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ARTICLE

Stochastic pausing at latent HIV-1 promoters
generates transcriptional bursting
Katjana Tantale1,2,7, Encar Garcia-Oliver 1,7, Marie-Cécile Robert1,2,3, Adèle L’Hostis4, Yueyuxiao Yang4,

Nikolay Tsanov1,2, Rachel Topno 2,3,4, Thierry Gostan1, Alja Kozulic-Pirher1,2, Meenakshi Basu-Shrivastava1,2,

Kamalika Mukherjee 1,2, Vera Slaninova 2,3, Jean-Christophe Andrau 1, Florian Mueller 5,

Eugenia Basyuk 1,2,6✉, Ovidiu Radulescu 4✉ & Edouard Bertrand 1,2,3✉

Promoter-proximal pausing of RNA polymerase II is a key process regulating gene expression.

In latent HIV-1 cells, it prevents viral transcription and is essential for latency maintenance,

while in acutely infected cells the viral factor Tat releases paused polymerase to induce viral

expression. Pausing is fundamental for HIV-1, but how it contributes to bursting and sto-

chastic viral reactivation is unclear. Here, we performed single molecule imaging of HIV-1

transcription. We developed a quantitative analysis method that manages multiple time

scales from seconds to days and that rapidly fits many models of promoter dynamics. We

found that RNA polymerases enter a long-lived pause at latent HIV-1 promoters (>20min-

utes), thereby effectively limiting viral transcription. Surprisingly and in contrast to current

models, pausing appears stochastic and not obligatory, with only a small fraction of the

polymerases undergoing long-lived pausing in absence of Tat. One consequence of stochastic

pausing is that HIV-1 transcription occurs in bursts in latent cells, thereby facilitating latency

exit and providing a rationale for the stochasticity of viral rebounds.
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Transcription initiation is a complex process that comprises
chromatin opening, assembly of a pre-initiation complex
(PIC), polymerase recruitment and its maturation into an

elongation-competent form (see ref. 1 for review). In Drosophila
and mammals, this last step is highly regulated and appears to be a
key point in the control of gene expression (ref. 2 for review). RNA
polymerase II (RNAPII) is recruited by the PIC in a hypo-
phosphorylated form and is then loaded on a short stretch of
single-stranded DNA, which is melted by TFIIH. The initiating
polymerase starts elongating about a dozen of nucleotides and
must undergo a number of modifications before leaving the pro-
moter and entering productive elongation3. First, the TFIIH-
associated CDK7 kinase phosphorylates the Serine 5 of the heptad
repeats of the C-terminal domain (CTD) of RNAPII, thereby
disrupting the interaction with Mediator and facilitating promoter
escape (refs. 4,5 for reviews). The S5 phosphorylated CTD also
recruits the RNA capping enzymes that access the RNA 5′-end
when it emerges from the polymerase6. The polymerase then
transcribes an additional 10–80 nucleotides and typically enters a
paused state. Two factors appear particularly important to trigger
pausing, in relation to TFIID7: DSIF (DRB sensitivity-inducing
factor), which is composed of SPT4 and SPT5, and NELF (nega-
tive elongation factor), a four subunit complex that also interacts
with the cap-binding complex (CBC8). A recent structure of the
pausing complex indicates that the RNA-DNA hybrid adopts a
tilted conformation within the polymerase that prevents further
nucleotide addition9. This structure is stabilized by NELF and
DSIF, which also prevent binding of TFIIS, a factor that can
trigger cleavage of the RNA at the active site to restart backtracked
polymerases10. Release from the paused state requires the positive
transcription elongation factor b (P-TEFb), which is composed of
Cyclin T1 or T2 associated with the kinase CDK911, sometimes in
association with the super-elongation complex (SEC12,13). P-TEFb
is activated by CDK74,5,14 and it phosphorylates a number of
components of the pausing complex to enable the formation of an
elongation-competent polymerase9,15,16. Phosphorylation of
NELF triggers its dissociation from the polymerase, and this frees
a binding site for PAF, an elongation factor that is required for
transcription through chromatin. P-TEFb also phosphorylates the
RNA polymerase CTD on its Serine 2, as well as the linker
between the polymerase core and the CTD, creating a binding site
for the elongation factor SPT69. DSIF functions both as a
repressor and activator of elongation, and it is also phosphorylated
by P-TEFb (17 and ref therein). The structures of the paused and
active elongation complex show that DSIF adopts different con-
formations in the two complexes. In particular, phosphorylated
DSIF frees the nascent RNA and allows the polymerase to clamp
around the DNA, promoting elongation while preventing the
release of the polymerase from DNA. Overall, P-TEFb mediated
phosphorylation thus disrupts the pausing complex and triggers
formation of an active elongation complex comprising the poly-
merase associated with DSIF, SPT6, and PAF.

While pausing is thought to be a key regulatory point for many
cellular promoters in mammals and Drosophila, it is often
revealed by a peak of RNAPII near the promoter that can in fact
correspond to different molecular processes such as slow elon-
gation, polymerase arrest, or defective processivity (i.e. abortive
initiation18). Recent efforts have been made to clarify these
mechanisms by measuring pausing duration. These studies
indicated that pausing time varies from less than a minute up to
an hour in Drosophila and mammals, depending on the
promoter19–23. This revealed a surprising variability in pausing
kinetics, with widely different regulatory potential.

Another major finding of the last 15 years is that transcription
is a discontinuous process in vivo (24 see25,26 for reviews), with
“active” genes going through active and inactive periods in a

stochastic manner, a phenomenon also called transcriptional
noise or gene bursting. In particular, recent evidences suggest that
for many genes, expression levels are dynamically encoded in the
time domain by controlling the periods during which a gene is
active, rather than by regulating the initiation rate27–29. Major
efforts have been made to decipher the causes of gene bursting
and in particular the molecular status of the postulated ON and
OFF states. Indeed, the transitions between these states are
kinetically rate limiting and therefore represent key regulatory
checkpoints. However, despite these efforts and the importance of
pausing in regulating gene expression, how pausing affects gene
bursting remains not characterized.

An important implication of gene bursting is that it creates
cell-to-cell heterogeneity and this has multiple consequences on
the phenotypes of single cells or multicellular organisms. For
instance, stochasticity in the expression of Heat-Shock genes in
yeasts is thought to help a fraction of the yeast population to
survive sublethal stresses30, while in C. Elegans, mutations in a
small gene regulatory network create a high expression variability,
ultimately leading to variable phenotypic penetrance of the
mutation31. In the case of HIV-1, transcriptional noise is thought
to play a crucial role in the control of latency. Indeed, HIV-1
infection generates latent cells that can persist in the body for
decades and can re-establish viral propagation when antiviral
treatments are interrupted. Previous studies from the Siliciano
and Weinberger labs have shown that latency exit is stochastic
and possibly linked to random fluctuations of viral
transcription32–34. How the viral promoter creates bursts of gene
expression in latent cells is not understood, but nevertheless
fundamental as it is triggering latency exit. A better knowledge of
mechanistic and quantitative aspects of the reactivation dynamics
is indeed essential for the development of new strategies in
combinatorial anti-retroviral therapies such as “shock and kill”
and “block and lock”.

The ability of the virus to alternate between acute and latent
forms lies in a positive transcriptional feedback loop established
by the viral protein Tat (32, see35,36 for reviews). In latent cells,
Tat levels are very low and viral transcription remains low or
silent. In acutely infected cells, Tat levels are elevated, strongly
inducing viral transcription. It is well established that in the
absence of Tat or when Tat levels are low, P-TEFb is limiting for
viral transcription and the polymerases that initiate transcription
enter a paused state after transcribing about 60 nucleotides, and
fail to enter productive elongation (reviewed in35,36; Fig. 1A, left).
Tat alleviates this block by binding both P-TEFb and the TAR
stem-loop at the 5′-end of nascent HIV-1 RNAs, leading to the
formation of a ternary complex that promotes elongation by
recruiting P-TEFb and its associated super-elongation complex to
paused polymerases (11–13; Fig. 1A, right). The HIV-1 promoter is
thus strictly regulated at the level of pausing and P-TEFb
recruitment, and these steps are controlled by Tat, which overall
can activate viral transcription by more than 100 fold. These
properties make HIV-1 an attractive model to decipher how
pausing affects gene bursting, with direct relevance for HIV-1
latency and pathogenesis37,38.

Here, we imaged HIV-1 transcription in live cells at the level of
single polymerases. We characterized the effect of pausing on
gene bursting by modulating the levels of Tat, which controls
pausing at the HIV-1 promoter. We provide the first fully
quantitative description of the stochastic activity of the HIV-1
promoter in basal and induced conditions, on timescales ranging
from second to tens of hours. Surprisingly, we found that
promoter-proximal pausing is a stochastic event that generates
large viral bursts even in cells that do not express Tat. In HIV-1
latent cells with a functional but inactive Tat loop, stochastic
pausing may be a key phenomenon that determines latency exit.
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Results
Single molecule imaging of HIV-1 transcription with different
levels of Tat. We previously developed an improved MS2 tagging
system based on a 128xMS2 tag, designed for long-term tracking
of single RNAs28. To image HIV-1 transcription, we inserted this
tag in the intron of an HIV-1 vector that had all the viral
sequences responsible for transcription and RNA processing
(Fig. 1A, B). The corresponding pre-mRNA splices entirely post-
transcriptionally, enabling imaging of transcription indepen-
dently of splicing28,39. The high number of MS2 stem-loops
present in this reporter allows for a 5-fold increase in signal as
compared to our original 24xMS2 repeat40. This enables the use
of a low illumination power to limit photobleaching, allowing to

capture five times more images while still detecting single RNA
molecules. By using the 128xMS2 tag and monitoring the
brightness of the transcription site over time, it is possible to
measure promoter activity with a temporal resolution in the
second range and for hours.

