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Abstract 24 

Metal isotopes are versatile pollutant source trackers, but biogeochemical processes can overprint or alter 25 

the original source isotopic fingerprint and thus hinder contamination tracing. Here, we explore Fe isotope 26 

systematics for the complete range of natural and metallurgical processes related to Ni lateritic ores from 27 

Barro Alto, Brazil, to assess its potential as tracer in polluted lateritic soil contexts developed in an 28 

ultramafic system. 29 

The homogeneous δ57Fe values from protolith to soil confirmed that no significant Fe isotopic variation 30 

occurred during the formation of the deep lateritic profile. In addition, no Fe isotopic fractionation was 31 

found during the smelting process. Although the δ57Fe values resulting from mining activities fall within the 32 

range of terrestrial sample signatures, the conservation of the δ57Fe values from the ores to the byproducts 33 

is an advantage for tracing anthropogenic sources when (i) the pyrometallurgical plant uses feeding material 34 

with Fe ores imported from other geological formations exhibiting different δ57Fe values and/or (ii) the 35 

byproducts are transported or dispersed to other locations with different δ57Fe signatures in the topsoil. 36 

1. Introduction 37 

The increasing global demand for metals has led to intense mining activities and their consequent 38 

remobilization and enrichment in surface compartments, notably soils (Nriagu and Pacyna, 1988; Rauch 39 

and Pacyna, 2009). Of particular concern is the soil contamination associated with metal extraction from 40 

saprolite ores such as the extraction of Ni, where its concentration of approximately 3 wt% implies high 41 

economic value (Butt and Cluzel, 2013). However, in recent decades, limonitic ore refining has increased 42 

as a result of the application of modern technologies (allowing better yield recovery). In that ore, Fe contents 43 

can reach 40 wt% and Ni can occur in concentrations of up to 1 wt% in Fe oxides (primarily hematite and 44 

goethite) (Manceau et al., 2000; Quantin et al., 2002; Dublet et al., 2012 and 2015, Ratié et al., 2018). 45 

Smelting processes such as the rotary kiln-electric furnace (RKEF) process are used to extract Ni from 46 

mixtures of saprolite and limonite ores, yielding crude ferronickel (FeNi) composed of approximately 70% 47 
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Fe and 30% Ni (Crundwell et al., 2011). In the feeding material, Fe is primarily present as Fe(III) in Fe 48 

oxides and Fe(II)/Fe(III) in the saprolite (e.g., smectite-type, serpentine, pyroxene, spinel, olivine, etc.). The 49 

byproducts of the ore refining process, i.e., fly ash and slag wastes, are Si-, Fe- and Mg-rich materials. 50 

Generally, the pyrometallurgical wastes are either stored in the surrounding environment in settling 51 

ponds (fly ash), dumped (slags) or partially reprocessed for metal recovery (fly ash). Such disposal sites are 52 

susceptible to rainfall leaching and wind remobilization that can lead to the contamination of the superficial 53 

environment and pose major risks to public health (Ettler et al., 2018). The release of metals in soils by 54 

leaching is highly time-dependent (Barna et al., 2004; Bril et al., 2008; Seignez et al., 2008; Ettler and Johan, 55 

2014) and increases when slag disposal sites are flooded and/or occurs in water-saturated environments 56 

(Ganne et al., 2006; Navarro et al., 2008; Houben et al., 2013). Thus, understanding the dynamics of metals 57 

at contaminated sites, i.e., their sources, pathways and sinks is of the highest priority to develop effective 58 

environmental management and monitoring programs. 59 

To that purpose, the use of metal isotopic signatures can be useful in the identification and 60 

quantification of contaminant sources and for understanding how biogeochemical processes affect 61 

contaminant transport (Bullen, 2014; Wiederhold, 2015). The primary challenge to successfully applying 62 

isotopes as environmental tracers is to identify isotopic signatures that are distinctive between anthropogenic 63 

and natural materials and to deconvolve the original isotopic signal from subsequent isotopic fractionations 64 

induced by biogeochemical processes. In the case of stable isotopes of Zn and Cd, industrial or metallurgical 65 

fractionation during ore refining results in manufactured products and byproducts that are isotopically 66 

distinct from their natural sources (e.g., Mattielli et al., 2006; Kavner et al., 2008; Sivry et al., 2008; Sonke 67 

et al., 2008; Shiel et al., 2010; Chrastný et al., 2016; Klein and Rose, 2020). In contrast, Cu and Ni show 68 

little or no stable isotope fractionation during ore refining by smelting due to their high boiling points 69 

