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SUMMARY

The interactome is often conceived of primarily as a collection of hundreds of multimeric
machines, collectively referred to as the “complexome”. However, a large proportion of
the interactome exists outside of the complexome, or in the “outer-complexome”, and
may account for most of the functional plasticity exhibited by cellular systems. To
compare features of inner- versus outer-complexome organization, we systematically
generated a yeast all-by-all binary interactome map, integrated it with previous binary
maps, and compared the resulting interactome “atlas” with systematic co-complex
association and functional similarity network datasets. Direct protein-protein interactions
in the inner-complexome tend to be readily detected in multiple assays and exhibit high
levels of coherence with functional similarity relationships. In contrast, pairs of proteins
connected by relatively transient, harder-to-detect binary interactions in the
outer-complexome, exhibit higher levels of functional heterogeneity. Thus, a small
proportion of the interactome corresponds to a stable, functionally homogeneous,
inner-complexome, forming quaternary structure, while a much greater proportion
consists of transient interactions between pairs of functionally heterogeneous proteins in

the outer-complexome, forming quinary structure.
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INTRODUCTION

Intracellular organization relies on large numbers of macromolecular interactions
forming extremely complex interactome networks that underlie highly diverse functional
relationships between proteins, RNA molecules and DNA. Several efforts have been
described to map and model, at proteome-scale, global and local properties of
biophysical interactome networks such as protein-protein interaction (PPI) networks
(Cafarelli et al., 2017; Havugimana et al., 2017; Luck et al., 2017), including the recent
release of a first-of-its-kind binary reference map of the human binary protein
interactome (Luck et al., 2020). Although extremely useful in our quest to understand
cellular organizational principles (Bludau and Aebersold, 2020; Vidal et al., 2011),
current models describing global properties of PPI networks, for the most part, omit to

consider the range of biophysical properties exhibited by different cellular PPIs.

On one side of that range are relatively stable, direct PPIs taking place in highly
constrained “quaternary” structures forming protein complexes, which are often
assembled through contacting pairs of proteins via discrete interaction-mediating
domains. The protein interactome is often conceived of, primarily, as a collection of
hundreds of such multimeric machines, collectively referred to as the “complexome”
(Deshaies et al., 2002). However, these stable quaternary PPIs are only a subset of the
binary protein-protein interactome (Luck et al., 2020; Vidal, 2001). On the other side of
the range of biophysical properties, are weaker transient interactions that are much
more dependent on aspects of the overall cellular milieu, such as molecular crowding,
and that are more likely to underlie the overall organization and compartmentalization in
cells and help sustain biochemical pathways and signaling cascades (Cohen and
Pielak, 2017; Davey, 2019; Guin and Gruebele, 2019). Four decades ago, the term
“‘quinary structure” was suggested to describe this “fifth level of organization”, referring

to macromolecular interactions that, although potentially highly functionally relevant,
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might be “transient in vivo” (Edelstein, 1980; McConkey, 1982; Vainshtein, 1973). As
predicted by McConkey, such interactions “will not be evident from the composition of
purified proteins” since quaternary structures tend to be more resistant to the
“cataclysmic violence of the most gentle homogenization procedure”, while quinary

interactions, “although stable in vivo, might be largely destroyed by cell fractionation”.

How these two fundamental aspects of PPIs interconnect at the scale of the
whole interactome remains largely unresolved. Are these two parts of the interactome
distinguishable in terms of fundamental principles underlying their global organization?
The part of the proteome involved in processing or manufacturing tends to be highly
abundant (Liebermeister et al., 2014), yet only represents a relatively small fraction of
all encoded proteins. In contrast, the rest of the proteome, including regulatory and
control systems, encompasses a relatively large number of proteins, the majority of
which are expressed at relatively low abundance (Liebermeister et al., 2014). Might the
strikingly distinct roles of these interconnected systems correspond to distinct types of
sub-proteome organization? To what extent might the quaternary interactome, either
constitutively expressed or condition-dependent, operate in a relatively constant, robust,
and persistent manner, while the regulatory quinary interactome would exhibit greater

flexibility, plasticity, environmental responsiveness, and, perhaps, evolvability?

A eukaryotic proteome can be operationally organized into three major classes of
proteins: i) subunits of protein complexes; ii) highly abundant non-complex proteins; and
iii) non-complex proteins expressed at low abundance (Figure 1A). Protein complexes
include molecular machines involved in genetic information processing such as DNA
replication, RNA transcription, and protein translation and degradation. Examples range
in size from the gigantic ribosome and the more moderately sized mediator to smaller
complexes such as telomerase. Approximately 60-80% of proteins, depending on the
species, are not constituent parts of any molecular machine (Meldal et al., 2019; Ruepp
et al., 2010) and can thus be considered “non-complex” proteins. Non-complex proteins

can be divided into two groups, those above the mean abundance and those below.
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Among the most abundant non-complex proteins are metabolic enzymes, which, in
yeast cells, make up 30% of proteins by molarity, but are only 10% of all encoded
proteins (Cherry et al., 2012; Wang et al., 2015). The third class of proteins, scarce
under normal conditions, make up 60% of encoded proteins but less than 10% of the

proteins, by molarity, in the yeast cell.

Here, we investigate organizational principles by comparing intra-complex
interactions taking place “inside” each complex of the complexome, i.e., within the
‘inner-complexome”, to “outer-complexome” interactions. Whether biophysical
interactions in the inner- and outer-complexome have different properties or how such
interactions relate to functional relationships is not well understood. Likewise, whether
alternative organizational properties might be expected between highly abundant or

scarce proteins remains mostly unresolved.

To address these questions, we selected S. cerevisiae, which, as the most
extensively studied eukaryotic model system, has available the most comprehensive
and diverse systematic datasets of functional relationships between genes as well as
comprehensive, yet incomplete, maps of biophysical interactions between proteins. In
this study we: i) generated for the first time an “all-versus-all” systematic binary
interactome map; ii) integrated it with three previously available binary maps; and iii)
compared the resulting systematic binary interactome “atlas” to: i) a systematic
co-complex association network map; and ii) three different global functional profile
similarity network (PSN) maps reporting genetic interactions, condition-specific
phenotypes and gene expression. We find strong support for an emerging model in
which a relatively small proportion of the interactome corresponds to the stable,
quaternary, functionally coherent, inner-complexome, while the vast majority of the
interactome consists of quinary interactions between functionally heterogeneous

proteins forming the outer-complexome.
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RESULTS

Visualizing the Complexome

To visualize the distribution of biological networks between inner- and
outer-complexome, we organized the global proteome-by-proteome space according to
two key protein properties: co-complex membership and abundance (Figure 1A). First,
we ordered all proteins that are subunits of a complex in decreasing order of the size of
the corresponding complex. Then the remaining non-complex proteins were ordered by
increasing abundance. In addition to an integrated dataset of abundance under normal
conditions (Wang et al., 2015), we used a yeast complexome dataset (Costanzo et al.,
2016), filtering for complexes containing three or more distinct protein subunits,
resulting in 339 complexes, containing 1,897 different proteins out of the total 5,883

yeast proteins.

Protein complexes span a range of sizes. Examples include: the ribosomal large
subunit, nuclear pore, mediator, spliccosome, TFIIH, prefoldin, calcineurin, and
telomerase with 81, 52, 27, 16, 10, 6, 4, and 3 unique protein subunits, respectively.
The abundance distribution of proteins is such that a small number of encoded proteins
make up a large fraction of expressed proteins. Of non-complex proteins, 89% are
below the mean abundance, by molarity. Just two proteins, pyruvate kinase encoded by
CDC19 and the plasma membrane P2-type H+-ATPase transporter encoded by PMA1,
account for more than two percent of the total proteins, by molarity, in the cell. At the
other end of the spectrum, lowly expressed proteins such as CIn3, an important
cell-cycle regulator, and Ime1, a master regulator of meiosis, are four orders of

magnitude lower in abundance than Cdc19 and Pma1.

We then extended this organization of the one-dimensional proteome space to
the two-dimensional proteome-by-proteome space of ~18 million protein-protein
pairwise combinations (Figure 1B). We refer to this as a “complexogram”, within which
we define four different “zones” (Figure 1B; STAR Methods #3): i) Zone A, the
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inner-complexome, corresponds to all combinations where both proteins are subunits of
the same complex; ii) Zone B corresponds to pairs of complex subunits where each
protein belongs to a different complex; iii) Zone C represents all pairwise combinations
between complex subunits and non-complex proteins; and iv) Zone D corresponds to all

pairwise combinations between non-complex proteins.

The yeast inner-complexome, Zone A, with its 339 complexes corresponds to a
maximum of ~17,600 possible protein pairings, representing 0.1% of the approximately
18 million possible protein pairs (see STAR Methods #2). In contrast, the
outer-complexome encompasses 99.9% of the whole yeast interactome space of
possible pairings with Zone B, C, and D representing 10.3%, 43.7%, and 45.9%,
respectively (Figure 1B). Finally, in both Zone C and D, subzones can be defined
relative to abundance levels with: i) greater than 30% of the space representing
pairwise combinations of proteins of below the mean abundance; and ii) only 1.5% of
the space corresponding to pairs where both proteins are above the mean abundance
(Figure 1B).

Current Status of the Yeast Binary Interactome Landscape

Next, we assessed available biophysical datasets, to find the most suitable datasets
with which to study the interactome in the inner- and outer-complexome. Maps of
biophysical relationships between pairs of proteins report either co-complex
associations, where proteins are in the same complex but not necessarily in direct
contact, or “binary” PPIs, for which two interaction partners are likely to be in direct
contact (Figure S1A). It is important to distinguish between these two types of
protein-protein relationship when investigating the inner- and outer-complexome, as the
two will show different patterns, with one example being that large protein complexes
contain many more indirect associations than direct contacts. In this study we focus on
binary PPIs, as they are the more fundamental of the two. To investigate the extent to

which currently available high-quality binary interactome datasets cover Zones A, B, C,
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and D, we analyzed three different sources as they stood in August 2020 (Figure 2A,;
STAR Methods #4, #20): i) systematic yeast two-hybrid (Y2H) proteome-scale maps,
collectively reporting 2,613 heterodimeric “Y2H-union” PPlIs (Ito et al., 2001; Uetz et al.,
2000; Yu et al., 2008); ii) literature-curated binary pairs supported by multiple pieces of
evidence, representing 5,056 heterodimeric “Lit-BM-20” PPIls (Calderone et al., 2013;
Chatr-Aryamontri et al., 2017; Licata et al., 2012; Orchard et al., 2014; Salwinski et al.,
2004); and iii) a set of PPIs with three-dimensional (3D) structural information providing
definitive evidence of physical, direct interaction between 1,761 experimentally derived
heterodimeric Interactome3D or “I3D-exp-20” pairs (Mosca et al., 2013) (Figures 2A,
S1B-C). Systematic Y2H datasets were released in three publications each using a
different single version of the Y2H method. In contrast, Lit-BM-20 was derived from
6,127 curated publications that collectively used 81 different experimental interaction
detection methods (Table S1). Y2H is the most widely used binary PPI assay in the
literature, with 76% (3,986/5,056) of heterodimeric Lit-BM-20 interactions being
supported by Y2H evidence (Figure 2A). Lit-BM-20 contains only 4% of all
literature-curated pairs because the vast majority of curated pairs correspond to pairs
lacking binary evidence or pairs supported by only a single experiment. Other datasets
considered were: “Tarassov”, a proteome-scale dataset generated using a dihydrofolate
reductase protein complementation assay (DHFR PCA) (Tarassov et al., 2008); four
systematic co-complex maps (Gavin et al., 2002, 2006; Ho et al., 2002; Krogan et al.,
2006); a complexome dataset (Pu et al., 2009); and two sets of predicted PPIs (Jansen
et al., 2003; Zhang et al., 2013) (Table S2).