It has been demonstrated by numerous studies that the HIV-1
promoter is regulated at the level of promoter-proximal pausing
(see refs. 35,36 for reviews). Indeed, latent cells do not express a
significant amount of Tat and in this case, polymerases that start
transcribing are blocked ~60 nucleotides downstream the
transcription start site and do not enter productive elongation.
This block is relieved by Tat, which directly alleviates pausing by
recruiting P-TEFb to the nascent viral RNAs and allowing
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polymerases to elongate throughout the entire viral genome. To
characterize how pausing affects HIV-1 transcription, we therefore
created isogenic cell lines expressing different levels of Tat. These
lines all contained the 128xMS2 reporter integrated at the same
chromosomal location. We previously generated a HeLa cell line
that expressed in trans a saturating amount of Tat (High Tat cells).
In these cells, a further increase in the amount of Tat did not lead to
more viral transcription28 and pausing was therefore not rate
limiting. Indeed, transcription was very strong inHigh Tat cells, and
we moreover found that Mediator was important for the rapid
successive polymerase firing by a reinitiation mechanism (every 3-4
s), while the TATA box was required to continuously maintain the
HIV-1 promoter in an active state28. To determine the effect of
pausing on bursting dynamics, we thus created two new reporter
cell lines with low levels of Tat to mimic the situation of latent cells
where Tat is not expressed or only at very low levels35,36. The first
cell line expresses Tat from the second cistron of a bicistronic vector
(referred to as Low Tat cells), and Tat was not detected by Western
blot although it promoted HIV-1 transcription by 2.7 fold
(Figs. 1C–K and Fig. S1A). The second cell line entirely lacked
Tat (referred to as No Tat). We first determined the expression
levels of the HIV-1 reporter by performing smFISH experiments
with probes binding the 128xMS2 repeat. We found that expression
of the HIV-1 reporter depended on Tat as expected (Fig. 1C–K), as
the number of pre-mRNA molecules present in the nucleoplasm
dropped from ~500 copies per nucleus in High Tat cells, to ~50 and
~20 in Low Tat and No Tat cells, respectively. This was mirrored by
a similar decrease in the level of the nascent RNAs present at the
transcription sites, with a mean of 37 copies for the High Tat cells,
and only 5 and 1.7 for the Low Tat and No Tat cells, respectively
(Fig. 1C–K).

Next, we aimed at confirming that pausing was limiting viral
transcription in No Tat cells. To this end, we overexpressed the two
subunits of P-TEFb, Cdk9 and Cyclin T1, by transient transfection.
We observed that this increased viral transcription as previously
reported in other cellular systems (Fig. S1B;41). Then, we fused
CDK9 to a fluorescent catalytically inactive Cas9 variant (dCas9-
tagBFP), and we transfected the resulting construct in No Tat cells
together with vectors expressing three Cas9 guide RNAs targeting
the HIV-1 promoter. By performing smFISH with probes against
the 128xMS2 repeat, we found that expressing dCas9-CDK9-
tagBFP alone increased HIV-1 RNA levels by 4 fold, while targeting
it to the HIV-1 promoter with three guide RNAs led to a 10 fold
increase in expression (Fig. S1C). Moreover, the basal HIV-1
transcriptional activity in No Tat cells was blocked when P-TEFb
was inactivated with KM05283, a drug that specifically inhibits

CDK9 kinase activity (Fig. S2A). This indicated that in No Tat cells,
P-TEFb was both required for basal transcription and was also
limiting viral expression, providing functional indications that
pausing was limiting in the absence of Tat. Next, we tested whether
the basal viral transcription observed without Tat was due to
sporadic activation of the NF-κB pathway, as it is a well-known
activator of the HIV-1 promoter that can recruit P-TEFb42,43. We
treated cells with BAY11-7082, a drug that inhibits the IKK kinase
and traps NF-κB subunits in the cytoplasm. No difference in HIV-1
expression was seen after 16 h of treatment, indicating that the basal
viral transcription was independent of NF-κB (Fig. S2B, C). Taken
together, these data indicate that in our cellular system, the basal
HIV-1 transcription occurring in the absence of Tat is P-TEFb
dependent, and that the recruitment of this factor is a key step
limiting viral transcription, as expected from a large body of
previous studies.

The absence of Tat does not affect the formation of polymerase
convoys but creates long inactive periods. When Tat is in excess,
HIV-1 transcription occurs in the form of polymerase convoys, i.
e. sets of closely spaced polymerases that transcribe the gene
together (see schematic in Fig. 2G;28). In average, the Tat-
activated HIV-1 promoter produces convoys of 19 polymerases,
each polymerase spaced every ~4 s, with a convoy being fired
every ~2min. In order to characterize how a limiting amount of
Tat affects the viral transcriptional output, we performed live-cell
imaging using MCP-GFP and monitored the brightness of tran-
scription sites over time. The single molecules of unspliced pre-
mRNA present in the nucleoplasm were used to calibrate the
signal at the transcription site, which could then be expressed as
an absolute number of RNA molecules (Fig. 2). We previously
showed that the Tat-activated HIV-1 promoter fluctuates on time
scales ranging from minutes to hours, and we therefore recorded
two types of movies to cover the entire temporal range of tran-
scriptional fluctuations28. ‘Short movies’ capture one image stack
every 3 s for 15–20 min, and they allow a detailed characterization
of rapid transcriptional fluctuations such as polymerase convoys.
‘Long movies’ last for 8 h with a rate of one image stack every 3
min, and they allow us to measure the frequency and duration of
long inactive periods. Note that since a nascent RNA resides 2.8
min at the transcription site28, this frame rate ensures that most
initiation events are detected in the long movies.

In the short movies, we observed transient increases in the
brightness of transcription sites for all three cell lines: High Tat,
Low Tat, and No Tat (Fig. 2A–F). They were in the minute range
and quantification of the signals indicated that they corresponded

Fig. 1 Single cell characterization of HIV-1 gene expression, with and without Tat. A Schematic of HIV-1 transcriptional regulation. Left: in the absence of
Tat, pTEFb is not recruited and polymerases binds NELF and DSIF and pause near the promoter. Right: in the presence of Tat, pTEFb, composed of Cyclin T1
and Cdk9 associated with the super-elongation complex, is recruited to the nascent TAR RNA. Cdk9 phosphorylates NELF, DSIF, and RNA polymerase II,
thereby triggering pausing exit and processive elongation. B Schematic of the HIV-1 reporter construct. SD1: major HIV-1 splice site donor; SA7: last HIV-1
splice site acceptor; ψ: packaging signal; RRE: Rev-responsive element; LTR: long terminal repeat. C–E. Expression of the 128xMS2 HIV-1 tagged reporter in
cells expressing high levels of Tat. C- microscopy images of High Tat HeLa cells where the unspliced HIV-1 pre-mRNA is detected by smFISH with probes
against the 128xMS2 tag. Cells bear a single copy of the reporter gene integrated with the Flp-in system. The bright spots in the nuclei correspond to
nascent RNA at their transcription sites, while the dimmer spots correspond to single pre-mRNA molecules. Scale bar: 10 μm. This experiment has been
done three times with similar results. D distribution of the number of released HIV-1 pre-mRNAs per cell, in High Tat cells. Experimental RNA distributions
are from smFISH data. X-axis: number of HIV-1 pre-mRNA molecules per cell; y-axis: number of cells; inset: mean number of HIV-1 pre-mRNAs per cell. E
distribution of the number of nascent HIV-1 pre-mRNAs per transcription site, in High Tat cells. Experimental RNA distribution is from smFISH data. X-axis:
number of nascent HIV-1 pre-mRNA molecules per transcription site; y-axis: number of transcription sites; inset: mean number of nascent HIV-1 pre-
mRNAs per cell. D, E source data are provided as a Source Data file. F–H Expression of the 128xMS2 HIV-1 tagged reporter in cells expressing low levels of
Tat. Legend as in (C–E), except that experiments are from Low Tat cells. This experiment has been done three times with similar results. G, H source data
are provided as a Source Data file. I–K Expression of the 128xMS2 HIV-1 tagged reporter in cells not expressing Tat. Legend as in (C–E), except that
experiments are from No Tat cells. Image contrast adjustment is identical for panels C, F, and I. This experiment has been done four times with similar
results. J, K Source data are provided as a Source Data file.
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to the synthesis of multiple RNA molecules (Fig. 2A–F). Thus,
viral transcription occurred in large bursts even in the absence of
Tat, resulting in the formation of polymerase convoys. To better
characterize these rapid fluctuations, we focused on transcription
cycles in which an inactive transcription site transiently turned

on, and we fitted these data with a model of polymerase convoys
(28; see schematic in Fig. 2G). Surprisingly, the convoys formed in
the Low Tat and No Tat cells were roughly similar to those
formed when Tat was saturating: convoys had 19 polymerases in
average in High Tat cells, with a polymerase initiating every 4 s,
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while convoys had 14 and 12 polymerases in Low Tat and No Tat
cells, respectively, with initiation events occurring every 6 and 8 s
(Fig. 2H). This result was unexpected because decreasing Tat
levels should increase pausing, which should increase the lag time
between successive polymerases, possibly until convoys are no
longer formed. It is also interesting to note that the differences
observed at this rapid timescale were small and could not account
for the 30 fold difference in expression induced by Tat
(Fig. 1C–K).

Next, we analyzed fluctuations on slow time scales using long
movies. The HIV-1 promoter was almost always active in cells
expressing an excess of Tat (Fig. 3A, B, left panels). In contrast,
No Tat and Low Tat cells displayed long inactive periods that
lasted for hours (Fig. 3A, B, middle and right panels). In addition,
active periods were brief and rare, yet yielded initiation of
multiple polymerases in the form of convoys as for High Tat cells
(see Fig. 3A). The activity of the HIV-1 promoter in the absence
of Tat thus occurs mainly in the form of sparse, yet large bursts,
with long inactive periods explaining most of the difference in
promoter activity with and without Tat.

Development of an analysis pipeline to characterize the fluc-
tuations of promoter activity on multiple timescales. Intrinsic
fluctuations of promoter activity arise from stochastic transitions
between active and inactive promoter states (25,26; Fig. 4A). These
transitions correspond to steps that are kinetically rate limiting,
and the characterization of these promoter states can thus yield
important information on how promoters function and are
regulated. To better understand how pausing and Tat control the
activity of the HIV-1 promoter, we turned to machine learning
and modeling approaches, with the aim of elucidating how the
promoter switches between active and inactive states. The analysis
of the fluctuations of transcription site brightness can be done by
autocorrelation strategies44,45. This gives a direct measurement of
the dwell time of the nascent RNAs and allows us to estimate the
elongation and 3′-end processing rates. However, there is cur-
rently no theoretical framework that can easily extend auto-
correlation methods to models containing multiple promoter
states besides a simple ON/OFF switch. In addition, correlation
approaches are difficult to use when fluctuations are slow and
approach the recording time of the movies. Other analysis stra-
tegies hypothesize a theoretical transition model and infer para-
meters using Bayesian or maximum likelihood approaches29,46–48.
These strategies however rarely compare several models. To cir-
cumvent these difficulties and develop a flexible approach, we
turned to the analysis of polymerase waiting times, i.e. the lag time
between two successive initiation events. Indeed, transcription can
be modeled as a continuous time Markov chain in which a pro-
moter stochastically switches between various non-productive
states, until it reaches an active state where it can initiate tran-
scription (Fig. 4A). In this case, waiting times between successive

initiation events are interesting to consider because their dis-
tribution directly relates to transition rates of the Markov chain
(see Supplementary Notes). Indeed, distinct promoter models
produce predictable distributions of polymerase waiting times and
we obtained for many different models closed-form equations
expressing the distribution of waiting times as a function of the
model parameters (for full solutions to this direct problem, see
Supplementary Notes 4.1 and 4.2). In addition, for a number of
promoter models, we also obtained closed-form equations allow-
ing us to compute the model parameters directly from the dis-
tribution of waiting times, the so-called inverse problem (for full
solutions, see Methods and Supplementary Note 4). In particular,
if we consider a class of models containing several consecutive
OFF states and one ON state that can initiate transcription
(Fig. 4A), the survival function of polymerase waiting times
(which is one minus their cumulative distribution), is the sum of
several exponentials with the number of exponentials corre-
sponding to the number of promoter states (Fig. 4B; see also Sup-
plementary Note 3.3). Thus, by fitting the survival function with
various sums of exponentials, one can directly determine the
number of states in the promoter model. In addition, the rates of
promoter switching can be directly calculated from the coefficients
of the fitted exponentials (see Methods and Supplementary
Note 4). Hence, if the distribution of waiting times can be
extracted from the experimental data, it is straightforward to
determine both the number of promoter states, as well as the rates
of switching between these states.