(Bigalke et al., 2010; Ratié et al., 2016). As a consequence, the manufactured metals, slags and other 70 

metallurgical byproducts have an isotopic signature similar to that of the ore concentrates. In soil pollution 71 

contexts, overlaps between ore and natural background isotope compositions may compromise source 72 
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tracking (Ratié et al., 2016; Šillerová et al., 2017). To overcome this drawback, the coupling of two stable 73 

metal isotope systems has been used to enhance source discrimination and deconvolution of the different 74 

biogeochemical processes involved in acid-mine mining (Borrok et al., 2009), coastal systems (Araújo et 75 

al., 2019a, b) and urban atmospheres (Souto-oliveira et al., 2017, 2018).  76 

In this work, we explore Fe isotope systematics in lateritic soils from an ultramafic system and the 77 

associated Ni ores refined in a pyrometallurgical system in Barro Alto, Brazil. Previously, an analogous 78 

study was conducted to investigate Ni isotopes, which demonstrated a low level of Ni isotope fractionation 79 

during ore refining that did not allow the use of Ni isotopes as tracers of contamination (Ratié et al., 2016). 80 

Here, we attempt to gain new insights by using Fe isotopes which have never been explored in this context 81 

despite their potential. 82 

Iron isotopes demonstrate special features of fractionation, both abiotically and biotically induced 83 

in natural and anthropic materials, that can be useful in our case study (Dauphas et al., 2017; Wu et al., 84 

2019). As demonstrated by Poitrasson et al. (2008) for chemical weathering in Cameroon, the lateritization 85 

process, which occurs over several million years, result in almost no δ57Fe variation. This feature was 86 

subsequently confirmed on other laterites from China and the Philippines, the latter being developed on 87 

peridotites (Liu et al., 2014; Li et al., 2017). In contrast, modern soil studies from both temperate and tropical 88 

areas and even Paleoproterozoic laterites showed much greater Fe isotopic variation (Fante and Depaolo, 89 

2004; Emmanuel et al., 2005; Thompson et al., 2007; Wiederhold et al., 2007; Yamaguchi et al., 2007; 90 

Fekiacova et al., 2013; Akerman et al., 2014). A key driving factor was the separation of two iron pools 91 

having different iron redox states, and therefore contrasted Fe isotope signatures (Wu et al., 2019). Iron 92 

isotope systematics was also successfully used to fingerprint anthropogenic and natural sources in river 93 

sediments (Chen et al., 2014) in an alpine watershed impacted by acid mine drainage (Borrok et al., 2009; 94 

Herbert Jr and Schippers, 2008). Iron isotopes were also used to trace anthropogenic combustion through 95 

the collection of aerosols from sources in the Sahara, North America, Europe (Flament et al., 2008; Conway 96 

et al., 2019) and Japan (Kurisu et al., 2016). These studies suggest that anthropogenic Fe signatures 97 
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originating from metallurgical, industrial and urban activities can display significant differences in Fe 98 

isotopes relative to natural sources. However, the understanding of potential fractionation of Fe in ore 99 

smelting/refining remains unclear. Only one study has been conducted to date, which examines Fe 100 

production by an ancient Galo-Roman bloomery process. The study of a major Roman site of Fe production 101 

known as “Les Martys” (Montagne Noire Massif, SW France) showed no significant Fe isotope 102 

fractionation from the Roman production of iron bars (Milot et al., 2016). Thus, the present study aims to 103 

explore (1) the Fe isotope fractionation associated with Ni-rich laterite ore formation, (2) the Fe isotope 104 

fractionation associated with Ni laterite ore smelting and refining during the RKEF processing, and (3) the 105 

potential of Fe isotopes to trace the environmental impact of FeNi production. 106 

2. Materials and methods 107 

2.1. Ore deposit and mining contexts 108 

The RKEF process for the production of FeNi was first developed in 1953-1954 and was applied 109 

commercially to the treatment of garnieritic ores in New Caledonia. Later, it was adopted by FeNi producers 110 

for Ni ore deposits across the globe: the Dominican Republic, Colombia, Venezuela, Indonesia, Japan, etc. 111 