To better understand the quality of literature-curated versus systematic datasets
before using them to investigate principles of interactome organization, we used two
orthogonal assays: i) the mammalian protein-protein interaction trap (MAPPIT) assay
(Eyckerman et al., 2001); and ii) the mammalian Gaussia princeps complementation
assay (GPCA) (Cassonnet et al., 2011) (Figure 2B, STAR Methods #14, #21, Table S3).
We assessed genuine binary interaction content by comparing the recovery of pairs

selected from each dataset to that of a new positive reference set of 108
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well-characterized yeast PPls (scPRS-v2) and, as a negative benchmark, a new
random reference set of 198 random protein pairs (SCRRS-v2) (see STAR Methods #5,
Table S4). These two assays were not used to discover any of the PPIs in the tested
datasets: literature-curated, Y2H-union and Tarassov. Across a wide range of stringency
for both MAPPIT and GPCA, all three systematic Y2H datasets constituting Y2H-union,
“Uetz-screen” (Uetz et al., 2000), “lto-core” (Ito et al., 2001), and “CCSB-YI1” (Yu et al.,
2008), as well as “Lit-BM-13”, a random sample from literature binary PPls available in
2013, validated close to scPRS-v2 (Figure 2B), indicating that the Y2H-union and
Lit-BM maps are of high quality. Using the score set by the highest scoring of the 198
sCRRS-v2 pairs as a threshold, MAPPIT recovered scPRS-v2, Lit-BM-13, and
systematic Y2H pairs at rates statistically indistinguishable from one another, between
18% and 27%. At a similarly stringent threshold, GPCA recovered significantly fewer
Lit-BM-13 pairs than Y2H-union pairs (Figure 2B). Interestingly, Tarassov, the DHFR
PCA dataset, which detects physically-proximal, but not necessarily directly-contacting
protein pairs (Tarassov et al., 2008), was indistinguishable from the RRS negative
control in MAPPIT but validated on par with the Y2H-union datasets in GPCA (Figure
2B). As shown previously for human PPls (Rolland et al.,, 2014), a sample of the
putative yeast binary PPIs supported by only a single piece of evidence in the literature
in (Lit-BS) were recovered at a low rate, not statistically different from RRS (P = 0.06,
Fisher’s exact test), of only 4% in GPCA (Figure S1D). Finally, combining MAPPIT and
GPCA leads to ~30% recovery of Y2H-union, which again is on par with the recovery of
positive control pairs and significantly higher than Lit-BM-20 recovery (Figure 2B bottom

panel).

We wished to further investigate binary PPI information using Interactome3D,
literature curation, and systematic binary maps. We therefore experimentally retested all
pairs available in 2017 for these three datasets (I3D-exp-17, Lit-BM-17, Y2H-union),
along with random samples of other datasets, thus testing a total of 8,999 pairs (Figure
2C, Table S5). We used a different Y2H version, Y2H v4 (see STAR Methods #6-7), that

had not been used for systematic screening. Y2H v4 detects 19% of scPRS-v2 pairs
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under conditions in which 0/198 scRRS-v2 are recovered (Figure 2C, Table S6).
Importantly, the subsets of scPRS-v2 pairs detected by Y2H v4 or Y2H v1 are as
different from each other as they each are from MAPPIT (Figure S1E, STAR Methods
#7), further supporting the hypothesis that different versions of the same assay differ in
their ability to detect different interactions (Choi et al., 2019). Y2H v4 recovered 11%,
14%, and 15% of Interactome3D, literature curation, and systematic binary pairs,
respectively. Strikingly, Y2H-union was indistinguishable from both scPRS-v2 (P = 0.2,
Fisher’s exact test) and I3D-exp-17 (P = 0.6, Fisher’s exact test), our benchmark of true
direct, heterodimeric binary interactions, and all three performed slightly better than
Lit-BM-17 (P = 0.006, Fisher’s exact test) (Figure 2C), again demonstrating that the
biophysical quality of systematic binary interaction maps is at least as good, if not
superior to that of literature-curated binary interactions, suggesting that they are usable

for the purpose of investigating interactome organization.

In striking contrast, pairs from co-complex association datasets were detected at
much lower rates than those from for binary literature-curated with multiple evidence or
systematic binary datasets, although significantly higher than the negative control
scRRS-v2 (median P = 0.018, Fisher’s exact test) (Figure 2C). This result suggests that
a large proportion of protein pairs in co-complex association datasets are indirect, distal
associations (Figure S1A), both in literature-curated information as in CYC2008 (Pu et
al., 2009), a carefully curated dataset, and in affinity-purification followed by mass
spectrometry (AP-MS) derived proteome-scale maps (Gavin et al., 2002, 2006; Ho et
al., 2002; Krogan et al., 2006). More specifically, our analysis showed that: i) for
CYC2008, the recovery rate by Y2H v4 was only slightly higher than that of our negative
control scRRS-v2; ii) pairs curated from the literature with no clear evidence of direct,
binary interactions (Lit-NB), which represent 84% of all protein pairs curated
(100,102/119,288) were indistinguishable from random pairs (P = 0.27, Fisher’s exact
test); and iii) the four systematic, non-binary, AP-MS co-complex association maps
currently available (Gavin et al., 2002, 2006; Ho et al., 2002; Krogan et al., 2006) were
recovered by Y2H v4 at rates similar to CYC2008, i.e. with approximately a four-fold

10
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lower recovery rate compared to the positive controls scPRS-v2 and Interactome3D
(averages of 4% vs 17%, P = 0.0002, Fisher’s exact test) (Figure 2C). This observation
is consistent with the fact that, wherever structural information is available, protein pairs
involved in PPIs obtained by binary assays are two to five times more likely to be in
direct contact than co-complex association pairs, from either literature-curation or
systematic experiments (Figure S1F, STAR Methods #15, Table S7A). Finally, two
datasets of predicted PPIs, PrePPI and Jansen et al (Jansen et al., 2003; Zhang et al.,
2013), tested positive at low levels of 4% and 2%, respectively (Figure 2C).

Testing a comprehensive set of Interactome3D pairs with Y2H v4 also
demonstrated that, although the number of subunits involved in forming large protein
complexes appears to have some impact on the rate of interaction recovery by Y2H v4
(Figure 2D), binary assays can readily detect pairs of interacting proteins even in large
complexes. Second, although our data was generated with full-length yeast proteins,
the detection rate appeared unaffected by whether the co-crystal structures of
interacting proteins had been solved with full-length proteins or fragments (P = 0.14,
Kolmogorov-Smirnov test) (Figure S1G). Third, although we observed a trend towards
larger surface areas among Y2H v4 positives compared to Y2H v4 negatives, Y2H v4
could detect interactions with interface areas ranging widely from 100 to 10,000 A?
(Figure S1H, STAR Methods #22, Table S7B). Y2H v4 was better able to detect PPIs
with small interaction interfaces than MAPPIT and GPCA (Figure S1l). Finally, Y2H v4
detected interactions with K, values up into the micromolar range (Figure S1J, STAR
Methods #16), consistent with previous findings that Y2H can identify even weak

interactions (Estojak et al., 1995).

To investigate the overall homogeneity of coverage, we displayed binary PPIs in
a representation of the proteome-by-proteome space organized by ranking proteins in
both dimensions according to their number of publications (Rolland et al., 2014) (Figure
2E, STAR Methods #23). A “dense zone” matrix of 15% of yeast protein pairs contains

80% of Interactome3D pairs and a matrix of 25% of yeast protein pairs contains 80% of

11
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literature-curated PPIs. In striking contrast, Y2H-union interacting pairs are distributed
more homogeneously across the space, such that a matrix of 50% of pairs is needed to
contain 80% of the PPIs (Figure 2E). Likewise, the relative coverage of binary
interactions in the four zones defined above, A, B, C, and D, is very different between
the three sources of PPIls, with Interactome3D pairs being highly over-represented in
Zone A (65% of pairs) while PPIs from systematic maps are more homogeneously
distributed (Figure 2F).

In summary, even though Interactome3D, literature-curated information, and
systematic maps are comparable to each other and vastly superior to co-complex
association datasets and predicted datasets in terms of binary, direct interaction content
and quality, respectively, systematic maps present a clear advantage over
literature-curated information for global interactome network analyses with their greater

homogeneity of coverage of the proteome-by-proteome space.

A First All-Versus-All Reference Binary Map of the Yeast Interactome

Although we have shown that systematic mapping strategies yield high-quality PPI data
that could inform us about inner- versus outer-complexome organization and other
properties of the interactome, the three maps currently available do not fully cover the
whole yeast interactome (Figure 2E). This is due to the “search space incompleteness”
of the three screens performed so far (Yu et al., 2008). CCSB-YI1 and Ito-core were
obtained using incomplete sets of open reading frames (ORFs), or “ORFeome”
collections (Walhout et al., 2000), so that only ~70-75% of the search space was

screened in each study and only ~60% screened by both.

To improve coverage of the yeast binary interactome, we compiled a nearly
complete ORFeome collection of high-quality ORFs by verifying an already existing, yet
incomplete collection of 4,933 ORFs, the FLEXGene collection (Hu et al., 2007), and
cloning an additional 921 ORFs, corresponding to a 19% increase. The resulting nearly

complete ORFeome collection covers 99% of the annotated yeast protein-coding genes
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(5,854/5,883) (See STAR Methods #1, #8, Table S8A). To maximize the potential for
novel discovery relative to the three previous binary systematic maps, we used the Y2H
v4 version described above. To maximize coverage, we systematically screened a
space of 27 million bait-prey combinations three times independently (Figure 3A, STAR
Methods #9-11). Pairs identified from these primary screens were then retested in two
pairwise tests under conditions maximizing the recovery of scPRS-v2 while minimizing
that of scRRS-v2 (see STAR Methods #13). The quality of putatively interacting pairs
that were positive in both attempts, and for which the identity of both ORFs could be
sequence-confirmed (see STAR Methods #12, #24), was assessed using both MAPPIT
and GPCA validation (see STAR Methods #14). To maximize the statistical power of this
validation step, all pairs of Y2H v4 positives, rather than a random sample of pairs as
we implemented in our original empirical framework (Venkatesan et al., 2009; Yu et al.,
2008), were compared under conditions recovering on average 20% of scPRS-v2 and
none of the 198 scRRS-v2. Thus, we mapped a new “yeast reference interactome” or
“YeRI” dataset of 1,910 PPI pairs between 1,351 proteins, of which ~75% are novel, and
that exhibited validation at a rate similar to Lit-BM-20 in both MAPPIT and GPCA
(Figures 3A, S2A, Table S8B). YeRI displays significant enrichment for interactions
between proteins that share cellular compartment, pathway, or protein complex
annotations (Figure 3B, STAR Methods #25), demonstrating its overall high levels of

biological relevance.

We investigated the extent to which YeRI expands coverage of the interactome
within the search space, relative to the three previous maps using the ranking by the
number of publications as described above (Rolland et al., 2014). Compared to
Uetz-screen, Ito-core, and CCSB-YI1, YeRI| covers the search space more
homogeneously (Figure 3C). Since we showed that all four maps, Uetz-screen, Ito-core,
CCSB-YI1, and YeRI validate to the same extent using MAPPIT and GPCA, we
combined all 4,556 Y2H pairs into a single “atlas of binary biophysical interactions”,
referred to as ‘ABBI-21°, with YeRI adding 1,723 new PPIs to the preexisting Y2H-union

13


https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435663; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

dataset (Ito et al., 2001; Uetz et al., 2000; Yu et al., 2008). ABBI-21, with the addition of
YeRl, is of similar size to Lit-BM-20 (Figure 3D, Table S8C).

To test whether functionally related proteins tend to be closely connected in
ABBI-21, we used the Spatial Analysis of Functional Enrichment (SAFE) method
(Baryshnikova, 2016) (see STAR Methods #26). By progressively combining systematic
maps based on their chronological order of release, we show that the numbers of
functionally enriched clusters increase substantially with the addition of each map
(Figure 3E), and that running SAFE on YeRI alone finds 12 functional modules (Figure
S2B). In total, ABBI-21 covers 12-25% of the estimated yeast binary interactome
(Figure 3F, STAR Methods #27) (Sambourg and Thierry-Mieg, 2010; Stumpf et al.,
2008; Yu et al., 2008).