Calculation of polymerase waiting times from short and long
movies. We first reasoned that the inactive periods seen in the
long movies correspond to long polymerase waiting times
(Fig. 3A, B). Since the frame rate is 3 min while a nascent RNA
remains 2.8 min at the transcription site28, these movies should
detect most initiation events and should thus measure the poly-
merase waiting times that are longer than 3 min. The short
waiting times could be calculated from the short movies, which
have a much higher frame rate (3 s). However, a difficulty is that
the signal generated by a polymerase persists several minutes after
it initiated, as the labeled nascent RNA leaves the transcription
site only after it is transcribed to the end of the gene and 3′-end
processed (see schematic in Fig. 2G). Consequently, if the next
polymerase appears before the nascent RNA disappears, the
transcription site remains continuously fluorescent and it is not
possible to directly calculate the polymerase waiting times. To
circumvent this difficulty, we reasoned that the intensity of
transcription sites over time is the result of the convolution of two
functions: the signal produced by a single polymerase and the
time sequence of firing events (see ref. 25 and Fig. 4C, left panels).
The signal produced by a single polymerase depends on the
polymerase elongation rate and the rate of 3’-end formation,
which we determined previously for this HIV-1 reporter

Fig. 2 Fluctuation of HIV-1 transcription over short time periods, with and without Tat. A–F Fluctuations of HIV-1 transcription over 15–20min periods,
with one image stack recorded every 3 s. A, C, E Each graph is a single transcription site; the x-axis represents the time (in minutes) and y-axis represents
the intensity of transcription sites, expressed in equivalent numbers of full-length pre-mRNA molecules. B, D, F Each line is a cell and the transcription site
intensity is color-coded (scale on the right). A, B High-Tat cells. C, D Low-Tat cells. E, F No-Tat cells. Source data are provided as a Source Data file. G
Schematic of a polymerase convoy. Top: a polymerase convoy, with polymerases in orange and the gene represented as a black horizontal arrow. Npol:
number of polymerases; tspace: spacing between successive RNA polymerases (in seconds); vel: elongation rate. Bottom: schematics describing the different
phases of a transcription cycle (left) and the position of the polymerase convoy on the MS2 tagged gene (right; the green box is theMS2 tag). H Box-plots
representing the parameters values of the best-fit models, measured for a set of isolated transcription cycles in each cell line (n = 89, 36, and 59 for High
Tat, No Tat, and Low Tat, respectively). tproc is the 3′-end RNA processing time; Npol is the number of polymerases in the convoy; Vel is the elongation rate
(in kb/min); tspace is the spacing between successive polymerase (in seconds). The bottom line displays the first quartile, the box corresponds to the
second and third quartile, the top line to the last quartile, and the double circle is the median. Small circles are outliers (1.5 times the inter-quartile range
above or below the upper and lower quartile, respectively). Source data are provided as a Source Data file.
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gene28,39. If we assume that all polymerases behave identically, it
is thus possible to calculate the temporal position of polymerase
initiation events by finding the best sequence of events that
reproduces the experimental transcriptional fluctuations
(Fig. 4C). It should therefore be possible to extract polymerase
waiting times from the short movies, keeping in mind that the
waiting times longer than the movie duration will be truncated
and require a correction (see Supplementary Note 3.1).

Altogether, the long movies give access to waiting times longer
than the frame rate (waiting times in the 3 min–10 h range), and
the short movies provide waiting times shorter than the movie
length (in the 3 s–20 min range). The combination of these
movies thus allows us to reconstruct and estimate the distribution
of polymerase waiting times over 4 logarithms, i.e. 3 s–10 h
(see Supplementary Note 3 for the reconstruction procedure).
This analysis pipeline has three advantages. First, by determining
the number of exponentials required to fit the survival function,
one can directly determine the number of promoter states in the
model. Second, given that the theoretical distribution of waiting
times can be obtained for a number of models, it is straightfor-
ward to fit many models and compare them. Finally, this pipeline
enables to combine data acquired at multiple timescales, from
seconds to ten hours, and therefore provides an ideal framework
to quantify transcriptional dynamics in live cells.

Validation of the analysis pipeline by simulations. To evaluate
the precision and reliability of the analysis pipeline, we first tested

the performance of the deconvolution algorithm on simulated
datasets. The initiation times of several polymerases were simu-
lated and the signal of an imaginary transcription site was cal-
culated using experimentally measured elongation and 3′-end
processing rates28,39. We then added a realistic amount of noise
and tested the ability of the deconvolution algorithm to recon-
struct the proper initiation timing from the noisy signal (Fig. 5A
and Supplementary Note 8). This algorithm is composed of two
parts: a genetic algorithm to obtain the rough position of initia-
tion events, and a local optimization to refine the position of
initiation events. In both presence and absence of noise, the
deconvolution algorithm allowed an accurate positioning of the
initiation events (Fig. 5A).

Next, we validated the entire analysis pipeline by simulating a
three-state branched promoter model with the Gillespie algo-
rithm (Fig. 5B), using several realistic sets of parameters (i.e.
corresponding to values obtained with our cell lines, see below).
We computed the brightness of many imaginary transcription
sites as above and added different amounts of noise (1x, 2x, and
4x), with the 1x condition corresponding to the noise observed in
our experimental data (Fig. 5C, see also Supplementary Note 8).
The intensities of the simulated transcription sites were then
resampled to create artificial short and long movies, which were
treated exactly as real data. Simulated short movies were
deconvolved and the distribution of waiting times was computed
separately for the short and long movies. These distributions were
then combined to reconstruct the entire distribution of waiting
times (Fig. 5D), which was fitted to a sum of three exponentials to
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calculate the parameters of the promoter model. In the absence of
noise, all the model parameters were recovered accurately and
with high precision (i.e. a small error interval, see Methods and
Supplementary Notes 3.3 and 8), for the three sets of parameter
values used to generate the artificial data (Fig. 5E). With the 1x
and 2x amount of noise, parameter recovery was still accurate,
while for the 4x noise condition, some parameters were recovered
with a low precision, in particular those corresponding to rapid
transition rates. Overall, these simulations indicated that our
analysis pipeline worked well, even with complex promoter
models, and was robust with respect to noise.

Modeling indicates that pausing is stochastic and that pauses
are long-lived. We analyzed the movies produced from cells
expressing different amounts of Tat and created several models
describing how the HIV-1 promoter may operate. The simplest
model has two promoter states, ON and OFF as shown in Fig. 6A,
and assumes that once initiated, RNAPII enters directly into
productive elongation without a pausing step. This would likely
be the case when the expression of Tat is high and pausing is not
rate limiting, but not when Tat is limiting or absent. We thus
created a model that included a pausing step. It consisted of the
same simple model with two promoter states (OFF and ON), but
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with initiating polymerases undergoing an obligatory pause
(PAUSE), before either progressing into elongation or aborting
(Fig. 6A; model M3). Note that once the polymerase exits the
pause or aborts, the promoter goes immediately back in the ON
state. A large body of work indicates that Tat is promoting
elongation by recruiting P-TEFb and in agreement, P-TEFb is
limiting for HIV-1 transcription in the Low Tat and No Tat cells
used here (Fig. S1B, C). Therefore, we expected to have a high
abortion rate (kabort) and/or a low rate of pause release (krelease) in
the absence of Tat, and the opposite when Tat is abundant.
Conversely, the rates of switching between the ON and OFF states
should not be much affected by the amount of Tat.

For the obligatory pausing model, the symbolic solution
describing the distribution of polymerase waiting times is the
sum of three exponentials, but with one of the five parameters
being constrained and expressed as a function of the others (see
Supplementary Note 4.6). After fitting the experimental distribu-
tions of polymerase waiting times using this symbolic solution, we
estimated the quality of the fit with three criteria: (i) the sum of
squared residuals, evaluated from the function minimized during
the fit (i.e. the objective function, with the inverse of its minimal
value giving the fit score); (ii) the certainty of the value of the
fitted model parameters, evaluated by their error intervals; (iii)
the realistic nature of the parameter values, and in particular the
pausing times and the effects of Tat. According to these
considerations, the fit of the three-state model with an obligatory
pause was poor, and this was the case of all the Tat cell lines. First,
the model scores were low and not better than the simple 2 state
model without pause, even in the Low Tat / No Tat cell lines
where P-TEFb recruitment limits viral transcription (Fig. 6B, C).
Second, the uncertainty in some parameter was high, as shown by
the large error intervals of the parameters of the fitted
exponentials (see Supplementary Notes Table S5). Third, the
pausing time, estimated from the rates of pause release and
transcription abortion, was short (Fig. 6D; less than 10 s whether
Tat was present or not), while most of the regulation induced by
Tat occurred at the transition between the ON and OFF state and
not pausing (see Supplementary Notes Fig. S21). It is also
interesting to note that the fitted abortion rate was found to be >
100 fold faster than the rate of pause release (Fig. S21). Because
the promoter goes directly to the ON state upon abortion or
pause release, a high abortion or release rate creates a collapse
between the ON and PAUSE states and therefore simplifies the
three-state model with pause into a simple 2 state ON/OFF model

without pause. This explains why these two models have identical
scores and fitted survival functions (Fig. 6B, compare curves with
‘+‘ and ‘x’). In order to try improving the model with obligatory
pause, we made a four-state model having two successive OFF
states, one ON state and an obligatory pause (Model M4;
see Supplementary Notes Fig. S22). This model fitted the data
better and had a better overall score (see the value of the objective
function in Supplementary Notes Table S6). However, it suffered
from similar flaws as the previous model (Supplementary Notes
Fig. S24): (i) short pausing time whether Tat was present or not
(<10 s); and (ii) high abortion rates, which similarly collapsed the
four-state model with an obligatory pause into a three-state
model without pause. Overall, increasing the number of OFF
states in the model with an obligatory pause still yields short
pausing times not regulated by Tat. Thus, an obligatory pause
does not provide a benefit over a model without pause, with most
of the effect of Tat occurring at the level of transitions between
OFF and ON states. It is important to realize that given the high
degree of bursting without Tat, with polymerases rapidly
succeeding one another during periods of gene activity (Fig. 2),
an obligatory pause necessarily means that pausing is short. In
addition, since Tat mainly affects long inactive periods (Fig. 3B),
short pauses mean that the regulation by Tat cannot be on
pausing, but rather on other steps able to produce long OFF
periods. Hence, the occurrence of polymerase convoys in the
absence of Tat implies that an obligatory pause cannot be the step
regulated by Tat to increase transcription.