(Warner et al., 2006). In recent years, at least three major new FeNi smelters have been constructed and are 112 

in operation: Barro Alto and Onça Puma in Brazil and Koniambo in New Caledonia (Oxley et al., 2016). 113 

The Ni deposits of Barro Alto, located in the midwestern region of Goiás (in Central Brazil), constitute a 114 

large Ni reserve that is exploited by the Anglo American company using open pits. 115 

The metallurgical plant at Barro Alto uses the RKEF process to produce FeNi from a nominal 2.4 116 

Mt/y of ore. Its production has increased nearly 2-fold since 2011 to 43 kt of total Ni output in 2018 (Anglo 117 

American PLC Annual Report, 2012 and 2018). The deposit, with the ore reserves estimated in 2018 at 52 118 

Mt containing 586 kt of Ni (Anglo American PLC Annual Report, 2018) is in the Barro Alto mafic-119 

ultramafic complex that is part of the Pre-Cambrian shield. This ultramafic complex is composed of 120 
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serpentinized dunites, pyroxenites and gabbros (Ferreira Filho et al., 2010). The mineralization corresponds 121 

to the surficial weathered portions of the serpentinites (Butt and Cluzel, 2013). 122 

Four main steps are involved in FeNi production (Crundwell et al., 2011): drying of the ore before 123 

its introduction into the rotating kiln; calcination with coal, oil or other organic products within the kiln; 124 

reduction in an electric furnace and refining of the molten FeNi in another electric furnace (Fig. 1). These 125 

processes generate enormous quantities of byproducts (Dalvi et al., 2004; Warner et al., 2006) containing 126 

significant amounts of metals (Ni, Co, Cr, Mn, Fe, etc.) (Ettler et al., 2016). 127 

The fly ash (F) generated contains large amounts of Fe and Ni and is recovered by electrostatic 128 

filters. The collected fly ash is then recycled into the calcination kiln (Fig. 1). The smelting slags (SS) are 129 

composed of high temperature silicates, amorphous glass as well as inclusions of small FeNi metallic 130 

particles (Ettler et al., 2016). They are dumped and stored near the plant. The molten FeNi is then refined 131 

through a two-step process that produces two types of refining slags: black refining slag (BRS) and white 132 

refining slag (WRS) after the removal of P and S, respectively. The FeNi is produced in the form of small 133 

ingots or water-granulated “beans”. 134 

2.2. Samples 135 

The list of samples is detailed in Table 1. The sampling for Fe isotope determinations included 136 

natural samples from soils and lateritic profiles in the Barro Alto ultramafic region and materials used and 137 

produced during the RKEF processes. The latter included the Ni ores employed as feeding material (n=2), 138 

the smelting slags (SS, n=2), white and black refining slags (WRS and BRS, n=2) and the final manufactured 139 

FeNi ingot (n=1). As previously mentioned, the fly ash is reinjected in the calcination step. 140 

A 28 m deep lateritic profile drilled by the Anglo American company were obtained at intervals of 141 

1 m, labeled “RC”, was used for this study (Ratié et al., 2018). As the overburden (0-3 m) was removed to 142 

facilitate drilling by the mining company, the core/profile starts at the depth of 3 m. To complete the profile, 143 

a soil in the vicinity was collected at three different depths: 0-10 cm (BAS1 0-10) or topsoil, 10-30 cm 144 

(BAS1 10-30) and 30-80 cm (BAS1 30-80) (Ratié et al., 2015). Five lateritic samples of the RC profile (RC 145 
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0-1, RC 6-7, RC 16-17, RC 24-25, and RC 27-28) were selected for Fe isotope characterization. RC 0-1 was 146 

defined as the top of the lateritic profile. RC 6-7 was the part of the lateritic profile dominated by Fe oxides. 147 

RC 16-17 was the smectitic horizon exhibiting high Ni content, and RC 24-25 was a characteristic saprolitic 148 

sample rich in serpentine and exhibiting a relatively low Fe content. RC 27-28 was the deepest sample, 149 

mainly composed of primary minerals (olivine) and was considered the protolith. The sample selection 150 

strategy involved the sampling of a weathering gradient of the ultramafic parent rock.  151 