Despite being one of the most well-studied organisms, the function of almost
one-sixth of yeast genes remains unknown (Wood et al., 2019) (see STAR Methods
#18). We investigated the number of PPls involving the products of these
uncharacterized genes in both literature and systematic maps. Systematic maps identify
substantially more PPls connecting proteins encoded by genes of unknown function
than literature-derived maps (Figure S2C). Altogether, 33% of such proteins have at
least one interaction in ABBI-21, while 19% have interactions identified only in YeRI
(Figure 3G). Given the lack of progress in characterizing the functions of these genes,
systematically mapped PPIs provide information to infer their cellular roles. We
predicted functions for genes of unknown function with a guilt-by-association approach
using GO term annotations of their interaction partners (Luck et al., 2020) (see STAR
Methods #28, Table S9) in ABBI-21. The lag between the release of publications
describing gene functions and the curation of that information into GO terms sometimes
results in a small number of genes which appear in the GO-term based list of genes as
“‘genes of unknown”, while in fact, they have been assigned functions already. These
cases present an opportunity to test the accuracy of our predictions. For example, a

gene of unknown function YGR7168C is also known as PEX35 owing to its recently
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demonstrated role as a regulator of peroxisomal abundance (Yofe et al., 2017). Using
ABBI-21, we predicted YGR7168C to be involved in peroxisomal protein import
machinery, showcasing the ability of ABBI-21 to accurately predict gene function. Pex35
has 23 PPIs in ABBI-21, all from YeRI, out of which eight are proteins involved in
peroxisomal biology (Figure 3H). Pex35 also interacts with another protein encoded by
a gene of unknown function, YKL0O18C-A/IMCO12, which we predict to be involved in
peroxisomal abundance as well (Figure 3H). Another example of the efficacy of using a
guilt by association approach with our systematic PPl network to predict gene function
is YJR0O15W, the product of which was recently demonstrated to be localized to the ER
(Koh et al.,, 2015). Indeed, we predicted YJRO15W as a putative facilitator of
endoplasmic reticulum (ER) transport activity, based on its protein interactions with ER

secretory pathway components such as Sec11, Spc1, and Sar1.

In summary, these results illustrate how systematically generated binary PPI
maps or atlases, in particular YeRI and ABBI-21, with their (nearly) all-by-all screening
coverage, provide valuable information on even the least well understood genes, and

thus are a good basis to understand global organizational principles of the interactome.

High Discrepancy Among Alternative Views of Interactome Organization

To understand potential differences of functional relationships between large numbers of
pairs of physically interacting proteins within the inner- and outer-complexome, we
turned to three different systematic genome-wide functional genomic profiling
approaches which determined profiles for most yeast genes based on: i) positive and
negative genetic interactions observed in double mutants bearing knock-out (KO) and/or
thermosensitive alleles (Costanzo et al., 2016); ii) growth of KOs of non-essential genes
across over 1,000 chemical and environmental stress conditions (Hillenmeyer et al.,
2008); and iii) transcriptome-wide measurements of gene expression over thousands of
samples (Obayashi et al., 2019) (Figure 4A). Taking the 1% highest Pearson’s
correlation coefficient (PCC) values, we derived three types of PSNs: i) ~135,000

genetic interaction profile similarities forming a “GI-PSN” (Costanzo et al., 2016); ii)

15


https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435663; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

~65,000 condition sensitivity-based similarities constituting a “CS-PSN” (Hillenmeyer et
al., 2008); and iii) ~99,000 gene expression similarities leading to a “GE-PSN”
(Obayashi et al., 2019). While these three PSNs exhibit statistically significant overlaps
(P < 0.001, one-sided empirical test, restricted to genes tested in all PSNs), these
overlaps are small, with only 4% of edges connected in more than one PSN, suggesting

that different PSNs identify complementary functional similarities (Figure S3A).

To understand what functional networks can tell us about the relationships of
physically interacting proteins in the inner- and outer-complexome, we examined how
their connections are distributed throughout the proteome-by-proteome space. First, we
extended our analysis of the coverage of the space of pairwise protein combinations
according to the number of publications per gene from Lit-BM-20 literature-curated
binary information and our systematic binary atlas ABBI-21 (Figure 2E and 3C) to a
systematic non-binary co-complex association dataset derived from the three
systematic co-complex association maps available as of 2006 “Sys-NB-06" (Gavin et
al., 2002, 2006; Krogan et al., 2006) (Figure 4B). Unlike ABBI-21, and similar to
Lit-BM-20, Sys-NB-06 exhibits a strong dense zone, with 50% of the space ranked by
publication count containing 80% of the information (Figure 4B). Although Sys-NB-06
was obtained using sociologically unbiased, systematic approaches, we've seen
previously that systematic co-complex association maps show a bias towards highly
studied proteins, which is mediated through a bias towards highly expressed proteins,
which are also more highly studied (Luck et al.,, 2020). To further explore the
relationship between experimental coverage of the interactome and protein complexes,
we examined four additional intrinsic protein properties potentially associated with
complex membership: i) abundance; ii) evolutionary conservation; iii) essentiality; and
iv) disorder, first by comparing the average values of complex subunits and
non-complex proteins using two different complex datasets (Figure S3B, C, STAR
Methods #19, Table S10). Complex subunits exhibit significantly higher average values
in all five variables (P < 108, Mann-Whitney U test), independent of the complex

curation dataset used (Figures S3C, D), with strong correlations between these protein
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properties (Figure S3E). We then ranked the proteome-by-proteome space according to
these variables and compared the coverage of the different binary PPl and co-complex
association maps (Figure 4B). In all cases, ABBI-21 covers the interactome more
homogeneously, across multiple biological properties, compared to Lit-BM-20 and
Sys-NB-06. ABBI-21 does show some depletion for the highest abundance proteins as
well as the lowest abundance, least studied and least conserved proteins (Figure 4B). In
the lowest abundance or conservation zones, the number of proteins with at least one
interactor is significantly higher for ABBI-21 than Lit-BM-20 or Sys-NB-06 (Figure S3F).

Having identified such fundamental differences between systematic binary and
co-complex approaches, we then turned to the three systematic PSN functional
networks. One of the most striking observations is the dense zone exhibited by GE-PSN
within the spaces corresponding to highly abundant or conserved proteins as well as
essential genes (Figure 4B). This similarity between Sys-NB-06 and GE-PSN is likely
because both experimental strategies are highly dependent on endogenous gene
expression levels. The second observation is that GI-PSN also shows a higher density
of functional relationships amongst extremely well-studied and highly abundant proteins
(Figure 4B), albeit restricted to a smaller zone than Sys-NB-06. This was unexpected
since this network was generated systematically, independently of any sociological bias.
Upon investigation, we found this was due to a combination of higher connection
density for both essential genes (Costanzo et al., 2016) and highly abundant
non-essential ribosomal subunits in the GI-PSN network (Figure S3G). Many yeast
ribosomal proteins retained paralogs after the whole-genome duplication event (Wolfe
and Shields, 1997), often rendering them non-essential where paralogs can functionally
compensate for one another’s deletions. Their high connectivity illustrates the
preference for genetic interactions to capture biological processes with high functional
redundancy. Lastly, CS-PSN was obtained from a homozygous gene deletion collection
that does not include essential genes, which could explain some of the observed

patterns.
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Next we investigated to what extent co-complex and binary biophysical networks
identify direct interactions versus indirect associations using available 3D structures of
complexes, and thus experimental information of direct contacts between proteins, and
subsequently compared this within the three functional networks. As an example, the
experimentally solved 3D structure of mediator shows 33 direct contacts between its 25
subunits, which is considerably less than its 300 possible pairwise combinations (Figure
4C, STAR Methods #29). This is unsurprising, as the number of other proteins a
complex subunit may be in contact with is fundamentally limited by the surface area of
the subunit. The number of direct interactions within a protein complex scales roughly
linearly with the complex’s size, whereas the number of indirect interactions scales
quadratically. ABBI-21 and Lit-BM-20 find primarily direct interactions, whereas the
AP-MS-based Sys-NB-06 reports roughly equally direct binary interactions and indirect
co-complex association between proteins (Figure 4C). Likewise, the genetic interaction
profile network GI-PSN finds both direct interactions and indirect associations (Figure
4C), with a preference towards direct PPIs (P = 0.02, two-sided Fisher’s exact test), as
has been observed previously (Meldal et al., 2021). GI-PSN connecting indirect
associations is understandable, as all the proteins in the complex collectively contribute
to a common function, irrespective of whether they are in direct contact or not. We then
investigated this trend across all different protein complexes for which a 3D structure is
available (Figure 4D) and observed that binary PPI datasets primarily find direct-contact
pairs, whereas Sys-NB-06, GI-PSN, and GE-PSN connect both direct-contact and
indirect co-complex association pairs, with a tendency towards direct PPIs. Among all
six datasets analyzed here, ABBI-21 is the most enriched for direct PPIs vs indirect

associations (P = 0.0002, two-sided Wicoxon signed-rank test) (Figure 4D).

After observing that within protein complexes, functional networks connect both
direct PPls and indirect associations, we then tested GI-PSN edges using two
orthogonal binary PPI assays, Y2H v4 and GPCA, thus providing direct experimental
estimates of the fraction of genetic interaction profile similarity relationships that

correspond to binary PPlIs. In random samples of GI-PSN pairs selected across a range
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of PCC cutoffs (Figures 4E, 4F, S3H), the positive test rate increases proportionally to
the PCC threshold in GPCA, and an increase is consistent with the Y2H v4 data. On
average the positive rate is similar to that of the CYC2008 protein complex dataset.
Together this is consistent with protein complexes dominating the high-PCC GI-PSN
pairs (Costanzo et al., 2016) and GI-PSN linking both directly and indirectly contacting
complex subunits (Figures 4E, 4F), and consistent with the reported higher average
PCC values for direct than indirect (Meldal et al., 2021). Importantly, at the point where
the direct binary PPI content substantially exceeds that of protein complexes, at PCC
2 0.5, the GI-PSN contains only 841 edges (Figure 4G).

In summary, we identified two alternative views of interactome organization. The
first view provided by biophysical co-complex association and functional gene
expression similarity data suggests a highly heterogeneous distribution of the
interactome in the outer-complexome, while the other view provided by biophysical
binary interaction and functional gene interaction similarity data suggests a more

homogenous distribution in the outer-complexome.

Inner- Versus Outer-Complexome Interactome Organization

Having identified intrinsic differences and commonalities between biophysical binary
and co-complex association networks and functional genetic interaction and gene
expression networks, we then wanted to assess their distribution between in the inner-
and outer-complexome, and so we compared their “edge density deviation” (Figure 5A).
Edge density deviation for a given subspace is calculated as the fold difference between
observed interactions or associations in that subspace, relative to what would be
expected if the whole proteome-by-proteome space had been covered uniformly. For
example, in the inner-complexome, 0.1% of the proteome-by-proteome space,
Lit-BM-20’s expected value is 5 PPIs (0.1% of 5,056 total PPIs) and its real value is
1,530 PPls, so its edge density deviation is 300-fold (Figure 5A). Likewise, Sys-NB-06’s
edge density deviation is 330-fold (Figure 5A). Obviously, this high density in the

inner-complexome is expected, where co-complex association maps are detecting
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complexes, defined by independently curated experiments. Noticeably, ABBI-21’s edge
density deviation in the inner-complexome is 105-fold, which illustrates yet again that
binary approaches can readily identify direct contacts inside protein complexes. In fact,
ABBI-21 reports binary interactions in Zone A that represent ~15% of all direct contacts
available from structural data, a proportion that is on par with its estimated coverage of
the full binary interactome (Figure 3F). Finally, GI-PSN, CS-PSN, and GE-PSN are also
enriched in the inner-complexome, although to a lesser extent than the three
biophysical networks (Figure 5A), which further illustrates the high level of functional

coherence in the inner-complexome.

We then used the same approach to characterize Zone B, C and D in the
outer-complexome and observed that (Figure 5B): i) all interactome mapping
approaches except for CS-PSN identify a positive edge density deviation in Zone B; ii)
Zone D is particularly depleted of interactions or associations in Lit-BM-20, Sys-NB-06,
and GE-PSN; iii) Zone D is much closer to uniformly distributed in ABBI-21 and GI-PSN;
and finally iv) the approach that uses the largest number of exceptional conditions,
CS-PSN is actually slightly enriched in Zone D, after accounting for the untested

essential genes (Figure S3I).

To further explore the distribution of these networks relative to both co-complex
membership and protein abundance levels, we turned to our complexogram strategy
described above (Figure 1A-B). Having ranked all 5,883 proteins of the yeast proteome
into 20 bins (Figure 1A), the whole yeast proteome-by-proteome space can now be
subdivided into 210 “tiles”. For example, the tile “C1/R1” (column 1/row 1), corresponds
to pairwise combinations between subunits of the largest complexes — ribosome related
and nuclear pore —and C20/R8 are between the most abundant and some of the least

abundant, non-complex proteins (Figure 1A).