This questioned the validity of the model and we thus sought
for alternatives. In the previous models, pausing is an obligatory
step, but it could be imagined that pausing is a facultative step, for
instance if entry into the pause is stochastic. In this case, initiating
polymerases have the choice of either directly progressing into
productive elongation or entering a paused state, from which they
can exit by either aborting or entering elongation (Fig. 6A, model
M2+). To test this model, we first used a simplified variant of this
model, in which polymerases systematically abort when exiting a
facultative pause (krelease= 0 in model M2+; thereafter referred to
as model M2; see Supplementary Notes Fig. S5). This model could
fit the data from all the three cell lines, High Tat, Low Tat, and No
Tat (Fig. 6B), with scores higher than the three- or four-state
models with an obligatory pause (Fig. 6C; Supplementary Notes
Tables S3 and S6). Moreover, all parameters had a high precision
with small error intervals (Table S3; Fig. S4), and the model
correctly predicted the number of pre-mRNA per cell (Fig. 6F),

Fig. 4 Analysis and modeling strategy for the live cell transcriptional data. A, B Determination of models for transcription initiation. A example of a
complex multiple state promoter model, describing the different steps leading to transcription initiation and their kinetic relationship. OFF: inactive
promoter state; ON: active promoter state; orange ball: RNA polymerase. B the survival function (equal to one minus the cumulative function) describes
the distribution of polymerase waiting times (delay between two successive initiation events). For multiple state models such as the one depicted on the
left, the survival function can be fitted by a sum of exponentials, with the number of exponentials being equal to the number of promoter states. C
Experimental and machine learning strategy to determine the survival function of polymerase waiting times. Left: signals of short movies made at high
temporal resolution result from the convolution of the signal from a single polymerase and the sequence of temporal positions of initiation events. The
sequence of initiation events can thus be reconstructed by a deconvolution numerical method (see Supplementary Note 2), provided that the signal of a
single polymerase is known. This allows us to estimate the distribution of waiting times for waiting times shorter than the movie duration (i.e. a conditional
distribution). Right: long movies made with a lower temporal resolution, in the order of the residency time of RNA polymerase on the gene (3 min), allow us
to estimate the distribution of polymerase waiting times for waiting times greater than the temporal resolution. The two conditional survival functions,
short and long, can then be combined to reconstitute the complete, multiple time scale survival function. The reconstitution uses affine transformations of
the conditional survival functions, defined by two parameters ps and pl. pl is the probability that the waiting time is larger than the frame rate of the long
movie. It is proportional to the number of waiting times hidden within active periods of the long movie, and is estimated from the number of inactive
intervals and the cumulative duration of active periods of the long movie (see Supplementary Note 3). ps is the probability that the waiting time is larger
than the short movie length and is fitted to minimize the distance between short and long parts of the distribution. Finally, the complete survival function is
fitted with a sum of exponentials to determine the number of promoter state, the kinetics of transitions between them, and the initiation rate. Multiple
models can be easily fitted to the same survival function and the most appropriate one is selected based on parsimony, parametric indeterminacy and
consistency with complementary experiments.
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intensity of transcription sites (expressed in number of RNA molecules). Right panels: positions of the transcription initiation events (vertical bars), for the
original artificial data (black; bottom lines), the reconstructed data from the simulated short movies after the genetic algorithm (GA, red, middle lines), or
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experimental data from the High Tat cells (circles), Low Tat cells (crosses), and No Tat cells (triangles).
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with only a slight under-estimation for the High Tat cells. The
fitted parameters indicate that pausing is infrequent, even in cells
lacking Tat (Fig. 6E). This implies that the fate of the paused
polymerase will only marginally affect the promoter output,
indicating that models M2+ in which the paused polymerase
enters productive elongation would give similar results. Because
the simplified model M2 is symmetrical (Supplementary Notes
Fig. S5), it is not possible to determine with certainty which
parameters correspond to the ON–OFF transition, and which
correspond to the ON-facultative pause. Nevertheless, both

possibilities indicate a long pausing time from 15min to 3 h in
No Tat cells, which is regulated by Tat as it decreases to either 1
or 15 min in High Tat cells. Pausing is also always predicted to be
infrequent, varying from one every 20–180 polymerases in No Tat
cells, down to one every 40–3900 in High Tat cells (Fig. 6E).

Measurement of pausing duration by biochemical approaches.
To further assess models with obligatory or stochastic pausing, we
attempted to test their most discriminative prediction. Obligatory
pausing predicts a pausing time in the second range, while
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facultative pausing predicts a duration in the hour or sub-hour
range (Fig. 6D). Pausing duration can be estimated by measuring
RNAPII residency time at promoters, and this can be achieved by
performing chromatin immunoprecipitation (ChIP) during a
time-course with Triptolide, a drug that inhibits TFIIH and
prevents loading new polymerases without removing the ones
that already initiated. We treated High Tat and No Tat cells with
Triptolide for up to an hour and performed an RNAPII ChIP
experiment. We analyzed the HIV-1 promoter as well as the
GAPDH promoter as a constitutively active control gene
(Fig. 7A). In the High Tat cells, similar levels of RNAPII were
found on both the GAPDH and the viral promoters, while about
6-fold less polymerases were found on the HIV-1 promoter in the
absence of Tat, consistent with previous results (Fig. S3;49). Most
importantly, treatment with Triptolide led to the rapid dis-
appearance of RNAPII at the GAPDH promoter, with only ~20%
of the signal remaining after 10 min of treatment (Fig. 7A).
Interestingly, the kinetics observed at the HIV-1 promoter was
dependent on Tat. In High Tat cells, the RNAPII signal also
decreased rapidly and this was consistent with the rapid succes-
sion of polymerase firing that we measured in live cells (one every
4–6 s 28). In contrast, the polymerases remained associated a
much longer time with the viral promoter in the absence of Tat,
with 88% of the signal remaining after 10 min of treatment
(Fig. 7A). Extrapolation of the half-life of the promoter-associated
polymerases indicated 10min for the GAPDH promoter and for
the HIV-1 promoter when Tat levels are high. However, this half-
life raised to 38 min for the HIV-1 promoter when Tat was
absent, consistent with a long pause. These long values may
moreover be underestimated as hour-long treatment with Trip-
tolide were shown to cause degradation of RNA polymerase II in
human cells50. Altogether, these data verify a key discriminative
prediction of the facultative pausing model, namely that paused
polymerases exhibit a half-life in the sub-hour range and not in
the second range as expected from an obligatory pausing scenario.

Next, we wished to determine whether long pausing time
requires a specific feature of the HIV-1 promoter or could be
induced at any promoter by depleting P-TEFb. We thus repeated
the GAPDH RNAPII ChIP time course, but pretreated cell with
the Cdk9 inhibitor KM05382 for 2 h before performing the
Triptolide time course. The residency time of RNAPII at the
GAPDH promoter was similarly short whether cells were
pretreated with KM05382 or not (Fig. 7B), indicating that the
lack of P-TEFb activity is not sufficient in itself to induce long
pauses. This suggests that the HIV-1 promoter likely has
additional features that specify this property.

Latently infected HeLa cells display bursts of viral transcrip-
tion. In order to test the generality of the findings made with Low
Tat and No Tat cells, we generated HeLa cells latently infected
with a 128xMS2-tagged HIV-1 virus. The HIV-1 reporter was
modified to introduce an Hygro-TK-Tat cassette in the second
exon, which was translated from an internal ribosome entry site
(IRES; Fig. 8A). This way, transduced clones can be selected on
hygromycin and acutely infected cells can be counter-selected on
ganciclovir, which kills TK expressing cells. We transduced HeLa
cells with a VSV-G pseudotyped 128xMS2 HIV-1 reporter and
selected three clones (see Methods) that were further character-
ized in detail: clones 5, 7, and 12. Tat expression was not detected
in either clone, confirming their latent status (Fig. S4). SmFISH
experiments indicated a basal level of viral transcription in all
clones (Fig. 8B). In clone 12, the basal expression level was
similar to the one observed in No Tat cells, and treatment with
TNFα indicated that viral transcription was nicely induced by
this cytokine (3 fold activation in 30 min), which is known to
trigger viral expression. In clone 5 and 7, basal transcription was
2.5-3 fold lower and viral transcription was poorly activated by
TNFα, with 1.5 and 2 fold activation, respectively. Previous stu-
dies in T cells have shown that latent HIV-1 virus display large
variations in induction by TNFα and that this correlates with
chromatin status and RNAPII regulation51. Clones 5, 7, and 12
therefore represent a diversity of situations as can be found in
latent T cells. Next, we imaged HIV-1 transcription in these three
clones using the conditions for long movies (8 h with an image
stack every 3 min; Fig. 8C). We found that clone 12 was very
similar to No Tat and Low Tat cells, with long periods of viral
inactivity interspersed with bursts of viral transcription lasting
tens of minutes (30 min. on average, Fig. S4A, B). Clone 5 and 7
also displayed bursts of viral transcription. However, these were
much less frequent and shorter (10 min on average) and the
promoter was mostly inactive (Fig. 8C and Fig. S4A, B). This
shows that latent cells display bursts of viral transcription in the
absence of any stimulation, and that different integration sites
can display a diversity of bursting dynamics. We then imaged
latent cells using the short movie conditions (one stack every 3 s
for 30 min), focusing on clone 12 because the rarity of viral
transcription in clone 5 and 7 limited data acquisition. Clone 12
displayed transient increases of transcription site brightness that
were characteristic of polymerase convoys (Fig. 8D, E). We then
subjected the short and long movies of clone 12 to our entire data
analysis and modeling pipeline (Fig. 8F, G and S4C-S4E). As in
the case of Low Tat and No Tat cells, the model with facultative
pausing was the best fitting model. In addition, the model