2.3. Sample preparation and Fe chemical separation 152 

All the samples were homogenized and finely crushed, and approximately 100 mg of the samples 153 

was aliquoted to Savillex vessels. The samples were then digested on a hot plate using a multiple-step acid 154 

procedure with HF, HNO3, and HCl. First, an acid mixture of 5 mL of concentrated HF and 1.5 mL of 155 

HClO4 at 180°C was added until evaporation was complete. Subsequently, a mixture of concentrated HCl-156 

HNO3 (3.75 mL and 1.25 mL, respectively) at 150°C was added and evaporated to dryness. Finally, the 157 

samples were dissolved in an acid medium of 6 M HCl and split into aliquots for elemental and isotopic 158 

determinations. For this step, the sample solution aliquots were processed through chromatographic columns 159 

for chemical separation prior to isotope analysis. The iron was purified using Bio Rad AG1 X4 (200–400 160 

mesh) anionic resin loaded into thermo-retractable Teflon columns for exchange chromatography in an HCl 161 

medium as described by Poitrasson et al. (2004). Blank levels of the chemical procedure reached ~4 ng of 162 

Fe, which is negligible for the sample preparation process. All of the reagents were of analytical grade or 163 

bidistilled and the sample preparation for isotope analysis was conducted in the clean laboratories of GEOPS 164 

(Université Paris Saclay, France). 165 

2.4. Iron isotope composition measurements  166 

Iron isotope measurements were performed at the GET laboratory (Toulouse, France) using the 167 

Observatoire Midi-Pyrénées ICP facility in high or medium mass resolution mode on a Thermo Electron 168 
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Neptune MC ICP MS. The Fe isotopic ratios were determined following the procedure detailed by 169 

Poitrasson and Freydier (2005). 170 

This method involved a mass bias correction using a combination of the “standard-sample 171 

bracketing” approach using IRMM-14 as the Fe standard and Ni doping of the purified Fe samples. This 172 

approach accurately corrected for mass bias deviations due to residual matrix effects. The Fe isotope 173 

compositions were expressed in the delta notation relative to the European reference material IRMM-14 as 174 

follows: 175 

𝛿57𝐹𝑒 = (
( 57𝐹𝑒

 54𝐹𝑒
)

𝑠𝑎𝑚𝑝𝑙𝑒

( 57𝐹𝑒
 54𝐹𝑒

)
𝐼𝑅𝑀𝑀−14

− 1) × 1000  (Eq. 1). 176 

The GET in-house hematite standard from Milhas (Pyrénées, France) was measured every 6 177 

samples. The long-term external reproducibility of the method was estimated from replicate analyses of this 178 

standard in every session. In this work, the mean δ57Fe value of individual measurements for hematite was 179 

0.762 ± 0.083 ‰ (2 SD, n=21) in the GET laboratory, whereas data pooled in groups of 3 (which is the 180 

minimum number of times each sample should normally be analyzed) yielded a δ57Fe = 0.764 ± 0.057 ‰ 181 

(2 SD, n=7). These values are consistent with those from previous measurements conducted for over three 182 

years in the same analytical sequences and performed in various laboratories (Poitrasson et al., 2014). 183 

Variation in the δ57Fe reported for the samples in this study is expressed as two standard errors (2 SE) of 184 

the mean (n=3). 185 

3. Results and discussion 186 

3.1. Bulk compositions 187 

The mineralogy and chemical composition of the entire set of samples are discussed in detail in 188 

Ratié et al. (2015, 2016) and Ettler et al. (2016). The weathered material derived from the ultramafic rocks 189 

is strongly depleted in Mg and enriched in Fe from the base to the top of weathering profile. The mineralogy 190 

of the weathered profile changes from the base (RC 27-28) to the top (BAS1 0-10, BAS1 10-30, BAS1 30-191 
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80) from the dominance of primary minerals (serpentine, chlorite, amphibole, olivine and traces of quartz) 192 

to secondary minerals such as goethite and hematite with some preserved primary minerals such as chromite. 193 

Based on the overall sampling from Ratié et al. (2016), the industrial plant feeding material, i.e., the 194 

ore, exhibits high Fe and Mg contents of 118-178 g kg-1 and 81.4-110 g kg-1, respectively, whereas nickel 195 

content ranges from 16.9 to 23.2 g kg-1. Iron and Mg contents of the smelting slags (SS) range from 68.8 to 196 

