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Abstract
This paper proposes an experimental modal identification method for vibration control of multi-actuators and multi-sensors 
complex smart structures. The general formulation avoids the difficulty of the coupling coefficients identification in 
electromechanical systems through a modal reduced-order model and uses first-order polynomials as phase correctors for the 
numerators of the identified transfer functions. Then, a frequency-shaped linear quadratic controller is designed to control 
multiple modes on a smart composite structure with integrated transducers. The experimental results obtained in terms of 
multi-modal vibration control were promising with attenuations up to 20 dB on the target modes, confirming the efficiency 
of the proposed identification and control method for future applications with more extended and complex composite smart 
structures.

Keywords: vibration control, active modal control, piezoelectric transducers, smart composite structures

1. Introduction

Composite smart structures demonstrated in the last years a
great potential in many applications. By integrating piezoelec-
tric (PZT) transducers directly into the composite layers or
even simply bonding them to the external layer, voltages can
be measured or applied as images of the strain experienced
by the structure or the stress applied by the transducers them-
selves as actuators.

These integrated hybrid structures present twomain advant-
ages compared to more traditionally actuated systems using
electric motors or voice-coil actuators. The first one being
lighter, as the actuation does not include permanent mag-
nets. And secondly, the actuators can be more easily dis-
tributed over complex curved structural surfaces in network
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configurations. This last point provides a better distribution
of the actuation on the structure and can improve the control
authority of the transducers onto it or the observability of the
dynamic strain.

Thus, the field of applications of such structures are mainly
structural health monitoring [1], active vibration control [2]
and energy harvesting [3].

Now focusing on composite smart structures for active
vibration control, the challenge of such systems is in the design
of robust and efficient controllers, whether the objective is
broadband vibration control, disturbance rejection, or modal
control. Performance is in general based on a first step which
is precise modeling of the considered dynamic system with
the characterization of all the interactions between each PZT
actuator and sensor.

Naturally, the first approach has been to design controllers
based on analytical models of simple and well-defined struc-
tures such as composite cantilever beams [4–6] or plates [7]
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with bonded or integrated PZT transducers [8] to reduce the
dispersion between the model and the actual system. For these
structures, the identification stage is reduced to its minimum
thanks to well-controlled parameters such as geometry, mater-
ial properties, and easily determined electromechanical coup-
ling coefficients.

However, accurate analytical modeling of coupled elec-
tromechanical systems becomes quickly complex with real
industrial structures, typically curved shapes. Many research
has been carried out using finite-elements (FEs) models of the
considered structures to feed observers and controllers [9–11].
Li F.-M et al proposed in [12] an analytical approach to derive
the equations of motion of a conical shell and control its vibra-
tions using PZT patches with LQR control method. Even con-
sidering a homogenous, isotropic, and thin material, the model
remains difficult to set up and yet no correlation has been
shown with experimental results.

Besides the complexity of modeling the physical behavior
of curved surfaces with bonded PZT transducers, accurate
characterization of the electromechanical coupling factors in
real smart structures is also a challenge in itself due to high
dispersion level [13], especially in weakly coupled systems.

When it comes to active modal control of complex smart
structures, the identification stage can be simplified from an
analytical or FE model approach as mentioned earlier to a
curve-fitting problem where the frequency response functions
(FRFs) of the PZT sensors to the actuators are considered as
sums of n modal responses, described with 2nd order rational
transfer functions. The modal parameters such as frequency
and damping ratio are then estimated for each observed/con-
trolled mode from the FRF and implemented into a state-space
realization of the system [14, 15].

Besides, as collocated actuators/sensors are not always an
option, a phase correction is in general necessary for the modal
transfer function approximation to fit with the experimental
FRF at the frequency of each mode. In [16], the state matrix A
of the state-space realization is filled with the experimentally
identified modal parameters while the actuation and observa-
tion matrices B and C respectively still contain the theoretical
electromechanical coupling factors with the possible disper-
sion mentioned earlier for complex, curved shaped compos-
ite structures. A common solution to deal with non-collocated
control is to correct the modal phase with suitable time delays
within the closed-loop such as in [17, 18]. Qiu Z proposed
also in [19] to introduce an identified time delay to correct
the phase from the theoretical modal model obtained by FE
method, controlling the first three bending modes and two tor-
sional modes of a composite plate. However, introducing time
delays in closed-loop systems is not always desirable since
they can, if not handled properly, lead to instability, also mak-
ing the closed-loop nonlinear.

