitive to pre-existing flaws. It is concluded that Griffith criterion 
becomes inoperative and failure is governed by the theoretical strength. However, we disagree 
with this conclusion, the energy is still governing fracture and it is the small available amount 
that forces to increase the load. 
 
3.6 Influence of the fracture energy 
 
We will mainly focus now on the U-notched specimens with ρ = 0.02 and the plain specimens 
because the next sections will be dedicated to comparisons with experiments found in the 
literature which refer to this type of samples.  
 
Figure 8 compares the equivalent flexural stress fσ  function of the fracture energy at the mm-
scale and the µm-scale. As already noticed, the influence of the fracture energy is more 
pronounced at the µm-scale. However, at the mm-scale, the fracture energy still has some 
influence on the U-notched specimens while it is weaker for the plain specimens. 
 



 

 
Figure 8. The stress fσ  function of the fracture energy cG at the mm-scale and the µm-scale for 
the U-notched specimen with ρ = 0.02 (red solid line), for the plain specimen with height W =
2 (blue solid line) and for the plain specimen with height W a− = 1.6 (blue dashed line). 
Computations are carried out under FC loading. 
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3.7 Measuring the toughness from the bending test 
 
With the data used above (Section 3.1), it comes IcK = 3.03 MPa m1/2. Usually, the notch is 
considered, whatever its acuity, as a crack and the toughness is derived from the load at failure 

cF  using the following analytical formulas [34] 
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Table 5 shows the toughness IcK  (MPa m1/2) calculated using (18) and the load at failure 
predicted by the CC for various specimens under FC loading mode. Obviously, at the macro-
scale (i.e. cm-scale and mm-scale), Tada’s formula and CC predictions of failure lead to an 
error not exceeding 2% for sharp notches with ω ≤ 30 deg. The result is getting worse for larger 
opening angles and even becomes completely wrong for a strongly blunted U-notch with ρ =
0.02 at the cm-scale (i.e. ρ = 0.02 cm).  
 
Table 5. The toughness IcK  (MPa m1/2) using (18) and the load at failure predicted by the CC 
for various V-notched and U-notched specimens under FC loading mode, compared to the 
actual value (right column). 

Specimen→ 
Scale (mm)↓ 

ω =0 
deg. 

ω =30 
deg. 

ω =60 
deg. 

ω =90 
deg. 

ρ = 0.02 Actual 
value 

10 3.08 3.08 3.26 3.79 5.78 3.03 
1 3.06 3.07 3.13 3.39 3.55 3.03 

0.1 2.92 2.92 2.94 2.99 2.98 3.03 
0.01 2.48 2.48 2.48 2.48 2.49 3.03 
0.001 2.07 2.07 2.07 2.07 2.07 3.03 

 
At the macro-scale the calculation tends to overestimate the actual value. This trend is reversed 
at smaller scales, the actual value is now underestimated by 32% at the µm-scale. Moreover, as 
already mentioned, the exact shape of the notch no longer plays any role. This conclusion is 
consistent with that of subsection 3.3. 
 
3.8 Influence of the tensile strength 
 
Figure 9 shows the equivalent flexural strength stress fσ  function of the tensile strength cσ  at 
the mm-scale and the µm-scale.  The tensile strength has a big influence on the plain specimens 
at the mm-scale, fσ  scales approximately linearly with  cσ . This is no longer true at the µm-
scale even if the influence of cσ  remains significant, the energy condition takes precedence. 
 
 
 
 



 

 
Figure 9. The stress fσ  function of the tensile strength cσ  at the mm-scale and the µm-scale 
for the U-notched specimen with ρ = 0.02 (red solid line), for the plain specimen with width 
W = 2 (blue solid line) and for the plain specimen with width W a− = 1.6  (blue dashed line). 
Computations are carried out under FC loading mode. 
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4. Comparison with micro-scale experiments 
 
4.1 Comparison with Henry’s experiments on zirconia 
 

 
Figure 10. The U-notched micro-cantilever beam. 

 
Using a micro-indenter, Henry et al. [35] carried out bending tests on notched micro-cantilever 
beams (Figure 10) made of a ceramic material 8Y-FSZ cubic zirconia (E = 216 GPa, ν = 0.22). 
Beams were milled with a FIB and remained clamped to a part of bulk material. On 
micrographs, the specimen appears smooth and free of surface defects.  
After having noted the very small difference between the case of a beam clamped at its end and 
a more complete simulation including a part of the bulk material, the first case was retained in 
the computations for simplicity.  
The geometry of the beam cross section is pentagonal since it can be more easily milled, such 
geometry cannot be reproduced in a 2D model. However, according to [36] results are very 
similar to the ones obtained by a rectangular cross section. Thus, the height of the specimen W 
in the simulation is set as the height of the rectangular part plus one half of the height of the 
triangular part of each micro-beam. The U-notch radius is 0.01 µm. Dimensions related to the 
14 specimens are given in Table 6. It can be noted that the difficulty of milling the specimens 
leads to a certain dispersion of the geometry. 
 