The first observation that stems from the resulting complexograms is that all
three biophysical datasets show a strong, statistically significant (P < 0.05, permutation
test), enrichment for interactions or associations in tiles C1/R1, C2/R2, C3/R3, C4/R4,
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C5/R5, and C6/R6 (Figure 5C, D). We observe the same for GI-PSN and similarly,
statistically significant enrichment in C1/R1, C2/R2, C3/R3, C4/R4 for GE-PSN. So
again, we see the expected high density of biophysical and functional relationships in

the inner-complexome.

The situation is different in the three zones of the outer-complexome. Although
Sys-NB-06 associations are significantly enriched in Zone B, which for the most part
mirrors what is observed in GE-PSN, in contrast ABBI-21, Lit-BM-20 and GI-PSN are
more uniformly distributed in this zone (Figure 5C, D). This result suggests that
functionally relevant inter-complex interactions might be widespread, yet relatively less
detectable by binary biophysical approaches. In Zone C, Sys-NB-06 is depleted within
the subspace corresponding to low abundance proteins (C8-14/R1-7), but enriched
within the subspace corresponding to high abundance (C19-20/R1-5). In striking
contrast, systematic binary interactions from ABBI-21 are more uniform throughout
Zone C, similar to what is observed in Lit-BM-20 (Figure 5C). All three functional
networks in the low abundance subzone point to a possible depletion of functional
relationships, while GE-PSN reports significantly enriched associations in the high
abundance subzone of Zone C (Figure 5D). Thus, the extent to which complex subunits
mediate functionally relevant interactions with non-complex proteins remains overall

unclear.

The most striking observation can be made in Zone D, particularly in the
relatively large subzone corresponding to low abundance (see tiles R8-18/C8-18). This
subzone, which in total represents ~30% of the proteome-by-proteome space, is
strongly depleted in Sys-NB-06 while almost entirely uniformly distributed in ABBI-21,
again on par with what is observed in Lit-BM-20, except for subzones involving
extremely low abundance non-complex proteins (C8-14/R8-9) (Figure 5C). Finally, the
high abundance subzone corresponding to tiles C19-20/R19-20 is also worth
mentioning since it appears significantly enriched in Sys-NB-06 and to a lesser extent in

Lit-BM-20, while being more uniformly populated in ABBI-21 (Figure 5C). In the low
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abundance subzone of Zone D, GI-PSN associations appear to confirm the uniform
distribution observed for ABBI-21 (Figure 5D), and thus should trigger a renewed
interest in further investigating this large subspace of the yeast interactome. As shown
above, GE-PSN and Sys-NB-06 appear to agree on the possibility that this zone is
highly depleted. However, their dependency on endogenous expression might be the
main reason for this discrepancy. CS-PSN’s depletion in Zone C and enrichment in

Zone D is dampened after correcting for the untested essential genes (Figures S3J, K).

To understand the extent to which currently available maps might be biased,
relative to the real interactome, towards containing pairs from the inner- rather than the
outer-complexome, we used gold-standard, reference interactions from the inner- and
outer-complexome, examining potential differences in how well ABBI-21 and Sys-NB-06
might be able to capture these two different types of interactions. We excluded
Lit-BM-20 from this analysis as the reference PPIs sets are also literature derived. We
extracted four sets of gold-standard functionally characterized PPIs from different
datasets (see STAR Methods #17), two for the inner-complexome: i) complex subunits
in direct contact in experimental structural data (Mosca et al., 2013) and ii) co-complex
associations in signaling pathways from the KEGG database (Kanehisa et al., 2019);
and two for the outer-complexome: i) PPIs from KEGG, not in the same protein complex
and ii) the high-quality subset of literature-curated kinase-substrate interactions from the
KID database (Sharifpoor et al., 2011). We observe that, although both co-complex
association and binary interaction maps capture the inner-complexome pairs more
readily, ABBI-21 shows higher uniformity between inner- and outer-complexome pairs
than Sys-NB-06, which is more biased towards capturing inner-complexome pairs
(Figure 5E).

To better understand the observed differences between inner- and
outer-complexome, we investigated whether ABBI-21 PPIs from either inner- or
outer-complexome are of similar biophysical quality by comparing their recovery rates in
MAPPIT and GPCA using Lit-BM-13 as a benchmark (Figures 5F, S4A, S4B). While
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ABBI-21 validates at a higher rate than Lit-BM-13 in the inner-complexome, PPI pairs
from both ABBI-21 and Lit-BM-13 datasets show lower recovery rates in the
outer-complexome than in the inner-complexome (P = 3 x 1072, Fisher’s exact test). The
fact that both our literature benchmark and ABBI-21 behave similarly in the
outer-complexome demonstrates that ABBI-21 pairs in the outer-complexome are of
good biophysical quality, suggesting that the difference in recovery rates between inner-
and -outer-complexome stems from differing biophysical factors, e.g. interaction affinity
or post-translational modification dependency. These observations are consistent with
our previous observations that within-complex PPIs are detected more frequently in
Y2H screens and PPIs detected in more screens test positive in validation assays at
higher rates, independent of data quality (Luck et al., 2020). The striking observation of
inner-complexome PPIs being more readily detected by different PPl assays suggests
that inner-complexome PPls tend to be overrepresented in interactome maps relative to

their proportion in the real interactome.

In summary, we observe a high discrepancy among alternative views of inner-
versus outer-complexome organization obtained from co-complex association and
coexpression as opposed to binary interaction maps and genetic interaction profiles
(Figure 5G). These results are most likely explained by a technical bias of AP-MS and
co-expression towards highly abundant proteins and relatively stable associations.
Compared to Sys-NB-06 or Lit-BM-20, ABBI-21 is the most uniform biophysical map in

the outer-complexome, for proteins of both high and low abundance.

A Large Proportion of the Interactome Consists of Interactions Between

Functionally Heterogeneous Proteins in the Outer-Complexome

To further investigate global relationships between biophysical and functional
interactome networks, we computed the fraction of protein pairs from Lit-BM-20,
Sys-NB-06, and ABBI-21, where the corresponding gene pairs are also connected in
the functional networks (Figures 6A, STAR Methods #30). In the global interactome,

pairs from Lit-BM-20 and Sys-NB-06 are more likely to connect proteins that are also
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connected in PSNs, compared to ABBI-21 (Figure 6B). We observed similar patterns for
all three biophysical datasets when directly using the positive and negative genetic
interactions instead of the profile similarities (Figure S5A). In general, pairs of genes
encoding interacting proteins found in all biophysical maps have a higher likelihood to
show negative genetic interactions than positive genetic interactions (VanderSluis et al.,
2018) (Figure S5A), and genes encoding protein pairs from the inner-complexome have
an increased tendency to show negative Gl than pairs in the outer-complexome (Figure
S5A). ABBI-21 and Lit-BM-20 have similar biophysical quality as inferred from validation
rates (Figures 2B,C and 3A), and functional networks are enriched in highly abundant,
conserved inner-complexome direct and indirect pairs (Figure 4). Therefore, the
differential likelihood of pairs from different biophysical maps to be connected in the
three PSNs suggests varying functional relationships between interacting proteins in the
three biophysical maps rather than differences in the fraction of true positive biophysical

interactions.

Investigating the difference in the fraction of PPIs connected in the functional
networks, we note that ABBI-21 and Lit-BM-20 are not directly comparable as the four
individual maps in ABBI-21 were produced by systematically testing
proteome-scale-by-proteome-scale search spaces. In contrast, most studies from the
literature tend to focus on a particular pathway or process of interest. As an example,
we looked at a single study (McCann et al., 2015) which, of all the individual
publications curated to form Lit-BM-20, contributes the largest number of PPls that
intersect with the functional networks. It reports 5% and 26% of the subset of Lit-BM-20
pairs that are also connected in Gl- and GE-PSN, respectively. McCann et al. tested
every pairwise combination of 70 pre-ribosomal proteins using Y2H. The detected PPIs
have a very high rate of being connected in the Gl- and GE-PSNs of 40% and 91%,
respectively but not much higher than the fraction of every tested combination, which is
29% and 88%. For comparison, the corresponding value is only 1% for the
proteome-by-proteome space. Thus, the high overlap likely stems more from the choice

of which protein pairs to test rather than the specific interactions detected. In contrast,
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ABBI-21 is free of this bias, since it was generated by standardized testing of each
protein pair, and so the rate of overlap of ABBI-21 with functional networks should more

accurately reflect the rate for the real binary protein interactome.

We investigated the functional relationships between proteins interacting in the
inner- and outer-complexome by comparing the ability of PSNs to connect pairs from
the inner- and outer-complexome within the three biophysical maps (Figure 6C).
Interactions from the inner-complexome have a uniformly high probability of being
connected in the functional networks, whether from Lit-BM-20, Sys-NB-06, or ABBI-21
(Figure 6C). By contrast, interactions from all three zones of the outer-complexome, B,
C, and D, in all three biophysical maps are found to a much lower extent in the
functional networks (Figure 6D). This demonstrates a higher tendency for functional
networks to preferentially connect constitutive, co-complex interactions rather than the
interactions of the outer-complexome. These three biophysical datasets differ
substantially in their proportion of inner-complexome pairs. More than one-quarter of
Lit-BM-20 interactions and Sys-NB-06 associations are between proteins that are
subunits of the same complex (Zone A) compared to around one-tenth for ABBI-21
interactions (Figure 6C). This difference contributes to the lower aggregate fraction of
ABBI-21 PPIs connected in functional networks, relative to Lit-BM-20 and Sys-NB-06
(Figure 6B).

High degree, or hub, proteins in biophysical maps can be classified as either
‘date’ or ‘party’ hubs depending on the degree to which interacting partners are also
co-expressed (Han et al., 2004). In relation to the distinction between inner- and
outer-complexome, party hubs tend to be in complexes, whereas date hubs tend to be
outside complexes (Kim et al., 2006). We observed a similar trend for party and date
hubs as for the inner- and outer-complexome. Systematic binary maps have mostly
date-hubs, whereas literature-curated maps have more party-hubs (Figure S5B, STAR
Methods #31), consistent with previous maps (Yu et al., 2008). Party-hubs, which use

multiple interfaces to bind multiple partners simultaneously, overlap with functional
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networks twice as much as date-hubs, which usually interact with partners one at a time
transiently (Figure S5B). To check if our results were robust, we repeated our analysis
using a range of different cutoffs, to define date and party hubs, and observed
consistent results across all the different cutoffs (Figures S5B, S5C). Our results
suggest that while the literature-curated PPIs and co-complex associations are biased
towards high-affinity constitutive interactions, a systematically generated map of the

binary interactome captures more transient, context-specific interactions.

We observe a similar bias with essential genes, where interactions between
proteins encoded by essential genes show a higher likelihood to be connected in
GI-PSN in all three binary datasets. However, Lit-BM-20 and Sys-NB-06 are biased
towards proteins encoded by essential genes resulting in increased overlap with
GI-PSN, whereas ABBI-21 covers the proteome and interactome more uniformly.
(Figure S5D).

We next investigated how the degree of the proteins in biophysical networks
influences their overlap with functional networks. The fraction of PPIs connected in the
functional networks decreases as the interacting proteins’ degree increases across the
different biophysical networks (Figure S5E, STAR Methods #32). With the notable
exception of Sys-NB-06 in GE-PSN due to the tightly correlated expression of the
largest protein complexes’ subunits. We would expect high-degree proteins to be less
functionally similar to their binding partners, as they are more pleiotropic (Yu et al.,
2008). Together these results indicate that systematic binary maps have a higher

tendency to identify transient, context-specific interactions.

Because functional networks show a substantially higher tendency to connect
protein pairs in the inner-complexome than the outer-complexome (Figure 6C), they
likely capture more constitutive cellular functions involving highly abundant, essential
proteins rather than context-specific functions involving less abundant, non-essential

proteins. We investigated our hypothesis by testing the likelihood of PPIls from four
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well-characterized yeast pathways from the KEGG database: Cell cycle; Meiosis; MAPK
signaling; and Autophagy, each highly conserved across the eukarya (Kanehisa et al.,
2019) to be connected in functional networks (Figure 6E). Interestingly, genes encoding
interacting proteins from different pathways have a different likelihood of being
connected in the functional networks. Over half of the interacting pairs in Cell cycle and
Meiosis pathways, essential for yeast reproduction and growth, are connected in
GI-PSN, whereas less than 20% of the interactions from the context-specific pathways —
MAPK signaling and Autophagy — are detected (P = 0.002, Fisher’s exact test).
GE-PSN and CS-PSN show a similar bias towards Cell cycle and Meiosis compared to
MAPK and Autophagy (Figure 6E).