Fig. 6 A facultative pausing model reproduces the live cell transcription data and predicts a long-lived pause. A Schematics of the different models used
to fit the live cell HIV-1 transcriptional data. Polymerases are represented by small orange balls. B Fits of the experimental survival functions. Graphs
represent the survival functions reconstructed from the live cell data for the High Tat, Low Tat, and No Tat conditions, with the part deriving from the short
and long movies in red and green, respectively. Blue line: fit of the 3-state model with a facultative pause; “+“: fit of the 3-state model with an obligatory
pause; “x”: fit with a facultative pause. x-axis: time intervals between successive initiations events, in seconds and in log10 scale. y-axis: probability of Δt > x
(log10 scale). C Model scores. The graph depicts the score of each model (inverse of the minimal value of the fitted Objective Function), for each of the
model and cell line. D, E Pausing characteristics predicted by the models. D Predicted pausing times, for the relevant models and cell lines (see text for
details). E Predicted pausing frequencies (in %), for the indicated cell line and model. For the model with the facultative pause and systematic abortion, the
two indicated values come from the two branches of the model that could each correspond to the paused state (see the symmetric representation of the
model M2 when krelease = 0 in Supplementary Notes Fig. S5). F, G Features of the model with the facultative pause. F The graphs represent the number of
mRNA per cell measured by smFISH experiments (violet bars), or predicted from the model parameters (blue bars, with the center being the best fit value
predicted from the model). Error bars are the standard deviation for the smFISH data (estimated from independent measurements; n= 3 for High Tat and
Low Tat cells, and n = 4 for No Tat cells) and the confidence intervals for the prediction from the model (see Methods). Source data are provided as a
Source Data file. G Estimated initiation rate (in s−1), for the three cell lines (left), and the fraction of the cells with the promoter in the ON state (in %;
right). The center is the best fit value predicted from the model and error bars are confidence intervals estimated during the fitting procedure (see
Methods and Supplementary Note 3.3). Source data are provided as a Source Data file.
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parameters of clone 12 were also very similar to the ones of No
Tat and Low Tat cells, with pausing time ranging from 16min to
4 h, and pausing frequencies from 0.2 to 2%. Altogether, these
data demonstrate that HeLa cells latently infected with HIV-1
display rare bursts of viral transcription, which are best explained
by stochastic pausing.

Discussion
Cells latently infected with HIV-1 prevent patients from clearing
the virus, as the stochastic activation of these cells can re-establish
viral propagation32,34. Latent cells do not express the viral gen-
ome and pausing of RNA polymerases at the viral promoter is a
key block that prevents HIV-1 transcription35–38. Pausing thus
plays a fundamental role in HIV-1 biology, and yet, how it
contributes to bursting and stochastic reactivation of the virus is
not known. Here, we harnessed the power of single-molecule
transcriptional imaging and modeling to study how pausing
affects HIV-1 transcription in single cells. We found that pausing
is a stochastic process, and modeling as well as biochemical

experiments indicate that it is long-lived inhibitory state that
impacts only a small fraction of the initiating polymerases. Sto-
chastic pausing therefore generates viral transcriptional bursts in
the absence of Tat. Similar bursts are observed in latently infected
HeLa cells, which also express little or no Tat. In patients, this
may cause stochastic viral reactivation, latency exit, and viral
rebounds.

Single-molecule transcription imaging is a powerful technique
that becomes indispensable for understanding transcriptional
regulation in vivo. However, the signals produced by this tech-
nique integrate processes with widely distributed timescales, not
directly accessible by simple data processing. Hence, new mod-
eling methods are needed to cope with the multiscale nature of
transcription. To this end, we developed a machine learning and
modeling method. Using numerical deconvolution, this approach
generates a time map of transcriptional initiation events indi-
cating, for each transcription site, when RNAPII molecules start
producing an RNA. This feature is unique to our analysis pipeline
and not available in other approaches that directly fit a particular
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Fig. 7 Biochemical measurements indicate a long-lived paused state at the HIV-1 promoter. A Residency time of RNA polymerase II at the HIV-1
promoter. The graph depicts the RNA polymerase II ChIP signals at the HIV-1 and GAPDH promoters during a Triptolide time course experiment, for the
High Tat and No Tat cell lines. GAPDH TSS: transcription start site of the human GAPDH gene; HIV-1 TSS: transcription start site of the HIV-1 promoter;
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RNA polymerase II at the GAPDH promoter. Legend as in panel A, except that the KM sample was pretreated with the Cdk9 inhibitor KM05382 for 2 h
before triptolide addition. Values are averaged from two independent experiments (±standard deviation) and source data are provided as a Source Data
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transcription model to experimental data29,45–48. Our method
generates a multiscale cumulative distribution function of poly-
merase waiting times (i.e., times that separate two successive
transcription initiation events). This distribution function has the
unique advantage of integrating temporal information on tran-
scriptional processes with an unprecedented dynamic range from
seconds to days. Moreover, we have analytically solved the inverse
problem consisting in computing the model parameters as a
function of the waiting time distribution, for a large number of
models. By allowing easy and quick comparison of many different

models of promoter dynamics, this method removes a bottleneck
that is essential for hypothesis testing in gene regulation studies.

P-TEFb is an essential elongation factor that is required for
both the basal and Tat-induced activity of the HIV-1
promoter11,35,36. By default, the HIV-1 promoter leads to paus-
ing and inefficient elongation, and Tat functions as a promoter-
specific elongation factor by recruiting P-TEFb to the nascent
viral RNAs. When Tat is present in saturating concentrations, we
observe that polymerases initiate rapidly one after another (every
4–6 s in average28). This indicates that the maturation of
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initiating polymerases into a processive complex is rapid, in
agreement with the fact that P-TEFb recruitment is not rate
limiting when Tat is abundant. When Tat is limiting or absent, we
observe a biphasic behavior. HIV-1 promoters are mostly inac-
tive, and yet sometimes transcribe the viral genome in brief pulses
containing tens of polymerases. These polymerases are fired in
rapid succession (one every 7–15 s), and they form convoys
resembling the ones observed when Tat is saturating. Modeling
the imaging data in Low Tat and No Tat cells confirms this
biphasic behavior and further indicates that in average, 20–35
polymerases initiate during active periods of 5 min, followed by
inactive periods of 20 min to 3 h. Given that pausing is limiting
transcription in the absence of Tat, these long inactive periods are
likely caused by long-lived pauses at the HIV-1 promoter. Indeed,
direct measurements of RNAPII residency time at the HIV-1
promoter indicate that the absence of Tat generates long pauses,
in the sub-hour range, which are therefore responsible for some
of the long periods without viral transcription.

Recent genome-wide data obtained in Drosophila and mam-
malian cells with Triptolide time-course experiments indicate that
the half-life of polymerases at cellular promoters varies from less
than a minute to about an hour19–23. Analysis of a series of
promoter variants further indicates that an initiator element with
a G at position +2 is a key determinant of long pausing time
(>40 min 52). It is not known whether this rule also applies to
vertebrates, but it is worth noting that the HIV-1 promoter has an
unusual initiator element required for Tat activation that contains
a G at +253. Moreover, inhibiting P-TEFb does not generate long
pauses at the GAPDH promoter, suggesting that some promoter-
specific features exist. In the future, it will be interesting to
determine whether long-lived and short-lived paused polymerases
have a similar 3D structure. Indeed, recent data in NELF KO cells
suggests that polymerases can have several pausing sites and
states54. Because of their half-life, long-lived paused polymerases
may display additional features such as backtracking or other
stabilizing properties, and in this regard it is interesting to note
that backtracking was indeed shown to occur at the HIV-1 pause
site55. Long-lived paused polymerases are especially interesting
because of their properties, which effectively limit transcription
but maintain the promoter in an open state22.

In the traditional model of transcription initiation, polymerase
pausing is an obligatory step during the formation of the elon-
gation complex2,56. In contrast, our live cell data on HIV-1
transcription suggest that pausing is a stochastic event that occurs
rarely: 1 every 20–180 polymerase in the absence of Tat and down
to 1 every 40–3900 when Tat is abundant. A model reconciling
these views would be the existence of two fates during pausing: a
pause could lead to either rapid enzyme maturation, or to a long-
lived inactive state that would inhibit further transcription. In this

scenario, the polymerases initiating at the HIV-1 promoter would
mature into a processive elongation complex but would have a
low probability of entering a long-lived paused state (Fig. 7C). A
key feature of this model is that long-lived pauses are stochastic,
and this changes the nature of this process as long-lived pauses
would not be a step required for proper polymerase maturation
but an inhibitory state preventing transcription. In essence, sto-
chastic long-lived pauses are analogous to an inactive promoter
state (Fig. 7C). In the case of HIV-1, long-lived pauses would be a
key regulatory step in transcriptional regulation. By ensuring an
efficient recruitment of P-TEFb, Tat would drastically reduce the
probability of long inhibitory pauses (see model in Fig. 7C). This
is consistent with the fact that the HIV-1 promoter is fully
occupied in a model of latent cells57, even if in some cases Tat can
slightly enhance PIC occupancy49. It is also consistent with the
known function of Tat as a P-TEFb/SEC recruiting factor, with a
major function in reducing pausing.

The basal activity of the HIV-1 promoter requires P-TEFb and
it is surprising that the factors responsible for P-TEFb recruit-
ment in the absence of Tat allow for the firing of a series of
polymerases before switching back to a long inactive state.
Indeed, the HIV-1 promoter is active for periods of ~ 5min in the
absence of Tat, firing 20 polymerases on average. A possibility to
explain this behavior would be a switching mechanism, in which
P-TEFb would be present and active for several minutes at the
HIV-1 promoter, and then leave for long time periods. Our data
show that NF-κB is not involved in the basal transcriptional
activity of HIV-1 in our cellular system, and we can thus rule out
sporadic activation of this pathway as a cause of transcriptional
bursts in the absence of Tat. Another possibility would involve
the diffusion dynamics of P-TEFb. Indeed, it has been shown that
P-TEFb is a local explorer that repetitively visits the same
location58, and recent data further suggest that P-TEFb undergoes
transient liquid-liquid phase transitions59. FRAP studies showed
that the residency time of P-TEFb is 11 s at the HIV-1 promoter
in the absence of Tat60, and 55 s at the transcription site of a
CMV-based reporter59. While this is too short to explain the 5
min active periods without Tat, single-particle tracking of P-TEFb
subunits indicate a wide range of binding times59. Moreover, P-
TEFb also might exchange rapidly from long-lasting liquid con-
densates. It is also possible that other phenomena are responsible
for P-TEFb recruitment, or that long pauses arise from an
inherently stochastic and inefficient process.