Table 6. Geometrical parameters of the 14 different specimens tested in [35]. All the parameters 
are in µm. Tests are carried out under FC loading mode except those with a * done under DC 
loading mode. 
Index L W t n a Index L W t n a 

1 9.20 4.34 5.98 0.920 1.32 8 8.76 4.30 4.99 0.876 0.50 
2 9.97 4.04 4.99 0.997 0.64 9 8.13 4.57 5.34 0.813 0.42 
3 9.74 5.01 6.27 0.974 0.70 10 7.19 4.12 3.45 0.719 0.84 
4 9.10 4.66 6.21 0.910 0.61 11 7.33 4.60 4.18 0.733 0.56 
5 8.03 4.20 4.57 0.803 0.56 12 9.40 4.13 4.56 0.940 0.70 
6* 8.76 4.26 4.42 0.876 0.91 13 7.08 4.35 5.25 0.708 0.83 
7* 12.11 3.32 4.40 1.211 0.64 14* 9.96 3.50 3.94 0.996 0.63 

 
A global least square method allows computing the best fit pair c c( , )Gσ 
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where sim
c c( , )iF Gσ  is the applied load at which the CC is fulfilled according to the simulations 

and exp
iF  is the measured fracture load, for the i-th specimen. The range for cG  is 2 to 20 J m-2 

(step 0.5) and for cσ  0.4 to 8 GPa (step 0.2). It gives cG = 10.5 J m-2 and cσ = 5600 MPa under 
DC loading mode and cG = 9.5 J m-2 and cσ = 7400 MPa under FC loading mode. Obviously, 
there is an important difference in the evaluation of cσ  and the search for an optimal pair 

c c( , )i iGσ 

  case by case can be carried out allowing a better perception of the scattering 
 
 ( )2sim exp

c c c c,  argmin ( , )  for 1,14i i i iG F G F iσ σ= − =

   (20) 

 
Results are given in Table 7 under FC loading mode, except specimens 6, 7 and 14 (marked 
with a *) under DC loading mode like in experiments. Clearly, there is a wider scattering in the 
determination of the tensile strength than in that of the fracture energy, leading to the average 
values cG = 10.3 J m-2 and cσ = 4000 MPa, excluding or not specimens 4 and 8 which does not 
make a big difference. In this regard, a comparison between Henry et al. estimates [35] of the 
material toughness KIc and the present analysis shows that, precisely as in our identification of 

cG , the minimum is found for sample 4 and the maximum for sample 8 (Figure 11). Thus, these 
extreme values seems not to be an inconsistency of the CC. 
Table 7. Estimation of the fracture energy ciG  and tensile strength ciσ  for each specimen. 
Specimens 4 and 8 seems to be a bit out of the general trend. 
Index 

ciG  (J m-2) ciσ  (GPa) Index 
ciG  (J m-2) ciσ  (GPa) 

1 8.5 5.0 8 18.5 1.6 
2 11.0 3.8 9 13.5 4.4 
3 11.5 4.6 10 7.0 5.4 
4 4.0 7.8 11 9.0 1.0 
5 12.0 4.0 12 10.5 1.6 
6* 10.0 3.0 13 8.5 1.6 
7* 12.5 7.4 14* 7.5 4.4 

 
Note that the minimization of the relative error  
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gives a close result to (19) in terms of  fracture energy: cG =  9 J m-2, but a significant difference 
in term of tensile strength: cσ =  7000 MPa, emphasizing the difficulty to determine the tensile 
strength with this kind of experiment. Of course, in the local process (20), absolute and relative 
errors make no difference. 

 



 
Figure 11. Comparison on the identification of the material toughness IcK  between the present 
analysis (blue) and Henry et al. [35] estimates (red) for the 14 specimens. 
 