All these studies on composite smart structures active
vibration control highlight the difficulty, when facing com-
plex structures, to obtain a precise model. Thus, curved
shapes, non-homogeneous materials and non-linear damping
cause indeed high modeling uncertainties, degrading the per-
formance of any analytical-based controller. To tackle such
difficulty, experimental approaches describing the structure

behavior using modal superimposition simplify this stage
providing a sufficiently precise estimation of the experimental
FRF at the frequencies of the observed and controlled modes.
This problem is the main motivation for this work. Yet, the
phase correction needed for non-collocated control has to be
implemented into the state-space realization of the system.

The contribution of this paper is to propose a general
state-space formulation, oriented toward active multi-modal
control, for complex smart structures with multiple actuat-
ors and sensors. No theoretical model of the electromechan-
ical coupled system is needed and the modal parameters of
the desired controlled modes are obtained by curve fitting
from the experimental FRF’s. The novelty lies especially into
the modal phase correction formulation due to non-collocated
control and nonlinear damping effects in the composite mater-
ials using suitable 1st order polynomials at the numerator of
the modal response rational functions. No time delays are used
within the closed-loop which remains linear. In addition, the
controlled smart composite structure used for the experiments
is curved shaped and the PZT transducers are directly integ-
rated between the fiber layers.

This paper is organized as follows. The next section 2
contains the contribution and presents the development of
the proposed modal state-space realization of the composite
smart structure. Then, the frequency-shaped LQG controller
is defined in section 3 and applied to the proposed state-space
system. Finally, in section 4 are presented all the results of the
modal identification method, the numerical parameters of the
controller, and the experimental results.

2. System identification

Let us consider a complex modal smart structure with Na PZT
actuators and Ns PZT sensors. In the modeling process, n
structure vibration modes are chosen to be observed and con-
trolled, within the desired bandwidth, and sufficiently separ-
ated to consider that at the characteristic frequency of the ith
mode ωi, the contribution of the mode j ̸= i is negligible.

Thus, the transfer function Hk,l(s) [V/V] between actuator l
voltage input and sensor k voltage output can be approximated
by the sum of n modal responses:

Hk,l(s) =
n

∑

i

Mk,l
i e jφ

k,l
i

s2 + 2ξiωis+ω2
i

(1)

where s= jω is the Laplace variable,ωi is the modal frequency
and ξi the modal damping ratio. Mk,l

i and φk,l
i are the modal

magnitude and phase respectively of the ith mode. All these
modal parameters can be estimated using the rational frac-
tion form method (RFP) [20, 21] from the measured transfer
function Hexp

k,l (ω).
The complex numerator in (1) is necessary here since the

physical controlled system is a complex composite structure.
Hence, the particular non-homogeneous material of the struc-
ture can show nonlinear, in addition to non-diagonalizable
damping effects and also high modal superimposition causing
such complex numerators in the transfer functions to arise.
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A state-space formulation of subsystem Gl is now defined
to characterize the transfer function vector between the PZT
voltage input of the lth actuator ul ∈ R and the PZT voltage
response yl ∈ R

Ns of the sensors in open circuit due to actu-
ation signal ul:

Gl

{

ẋl = Alxl + Blul
yl = Clxl + Dlul

(2)

with Al ∈ R
2n×2n, Bl ∈ R

2n, Cl ∈ R
Ns×2n, Dl ∈ R

Ns , xl =
[ql, q̇l]T, ql ∈ R

n and q̇l ∈ R
n being the modal state and its time

derivative respectively. Let us recall that the matrices Al, Bl,Cl
andDl correspond to the state, actuation, observation and feed-
through matrices respectively. Since there is no feed-through
in the considered system we have Dl = 0Ns,1.