To validate our results that functional networks have a higher tendency to
connect interacting proteins from the inner- as opposed to the outer-complexome, we
investigated the ability of PSNs to connect proteins involved in gold-standard, reference
PPIs from both inner- and outer-complexome. We used the same set of reference PPIs
used in Figure S5E. All three PSNs captured significantly more interactions from the
direct co-complex and KEGG co-complex datasets than the outer-complexome
regulatory PPIs in pathways (KEGG regulation) and kinase-substrate interactions (P
ranges from 5 x 10° to 5 x 10, Fisher's exact test, table 4) (Figures 6F). By
demonstrating that even PPIls with well-understood functions from the inner- and
outer-complexome have different tendencies to be connected in PSNs, these results
support our conclusions from the overlap of systematic biophysical maps and PSNs
(Figures 6C) that the inner-complexome tends to consist of functionally similar
interacting proteins. In contrast, the outer-complexome (in which the majority of
systematic binary maps are located) tends to consist of interactions between
functionally heterogeneous proteins necessary for intracellular crosstalk. This
conclusion is supported by the high level of pathway cross-talk and pleiotropy revealed
by a binary map of the plant signaling network and interactome-informed phenotypic
assays (Altmann et al., 2020). We should be clear that when we refer to PPIs between

“functionally heterogeneous” proteins, that it's still likely that these proteins carry out a
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common function through their interaction but just that the overall function of the two
proteins is not so similar. As an example, in a PPl of the nuclear pore component
importin-a and one of its cargo proteins, being transported to the nucleus is likely to be
crucial for the function of the cargo but at the aggregate level the overall function of two

genes is different.

Network diagrams of the biophysical maps, split into the four Zones (Figure 7A)
show modules formed by the larger protein complexes in Sys-NB-06, due to the high
recovery of both direct and indirectly contacting co-complex associations. Whereas the
binary PPl maps don’t display such clear modules, related to them finding mainly direct
and not indirectly contacting interactions. In Zone D, we see a denser network in

Sys-NB-06 and ABBI-21 than in Lit-BM-20.

Integrating Biophysical and Genetic Network Maps Aids Understanding Cellular

Organization

The uniform coverage of interactions in both the inner- and outer-complexome
space by ABBI-21 can now be leveraged to elucidate molecular mechanisms. For
example, the endosomal sorting complex required for transport (ESCRT) pathway plays
a key role in the biogenesis of multivesicular bodies and turnover of membrane proteins
(Elia et al., 2011). The main players in the ESCRT pathway are the five ESCRT
complexes, supporting auxiliary proteins, and the cargo to be sorted. By integrating
biophysical and genetic networks, we observe that the five ESCRT complexes’ core
constituents interact biophysically in both ABBI-21 and Lit-BM-20 and are highly
interconnected in functional networks (Figure 7B). In contrast, outer-complexome
ABBI-21 PPls between subunits of ESCRT complex and non-complex proteins,
important for endosomal sorting, are not connected in the functional networks. For
example, ABBI-21 contains PPIls between Vfa1, important for vacuolar sorting, and
Vps4 and Vta1, subunits of the ESCRT-4 complex. However, despite known functional

roles, Vfa1 is not connected with Vps4 and Vta1 in any of the PSNs.
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Systematic binary maps can help us understand how proteins within and outside
complexes function together to mediate various biological processes. One such
example is Snn1, a subunit of the biogenesis of lysosome-related organelles complex 1,
BLOC-1, important for endosomal maturation (Hayes et al., 2011; John Peter et al.,
2013). In ABBI-21, Snn1 interacts with proteins of the ESCRT complex like Vps28 and
other non-complex endosomal proteins like Nkp2 (Figure 7B). ABBI-21 interactors of
Snn1 are significantly enriched in proteins located in endosomes (13%, vs 2% overall
for proteins in ABBI-21, P = 0.0007, Fisher’s exact test). Five out of six BLOC-1
complex proteins have PPls primarily in ABBI-21, and none of the interacting protein

pairs are connected in any of the functional networks.

The uniform coverage of inner- and outer-complexome by ABBI-21 can also shed
light upon potential mechanisms by which previously under-studied complexes act. For
example, the oxidant-induced cell-cycle arrest (OCA) complex mediates G1 arrest
under stress conditions through a yet unknown mechanism (Alic et al., 2001). This
complex’s six components are connected biophysically and in the functional networks,
exhibiting similar genetic interaction and condition sensitivity profiles (Figure 7C).
Although inner-complexome interactions with OCA may well be critical for its function,
they do not explain the complex’s stress-specificity. Outer-complexome interactions of
OCA proteins do not overlap with the genetic networks but might be instrumental in
understanding the mechanism through which the complex mediates its function. Of
particular interest is the interaction between Oca1 and Tos4, newly reported in YeRI
(Figure 7C). Tos4 is a transcription factor that binds to the promoters of genes involved
in the G1/S transition (Horak et al., 2002), offering a hypothesis for the mechanism by
which OCA mediates G1 arrest.

Altogether, our results demonstrate the ability of ABBI-21 to uniformly cover both

the inner- and outer-complexome and highlight the need for integrating biophysical and
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genetic maps to comprehensively understand cellular functional organization across the

inner- and outer-complexome.

DISCUSSION

The observations presented in this paper suggest fundamental differences of
organization between the inner-complexome, containing mostly quaternary structures
that are highly detectable by affinity purification approaches, and the
outer-complexome, which has a greater tendency towards quinary structures, “largely
destroyed by cell fractionation” (McConkey, 1982), but detectable by binary assays in
living cells that reconstitute functional proteins such as transcription factors, fluorescent
proteins or signal transduction receptors as in the Y2H, GPCA, and MAPPIT assays,
respectively. From this perspective, it is easy to see why there should be a substantial
discrepancy among alternative views of inner- versus outer-complexome organization
revealed by approaches as different as co-complex association detection and binary

interaction assays.

A concept related to the quaternary vs quinary divide comes from Jacob and
Monod, who noted that: as important as lactose permease and -galactosidase (5-gal)
are to transport and cleave lactose when it is present, the role of Lacl in repressing
these activities in the absence of lactose is also important for short-term cellular
physiology and crucial for long-term evolutionary fithness (Jacob and Monod, 1961).
From this example emerged the dichotomy between: i) “structural genes”, such as lacZ
and /acY, which code for enzymes, transporters, and other types of polypeptides that
perform specific biochemical tasks; and ii) “regulator genes”, such as lacl, encoding

regulators that control and coordinate these biochemical activities.

Our results establish that the biophysical and functional dichotomy between
“structural” and “regulatory” genes is reflected in the interactome. By organizing the
interactome into four different zones and integrating biophysical interactions and

associations with systematic functional profile similarity maps, we show that whether a
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protein encoded by a “structural” gene mediates constitutive housekeeping functions or
pleiotropic regulatory processes is a property of its interactions. For example, Rpl8A, a
component of the large ribosomal subunit, shows interactions with both functionally
similar and functionally heterogeneous proteins in Zones A, B, and C. A functionally
coherent interaction between RpI8A and Rpl36A in Zone A is important for constituting
the ribosome that performs the constitutive function of translating mRNA into proteins.
In contrast, a Zone B interaction between RpI8A and Erb1, a constituent of 66S
pre-ribosomal particles, is important for maturation of the ribosome. Finally, a Zone C
interaction between functionally diverse RpI8A and Sba1, a co-chaperone of the Hsp90
family, likely contributes to turnover and maintenance of ribosomal proteins under

diverse stresses.

Thus, the inner-complexome constitutes the “manufacturing machinery”
operating in a relatively constant, robust, and persistent manner, and the
outer-complexome comprises the “regulatory processes" exhibiting greater flexibility,
plasticity, environmental responsiveness, and evolvability. The outer-complexome
mostly consists of quinary interactions between proteins encoded by structural and
regulatory genes, mediating dynamic biological processes that allow for cellular
communication and create avenues for rapid response to changing environmental

conditions.

Despite the early example of lacZ and /acl illustrating the principle that being a
structural gene or accounting for a significant percentage of mass does not equate to
higher cellular importance, literature-curated binary maps and systematic non-binary
maps provide highly biased views of the interactome that favor the inner-complexome.
In contrast, systematically generated binary maps, which are less biased by biophysical
and molecular attributes, demonstrate that the outer-complexome is indeed highly
populated with interactions between functionally heterogeneous proteins as expected

for the mediation of regulatory processes and cross-talk between pathways.
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Over twenty years of interactome mapping has produced a wealth of data that
has facilitated our understanding of biological processes at the cellular, organismal, and
systems levels. However, these mapping efforts have typically been focused on single
conceptual features of biological complexity such as binary protein-protein interactions,
co-complex associations, signaling pathways, and genetic interactions. While this
plethora of data and integrative analysis has enriched our understanding of the
interactome, there has not been a comprehensive integration of network information
that describes how all the disparate activities of the cell collectively communicate and
coordinate cellular functions. By generating a new proteome-wide binary PPl network
and integrating that data with existing protein interaction maps to constitute an “atlas of
binary maps”, we have laid out an alternative model of the interactome according to
which the interactome is built around inner-complex and outer-complex associations
that can be merged to provide a more integrated view of cellular function, linking

disparate but essential cellular processes.

Moreover, we have observed that only a small proportion of the interactome is
composed of stable, functionally coherent, inner-complexome interactions, while the
vast majority of the interactome consists of transient, context-dependent interactions in
the outer-complexome. This is consistent with emerging evidence suggesting that the
majority of the interactome may be transient and context-specific (Hein et al., 2015; Liu
et al., 2020; Tompa et al., 2014). Our analysis suggests that these outer-complexome
interactions allow for cellular communication and create avenues for rapid response to
changing environmental conditions. However, mapping and functional characterization
of these outer-complexome interactions remain challenging. Development of assays
that can efficiently detect transient, context-specific PPls and approaches that can
characterize their functions will be an important next step towards understanding the

global organization of the interactome.
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FIGURE LEGENDS

Figure 1. The Complexogram Strategy

(A) The yeast proteome ordered by the number of subunits, decreasing, of the
corresponding complex, for proteins in a complex, and by abundance, increasing, for
non-complex proteins. After dividing into 20 bins, the number of proteins in each of
three general functional categories (Liebermeister et al., 2014), is shown by the area of
the circles. Not Mapped corresponds to unannotated proteins.

(B) Nlustrative network diagram showing the space of pairwise protein combinations
categorized based on protein complex membership and additionally ordered by protein

abundance.

Figure 2. Current Status of the Yeast Binary Interactome Landscape

(A) Curation of the three binary PPI datasets.

(B) Experimental validation of yeast systematic binary maps and literature-curated pairs
in GPCA and MAPPIT, using positive and random reference sets as benchmarks.

(C) The fraction of pairs from different binary, co-complex association, and prediction
datasets positive in Y2H v4.

(D) Fraction of PPIs identified by Y2H v4 in complex structures of different sizes.

Error bars in (B), (C), (D) indicate 68.3% Bayesian ClI.

(E) Heatmaps of PPI counts, ordering the proteome-by-proteome space of pairwise
combinations by the number of publications per protein. I3D-exp-20 (yellow), Lit-BM-20
(blue), and Y2H-union (purple). The upper and right bar charts show the median
number of publications per gene for each bin. The color intensity of each square reflects
the total number of interactions between proteins for the corresponding bins. The red
triangle demarcates the fraction of the space containing 80% of PPIs in the dataset.

(F) Pie charts showing the proportion of pairs in the inner- and outer-complexome

Zones within the three biophysical maps.
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In all panels homodimeric interactions are excluded.

Figure 3. A First All-Versus-All Reference Binary Map of the Yeast Interactome

(A) Overview of YeRI generation pipeline and experimental validation in GPCA and
MAPPIT.