The stochastic nature of long-lived polymerase pausing and
their low probability has important consequences for HIV-1
pathogenesis. There are evidences that the stochastic activation of
the viral promoter is responsible for the stochasticity of latency
exit, at least in part32–34,37. Moreover, latent viruses do not
express Tat or at very low levels35,36, and we show that in these

Fig. 8 Bursting of the HIV-1 promoter in latently infected HeLa cells. A Schematic of the HIV-1 reporter construct used to generate latent cells. SD1: major
HIV-1 splice site donor; SA7: last HIV-1 splice site acceptor; ψ: packaging signal; RRE: Rev-responsive element; LTR: long terminal repeat; IRES: internal
ribosome entry site; Hygro: hygromycin selectable marker; TK: herpes simplex thymidine kinase counter selectable marker. B Expression of HIV-1 in three
latently infected HeLa clones. The histograms represent the distribution of the number of released HIV-1 128xMS2 pre-mRNAs per cell, in each of the three
clones. Experimental RNA distributions are from smFISH data. x-axis: number of HIV-1 pre-mRNA molecules per cell; y-axis: number of cells. Red bars:
untreated cells; blue bars cells incubated with TNFα (50 ng/ml for 30min); inset: cell treatment, with the mean number of HIV-1 pre-mRNAs per cell
indicated in parenthesis. Source data are provided as a Source Data file. C Active and inactive periods of the HIV-1 promoter, for the indicated cell lines.
Each line is a cell and the activity of the HIV-1 promoter is color-coded (green: active; red: inactive), using the threshold shown in Fig. S4. x-axis: time in
hours. D, E Fluctuations of HIV-1 transcription over 15–30min periods, with one image stack recorded every 3 s in cells from the clone 12. D each graph is a
single transcription site; the x-axis represents the time (in minutes) and y-axis represents the intensity of transcription sites, expressed in equivalent
numbers of full-length pre-mRNA molecules. E Each line is a cell and the transcription site intensity is color-coded (scale on the right). Source data are
provided as a Source Data file. F Model scores. The graph depicts the score of each model (inverse of the minimal value of the fitted Objective Function),
for clone 12 and for each of the model of Fig. 6A. G pausing characteristics predicted by the model of facultative pausing for the clone 12. The two indicated
values come from the two branches of the model that could each correspond to the paused state (see Fig. S4).
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conditions the spontaneous release of a long-lived pause leads to
the synthesis of a large series of viral RNAs. In some cases, this
may be sufficient to activate the viral promoter and to initiate the
Tat positive feedback loop, leading to acute viral replication. The
stochastic nature of long-lived pausing may thus be an important
feature of HIV-1 regulation that favorizes spontaneous latency
exit34,37,38. It is also possible that even if the viral RNAs produced
do not initiate the Tat-feedback loop, they may still produce a
small amount of viral particles, which may infect naive cells and
could thus participate in the viral rebounds or viremia blips seen
in patients. It is also important to note that quiescent memory
T cells have a low P-TEFb activity35,36,61,62, possibly leading to
very long periods without HIV-1 transcription. In the future, it
will be essential to characterize the bursting dynamics of the HIV-
1 promoter in latent T cells to better understand viral latency. It
will be especially interesting to compare quiescent and dividing
T cells as they differ in their levels of P-TEFb activity. Finally,
stochastic pausing has also been reported in developing Droso-
phila embryos, where it may finely tune gene expression after
zygotic genome activation63. Stochastic pausing may be a general
property of cellular promoters important for gene regulation.

Methods
Cell culture and drug treatments. HeLa Flp-in H9 cells (a kind gift of S. Emiliani)
were maintained in DMEM supplemented with 10% fetal bovine serum, penicillin/
streptomycin (10 U/ml) and glutamine (2.9 mg/ml), in a humidified CO2 incubator
at 37 °C. Cells were transfected with the indicated plasmids with JetPrime (Poly-
plus), following manufacturer recommendations. Drugs were used at the following
concentrations: Triptolide, 1 μM; KM05382 100 μM; BAY11-7082, 2 μM.

Stable expression of MCP-GFP was achieved by lentivirus-mediated transduction
of a self-inactivating vector containing an internal ubiquitin promoter driving MCP-
GFP expression. The MCP contained the deltaFG deletion, the V29I mutation, and an
SV40 NLS. MCP-GFP expressing cells were grown as a pool of clones and FACS-
sorted to select cells expressing low levels of fluorescence. Isogenic stable cell lines
expressing the 128xMS2 HIV-1 reporter gene were created using the Flp-In system,
with a HeLa H9 strain expressing various levels of Tat (see below) and MCP-GFP.
Flp-In integrants were selected on hygromycin (150 μg/ml). For each construct,
several individual clones were picked and analyzed by in situ hybridization.

No Tat cells expressed the 128xMS2 HIV-1 reporter gene but did not express
any Tat protein. To obtain low level of Tat expression, a Tat-Flag fused to an
Auxin-inducible degron (AID) and cloned as a second cistron after auxin receptor
F-box protein AFB2 and instead of GFP in the vector AAV-CAGGS-eGFP64. The
resulting vector was integrated in the genomic AAVS1 site using CRISPR-Cas9 and
clones were selected using puromycin as described64. Cells were not treated
with Auxin.

High Tat cells28 were created using the plasmid pSpoII-Tat. In this plasmid, the
CMV promoter transcribes a Tat-Flag cDNA followed by an IRES-Neo selectable
marker. Following Neomycin selection (400 μg/ml), expression levels of individual
clones were verified by western blotting and by immunofluorescence to ensure
homogeneity both between clones and between cells of a clone.

Production of latently infected HeLa cells and immunofluorescence. To pro-
duce VSV-G pseudotyped viral stocks, 293T cells were transfected with plasmids
pHDM-Hgpm2, pHDM-Tat1b, pRC-CMV-Rev, pHDM-VSV-G, and HIV-1 reporter
containing 128xMS2 and IRES-hygro-TK-Tat. The viral supernatants were collected
24 and 48 hours after transfection and used to infect Hela flp-in cell line in the
presence of 6 μg/ml of polybrene. Three days after infection, hygromycin at con-
centration 100 μg/ml was added to select transduced clones. The selected clones were
then cultivated without selection to let the HIV-1 promoter switch to a latent state
and clones further screened by smFISH. Several clones with low expression of the
128xMS2 HIV-1 RNAs and undetectable levels of Tat were found, and we therefore
did not use the TK/ganciclocir counter-selection. These clones were then transduced
with the MCP-GFP encoding lentiviral vector and used for live cell imaging.

Immunofluorescence against Tat-FLAG was performed by fixing cells grown on
coverslips in 4% formaldehyde/PBS for 20 min at room temperature. Cells were
washed in PBS and permeabilized in Triton 0.5%/PBS at RT for 20 min, and
washed thrice. Slides were blocked for 30 min at RT in BSA 1% in PBS, and
immunolabeling was performed with anti-FLAG antibodies (Sigma F7425), diluted
1/300 in PBS/BSA1%, for 1 h at RT, and washed for 3 times 10 min in PBS at RT.
Secondary antibody labeling was done by incubating slides with anti-rabbit-Cy5
antibodies (1/800; Jackson ImmunoResearch 711-175-152) for 2 h at RT, and
washing in PBS for 3 times 10 min at RT.

Plasmids. Sequences of the plasmids are available upon request. The 128xMS2
HIV-1 reporter and High Tat expression vector were described previously28. The

128xMS2-IRES-Hyrgo-TK-Tat vector was generated by cloning an IRES-Hygro-
TK-Tat cassette in the second exon of the 128xMS2 HIV-1 vector. For the AAV-
CAGGS-eGFP vector used to obtain low Tat cells, Cas9 encoding vector and
AAVS1-site targeting RNA guides were obtained from Dr. G. M. Church64.
pcDNA3-CDK9-GFP and pcDNA3-CyclinT1-GFP plasmids were obtained by
Gateway technology, CDK9 and Cyclin-T1 were amplified by PCR from the vectors
provided by Dr. L. Lania65. pHR-SFFV-dCas9-BFP plasmid used for CDK9 cloning
is #46911 from Addgene. The RNA guides were cloned in a home-made U6
expression vector with an optimized guide RNA scaffold66.

dCas9 tethering and pTEFb overexpression. For P-TEFb overexpression, Hela
128xMS2 HIV-1 No Tat cells without MCP-GFP were plated on coverslips and the
next day transfected with CDK9-GFP, Cyclin-T1-GFP, or both, using jetprime
(polyplus). pBluescript was used as a negative control and GFP-Tat as a positive
control. 24-h after transfection cells were fixed and the reporter RNA was detected
by smFISH with Cy3-labeled fluorescent probes against MS2 repeats, the RNA
expression was scored in transfected GFP-positive cells.

For CDK9 tethering, RfB gateway cassette was cloned in pHR-SFFV-dCas9-BFP
between dCas9 and BFP. CDK9 was next introduced by LR recombination. The
resulting plasmid pHR-SFFV-dCas9-CDK9-BFP was transfected in Hela No Tat
cells without MCP-GFP together with three RNA guides encoding plasmids as
described above. pHR-SFFV-dCas9-CDK9-BFP without guides and pHR-SFFV-
dCas9-BFP were used as controls. 24 h after transfection cells were fixed and
subjected to smFISH with probes against 128xMS2. The numbers of RNA
molecules in BFP-positive cells were counted using FISH-QUANT67,68. The
sequences of RNA guides were as follows CCGCCTAGCATTTCATCACG,
CCACGTGATGAAATGCTAGG, TGCTACAAGGGACTTTCCGC.