To conclude, there is a good agreement with the global minimization on the fracture energy but 
a poor one on the tensile strength. This can be explained, as already mentioned, by a low 
sensitivity of the CC to cσ  at the micro-scale. This is visible in Figure 12 (specimen 1 under 
FC loading mode) where the different fracture energies result in curves that are quite distinct 
from each other (left), while different tensile strengths give curves that have a clear tendency 
to overlap. This trend is even more pronounced in the case of DC loading mode. 
On the contrary, a fracture energy around 10 J m-2 seems to be confirmed by the different 
approaches. 
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Figure 12. The critical applied force at failure on specimen 1 under FC loading mode using the 
CC, (a): function of the tensile strength for various values of the fracture energy from 2 to 15 J 
m-2 step 2.5 (bottom to top); (b): function of the fracture energy for various tensile strength 
from 1 to 8 GPa step 1 (bottom to top). 
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4.2 Comparison with Pejchal’s experiments on alumina 
 
Pejchal et al. [37] carried out bending experiments on a C-shaped specimen extracted from a 
single grain of alumina ( E = 400 GPa, ν =0.25, IcK = 3 MPa m1/2 ( cG = 0.021 MPa mm)). The 
specimen is fixed to a polymer support ( E = 1 GPa, ν =0.25), as illustrated in Figure 13. Since 
the polymer Young's modulus is far smaller than that of the alumina specimen, the size of the 
polymer support is adjusted to have the same stiffness in the current simulations (based on a 
linear elastic model) and the experiments (see Figure 14).  
 

 

Figure 13. C-shaped specimen in bending, in red the presupposed crack path. Some dimensions 
are given as an indication. Please refer to [37] for the detailed geometry. The specimen thickness 
is assumed to be 5 µm. 
 
The authors report a horizontal as well as a vertical component of the applied force, so a vertical 
displacement is imposed to the top point of the sample while inhibiting the horizontal 
displacement. This leads to a ratio between the horizontal and vertical components of the 
applied force of 0.17 while the authors measured approximately 0.1 (it is not excluded that a 
small slip occurs under the indenter). The presupposed crack path is orthogonal to the surface 
of the left face of the beam and located at the point of maximum tension. 
 



 

Figure 14. The applied force at failure function of the prescribed displacement. The blue solid 
line is the loading curve, the red solid one is the simulated one. The blue circle corresponds to 
the specimen failure in the experiments. The red circles are the failure loads predicted by the 
CC for various tensile strength values cσ . 
 
Figure 14 shows the predicted failure loads using the CC for different values of the tensile 
strength cσ compared to the experimental loading curve. A satisfying matching is obtained for 

cσ = 4 GPa. However, it can be observed that the load at failure is only twice (4 to 8 mN) while 
the tensile strength is multiplied by 20 (0.2 to 4 GPa), reflecting a low dependence of the result 
on the tensile strength (remember that it scales more or less linearly at the macro-scale for an 
unnotched specimen (Figure 6)). 
 
In Table 7, the tensile stress σ  prevailing at the breaking point at specimen failure can be 
compared to the tensile strength cσ . For a small c ,σ  σ  is far above, it is a new proof of the 
influence of the stress gradient since the crack initiation length is large compared to the beam 
thickness (column 3). As cσ  increases, the gap decreases together with the initiation length and 
the Irwin length Irwinl . The currently computed value of σ  at failure underestimates the values 
reported in [37] which are baptized local strength and estimated around 10 GPa. They carried 
out non-linear elasticity computations based on large deformations while linear elasticity is 
presently used, but this does not seem sufficient to explain the difference since the loading curve 
only slightly deviates of the straight line. 
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Table 7. The tensile stress σ  prevailing at the breaking point at specimen failure, function of 
the tensile strength cσ . The crack length at initiation is in the third column together with the 
fraction of beam thickness and compared to the Irwin length (13). 

cσ  (MPa) σ  (MPa) lδ  (µm) Irwinl  (µm) 
200 2564.6 1.070 (42.9 %) 225 
1000 2949.3 0.743 (29.8 %) 9 
2000 3539.1 0.491 (19.7 %) 2.25 
4000 5026.6 0.214 (8.6 %) 0.56 

 
Figure 15 shows the pairs c c( , )G σ  which provide the same critical displacement dU  than in 
experiments. Obviously, there is a wide range of values, both of cσ  and  cG . An experiment 
of a different type would be needed that could remove the uncertainty. 
 
 

 

Figure 15. The pairs c c( , )G σ (fracture energy, tensile strength) leading to the same critical 
displacement dU  than in experiments. 
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4.3 Comparison with Patil’s simulations on aragonite 
 

 

Figure 16. Double edge notched specimen of aragonite. L = 15.3 nm, W = 11.2 nm, d = 3.08 
nm, a = 1.84 nm. 
 