142.7 g kg-1 and 153 to 188 g kg-1, respectively, and the Ni concentration is relatively low (≤ 2 g kg-1).  197 

According to a previous study of these smelting wastes (Ettler et al., 2016), more than 95% of the total Fe 198 

occurs as Fe(II) in the smelting slag, whereas 80% of the total Fe in the reinjected fly ash is present as 199 

Fe(III). The refined slags (WRS and BRS) are richer in Fe (71.2-179 g kg-1) compared with smelting slags. 200 

Ferronickel is composed of roughly two-thirds Fe (66-69 wt%) and one-third Ni (31-34 wt%). 201 

The Anglo American plant uses 2.4 Mt/y of Ni ore to produce 41,000 t/y of Ni as FeNi (Moore, 202 

2012 and personal communications). The quantity of Ni introduced in the process, as calculated using an 203 

ore Ni content of 1.96 ± 0.23 wt%, is 47,000 ± 5,400 t/y. This led to a production yield of nearly 88 ± 10% 204 

Ni for the 2016 production (Anglo American PLC Annual Report, 2017). For Fe, given the mean Fe content 205 

in ore of 15.1 wt% and a production of 41,000 t of FeNi, 362,400 t of Fe were processed and 82,000 t of Fe 206 

were produced as FeNi with almost 80% of the initial Fe remaining in the waste. The difference between 207 

the incoming Fe/Ni and FeNi production corresponds to the residual Fe/Ni in the different waste materials. 208 

3.2. Iron isotope compositions 209 

3.2.1. Ultramafic rocks weathering 210 

Based on mantle-derived and crustal igneous rocks, the bulk silicate Earth shows a homogenous Fe 211 

isotopic signature of approximately δ57Fe = 0.10 ± 0.03 ‰ (Poitrasson and Freydier, 2005; Poitrasson, 2006; 212 

Johnson and Beard, 2006). In Barro Alto, the deepest sample from the profile (RC 27-28), which contains 213 

the typical mineral assembly of serpentinized ultramafic rocks, was determined to be the least weathered 214 

sample and thus it was considered representative of the protolith material (Ratié et al., 2018). The base of 215 

the weathering profile (0.08 ± 0.20 ‰) is consistent with the bulk silicate Earth value (Poitrasson, 2006). 216 
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The δ57Fe values of the weathered materials range from -0.10 ± 0.07 ‰ (BAS1 0-10) to 0.07 ± 0.05 217 

‰ (RC 0-1) and fall within the range of values reported in the literature for soils (Wu et al., 2019). Given 218 

the level of analytical variation (2 SE), these results show no significant isotopic differences in δ57Fe values 219 

between the protolith and the weathered materials, similarly to other lateritic profiles elsewhere. (Cameroon, 220 

Poitrasson et al., 2008) (China, Liu et al., 2014; Philippines, Li et al., 2017). 221 

The gain and loss of Fe during chemical weathering can be evaluated by the calculation of the 222 

enrichment factor “τFe” (Table 1). A negative value for τFe reflects a true loss in Fe from the weathered 223 

material compared with the protolith, and a positive value indicates a gain in Fe. If τFe is 0, Fe is considered 224 

immobile during weathering with respect to the regolith. The entire Barro Alto profile displays τFe values 225 

ranging from -0.10 to 0.22, which suggests that Fe shows little mobility from all of the layers of the profile 226 

(Table 1, Fig. 2). However, a caveat is that this inference does not consider possible soil density changes 227 

that were not measured in this study. The topography of the complex is characterized by a succession of 228 

hills and valleys with altitudes ranging from 750 m to 1100 m dominating the large plain (De Oliveira et al., 229 

1992). As a consequence, the weathering conditions occurring on the complex are considered as well 230 

drained. In the tropical condition, from the base to the top of the profile, olivine and serpentine are replaced 231 

by Fe-oxides and Mg silicates through a series of transitional phyllosilicates (Colin et al. 1990; Butt and 232 

Cluzel, 2013). In addition, the bulk Fe isotopic composition remains homogeneous along the lateritic profile 233 