From (1) and (2), the matrices Al, Bl and Cl can be written
in the following intuitive form:

Al =

[

0n In
−diag(ω2

i ) −2diag(ξiωi)

]

2n,2n

Bl =











0n,1
B l
1
...
B l
n











2n,Na

Cl =







C1
1 · · · C1

n 01,n
...

. . .
... 01,n

CNs1 · · · CNsn 01,n







Ns,2n

(3)

where In represents an identity matrix of dimension n× n. The
transfer function vector Gl(s) ∈ C

Ns of system (2) such that
Yl(s) = Gl(s)Ul(s) is defined by:

Gl(s) = Cl (sI2n−Al)
−1Bl. (4)

From (1) and (4), it comes the following identification between
the state-space subsystemGl and the rational form formulation
Hk,l(s):

Mk,l
i e jφ

k,l
i = Ck

i B
l
i . (5)

In practice, the independent identification of the coeffi-
cients Ck

i and B
l
i from a generalized electromechanical model

can be difficult, especially when coupling is weak since the
precision drops down. Besides, only the products Ck

i B
l
i are

necessary to design the controller, the need for amore complex
identification process to compute separately the coefficients
Ck
i and B l

i can be avoided. From this statement come the fol-
lowing suitable definitions for the matrices Bl and Cl where a
choice is made to impose unit values to the coefficients B l

i :

Bl = [01,n 11,n]
T

Cl =









M1,l
1 e

jφ1,l
1 · · · M1,l

n e
jφ1,l

n 01 × n
...

. . .
...

...

MNs,l
1 e jφ

Ns,l
1 · · · MNs,l

n e jφ
Ns,l
n 01 × n









. (6)

Nevertheless, complex state-space systems (C ∈ C
Ns×2n)

are not desirable formulations for real-time experiments. In
[22], this difficulty had been bypassed by replacing the coef-
ficients Mk,l

i e jφ
k,l
i with appropriate time delays, only keeping

the amplitudes Mk,l
i within the observation matrix C. Never-

theless, with structures to control getting more complex with
multiple-modes, actuators and sensors, the use multiple delays
in the closed-loop becomes quickly inconvenient.

The contribution of this paper is now the following step.
With the objective to improve the identified state-space for-
mulation (3) and (6), the next modification is proposed for (1)
to fit with a regular polynomial rational transfer function:

H ident
k,l (s) =

n
∑

i

ak,li + bk,li s

s2 + 2ξiωis+ω2
i

(7)

where (ak,li ,bk,li ) ∈ R
2 and:

ak,li = Re(Mk,l
i e jφ

k,l
i )

bk,li = Im(Mk,l
i e jφ

k,l
i )

1
ωi
. (8)

Thus, the new transfer function (7) displays the correct mag-
nitude and phase for each mode i as in (1). Finally, the obser-
vation matrix Cl is re-written as:

Cl =







a1,l1 · · · a1,ln b1,l1 · · · b1,ln
...

. . .
...

...
. . .

...
aNs,l1 · · · aNs,ln bNs,l1 · · · bNs,ln






(9)

providing the system (2) with all real matrices Al, Bl and Cl.
Now that the subsystems Gl are defined using a proper state-
space formulation, the total system G(s) summing the effects
of each actuator such that

Y(s) =
Na
∑

l=1

Yl(s)

=

Na
∑

l=1

Gl(s)Ul(s)

= G(s)U(s) (10)

with U(s) = [U1(s) . . . UNa(s)]T. A state-space realization of
G is:

G

{

ẋ ′ = A ′x + B ′u
y = C ′x

(11)

where x ′ = [xT1 . . . xTNa]
T, u= [u1 . . . uNa]T and y=

∑Na
l=1 yl.

The matrices A ′ ∈ R
2n.Na×2n.Na , B ′ ∈ R

2n.Na×Na , and C ′ ∈

R
Ns×2n.Na have the following definition:
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A ′ =











A1 02n · · · 02n
02n A2 · · · 02n
...

...
. . .