SmFISH and RNA quantification. For smFISH cells were rinsed in PBS, fixed in 4%
paraformaldehyde for 30min, permeabilized in 70% ethanol O/N at 4 °C, and hybri-
dized with a mix of 10 fluorescent oligos directed against the 32xMS2 repeats. Each
oligo contained four molecules of Cy3. Hybridization was performed O/N at 37 °C in a
humidified chamber, in the following buffer: 40% formamide, 1xSCC, 150 ng/μl tRNA
E. coli, 0.5 ng/μl of oligo probes (total weight), Dextran sulfate 10%. Washing was
performed for 3 times 30min at 37 °C in 40% formamide, 2xSSC, and then once for 10
min in PBS at RT. Slides were mounted in Vectashield (Vectorlabs). The following set
of ten Cy3 conjugated probes were used (5′–3′, X= aminoallyl-modified T). Probe 1:
(nt 19–65) AXCGAGCGCATAAACCCXAATGGTGTTTACAAATGGXGGTAGTC
CTACCXA;

Probe 2 (nt 86–130):
AXAAACGACCAGAGXGTATTTCTCTCTGATACGCXGCGTACTCGTC

AXA;
Probe 3 (nt 136–180):
AXATTGTGCGGTCGCXGACTGATACTTCTAGXCATCCGTTTGTCTA

GXA;
Probe 4 (nt 186–231):
AXGCTTGTAGTCAXAGCCTTAGCTTGGGTTATTACXCCAAGATCAC

CGXA;
Probe 5 (nt 238–282):
AXGGGTGGAAGCCTTACXGATGCTTCCGGTCCATXCTAATACTAT

GGXA;
Probe 6 (nt 293–340):
AXCCAGTAGTCTTGGACCCCXTGAATACTACTGTTATTCXAATCCGT

CACXA;
Probe 7 (nt 29–74):
AXCCTAGTGGTACGCAGAXCATACCGTATTCGTGTAXGATTACATG

GGXA;
Probe 8 (nt 80–124):
AXAATCATTCTAGTGAXATGATTCTGTGCCGCXACTGCTGGCACC

GTXA;
Probe 9 (nt 130–175):
AXCGTCCTGATAGGCXGTACTCATGCCTACAACCXTCGATAATTCT

GAXA;
Probe 10 (nt 184–229):
AXGTGTATTCATCTXAGCTGAGTGCTCTAAXGATGCACTACAGGAC

GCXA.
To obtain the number of nascent and released pre-mRNAs per cell and the

distribution of this parameter in the cell population, cells processed for smFISH were
imaged on a ZEISS Axioimager Z1 wide-field microscope (63X, NA 1.4; 40X, NA 1.3),
equipped with an sCMOs Zyla 4 .2 camera (Andor) and controlled by MetaMorph
(Universal Imaging). To quantify the number of released pre-mRNA in High Tat cells,
cells were imaged on an OMX microscope in SIM mode. 3D image stacks were
collected with a Z-spacing of 0.3 μm. Figures were prepared with Image J, Photoshop
and Illustrator (Adobe), and graphs were generated with R or MatLab.

Raw, 3D smFISH images were analyzed to count the number of pre-mRNA per
nuclei, using populations of >300 cells per experiment. Briefly, nuclei were segmented
using the DAPI signal with Imjoy69, and transcription sites (TS) were identified
manually. Isolated pre-mRNA molecules located in the nucleoplasm were then detected
with FISH-quant67,68, after manual thresholding of Laplacian on Gaussian filtered
image. This defined the PSF and the total light intensity of single molecules, which were
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averaged to obtain an average PSF. The average PSF of single RNA molecule was used
to determine the number of nascent pre-mRNA molecules at the TS.

Live cell imaging. Cells were plated on 25 mm diameter coverslips (0.17 mm thick)
in non-fluorescent media (DMEM gfp-2 with rutin; Evrogen). Coverslips were
mounted in a temperature-controlled chamber with CO2 and imaged on an
inverted OMXv3 Deltavision microscope in time-lapse mode. A 100x, NA 1.4
objective was used, with an intermediate 2X lens and an Evolve 512 × 512 EMCCD
camera (Photometrics). Stacks of 11 to 21 planes with a z-spacing of 0.6 μm were
acquired. This spacing still allowed accurate PSF determination without excessive
oversampling. Illuminating light and exposure time were set to the lowest values
that still allowed visualization of single molecules of pre-mRNAs (laser at 1% of full
power, exposure of 15 ms per plane). This minimizes bleaching and maximizes the
number of frames that can be collected. Yet, it guarantees that transcription can be
detected early on, when one or a few nascent chains are in the process of being
transcribed. For short movies, one stack was recorded every 3 s for 15 to 20 min.
For long movies, one stack was recorded every 3 min for 8 h.

Quantification of short movies. To extract the TS signal in the short movies, we
manually defined the nuclear outline and the region within which the TS is visible.
The stack was corrected for photobleaching by measuring the fluorescence loss of
the entire nucleus and fitting this curve with a sum of three exponentials28. This
fitted curve was then used to renormalize each time-point such that its nuclear
intensity was equal to the intensity of the first time-point. We then filtered the
image with a 2-state Gaussian filter. First, the image was convolved with a larger
kernel to obtain a background image, which was then subtracted from the original
image before the quantification is performed. Second, the background-subtracted
image was smoothened with a smaller Kernel, which enhances the SNR of single
particles to facilitate spot pre-detection.

We then pre-detected the position of the TS in each frame of the filtered image
by determining in the user-specified region the brightest pixel above a user-defined
threshold. If no pixel was above the threshold, the last known TS position was used.
Pre-detected position was manually inspected and corrected. Then the TS signal
was fitted with a 3D Gaussian estimating its standard deviation σxz and σz,
amplitude, background, and position. We performed two rounds of fitting: in the
first round all fitting parameters were unconstrained. In the second round, the
allowed range was restricted for some parameters, to reduce large fluctuations in
the estimates especially for the frames with a dim or no detectable TS. More
specifically, the σxz and σz were restricted to the estimated median value ± standard
deviation from the frames where the TS could be pre-detected, and the background
was restricted to the median value. The TS intensity was finally quantified by
estimating the integrated intensity above background expressed in arbitrary
intensity units.

With the live cell acquisition settings, the illumination power was low and we
could not reliably detect all individual molecules. We therefore collected right after
the end of the movie one 3D stack—termed calibration stack—with increased laser
intensity (50% of max intensity, compared to 1% for the movie), which allowed
reliable detection of individual RNA molecules. We also collected slices with a
smaller z-spacing for a better quantification accuracy (21 slices every 300 nm).
Quantification of TS site intensity in the calibration stack was done with FISH-
quant as follows: (a) when calculating the averaged image of single RNA molecules,
we subtracted the estimated background from each cell to minimize the impact of
the different backgrounds; (b) when quantifying the TS in a given cell, we rescaled
the average image of single RNA molecules such that it had the same integrated
intensity as the molecules detected in the analyzed cell.

To calibrate the TS intensities in the entire movie, i.e. to express the TS intensity
as a number of equivalent full-length transcripts, we used the fact that the last movie
frame was acquired at the same time as the calibration stack. We then normalized
the extracted TS intensity in the movies, IMS2, to get the nascent counts Nnasc;calib:

Nnasc;calibðtÞ ¼ IMS2ðtÞ ´ ðNnasc;final=IfinalÞ; ð1Þ
where Nnasc,final stands for the estimated number of nascent transcripts in the
calibration stack and Ifinal for the averaged intensity of the last four frames. Note
that the approach was limited to movies where the TS was active at the movie end
since otherwise its intensity could not be quantified. More than 100 cells were used
in each condition.

Quantification of long movies. To quantify the long movies acquired at low
frames rate (one 3D stack per 3 min), we used MS2-quant28, an analysis tool that
identifies the ON and OFF periods and measures their duration. This did not
require an absolute quantification of the number of nascent pre-mRNAs and we
therefore defined an intensity threshold, based on the mean intensity of single
molecules, under which a TS is considered to be silent, and above which a TS is
considered to be active. This threshold corresponded to the intensity of 1.5 pre-
mRNA. For each cell line between 50 and 150 cells were analyzed.

Mathematical modeling of fluctuations of promoter activity and deconvolu-
tion pipeline. A detailed description of the deconvolution algorithm and modeling
pipeline can be found in the Supplementary Notes. The deconvolution code is

available at Zenodo DOI: 10.5281/zenodo.4811566) and Github (https://github.
com/oradules/Deconvolution_short_long for the complete version using both short
and long movies; and at https://github.com/oradules/Deconvolution_short for the
version using only short movies).

Deconvolution and RNAPII Positioning—The RNAPII positions were found by
using a genetic algorithm followed by a local optimization procedure. Before initiation
of the analysis algorithm, several key parameters were established. The RNAPII
elongation speed was fixed at 67 bp/s28. The reporter construct transcript was divided
into three sections consisting of the pre-MS2 fragment (PRE= 700 bp), 128xMS2
loops (SEQ= 2900 bp), and post-MS2 fragment (POST= 1600 bp). An extra time
Ppoly= 100 s was added to POST, corresponding to the time required for cleavage/
polyadenylation (during this time the polymerase has finished transcription of the
gene and continues in neighboring sequences to wait for RNA 3′-end processing). The
temporal resolution of short movies was 3 s/frame. This frame rate is sufficient to
detect processes that occur on the order of seconds.

The possible polymerase positions were discretized using a step of 30 bp. This
step was chosen as it is smaller than the minimum polymerase spacing and large
enough to have a reasonable computation time. For a movie of 20 min length this
choice corresponds to a maximum number of 2680 positions. The deconvolution
algorithm was implemented in Matlab (Matlab, 2020, version 9.8 (R2020a)). Natick,
Massachusetts: The Mathworks Inc.) using Global Optimization and Parallel
Computing Toolboxes, for optimizing RNAPII positions in parallel for all nuclei in
a collection of movies. The resulting positions are stored for analysis in the further
steps of our computational pipeline. The deconvolution step developed here is also
used in another MS2 data analysis pipeline that uses only short movies and that we
designed for the study of time-limited processes in developmental biology63.

Long movies waiting time distribution—For long movies, the low resolution (3
min) does not allow RNAPII positioning. In this case we binarize the signal by
considering that the transcription site is active or inactive if the measured intensity
is above or below a threshold level, respectively. The inactive intervals indicate long
waiting times between successive polymerases. The active intervals are used to
estimate the probability that waiting times are larger than the movie resolution,
needed for the reconstruction of the multiple time scale distribution from the short
and long movies distributions (see Supplementary Note 3).

Multi-exponential regression fitting of the survival function and model reverse
engineering using the survival function—Data from several short movies
corresponding to the same cell lines were first pooled together. Waiting times were
extracted as differences between successive RNAPII positions from all the resulting
traces and the corresponding data was used to estimate the nonparametric
cumulative short movie distribution function by the Meyer-Kaplan method. Data
from long movies and the same cell lines were also pooled to generate the
nonparametric cumulative long movie distribution function. The two conditional
distribution functions are fitted together into a multiscale cumulative distribution
function using the total probability theorem and estimates of two parameters pl and
ps, representing the probabilities that waiting times are longer than the long movie
resolution, and longer than the length of the short movie, respectively (see Fig. 4
and Supplementary Note 3 for details).

Then, a multi-exponential regression fitting of the multiscale distribution
function produced a set of 2N−1 distribution parameters, where N is the number
of exponentials in the regression procedure (3 for N= 2 and 5 for N= 3). We
performed the regression using a sum of squared residuals objective function. The
regression procedure was initiated with multiple log-uniformly distributed initial
guesses and followed by local gradient optimization. It resulted in a best-fit solution
with additional suboptimal solutions (local optima with objective function value
larger than the best fit).