(B) Enrichment of YeRI| PPIs between proteins in the same cellular compartments,
pathways, and protein complexes.

(C) Heatmaps of high-quality binary PPI counts, ordered by the number of publications
per protein, from all four systematic binary interactome maps.

(D) Increase in the number of high-quality binary PPls from available experiments in
Interactome-3D (yellow), Lit-BM (blue), and systematic studies (purple). Note: our
literature and structure datasets only go as far as 2020.

(E) Composite networks, generated by the addition of each systematic map (top row,
left). Network regions enriched for GO terms (bottom row, left). Merge of network and
enriched regions for the most recent composite network (right).

(F) Coverage of the yeast interactome by ABBI-21, based on three reported estimates
of the total interactome size.

(G) The number of proteins encoded by genes of unknown function with at least one
interaction in ABBI-21 or Lit-BM.

(H) PPI network of PEX35 and its first- and second-degree interactors. Named proteins
are those annotated or predicted to have the GO terms related to ‘peroxisome importer

complex’.

Figure 4. High Discrepancy Among Alternative Views of Interactome Organization
(A) Schematic of the different functional profile similarity networks.

(B) Heatmaps of protein interactions and associations in biophysical and functional
networks, ordered by the number of publications per protein, protein abundance, gene

conservation, essentiality, and predicted fraction of residues in disordered regions.
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Upper limits of the color scales are set to 5x the average number of PPls per bin,
separately for each network.

(C) Using experimental structures of mediator, the direct interactions and indirect
associations that are contained within the different biophysical and functional networks.
Direct enrichment is defined as the ratio of the fraction of detected direct interactions
over the fraction of detected indirect associations.

(D) Recovery of protein pairs in direct contact and pairs not in direct contact within the
corresponding 3D structures, by different biophysical and functional networks. Each
point is a separate protein complex with at least 5 distinct protein subunits.

(E-F) Results of testing samples of pairs from GI-PSNs, across different PCC cutoffs, in
Y2H v4 (E) and GPCA (F).

(G) The number of edges in GI-PSN at the tested PCC cutoffs.

Figure 5. Inner- Versus Outer-Complexome Organization

(A) Edge density fold change in the inner- and outer-complexome in the biophysical and
functional maps.

(B) Edge density fold change in the Zones B, C and D of the outer-complexome in the
biophysical and functional maps.

(C) Heatmaps of the number of connected gene pairs in biophysical and functional
networks, with the proteome first ordered by size of protein complexes in which the
proteins are involved then ordered by protein abundance.

(D) Statistically significant enrichment and depletion of edges per bin in (C), calculated
by random permutation of the order of the proteins.

(E) Enrichments of ABBI-21 and Sys-NB-06 to contain different gold-standard sets of
PPIls from the inner- and outer-complexome. Direct PPIs within protein complexes with
three or more subunits; co-complex pairs from KEGG pathways; PPIs regulating
activation or inhibition from KEGG; and high-quality kinase-substrate pairs from the KID

database.
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(F) Fraction of pairs in the inner- and outer-complexome from Lit-BM-13 and ABBI-21
that tested positive using GPCA and MAPPIT.

(G) Schematic summarizing the two patterns of distribution from (D).

Figure 6. A Large Proportion of the Interactome Consists of Interactions Between
Functionally Heterogeneous Proteins in the Outer-Complexome

(A) Schematic showing pairs from biophysical maps also connected in functional
networks.

(B) The fraction of pairs from three biophysical maps connected in functional networks.
(C) The fraction of pairs in the inner- and outer-complexome in the three biophysical
maps connected in functional networks. The pie charts show the proportion of pairs in
the inner- and outer-complexome within the three biophysical maps.

(D) The fraction of pairs from the outer-complexome, Zones B, C, and D, also
connected in functional networks.

(E) The fraction of PPIs from four different yeast pathways connected in different
functional networks.

(F) The fraction of PPIs from the four gold-standard biophysical interaction datasets

(see Figure 5E) connected in functional networks.

Figure 7. Integrating Biophysical and Genetic Network Maps Aids Understanding
Cellular Organization

(A) Three different biophysical networks, separately showing only PPIs/co-complex
associations in each zone.

(B) Integrated network showing interactions among subunits of ESCRT complexes and

their interacting partners.
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(C) Integrated network showing interactions among subunits of the OCA complex and
their interacting partners. Physically interacting proteins also connected in functional

networks are connected with thick orange lines in (C, D).

Figure S1. Current Status of the Yeast Binary Interactome Landscape, Related to
Figure 2

(A) Left: structure of 20S proteasome (PDB: 1RYP); middle left: direct protein-protein
interactions within the structure; middle right: indirect associations derived from
experimental structures; right: all possible pairwise combinations between different
subunits.

(B) Venn diagram of PPlIs in three high-quality binary datasets.

(C) Venn diagram of proteins with interactions in three high-quality binary PPI datasets.
(D) Experimental validation of literature pairs, with single and multiple pieces of
evidence, using GPCA

(E) Benchmarking different binary PPl assays, using positive and random reference
sets (scPRS-v2 and scRRS-v2). Colored bars indicate positives.

(F) The fraction of directly contacting interactions, taking all reported pairs where both
proteins are in a protein complex structure with at least three subunits, for different
datasets.

(G) Y2H v4 recovery of I3D-exp-17 pairs as a function of the fraction of the protein that
is contained in the experimental structure. The lower of the two values of coverage of
the different proteins in each interaction is used.

(H) Distribution of interface area for I3D-exp-17 PPls, that tested either positive or
negative in Y2H v4.

(I) Distribution of interface area for I13D-exp-17 PPls, that tested positive in Y2H v4,
GPCA, and MAPPIT, restricting to pairs that were successfully tested in all three
assays.

(J) Dissociation constants of pairs positive or negative in Y2H v4.
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Figure S2. A First All-versus-All Reference Binary Map of the Yeast Interactome,
Related to Figure 3

(A) The results of different batches of experimental validation of YeRI in GPCA and
MAPPIT. In total, all pairs from YeRI were tested in both assays.

(B) Network-based spatial enrichment analysis (SAFE) for YeRI. Clusters of genes
enriched for GO terms in YeRI are highlighted.

(C) Number of PPIs involving proteins encoded by genes of unknown function in
Lit-BM-20 or ABBI-21.

Figure S3. High Discrepancy Among Alternative Views of Interactome
Organization, Related to Figures 4 and 5

(A) Comparison of two datasets of yeast protein complexes, restricting to those with
three or more subunits.

(B) Overlap of the three functional profile similarity networks (PSNs), genetic interaction
(GI-PSN), gene expression at mRNA level across different conditions (GE-PSN), and
growth across different conditions PSN (CS-PSN). Restricted to genes tested in all three
PSNs with PCC value in the top 1% of tested pairs in each PSN.

(C-D) Mean of publication count, abundance, gene conservation, and predicted
disordered fraction, and the fraction of essential genes for proteins either in or outside
complexes using the collection of complexes from Costanzo et al 2016 (D) the and EBI
complex portal (D). Error bars denote 95% CI.

(E) The Correlation matrix with clustering of different protein-level properties based on
Spearman's rank correlation coefficient.

(F) The fraction of genes in Lit-BM, Sys-NB-06, and ABBI-21 across sliding windows of
1,000 proteins, ordered by abundance and conservation. Grey dotted lines show the

overall fraction.
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(G) Heatmaps of the number of connected gene pairs in GI-PSN, ordered by protein
abundance, and further segmented based on essentiality and involvement in the
ribosome.

(H) Estimation of the fraction GI-PSN pairs that are also a binary PPI, based on results
of testing samples from GI-PSNs at different PCC cutoffs using Y2H v4 and GPCA and
comparing to the results of the PRS.

(I-K) Distribution of CS-PSN after restricting to genes tested in the experiment: (1) edge
density fold change in the outer-complexome (Zones B, C and D), (J) heatmap of the
number of connected gene pairs with the proteome first ordered by size of protein
complexes in which the proteins are involved then ordered by protein abundance, and,

(K) statistically significant enrichment and depletion of pairs in (J).

Figure S4., Related to Figure 5
(A-B) The fraction of pairs testing positive in GPCA (A) and MAPPIT (B) in Zones A, B,
C, and D from Lit-BM and systematic binary maps.

Figure S5. A Large Proportion of the Interactome Mainly Consists of Interactions
Between Functionally Heterogeneous Proteins in the Outer-Complexome, Related
to Figure 6

(A) Composition of edges from three biophysical maps in inner-complexome (Zone A)
and outer-complexome (Zones B, C, and D) and the fraction of pairs from biophysical
maps also connected in positive or negative genetic interaction networks (top 1%) within
the four zones.

(B) Composition of edges from three biophysical maps involving date and party hubs
using different degree and PCC thresholds, and the fraction of pairs from biophysical

maps of each category connected in functional networks.
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(C) Average co-expression PCC of proteins in biophysical maps with different degrees.
A cutoff between party and date hubs of 0.3 is shown by the grey horizontal line.

(D) Composition of edges from three biophysical maps between essential genes and
involving non-essential genes, and the fraction of pairs from biophysical maps of each
category connected in functional networks.

(E) The fraction of edges that are also connected in functional networks, for three
biophysical maps, binned by the higher degree of the two proteins for each pair. Logistic

regression and 95% CI are shown.
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STAR Methods

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and
will be fulfilled by the Lead Contact, Marc Vidal.

Data and code availability

YeRI, ABBI-21 and Lit-BM-20 maps are available at http://yeast.interactome-atlas.org.
Analysis code is available at https://github.com/CCSB-DECI/YeRI_paper.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains

Yeast haploid strains MATa Y8930 and MATa Y8800, derived from PJ69-4 (James et
al., 1996), were used previously (Dreze et al., 2010; Yu et al., 2008). Both strains harbor
the following genotype: leu2-3,112 trp1-901 his3A200 ura3-52 gal4A gal80A
GAL2::ADE2 GAL1:HIS3@LYS2 GAL7:lacZ@MET2 cyh2R. Yeast cells, parental
strains or transformants, were cultured either in YEPD or synthetic drop out media,

supplemented as needed and incubated at 30°C.

Bacterial strains

Chemically competent DH5a or DB3.1 E. coli cells were used for all bacterial
transformations in this study. Transformed cells were cultured in Luria Broth or Terrific
Broth, supplemented with antibiotics (50 pg/ml of ampicillin, spectinomycin or

kanamycin) as needed and incubated at 37°C.
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Human cell lines

Human embryonic kidney HEK293T cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum, 2mmol/L L-glutamine,
100 1.U./mL penicillin, and 100 pg/mL streptomycin. Cells were incubated at 37°C with
5% CO2 and 95% humidity.

METHOD DETAILS

#1 Yeast open reading frames

The list of yeast ORFs was downloaded from the Saccharomyces Genome Database
(SGD) (https://www.yeastgenome.org/) on January 14", 2017. Four ORFs
(YCRO97W/HMRA1, YCR096C/HMRAZ2, YCLO66W/HMLALPHA1,
YCLO067C/HMLALPHAZ2) annotated in SGD as “silenced gene” were removed. Only

SGD-annotated “Verified” and “Uncharacterized” ORFs were included whereas ORFs

annotated as “Dubious” were excluded, leaving a total of 5,883 ORFs with 5,155 and
728 ORFs classified as Verified and Uncharacterized, respectively. All datasets
analyzed have been restricted to these 5,883 ORFs and previous ORF names that
appear as aliases for one of these ORFs have been mapped to their corresponding new

name.