...
02n 02n · · · ANa











B ′ =











B1 02n,1 · · · 02n,1
02n,1 B2 · · · 02n,1
...

...
. . . 02n,1

02n,1 02n,1 · · · BNa











C ′ =
[

C1 C2 · · · CNa
]

. (12)

Nevertheless, this particular state-space realization is poorly
balanced in terms of observability and controllability. The
matrix B′ is filled with unitary values while matrix C′ con-
tains the coefficients ak,li which are globally of the same order
of magnitude than ωi, making the system much more observ-
able than controllable. Thus, using the Gramianmethod [23], a
transformation matrix T ∈ R

2n.Na×2n.Na is computed such that
the new state vector is x= T−1x ′. The new state-space realiz-
ation of G is finally

G

{

ẋ= Ax + Bu
y= Cx

(13)

with A= T−1A ′T, B= T−1B ′ and C= C ′T.
In conclusion, the proposed identification procedure is an

improvement to the method presented in [22] since all the
transfer functions between actuators and sensors are now com-
pletely defined in the state space system G, with no need for
additional time delay correction. Thus, this formulation fits
better to the dynamics of the real structure and also simplifies
the design of a stable and robust control.

3. Control design

The controller is designed as a frequency-shaped linear quad-
ratic regulator [24]. The objective is to focus the control energy
on the identified modes from (1) and thereby minimize the fol-
lowing quadratic frequency dependent criterion:

J=
1
2

ˆ +∞

−∞

[x∗( jω)Q( jω)x( jω)+ u∗( jω)R( jω)u( jω)]dω.

(14)

Thus, the functions R−1/2 and Q1/2 supposedly stable,
respectively proper and strictly proper, are applied as pre- and
post-filters to the original plant such as in figure 1. Their state-
space realization are defined by:

R−1/2(s) =

{

ẋR = ARxR + BRū
u= CRxR

(15)

Q1/2(s) =

{

ẋQ = AQxQ + BQy
ȳ= CQxQ + DQy.

(16)

Figure 1. Closed-loop system with augmented plant and observer.

The augmented system with the new state vector z=
[xT xTQ x

T
R]
T is now:







































[l]





ẋ
ẋQ
ẋR



=





A 0 BCR
BQC AQ 0
0 0 AR









x
xQ
xR



+





0
0
BR



 ū

ȳ= [DQC CQ 0]





x
xQ
xR





where ū ∈ R
Na and ȳ ∈ R

Ns are the augmented system input
and output. For the sake of simplicity, (17) is written as:

{

ż= Ãz + B̃ū
ȳ= C̃z

. (17)

The gain matrix K̃ ∈ R
Na×Ns is now computed as solution

to the LQR problem (Ã, B̃) such that:

ū=−K̃z

=−K̃xx− K̃QxQ− K̃RxR. (18)

Since the full-state feedback is necessary to compute the
control signal ū, a Kalman observer is designed to estimate
the state x from y such that:

{

˙̂x= Ax̂+Bu+ L(y−Cx̂)
ū=−K̃xx̂− K̃QxQ− K̃RxR

(19)

where x̂ ∈ R
2n is the state estimation. The observer gain mat-

rix L is designed considering low level of co-variance from
measurement noise and expected state perturbation. Thus, the
complete controller linking the measure y to the control signal
u can be expressed as the following state-space system:



























































[l]





˙̂x
ẋQ
ẋR



=





A− LC 0 BCR
0 AQ 0

−BRK̃x −BRK̃Q AR−BRK̃R









x̂
xQ
xR





+





L
BQ
0



y

u= [0 0 CR]





x̂
xQ
xR





.

(20)
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Figure 2. Smart composite structure: global view.

The transfer function matrix K(s) of the controller is then
obtained from straightforward calculation:

U(s) =−K(s)Y(s)

K(s) = CR
(

BRK̃x(sI2n−A+ LC)−1BCR

+sIR−AR+BRK̃R
)−1

BR
(

K̃x(sI2n−A+ LC)−1L

+K̃Q(sIQ−AQ)
−1BQ

)

where IR and IQ are identity matrices of appropriate dimen-
sions depending on the order of R−1/2(s) and Q1/2(s).