(-0.10 ‰ to 0.08 ‰), indicating that the δ57Fe values were not significantly altered by the loss or gain of Fe 234 

during chemical weathering (Fig 2). These features agree with the oxidative conditions along the lateritic 235 

profile and the high rate of lixiviation. Therefore, the formation of secondary Fe-bearing phases plays a 236 

minor role in fractionating Fe isotope during ultramafic rock weathering. This result is (i) consistent with 237 

those obtained from weathering profiles in Cameroon (Poitrasson et al., 2008), China (Liu et al., 2014) and 238 

the Philippines (Li et al., 2017) under tropical conditions 239 

In contrast, in the case of Ni, weathering was associated with isotopic fractionation as part of the Ni 240 

was leached, leading to a weathering profile that was depleted in heavy Ni isotopes. This depletion of heavy 241 
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Ni isotopes was interpreted as the preferential sorption and incorporation of light Ni isotopes into Fe oxides 242 

(Wasylenki et al., 2015) and phyllosilicates (type 2:1) (Ratié et al., 2018) in addition to Ni isotopic 243 

fractionation during the first stage of weathering, i.e., during mineral dissolution (Ratié et al., 2015, 2018). 244 

3.2.2. Metallurgical production 245 

The Fe isotopic composition of the metallurgical samples ranges from -0.10 ± 0.09 ‰ (smelting 246 

slags) to 0.07 ± 0.12 ‰ (FeNi). The Fe isotope compositions are analytically indistinguishable from the 247 

feeding materials to the final FeNi product (Fig. 3). Although the process yields for Fe are very low (22%), 248 

the isotope composition is homogeneous in all byproducts. Given the high-temperature natural processes 249 

that occur in the Earth’s core and the differentiation in an early silicate magma ocean, it seems logical that 250 

there is not significant Fe isotope fractionation in the FeNi alloy and the ultramafic silicate melt (Poitrasson 251 

et al., 2009). Within the 2-7.7 GPa pressures, the chemical and Fe isotope equilibrium was reached at 252 

2,000°C within 100 s (∆57Femetal-silicate glass= 0.047 ± 0.063 ‰). The high temperature conditions found in the 253 

electric furnace at 1,600°C could induce a similar rapid equilibrium and hence inhibit detectable Fe isotopic 254 

fractionation between FeNi and the feeding material. 255 

In the furnace, metal isotope fractionation is dependent on the relative isotope mass difference, the 256 

viscosity of the alloy, the mass of the matrix atoms and the temperature range (Ott, 1969; Lodding et al., 257 

1970; Ginoza and March, 1985). In the RKEF processes, the smelting temperature (1,600°C) is very close 258 

to the Fe fusion point (1,538°C), and the homogeneous δ57Fe value in the metallurgical wastes argues for 259 

an absence of the thermal gradients responsible for possible metal stable isotope fractionation. In fact, in 260 

modern enhanced industrial processes such as RKEF, the Fe distribution is homogeneous at the molten scale 261 

during the different steps. This inference is supported by experiments reproducing the ancient bloomery 262 

process at 1,300°C, which shows no significant Fe isotopic heterogeneity within the Fe metal products, 263 

although they did not go beyond the pasty state at such low temperatures (Milot et al., 2016). 264 
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3.2.3. Implications for environmental tracing 265 

Our study shows that the anthropogenic δ57Fe values fall within the range of the raw material 266 

signatures in Barro Alto that include the Earth’s mean Fe isotopic composition, in a manner similar to that 267 

of the Ni isotope systematics previously investigated (Fig. 3). Such an outcome hinders the use of Fe 268 

isotopes as an environmental tracer in the context of soils impacted by metallurgical activity if the raw 269 

material comes from the same locality, which is the case at Barro Alto. 270 

However, the conservation of the δ57Fe values from the feeding material to the metallurgical wastes 271 

can be advantageous to trace anthropogenic sources in cases (i) where pyrometallurgical plants use feeding 272 

material imported from another deposit exhibiting δ57Fe values that are distinct from local environment and 273 

when (ii) the metallurgical byproducts deposited in open-air undergo redox reactions triggered by changes 274 

in the biogeochemical conditions of the surrounding environment. A compilation of published δ57Fe of ores 275 

(Milot et al., 2016, 2018) have noted that the iron isotopic signature exhibits a wide range of values from -276 

2.8 ‰ to 2.4 ‰ for different mineral deposits (sedimentary, hydrothermal, skarn and supergene deposits 277 