Even if they are invoked in [3], tests at the nano-scale are likely to be very difficult to perform. 
Patil et al. [38] propose only simulations of traction tests on nano-platelets of aragonite (Figure 
16) using either molecular dynamics (MD) or phase field (PF) method. The reported material 
properties are E = 126 GPa, ν =0.44, cG = 2.091 J m-2.  
The MD simulations tend to show that a crack initiates non-symmetrically at the tip of one of 
the notches and grows toward the other. It is this mechanism that is reproduced in the PF and 
CC simulations. In order to avoid non-linear elasticity and to carry out simplified linear elastic 
computations, the Young modulus have been readjusted to E = 96 GPa to have a similar global 
stiffness (see Figure 17). 
Results shown in Figure 17 exhibit a satisfying agreement between MD, PF and CC simulations. 
For the CC, they are obtained after having adjusted cσ =  5 GPa. The CC predictions under DC 
and FC loading modes differs because of different modes of failure. This is due to the special 
shape of the stress curve, decreasing then increasing because of the two symmetric notches, and 
to a slowly increasing energy curve in case of DC loading mode as shown in Figure 1c. The 
energy condition is fulfilled for a crack jump corresponding to the whole width of the ligament 
between the two notches and the stress condition is then cσ σ≥  through the whole ligament. 
There is only an initiation stage and the specimen is fully broken. While, in case of FC loading 
mode, the energy curve increases more rapidly and the situation is that of Figure 1a. There is a 
first stage of initiation where σ  is not needed to be larger than cσ  through the whole ligament 
but only along the initiation length, followed by an unstable crack growth due to the FC loading 
mode. 



 

Figure 17. Simulation of failure of the nano-platelet of aragonite. MD: orange solid line, PF 
under DC loading: blue dashed line, PF under FC loading: red dashed line, CC under DC: blue 
solid line, CC under FC: red solid line. Results are obtained with cσ = 5 GPa. 
 

 

Figure 18. The predicted failure force, according to the CC, as a function of the tensile strength, 
under DC (blue solid line) and FC (red solid line) loading modes. At the left of the grey zone 
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failure under DC loading mode is entirely governed by the energy, inside the grey zone it is 
stress driven and on the right it is a mixed of the two conditions. Under FC loading mode the 
mixed conditions govern for the whole range of the parameter cσ . 
 
In Figure 18, it appears clearly that, according to the CC, in case of DC loading mode, the test 
is weakly sensitive to the tensile strength. It even becomes completely insensitive if cσ < 5 GPa, 
while it remains sensitive under FC loading mode.  
An interesting point to emphasize is that, under DC loading mode, the CC moves from a 
criterion entirely governed by the energy for  cσ < 5 GPa (Figure 1c), to a stress driven criterion 
for 5 GPa < cσ < 6 GPa  (Figure 19a) and to a classical mixed stress and energy condition for 

cσ > 6 GPa (Figure 19b). 
This test recalls the example of the bar in tension (Subsection 3.1) but with some differences 
due to the presence of the two notches. As a consequence, this test, especially under DC loading 
mode, seems again unsuitable for measuring any tensile strength. 
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Figure 19. Two different applications of the CC under DC loading mode. (a) A stress driven 
criterion for cσ =  5.5 GPa. (b) A mixed stress and energy condition for cσ =  6.5 GPa. This is 
to be compared to Figure 1c obtained in the same conditions for cσ =  5 GPa. 
 
5. Conclusion 
 
At the micro-scale, the CC must be used in its FFE form because the necessary condition of the 
asymptotic approach is no longer fulfilled. This prevents to use analytical formulas based on 
Williams's expansion.  
The CC allows to show that the apparent strengthening observed in experiments conducted at 
the micro-scale is due to a lack of available energy as a consequence of the small size of the 
samples. In addition, in bending tests, the smaller the samples, the larger the stress gradient, 
leads to a similar apparent strengthening. It is often misinterpreted as an actual strengthening, 
although it has been shown in thin films, by varying the thickness of the film, that the tensile 
strength does not reach such high values [39,40]. 
Accordingly, tests are often weakly or even totally insensitive to the tensile strength whereas 
they are sensitive to the fracture energy. Moreover, the smaller the samples, the more insensitive 
they are to notches. It can be also noted that the effect of force and displacement controlled 
loading modes differs more and more descending the scales. 
From the point of view of fracture mechanics, the concept of macro- and micro-scale could be 
refined based on the foundation of the CC: the discontinuous crack growth at onset over a finite 
length. At the macro-scale, this length is small compared to any dimension of the structure 
while at the micro-scale, it is of the same order of magnitude or even larger and can interact 
with the dimensions of the structure. This definition leads to a few mm and above for the macro-
scale and a few µm and below for the micro-scale for alumina. But, according to the previous 
remark, the “microscopic” scale starts at a few cm and below for a rock like limestone (the 
Irwin length is around 30 cm) while the macroscopic scale is above 3 m. 
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