4. Experimentation on the composite smart
structure

In this section, the experiments on the considered smart com-
posite structure are presented, from the identification steps, to
the controller tuning and finally the results of modal control.

4.1. Experimental setup

The experimental support is the composite smart structure
presented in the figures 2 and 3 and was manufactured by the
M3M Laboratory, UTBM-France. It is a spoiler type curved
profile with a three layers structure: one active layer contain-
ing the considered six PZT transducers of 25 mm diameter and
150 µm thickness between two glass fiber layers. The trans-
ducers are all aligned and separated in the horizontal plane by
50 mm (center to center distance). The overall spoiler has the
following dimensions: 1150× 300× 25 mm.

A schematic representation of the physical system is given
in figure 4 with the excitation, sensors, and actuators PZT
transducers alongside the connections to the Dspace Micro-
LabBox controller and the computer. The composite smart
structure is also suspended to the ground using low stiffness
elastic components to isolate its dynamical response.

4.2. Identification results

Since a novel identification method is used in this approach,
the two formulations (1) and (7) are now compared. A white
noise signal of maximum amplitude 3 V and 20 s length is sent

Figure 3. Smart composite structure: top view.

Figure 4. Schematic representation of the experiment.

to the PZT actuators 1 and 6 sequentially with a sample fre-
quency of 20 kHz. All the measured FRF are displayed in the
figures 5 and 6 where three target modes to be controlled are
chosen: 770, 1282, and 1576 Hz. The choice of the bandwidth
of interest between 500 and 2000 Hz is made regarding poten-
tial future acoustic applications. Besides, PZT transducers in
general offer low control authority at low frequencies since
their strain is very limited.
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Figure 5. FRF’s of PZT sensors 2, 3, and 5 to actuation (a) PZT 1 and (b) PZT 6, targeted modes for control.

Figure 6. FRF’s of PZT sensors 2, 3, and 5 to actuation (PZT 1 and 6), targeted modes for control with zoom on the bandwidth of interest.

Finally, the identified parameters are summarized in table 1.
Since the identification results of the parameters ωi and ξi are
very close from one FRF to another, the reference modal para-
meters are arbitrarily taken from H2,1(s).

The measured FRF’s from actuators to sensors and their
respective reconstructions from expressions (7) and (7) are
presented in the figures 7–9 for the transducers 2, 3, and 5
respectively.

One can easily observe that at the vicinity of the con-
sidered mode frequencies, the proposed identification proced-
ure gives the correct magnitude and phase. However, as soon
as the excitation frequency moves away from the modes, more
and more deviation is visible between the measurements and
the reconstructions. Yet, since the objective of the method
is to focus the control energy on the target modes, these
deviations do not interfere in the control loop in a way that
performance is impacted drastically as it will be shown in
section 4.4.

Last but not least, the proposed identification method
provides both precision and easier algebraic formulation for
state-space systems real-time experimentation compared to
the solution in [22]. One can notice in figures 7–9 that both
expressions (1) and (7) give similar results, if not identical
around, the modes frequencies.

Remark. The figures 5–9 highlight the difficulty of identi-
fying predominant modes in the PZT’s voltage response. Thus,
the measured FRF’s frequency content is very complex and
rich, increasing the challenge of identifying precisely the
modal parameters. However, the results obtained in section 4.4
with the proposed control formulation demonstrate the robust-
ness of the method with its ability to deal with parametric
uncertainties, fused modes within noisy frequency measures,
and weakly coupled electromechanical systems.

4.3. Control parameters

Finally, the weighting filters Q1/2 and R−1/2 are designed to
emphasize the control effort on the target modes and remove
lower and higher frequencies. Q1/2(s) is the product of a sum
of modal filters around the target frequencies with a 2nd order
high pass filter:

Q1/2(s) = INs × kQ×

(

2 ξfω2
1

s2 + 2 sξfω2
1 +ω2

1

+
2 ξfω

2
2

s2 + 2 sξfω2
2 +ω2

2

+
2 ξfω2

3

s2 + 2 sξfω2
3 +ω2

3

)

×
s2/ω2

HP

1+ s2/ω2
HP+ s/(QfωHP)

(21)
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Table 1. Identified modal parameters from the three PZT sensors FRF’s to actuation.