(e.g., Graham et al., 2004; Markl et al., 2006; Johnson et al., 2008; Fabre et al., 2011; Wang et al., 2011; 278 

Cheng et al., 2015; Pi et al., 2015; Wawryk and Foden, 2015; Texeira et al., 2017). Moreover, modern soils 279 

from temperate areas (e.g., Fantle and Depaolo, 2004; Emmanuel et al., 2005; Wiederhold et al., 2007; 280 

Fekiacova et al., 2013, Wu et al., 2019) and wet tropical soils involving Fe redox cycling (Thompson et al., 281 

2007; Akerman et al., 2014) yield δ57Fe ranges of -0.9 ‰ to 1.4 ‰. This range represents significant 282 

variations relative to the natural δ57Fe values in Barro Alto soils, which range from -0.10 ‰ to 0.02 ‰ only. 283 

This therefore permits the use Fe isotopes to trace contamination when raw materials from other locations 284 

are employed, as long as they are not regular lateritic soils. Therefore, the use of a different feeding material 285 

for the industrial plant at the Barro Alto site would allow tracing of the anthropogenic input to the local 286 

environment. In this case, Fe isotopes could be a better tracer than Ni isotopes that showed isotope 287 

fractionation during the smelting process (Ratié et al., 2016). 288 

Finally, a review published by Warner et al. (2006) has shown similar concentration results during 289 

different steps of the Ni RKEF smelting processes throughout the world (the Dominican Republic, 290 
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Colombia, Venezuela, Brazil, Japan, New Caledonia, Indonesia, Ukraine, Macedonia and Greece). The 291 

feeding material from Barro Alto exhibits means concentration values of 2 wt% of Ni and 15.3 wt% of Fe 292 

(n = 13, Ratié et al., 2016), whereas the global average is 1.9 ± 0.5 wt% and 17 ± 5 wt%, respectively. The 293 

total average Fe content in slag material is 10 wt% at Barro Alto, whereas in the global mean value is 15 ± 294 

10 wt%. The feeding material composition and the main wastes are therefore similar for the Barro Alto 295 

smelter and the global laterite Ni smelters. Moreover, the calcination, smelting and refining temperatures 296 

used are similar for the Barro Alto plant (850°C, 1,600°C and 1,550°C, respectively) and the other cited 297 

RKEF smelters (880 ± 120°C, n=13; 1,570 ± 35°C, n = 12; 1,440 ± 120°C, n = 10, respectively). This 298 

comparison suggests that the behavior of the Fe isotope system during pyrometallurgical processing at the 299 

Barro Alto plant is likely applicable to other plants elsewhere in the world. 300 

4. Conclusions 301 

For the first time, this study shows the Fe isotope composition for the complete series of natural and 302 

anthropogenic processes in the Barro Alto ultramafic complex. No significant Fe isotope variations were 303 

identified in either the pedogenesis of lateritic soils or the pyrometallurgical processes of Ni ore refining. 304 

The δ57Fe value of the protolith fell within the range of the Fe isotope composition of the bulk silicate Earth, 305 

which is estimated at approximately 0.1 ‰ (Poitrasson, 2006), and is similar to deep lateritic profiles studied 306 

elsewhere. In the Ni laterite RKEF smelting process at Barro Alto, the rapid equilibrium of Fe isotopes 307 

between the different phases composing the FeNi ore melt at 1,600°C in the electric furnace results in 308 

undetectable Fe isotopic fractionation. This mechanism is supported by laboratory experiments under 309 

controlled conditions with high pressure and temperature equilibration between FeNi alloys and ultramafic 310 

silicate melts (Poitrasson et al., 2009). 311 

As a consequence, the δ57Fe values obtained from both pedogenesis (protolith to topsoil) and 312 

pyrometallurgical samples are homogeneous and may challenge the discrimination of anthropic and natural 313 

sources. Further studies should verify the potential fractionation induced by postdepositional processes as 314 
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demonstrated for Ni (Ratié et al., 2016) and Zn (Yin et al., 2018). Nonetheless, the conservation of the δ57Fe 315 

values from the ores to the byproducts is an advantage for tracing anthropogenic sources when (i) the 316 

pyrometallurgical plant uses feeding material with Fe ores imported from other geological unities exhibiting 317 

different δ57Fe values and/or (ii) the byproducts are transported or dispersed to other locations with different 318 

δ57Fe values in the topsoil. In these cases, Fe isotopes could be a more suitable environmental tracer of 319 

anthropogenic sources than Ni isotopes.  320 
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Table captions 

Table 1: List of natural and pyrometallurgical samples and their Fe and Zr contents. τFe = ([Fe]/[Zr]sample/ 

[Fe]/[Zr]protolith -1), where the sample RC 27-28 represents the protolith. The Fe isotope composition and 

two standard errors are calculated from the 3 analyses using Student’s t-corrected factor (Platzner, 1997). 