#2 Complexome - list of protein complexes

Complexes were taken from Data File S12 of (Costanzo et al., 2016) and filtered for
those containing three or more different protein subunits, resulting in 339 complexes
containing 1,897 different proteins. In some analyses, results were compared with an
alternative yeast protein complex dataset was downloaded from the EBI Complex Portal
(Meldal et al., 2019) on May 5™ 2020, and also filtered for those containing three or

more different protein subunits.
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#3 Assigning protein pairwise combinations to individual zones

The search space of all possible pairwise combinations of proteins can be classified into
four different “zones” based on their relationship to the complexome (Figure 1A). We
define Zone A, which we refer to as the inner-complexome, as all pairwise combinations
of proteins within protein complexes. Such pairs would include for example Rpt4 and
Rpt5, two interacting subunits of the proteasome (Finley et al., 2012), and Rps1A and
Rps14A of the ribosome (Scaiola et al., 2018). Zone B corresponds to pairs of proteins
where each protein belongs to a different complex. For example, the RNA polymerase Il
(RNA Pol-1l) Rpb2 subunit is capable of interacting with the Tfg2 subunit of the
transcription factor Il complex TFIIH (Plaschka et al., 2016). Zone C represents all
pairwise combinations where one protein is in a complex and the other is not. For
example, Rpl10, a component of the large ribosomal subunit, interacts with Sqt1, a
chaperone important for Rpl10 assembly into the ribosome (Eisinger et al., 1997).
Another example would be Rbp2 which interacts with Rad26, a nucleotide excision
repair protein recruited to DNA lesions by RNA Pol Il (Xu et al., 2017). Finally, Zone D
corresponds to protein pairs where neither protein belongs to a complex. Examples of
Zone D interactions include most PPIls within signal transduction pathways, individual
chaperones and their clients or kinase-substrate pairs involved in cellular processes

such as autophagy.

While populated by relatively abundant proteins and large molecular size
machines, the inner-complexome covers only a tiny proportion of the full yeast
interactome “search space”, i.e. all ~18,000,000 pairwise combinations between all
~6,000 proteins. For example, the yeast ribosome, which accounts for nearly 20% of
the proteomic mass (Liebermeister et al., 2014), is encoded by only 2% of all genes and
all combinations between ribosomal proteins correspond to ~0.04% of the whole search
space. Together the 339 complexes in our complexome map represent 17,607 pairwise
combinations between their respective subunits, which corresponds to only ~0.1% of

the proteome-by-proteome space. This leaves us with ~99.9% of the whole search
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space for the outer-complexome, with its three zones, B, C, and D, corresponding to

10%, 44%, and 46% of the proteome-by-proteome space, respectively.

#4 Assembly and description of biophysical and genetic datasets

Y2H-union: Uetz-screen, Ito-core and CCSB-YI1

As described previously (Yu et al., 2008), Uetz-screen is a subset of PPIs from Uetz et
al ((lto et al.,, 2001; Uetz et al., 2000) that was obtained from a proteome-scale
systematic Y2H screen, excluding a smaller-scale, relatively biased, targeted
experiment with a smaller number of well-studied bait proteins. Ito-core is a subset of
PPIs found three times or more in Ito et al (Ito et al., 2001), excluding unreliable pairs of
proteins found only once or twice. CCSB-Y1 is a proteome-scale dataset of Y2H PPIs
validated using the two orthogonal assays MAPPIT and yPCA (Yu et al., 2008). After
restricting to PPIs involving the 5,883 ORFs (described above) the dataset sizes are as
follows: Uetz-screen: 645 PPls; Ito-core: 816 PPls; CCSB-YI: 1,772 PPIls. The union of
these maps (Y2H-union) contains 1.933 nodes and 2,833 PPlIs.

Literature-curated biophysical datasets (Lit-NB, Lit-BS, Lit-BM)

Literature-curated pairs were obtained from the databases MINT (Licata et al., 2012),
IntAct (Orchard et al., 2014), DIP (Salwinski et al.,, 2004), and BioGRID
(Chatr-Aryamontri et al., 2017). The data files used were the 2020-07-14 release from
IntAct (containing data from IntAct, MINT and DIP) and BioGRID release 3.5.187 (from
2020-06-25). We excluded evidence corresponding to the eight systematic,
proteome-scale co-complex association datasets (Gavin et al., 2002, 2006; Ho et al.,
2002; Ito et al., 2001; Krogan et al., 2006; Tarassov et al., 2008; Uetz et al., 2000; Yu et
al., 2008). Data was filtered to ensure valid IDs for UniProt accession numbers, Pubmed
IDs and PSI-MI terms. Each piece of evidence for a protein pair had to consist of a
Pubmed ID and an interaction detection method code in the PSI-MI controlled

vocabulary (http://www.psidev.info/groups/molecular-interactions). Duplicated evidence

can arise in cases where different source databases curate the same paper. We merged
duplicated entries for each pair, as detected by multiple pieces of evidence with the

same Pubmed ID and experimental interaction detection codes which are either
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identical or have an ancestor-descendent relationship in the PSI-MI ontology. In the
latter case, the more specific descendent term was assigned to the merged evidence. In
order to select the subset of protein pairs corresponding to binary interactions (as
opposed to co-complex associations), we developed a manual classification of the
PSI-MI interaction detection method terms (Rolland et al., 2014). Our classification has
since been updated to cover new experimental methods which have been added to the
controlled vocabulary in the intervening time. The methods are classified into three
categories; ‘invalid’, ‘binary’ and ‘non-binary’. Where ‘invalid’ corresponds to PSI-MI
terms that are not considered valid experimental protein-protein interaction detection
methods, ‘binary’ corresponds to terms that detect binary protein-protein interactions
and ‘non-binary’ corresponds to terms that detect potentially indirect associations. An
example term in the “invalid” category is “colocalization”. All protein pairs annotated with
‘invalid” terms were excluded. ‘Binary’ versus ‘non-binary’ evidence was used to
categorize protein pairs in the literature-curated dataset as follows. Pairs with no binary
experimental evidence were classified as “Lit-NB”, corresponding to 100,940 pairs.
Pairs with a single piece of binary evidence and no other evidence were classified as
“Lit-BS”, corresponding to 14,477 pairs. Finally, pairs with two or more pieces of
evidence including at least one binary evidence were classified as “Lit-BM”,

corresponding to 5,589 pairs.

Previous literature-curated datasets generated in 2017 and 2013 were used as a
source dataset for pairs experimentally tested in GPCA, MAPPIT and Y2H-v4 (see
Engineering of new Y2H destination vectors) experiments. These were generated and
processed as above with small differences. Lit-BM-17 and Lit-BS-17 were obtained via
the mentha resource data file dated August 28" 2017 (Calderone et al., 2013).
Lit-BM-13/Lit-BS-13/Lit-NB-13 were generated as described previously (Rolland et al.,
2014). Yeast PPIs annotated through December 2013 from six source databases: BIND
(Bader et al., 2003), BioGRID (Chatr-Aryamontri et al., 2017), DIP (Salwinski et al.,
2004), MINT (Licata et al., 2012), IntAct (Kerrien et al., 2012) and PDB (Berman et al.,
2000) were extracted and processed using the same protocol.

(Kerrien et al., 2012)
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Direct PPIs with experimental structures

The most definitive proof that a pair of interacting proteins are in physical direct contact
is the availability of a three-dimensional (3D) structure of their interface. We used the
subset of Interactome3D (Mosca et al.,, 2013) restricted to experimental structures,
excluding homology models. The dataset from the January 2020 release of
Interactome3D, referred to as “I3D-exp-20”, was used for most computational analyses.
The dataset from the June 2017 release, “I3D-exp-17”, was experimentally tested in its
entirety using Y2H v4 (see Engineering of new Y2H destination vectors). The date
assigned to PPIs was obtained from the PDB database taking their earliest release date

for all PDB structures from the “complete” Interactome3D dataset.

Note on the overlap between 13D-exp-20 and Lit-BM-20 PPIs

There were a surprisingly large number of pairs in 13D-exp-20 and not in Lit-BM-20
(1,015 pairs in the difference of I3D-exp-20 from Lit-BM-20 and 746 pairs in the union,
see Figure S1B). These pairs are mostly cryo-EM structures (77% Electron Microscopy
in the difference vs 36% in the intersection) of larger complexes (median number of
entities per structure of 18 in the difference vs 4 in the intersection). The reason for this
is that in the generation of the literature-curated datasets (see section Literature-curated
biophysical datasets), we don’t use the structural data for direct contacts, we base the
binary vs non-binary distinction on the experimental method used and we classify
Cryo-EM as non-binary since we don’t know if the reported pairs are in direct contact or

not.


https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435663; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

STAR Methods Table 1. Tested biophysical datasets

Number of pairs
attempted in:
Co-complex | Binary
Category Dataset Y2H v4 | GPCA |MAPPIT
associations | PPls
Gavin (2002) 3,210 200
Gavin (2006) 6,531 200
Proteome x
CYC2008 11,136 200 405
Co-complex | proteome
Krogan 7,059 200
Ho 3,584 200
Literature Lit-NB-17 71,260 151
Experimentally Ito-core 816 738 199 199
detected Proteome x | Uetz-screen 645 470 193 193
proteome CCSB-YI1 1,772 | 1,536 200 200
Tarassov 2,761 199 199 199
Binary
With structure | 13D-exp-17 1,787 | 1,231
Lit-BS-17 13,981 146 149
Literature Lit-BM-13 4,115 584 168
Lit-BM-17 4,623 | 4,128
Jansen 9,870 200
Predicted :
PrePPI 30,1841 200 198
scPRS-v2 108 108 108 108
PRS and RRS
scRRS-v2 198* 198 198 198
YeRI YeRI 1,910 1,910 | 1,910

@ pairwise combinations of proteins within each complex
®high confidence subset

*Negative control of random pairs of proteins

Functional profile similarity networks (PSNs)
Genetic interaction similarity profile data (GI-PSN) were extracted from Costanzo et al.
2016 (Costanzo et al., 2016). The average PCC of a pair was used if multiple PCCs

were available. Pairs with PCCs ranked in the top 1% were used to generate the Gl

7
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PSN. Condition-sensitivity data (CS-PSN) was extracted from Hillenmeyer et al. 2008
(Hillenmeyer et al., 2008). The log of growth ratios from the homozygous deletion data
were used to calculate PCC for each pair of genes. Pairs with PCCs ranked in the top
1% were used to generate the condition-sensitivity PSN. Co-expression data (CE-PSN)
was downloaded from https://coxpresdb.jp (Obayashi et al., 2019). The union dataset
(Sce-m.c3-0 Sce-r.c1-0, 2018.11.07) was used. Pairs with PCCs ranked in the top 1%

were used to generate the co-expression PSN.

STAR Methods Table 2. Numbers of genes and interactions in the top 1%

percentile of the genetic maps

PCC threshold
PSN Number of nodes Number of edges
(top 1%)
Gl 0.12 5,328 134,972
CS 0.42 3,479 65,147
GE 0.57 3,832 99,454

#5 Generation of scPRS-v2 and scRRS-v2

Due to the change in yeast ORFeome used, we updated our positive reference set
(PRS) and random reference set (RRS) from our original set (Yu et al.,, 2008). We
named the updated Saccharomyces cerevisiae positive and random reference sets
(scPRS-v2 and scRRS-v2 respectively). In Yu et al., 188 PPIs with five or more papers
were finalized as PRS candidates of which 116 had both ORFs in the collection at the
time. Of the 188 PPIs, we filtered those pairs to also be in Lit-BM-20, then to have both
ORFs in the FLEXGene collection (Hu et al., 2007) resulting in a final scPRS-v2 of 108
PPlIs. Of 188 RRS pairs in Yu et al., we removed all ORFs annotated as dubious, then
required they have both ORFs in the FLEXGene collection. To that we increased the
size by adding additional pairs randomly selected from the space of all possible pairwise
combinations of ORFs in the FLEXGene collection. Since the RRS is used as a

negative control, we then filtered out any pairs that appeared in any of the experimental
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PPl or co-complex association datasets, which resulted in removing one pair that
appeared in Lit-NB-20 resulting in a final scRRS-v2 of 198 pairs.

Yu et al. PRS before ORF . Yuetal. RRS before final 188 1airg
collection selection: 188 pairs filtering step: p
Remove dubious ORFs

Require E?_léshfzglso bein Require ORFs to be in

FLEXGene collection

Require FLEXGene
collection ORFs to match
genome sequence

Require ORFs to be in
FLEXGene collection

Add additional pairs

randomly selected from
the space of pairwise
combinations of
FLEXGene collection
ORFs

Require FLEXGene
collection ORFs to match
genome sequence Require pairs to not be in
any experimental PPI or
co-complex association
dataset

108 pairs 198 pairs

#6 Engineering of new Y2H destination vectors

Gateway compatible 2u high-copy destination vectors pVV212 and pVV213 (Hallez et
al., 2007) with a Gal4 DNA binding domain and a Gal4 activation domain, respectively,
were modified to be compatible with our standard Y2H vectors pDEST-DB and
pDEST-AD-CYH2 (Dreze et al., 2010) with respect to the LEU2 and TRP1 as selectable
markers. The resulting destination vectors pDEST-DB-QZ212 and pDEST-AD-QZ213
also carry CAN1 or CYHZ2 genes as counterselectable markers, respectively. The CYH?2
and CAN1 counterselectable markers facilitate plasmid shuffling for the identification of

auto-activators (Vidalain et al., 2004). Gateway LR reactions between yeast ORFs
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flanked by attL1 and attL2 sites with the attR1 and attR2 sites of pDEST-DB-QZ212
and pDEST-AD-QZ213 result in attB1 and attB2 sites flanking yeast ORFs now fused
downstream of either the Gal4 DB or Gal4 AD sequences of the respective destination
vector. See STAR Methods Table 3 for detailed information.