Mode ωi/(2π) (Hz) ξi

1 770 7.5× 10−3

2 1282 5.0× 10−3

3 1576 4.3× 10−3

H2,1

Magnitude Phase (deg) a2,1i b2,1i

1 1153 136 −0.827× 103 0.1658
2 5484 140 −4.192× 103 0.4389
3 5510 141 −4.269× 103 0.3517

H2,6

Magnitude Phase (deg) a2,6i b2,6i

1 847 −54 0.500× 103 −0.1412
2 3634 −30 3.134× 103 −0.2284
3 2214 −129 −1.395× 103 −0.1736

H3,1

Magnitude Phase (deg) a3,1i b3,1i

1 1965 −177 −1.961× 103 −0.0237
2 5425 138 −4.020× 103 0.4525
3 6763 138 −5.048× 103 0.4546

H3,6

Magnitude Phase (deg) a3,6i b3,6i

1 2115 −29 1.847× 103 −0.2127
2 4789 −17 4.579× 103 −0.1740
3 1179 −59 0.605× 103 −0.1022

H5,1

Magnitude Phase (deg) a5,1i b5,1i

1 1481 148 −1.253× 103 0.1631
2 4640 155 −4.218× 103 0.2398
3 4556 118 −2.130× 103 0.4067

H5,6

Magnitude Phase [deg] a5,6i b5,6i

1 1459 33 1.221× 103 0.1649
2 4238 −20 3.990× 103 −0.1774
3 1897 −75 0.495× 103 −0.1849

where kQ = 2.105, ωHP = ω1, ξf = 7× 10−3, and Qf = 1. This
formulation for Q1/2 allows to assign independent weighting
coefficients to each mode and also easily implement supple-
mentary modes in the control. R−1/2(s) is then designed as a
2nd order low pass filter:

R−1/2(s) = INa ×
1

1+ s2/ω2
LP+ s/(QfωLP)

(22)

where ωLP = ω3. The filters FRF’s are displayed in figure 10.
For the sake of practicality, the main control gain kQ is arbit-
rarily set only within the filter Q1/2, not in R−1/2, and has
been determined experimentally to avoid any instability of the
closed-loop.

The designed LQG frequency-shaped controller is com-
pared in the next subsection to classical LQG approach applied
directly to the system G with the state space-realization (11)
and an observer of the form (19) applied to (11). In this case,
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Figure 7. Identification : FRF’s of PZT n◦2 to actuation, (a) PZT 1 and (b) PZT 6, measurement, identification 1 with the formulation in (1),
identification 2 with the proposed method in (7).

Figure 8. Identification : FRF’s of PZT n◦3 to actuation, (a) PZT 1 and (b) PZT 6, measurement, identification 1 with the formulation in
(1), identification 2 with the proposed method in (7).

Figure 9. Identification : FRF’s of PZT n◦5 to actuation, (a) PZT 1 and (b) PZT 6, measurement, identification 1 with the formulation in
(1), identification 2 with the proposed method in (7).
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Figure 10. FRF of the designed pre- and post-filters Q1/2 and R−1/2.

Figure 11. Poles locations: controlled system, uncontrolled system and observer for both control methods LQG and frequency shaped LQG,
(a) global view and (b) zoom close to imaginary axis.

the weight matrices Q0 and R0 of the LQR associated LQR
problem (A ′,B ′,Q0,R0) are:

Q0 = 2× 104 × I2 nNa , R0 = INa (23)

where the gains are obtained for both controllers such that
stability and sufficient robustness are maintained during the
experiment with the same order of magnitude for the con-
trol voltages. In both cases, the Kalman observer is computed
considering the following covariance matrices for process
noise and measurement noise respectively: Vd = I2 nNa and
Vn = INs .