δFe/amu is the deviation of the Fe isotope composition of a sample relative to the standard and 

normalized to a mass difference of 1 atomic mass unit (amu). 

 

Sample 
name 

Depth 
  [Fe] [Zr]   τFe   δ57Fe   2 SE   δFe/amu 

  g kg-1 mg kg-1      ‰    
By products 

Ore 1     165         0.00 ± 0.18   0.00 
Ore 5     118         0.03 ± 0.20   0.01 
SS7     106         -0.10 ± 0.09   -0.03 
SS8     124         0.05 ± 0.14   0.02 

WRS     71         0.07 ± 0.08   0.02 
BRS     179         0.05 ± 0.11   0.02 

FeNi2     689         0.07 ± 0.12   0.02 
Soil samples 

BAS1 0-10 0-10 cm   271 14   -0.10   -0.10 ± 0.07   -0.03 
BAS1 10-30 10-30 cm   261 13   -0.09   0.02 ± 0.15   0.01 
BAS1 30-80 30-80 cm   255 13   -0.08   0.00 ± 0.13   0.00 

Lateritic samples 

RC0-1 3-4 m   256 11   0.08   0.07 ± 0.05   0.02 
RC6-7 9-10 m   369 14   0.22   -0.06 ± 0.11   -0.02 

RC16-17 19-20 m   85 4   0.01   0.02 ± 0.19   0.01 
RC24-25 27-28 m   67 3   0.05   0.02 ± 0.34   0.01 
RC27-28 30-31 m   49 2   0.00   0.08 ± 0.20   0.03 

 

Table



Figure captions 

Figure 1: Schematic view of the FeNi smelting and refining processes modified from Ettler et al. (2016) 

showing the average Ni and Fe contents in ore (n= 7), F (n=10), SS (n=8), WRS (n=1), BRS (n=1) and 

FeNi (n=2) (Ratié et al., 2016). 

Figure 2: Iron isotopic values (δ57Fe in ‰) vs. the τFe normalized by Zr (Poitrasson et al., 2008; our 

study), Th (Liu et al., 2014) and Ti (Li et al., 2017). The vertical black line represents the border between 

the gain and loss of Fe. The blue band represents the δ57Fe value of the bulk silicate Earth (Poitrasson 

et al., 2006). Error bars represent 2 SD (Liu et al., 2014; Li et al., 2017) and 2 SE (Poitrasson et al., 

2008; our study). 

Figure 3: δNi/amu and δFe/amu values for lateritic profile, ultramafic (UM) soils and products from 

mining (feed material) and smelting (smelting slags, refining slags, and FeNi) activities. δNi/amu values 

were calculated based on the δ60/58Ni values in Ratié et al. (2015, 2016, 2018). The green band represents 

the δNi/amu value of the bulk silicate Earth (Gall et al., 2017) and the blue band represents the δFe/amu 

value of the bulk silicate Earth (Poitrasson, 2006). The dotted line separates anthropogenic samples from 

geogenic samples. 
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WRS - White 
Refining Slags 

[Ni]: 2.3 g/kg
[Fe]: 71 g/kg 

BRS -Black 
Refining Slags

[Ni]: 6.3 g/kg
[Fe]: 179 g/kg

FeNi
[Ni]: 310 - 340 g/kg
[Fe]: 660 - 690 g/kg

[Ni]: 16.9 – 23.2 g/kg
[Fe]: 118 -178 g/kg

SS -Smelting Slags
[Ni]: <2.0 g/kg

[Fe]: 168 - 143 g/kg

F - Fly ash
[Ni]:  7.8 - 27.6 g/kg
[Fe]:  156 - 365 g/kg
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