The 2N−1 distribution parameters can be computed from the 2N−1 kinetic
parameters of a N state transcriptional bursting model. Conversely, a symbolic
solution for the inverse problem was obtained, allowing computation of the kinetic
parameters from the distribution parameters and reverse engineering of the
transcriptional bursting model. In particular, it is possible to know exactly when
the inverse problem is well-posed, i.e. there is a unique solution in terms of kinetic
parameters for any given distribution parameters.

The transcriptional bursting models used in this paper are as follows:
For N= 2, there were three distribution parameters and three kinetic

parameters.
The distribution parameters are A1; λ1, λ2, defining the survival function

SðtÞ ¼ A1e
λ1 t þ ð1� A1Þeλ2 t : ð2Þ

The solution of the inverse problem for the ON–OFF telegraph model (Fig. 6A) is

k2 ¼ �S1; k
�
1 ¼ S1 �

S2
S1

; kþ1 ¼ S3S1 � S22
S1 S21 � S2
� � ; S1 ¼ A1λ1 þ A2λ2;

S2 ¼ A1λ
2
1 þ A2λ

2
2; S3 ¼ A1λ

3
1 þ A2λ

3
2; A2 ¼ 1� A1;

ð3Þ

where the kinetic parameters k2; k
þ
1 ; k

�
1 are the initiation rate, the OFF to ON and

ON to OFF transition rates, respectively.
For N = 3, there were five distribution parameters and five kinetic parameters.
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The distribution parameters are A1; A2; λ1, λ2; λ3, defining the survival
function

S tð Þ ¼ A1e
λ1 t þ A2e

λ2 t þ ð1� A1 � A2Þeλ3 t : ð4Þ
The inverse problem has a unique solution for the three-state model (with

facultative pause and systematic abortion) with one OFF state, one PAUSE state and
one ON state (Fig. 6A and model M2 of Supplementary Notes Fig. S5). The kinetic
parameter of this model are denoted as follows in Fig. 6 and Supplementary Note 4.5:
kini ¼ k3; kpause ¼ k�2 ; kabort ¼ kþ2 ; krelease ¼ 0; kON ¼ kþ1 ; kOFF ¼ k�1 with

k3 ¼ �S1; k
þ
2 ¼ 1

2
�L1 þ

S2
S1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1L1 � S2
� �2 � 4L3S1

q

S1

2
4

3
5;

k�2 ¼ 1
2

S1 �
S2
S1

þ
�S21L1 þ S1S2 þ S1L2 � L3 þ S22

S1
� S3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S1L1 � S2
� �2 � 4L3S1

q
2
64

3
75;

kþ1 ¼ 1
2

�L1 þ
S2
S1

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1L1 � S2
� �2 � 4L3S1

q

S1

2
4

3
5;

k�1 ¼ 1
2

S1 �
S2
S1

�
�S21L1 þ S1S2 þ S1L2 � L3 þ S22

S1
� S3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S1L1 � S2
� �2 � 4L3S1

q

2
64

3
75;

ð5Þ

where S1 ¼ A1λ1 þ A2λ2 þ A3λ3; S2 ¼ A1λ
2
1 þ A2λ

2
2 þ A3λ

2
3; S3 ¼ A1λ

3
1 þ A2λ

3
2þ

A3λ
3
3; A3 ¼ 1� A1 � A2; L1 ¼ λ1 þ λ2 þ λ3; L2 ¼ λ21 þ λ22 þ λ23; L3 ¼ λ31 þ λ32

þλ33; and k3; k
þ
1 ; k

�
1 ; k

þ
2 ; k

�
2 are the transcription initiation, OFF to ON, ON to

OFF, PAUSE to ON, and ON to PAUSE rates, respectively.
The durations of the ON, OFF, and PAUSE states can be calculated as such:

T PAUSEð Þ ¼ 1
k2þ

; T OFFð Þ ¼ 1
k1þ

; T ONð Þ ¼ 1
k1� þ k2�

: ð6Þ

For this model, the steady-state probability to be in a given promoter state is

pOFF ¼
k�1 k

þ
2

kþ1 k
þ
2 þ k�1 k

þ
2 þ kþ1 k

�
2

; pPAUSE ¼ kþ1 k
�
2

kþ1 k
þ
2 þ k�1 k

þ
2 þ kþ1 k

�
2

;

pON ¼ kþ1 k
þ
2

kþ1 k
þ
2 þ k�1 k

þ
2 þ kþ1 k

�
2

:

ð7Þ

The alternative three-state model with obligatory pause (Fig. 6A, also model M3 of
Supplementary Notes Fig. S5) satisfies the following relation among distribution
parameters (see Supplementary Note 4.6 for a proof):

A1λ1 þ A2λ2 þ 1� A1 � A2

� �
λ3 ¼ 0: ð8Þ

This means that only 4 and not 5 distribution parameters are free, which further
constrains the three exponential fitting. In order to infer this model, a constrained
fitting was performed but the bad quality of fitting recommended rejection of the
model (Fig. 6B, C; see Results).

Testing the method with artificial data—The entire computational pipeline was
tested for accuracy and robustness using artificial data. Artificial traces were
generated by simulating the model using the Gillespie algorithm with parameter
sets similar to those identified from data. The simulations generated artificial
polymerase positions, from which a first version of the signal was computed by
convolution. We have added to this version white noise whose standard deviation
is a multiple of that of residuals obtained by fitting real data. The results are
provided in Fig. 5 and Supplementary Note 8.

Error intervals—Distribution parameters result from multi-exponential
regression fitting using gradient methods with multiple initial data. These
optimization methods provide a best fit (global optimum) but also suboptimal
parameter values. Using an overflow ratio (a number larger than one, in our case 2,
defined as the ratio of the maximal allowed to optimal objective function values) to
restrict the number of suboptimal solutions, we define boundaries of the error
interval as the minimum and maximum parameter value compatible with an
objective function less than the best fit times the overflow. Although a confidence
level can be computed for the overflow ratio provided a uniform or log-uniform
parametric prior, we considered that the goodness of fit derived overflow ratio is
more informative than a confidence level that depends on the prior.

mRNA levels—Steady-state mRNA levels can be computed from the parameters
of the multi-exponential fit. We showed in the Supplementary Note 7 that:

mRNA ¼ �TmRNA

∑
N

i¼1

Ai
λi

; ð9Þ

where TmRNA is the mean lifetime of the mRNA. The formula is valid for all N and
we have used TmRNA = 45 min28.

Chromatin immunoprecipitation. High Tat and No Tat HeLa cells were treated
with 1 μM of triptolide at 0, 10, 30 and 60 min. High Tat HeLa cells were treated

with 100 μM of KM05382 during 1 h followed by 1 μM of triptolide at 0, 10, 20, and
30 min. Cells were cross-linked by adding crosslinking solution (11% for-
maldehyde, 100 mM NaCl, 1 mM EDTA pH 8, 0.5 mM EGTA pH 8, 50 mM Hepes
pH 7.8) directly to cultures (1% final) and incubated for 10 min at room tem-
perature. Then, 250 mM final glycine was added, and cultures were incubated for 5
min at room temperature. Cells were then washed four times with cold PBS,
scraped in cold PBS with Protease Inhibitor cocktail and centrifuged at 1350 × g for
10 min. Crude nuclei were prepared by hypotonic lysis. The pellet was resuspended
in 5 mL of BufferA (50 mM Hepes pH 8.0, 85 mM KCl, 0.5% Triton-X-100, Pro-
tease Inhibitor cocktail, 1 mM PMSF), incubated on ice for 10 min and centrifuged
at 1350 × g for 10 min. Then, the pellet was resuspended in 5 mL of BufferA′ (50
mM Hepes pH 8.0, 85 mM KCl, Protease Inhibitor cocktail, 1 mM PMSF) and
centrifuged at 1350×g for 10 min. Finally, the pellet was resuspended in 0.9 mL of
Buffer B (50 mM Tris-HCl pH 8, 1% SDS, Protease Inhibitor cocktail, 1 mM
PMSF), incubated on ice for 10 min and then stored at the −80°. Pellets were
sonicated at 4 °C using a Bioruptor (Diagenode) to shear the chromatin to a mean
length of 300 bp by repeated cycles (16 cycles of 30 s ON and 30 s OFF). After
sonication cellular debris was removed by centrifugation at 20,000 × g for 10 min.
The chromatin solution was diluted 10-fold in FA/SDS Like buffer (50 mM Hepes
KOH pH 7.5, 150 mM NaCl, 1% Triton-X-100, 0.1% Na deoxycholate, Protease
Inhibitor cocktail, 1 mM PMSF) and precleared for 1 hour at 4 °C with 25 μl of
protein G Dynabeads (Invitrogen). The precleared chromatin solution (1.5 × 106
cells) was incubated overnight with 50 μL of BSA-blocked protein G Dynabeads
(previously bound with 3 μg of the corresponding antibody, POLII F-12 sc-55492
Lot K1516 Santacruz, during 1 h at 4 °C). Samples were washed once with FA/SDS
buffer (50 mM Hepes KOH pH 7.5, 150 mM NaCl, 1% Triton-X-100, 0.1% Na
deoxycholate, 1 mM EDTA, 0.1% SDS, Protease Inhibitor cocktail, 1 mM PMSF),
three times with FA/SDS Buffer supplemented with 300 mM NaCl, once with
washing Buffer (10 mM Tris-HCl pH 8, 0.25 M LiCl, 1 mM EDTA, 0.5% NP40,
0.5% Na deoxycholate) and once with TE Buffer. Elution was performed adding
125 μl of Elution Buffer (25 mM Tris-HCl pH 7.5, 5 mM EDTA, 0.5% SDS) and
incubating at 65 °C for 25 min. The eluates were digested with 50 μg/mL of RNase
A at 37 °C for 30 min and with 50 μg/ml of proteinase K at 50 °C for 1 h. Then, they
were incubated at 65 °C overnight to reverse cross-links. DNA was recovered by
phenol extraction followed by a Qiaquick purification (PCR purification columns,
Qiagen, Germany). Specific sequences in the immunoprecipitates were quantified
by real-time PCR using the primers listed below. The signal of each sample was
normalized with the average signal obtained from the input of the same sample
with each pair of primers used. Each experiment was done analyzing two inde-
pendent biological replicates. The primers used are listed in Supplementary
Table S1.

Statistical information. Statistical information are provided in the main text,
method section, figure legend, and Supplementary notes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available upon reasonable request from the
corresponding authors. Source data are provided with this paper.

Code availability
The deconvolution code is available at Zenodo (https://doi.org/10.5281/zenodo.4811566)
and at https://github.com/oradules/Deconvolution_short_long for the complete version
using both short and long movies and at https://github.com/oradules/
Deconvolution_short for the version using only short movies.
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