Finally the theoretical poles of the uncontrolled system and
the controlled system with LQG control or LQG frequency-
shaped control together with the observer poles are displayed
in figure 11.

4.4. Experimental control results

Similarly to the identification process, a white noise signal of
maximum amplitude 3 V and sampling frequency 20 kHz is
applied to PZT 4 such as in figure 4.

The major results are presented in figure 12 which shows
the power spectral densities of the PZT sensors 2, 3, and 5 with
and without control. Firstly, one can notice that the amplitudes
of the 3 target modes: 770, 1282, and 1576 Hz are significantly
reduced. From −8 dB on the 3rd mode for PZT 5 to −20 dB
on the 1st mode for PZT 3. Such control performance is very
interesting regarding the drastic simplifications made during
the identification process and the complexity of the real modal
response of the structure.

However, such attenuation level presents also its draw-
backs like the spillover phenomenon. Thus, the vibration
amplitude can possibly increase at frequencies around the
controlled modes due to the simplifications done in the

9



Figure 12. Power spectral density of the PZT sensors (a) PZT 2, (b) PZT 3, (c) PZT 5 without control, with LQG control and
frequency-shaped LQG control.

identification process. The phase correction with the coeffi-
cients ak,li and bk,li is indeed only valid on a narrow band-
width around the considered mode frequencies, causing the
aforementioned performance degradation especially visible
above the 3rd mode between 1600 and 1630 Hz on all PZT
sensors.

For further comparison between the performances of both
tested controllers, the figures 13 and 14 display the power
spectral densities and time-domain extracts of the control sig-
nals from modal LQG control and frequency-shaped LQG
control respectively. It is clearly observable, comparing the
power spectral densities that the control energy is much

10



Figure 13. (a) Power spectral density of the control voltages for LQG and (b) time signals for 0.3 s.

Figure 14. (a) Power spectral density of the control voltages for frequency-shaped LQG and (b) time signals for 0.3 s.

Table 2. RMS voltage values for excitation signal and both
experimented controllers output signals.

Voltage RMS value

Excitation—U4 1.34
LQG—U1 0.28
LQG—U6 0.37
LQG-FS—U1 0.13
LQG-FS—U6 0.09

more focused on the targeted modes for frequency-shaped
LQG.

Furthermore, the control signal maximum amplitudes are
significantly reduced (see figures 13(b) and 14(b)) with a bet-
ter attenuation level, as it can be observed in figure 12. Thus,
table 2 displays the voltage RMS values for the excitation sig-
nal applied to the PZT 4 and the control signals applied to PZT
actuators 1 and 6 by both tested controllers. Since PZT trans-
ducers used as actuators can support only a limited voltage
input and present low authority under 500 Hz, frequency-
shaped LQG control allows increasing the control gains while
reducing non-necessary frequency components in the control
signal.

We thank the referee for noticing maybe an unclear com-
ment on the results. In this part of the manuscript, we are com-
menting the figures 13 and 14 and highlighting the amplitude
reduction of the control signal especially visible in the time
domain (figures 13(b) and 14(b)). The reference to the attenu-
ation level on the modes is on the figure 12.

5. Conclusion

An experimental modal identification method has been pro-
posed, oriented toward a multi-sensors, multi-actuators, and
multi-controlled modes general approach. This global formu-
lation allowed to bypass the usual difficulties of identifying the
coupling coefficients in electromechanical systems. The nov-
elty of the method mainly relied on replacing time delays in
the real-time closed-loop with linear functions in the Laplace
domain for phase correction at the frequencies of the modes.
The final controller was based on the frequency-shaped lin-
ear quadratic method, using pre- and post- filters to focus
the control energy onto the targeted modes. Finally, the con-
troller was successfully applied to a representative compos-
ite smart structure where a network of transducers was fully
integrated between the fiber layers with the complex frequency
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behavior and electromechanical coupling that this entails. The
experimental results in terms of multi-modal vibration con-
trol confirmed the efficacy of the proposed modal identific-
ation/control method which could now be applied to a wide
range of dynamical structures with even larger transducer
networks.
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