STAR Methods Table 3. Yeast destination vectors

pDEST-DB pDEST-AD pDEST-AD
Name pDEST-DB
-QZ212 -CYH2 -QZ213
Fusion partner Gal4-DB Gal4-DB Gal4-AD Gal4-AD
(aa) (1-147) (1-147) (768-881) (768-881)
Fusion location N-terminus N-terminus N-terminus N-terminus
Yeast Promoter Truncated ADH1 Truncated ADH1 Truncated ADH1 Truncated ADH1
(nt) (-701 to +1) (-410 to +1) (-701 to +1) (-410 to +1)
Yeast replication
CEN 2u CEN 2u
of origin
Linker sequence
between
3’ of Gal4 ICMAYPYDVPDY
element and SRSNQ PEFPS GGSNQ ASLGGHMAMEA
Gateway cloning PS
site
(aa)
Yeast terminator ADH1 Term ADH1 Term ADH1 Term ADH1 Term
E. coli selection
Ampicillin Ampicillin Ampicillin Ampicillin
marker
Yeast
auxotrophic Leucine Leucine Tryptophan Tryptophan
selection marker
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#7 Benchmarking Yeast Two-Hybrid (Y2H) assay versions

Assay versions were benchmarked using scPRS-v2 and scRRS-v2. The new Y2H
version with destination clones in vectors pDEST-DB-QZ212 and pDEST-AD-QZ213
was named Y2H version 4 (Y2H v4). Y2H v1 - v3 can be found in Luck et al, Nature,
2020 (Luck et al., 2020a). The performance of Y2H v4 was compared to Y2H v1, which
consists of destination clones in pDEST-AD-CYH2 and pDEST-DB, and was used to
generate CCSB-YI1 (Yu et al., 2008). The Y2H assay was performed as described
previously (Dreze et al., 2010; Rolland et al., 2014). Briefly,
Y8930:pDEST-DB-QZ212-ORF and Y8800:pDEST-AD-QZ213-ORF haploid strains
were inoculated and mated. After enrichment for diploids in SC-Leu-Trp, diploids were
spotted on SC-Leu-Trp-His+3AT solid media, testing for GAL1::HIS3 activation and on a
set of SC-Leu-His+3AT plates supplemented with 10 mg/L cycloheximide (CHX) to
identify spontaneous DB-ORF auto-activators (Dreze et al., 2010). After 3 days
incubation at 30°C, yeast strains growing on SC-Leu-Trp-His+3AT solid media and not
on SC-Leu-His+3AT+CHX media were scored as positives. The interacting pairs were

identified based on plate position.

#8 Generation of an expanded yeast ORFeome collection

Yeast FLEXGene clone collection (Hu et al., 2007) of full length ORFs cloned in either
pDONR201 or pDONR221, both KanR, contains 4,933 ORFs, after removal of
redundant ORFs and ORFs that no longer match SGD-annotated ORFs (version 2014)
(https://www.yeastgenome.org/). For the remaining 950 SGD-annotated ORFs not in

Yeast FLEXGene, entry clones were generated in-house and are referred to as
supplemental ORFeome collection. ORF sequences were amplified without their native
stop codon sequences from either S. cerevisiae S288C genomic DNA (ORFs without
introns) or cDNA (ORFs containing introns) using KOD high fidelity polymerase
(Novagen) and 18-20 nucleotide ORF-specific forward and reverse PCR primers tailed
with Gateway attB1 and attB2 sequences

attB1 Forward primer tail 5 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACC
attB2 Reverse primer tail 5 GGGGACCACTTTGTACAAGAAAGCTGGGTCCTA

from Hu et al (Hu et al., 2007), respectively, essentially as described (Rual et al., 2004).

11
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The CTA sequence in the Gateway tail of the reverse primer provided a synthetic stop
codon for all ORFs. Amplified ORFs were transferred to pDONR223 (Spec®) by
Gateway BP recombination cloning (Invitrogen) and transformed into chemically
competent DH5a E. coli cells. Sanger sequencing of PCR products, generated with
universal forward and reverse primers, was used to confirm the identity of all cloned
ORFs as described (Rual et al., 2004). 921 ORFs were obtained using this approach.

#9 ORFeome cloning in Y2H destination vectors

To generate an arrayed library of DB-ORF and AD-ORF hybrid proteins, the yeast ORFs
were transferred into both destination vectors, pDEST-DB-QZ212 and
pDEST-AD-QZ213, by Gateway LR recombination cloning (Invitrogen). Gateway LR
reaction products were transformed into DH5a E. coli cells, plasmid DNA was extracted
and used to transform yeast strains. pDEST-DB-QZ212 and pDEST-AD-QZ213
expression clones were transformed into yeast strains MATa Y8930 and MATa Y8800,

respectively (Dreze et al., 2010).

#10 Auto-activator detection for filtering before Y2H screening

We tested for auto-activation of the GAL1::HIS3 reporter gene by AD-ORF or DB-ORF
fusion proteins in both haploid and diploid yeast cells. To identify auto-activator clones in
haploid yeast, Y8930:DB-ORF and Y8800:AD-ORF strains were grown to saturation in
SC medium lacking Leucine (SC-Leu) or Tryptophan (SC-Trp), respectively. After 24
hours of incubation, Y8930:DB-ORF and Y8800:AD-ORF haploids were spotted on
SC-Leu-His+3AT or SC-Trp-His+3AT to test for GAL1::HIS3 activation. Viability of the

haploids was confirmed with growth on SC-Leu or SC-Trp, respectively.

To identify auto-activators in diploid yeast, MATa Y8930:DB-ORF and MATa
Y8800:AD-ORF strains were mated against their respective opposite mating type
strains carrying the corresponding destination vectors without any fused ORFs. Mating
was conducted in rich medium, YEPD, and resulting diploids were enriched following
growth in SC-Leu-Trp. Diploids were spotted on SC-Leu-Trp-His+3AT, to test for
GAL1::HIS3 activation, and on SC-Leu-Trp to confirm the viability of the diploids. For
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both haploids and diploids, after incubation at 30°C for 3-4 days, strains growing in the
absence of histidine were considered auto-activators. 560 DB-ORFs and 1 AD-ORF

were removed from the final screening collection.

The remaining DB-ORF and AD-ORF clones were re-arrayed into four different
groups to separate ORFs with similar nucleotide sequences, defined as BLAST scores
of 100 and above. Separation of similar ORFs makes the downstream sequence
identification of the short NGS reads more accurate, as the reads are aligned to specific
groups of ORFs without sequence ambiguity. Filtering for pairs that passed
autoactivator screening and successful cloning resulted in a final collection which was
then used for systematic screening included 4,778 DB-ORF clones and 5,700 AD-ORF

clones, covering a total of 5,854 yeast ORFs.

#11 Primary yeast two-hybrid (Y2H) screening

Three replicate Y2H screens were performed. Individual MATa Y8930:DB-ORFs were
mated in YEPD against a pool of ~700 (FLEXGene collection) or ~200 (supplemental
collection) MATa Y8800:AD ORFs. AD-ORF pool size was decreased for the
supplemental collection to facilitate screening. After enrichment in SC-Leu-Trp, 5ul of
the culture was spotted on SC-Leu-Trp-His+3AT solid media and on SC-Leu-His+3AT+
10mg/L CHX to identify spontaneous DB-ORF auto-activators (Dreze et al., 2010). After
incubation at 30°C for 3 days, strains growing on SC-Leu-Trp-His+3AT but not on
SC-Leu-His+3AT+CHX were picked and grown in liquid SC-Leu-Trp. As we used
libraries of pools of MATa Y8800:AD-ORF, it is possible to obtain more than one
interaction per mini-library. To account for that, we picked up to three colonies per
growth spot. Cell lysates were prepared from the saturated cultures and used as
templates in PCR reactions to amplify and identify the bait and prey sequences (Dreze
et al., 2010).

#12 Yeast colony sequencing

To efficiently and cost-effectively identify both bait and prey proteins for thousands of

positive colonies, we used a method called SWIM-seq (Shared-Well Interaction
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Mapping by sequencing) as described (Luck et al., 2020a). Briefly, DB and AD-ORFs
were simultaneously amplified from 3ul yeast lysate, using well-specific primers. PCR
reactions were performed using Platinum Taq (Life Technologies). After PCR
amplification, barcoded PCR products from an entire 96 well plate were pooled together
and purified (Qiagen, PCR Purification Kit). These pooled amplicons from each plate
were subjected to Nextera “tagmentation” using Tn5 transposase to generate a library
of amplicons with random breaks to which the adapters have been ligated (Weile et al.,
2017). We then re-amplified those fragments to generate a library of amplicons such
that one end of each amplicon bears the well-specific tag and the other “ladder” end
bears the Nextera adapter. A final lllumina sequencing library was prepared by adding
plate indexes using the i5 and i7 lllumina adapter sequences. Next generation
sequencing was performed with lllumina Solexa technology allowing for identification of
interacting first pass pairs of proteins (FiPPs) (see Sequence identification of interacting
ORFs). Due to the small number of pairs to be identified, interacting pairs from the first
screen of the supplemental space were amplified with the universal AD and DB forward
and reverse primers and ORF sequences were identified by Sanger sequencing
(Genewiz). All SWIM-primers (STAR Methods Table 4) were synthesized by Thermo
Fisher Scientific, whereas the universal AD, DB and term primers were synthesized by

Eurofins Genomics.
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STAR Methods Table 4. Primers used (Ns denotes 13-mer well index)

AD DB

SWIM Universal SWIM Universal

Forward 5-AGACGTGTGCTC | 5-CGCGTTTGGA | 5-AGACGTGTGCTCTT | 5-GGCTTCAG

TTCCGATCT ATCACTACAGG | CCGATCT TGGAGACTG
NNNNNNNNNNNNN | G-3 NNNNNNNNNNNNNGG | ATATGCCTC-3
CGATGATGAA TCAAAGACA

GATACCCCACCA-3 GTTGACTGTATCGT-3

Reverse 5-GGAGACTTGACC [ 5-GGAGACTTGA | 5-GGAGACTTGACCAA | 5-GGAGACTT
AAACCTCTGGCG-3" | CCAAACCTCTG | ACCTCTGGCG-3 GACCAAACC
GCG-3 TCTGGCG-3

#13 Pairwise test

To confirm all FiPPs, a pairwise test was performed in the same DB-X/AD-Y orientation
they were found in the primary screens. Briefly, glycerol stocks from Y8930:DB-ORF
and Y8800:AD-ORF haploid strains were inoculated in SC-Leu or SC-Trp, respectively.
Saturated cultures were mated in YEPD. After enrichment for diploids, yeast were
spotted on SC-Leu-Trp-His+1 mM 3AT solid media, testing for GAL1::HIS3 activation.
Preliminary investigations using four technical replicates demonstrated that in 97% of
the cases, the quadruplicates behaved identically (data not shown). Therefore, given
the high reproducibility of technical replicates, the culture was spotted only once per
selective media. To increase the robustness of our approach we implemented an
additional test to identify de novo auto-activators in which Y8930:DB-ORF strains were
mated against a Y8800:AD with no ORF fused to the activation domain
(Y8800:AD-Empty ORF) and spotted on SC-Leu-Trp-His+1 mM 3AT solid media.
Diploids that gave rise to growth on SC-Leu-Trp-His+1 mM 3AT media, but did not grow
when the respective Y8930:DB-ORF was mated to Y8800:AD-Empty ORF, were

selected as positive interacting pairs of proteins. Positive protein pairs were sequence
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confirmed as done for the primary screens as described above. As positive and
negative controls, the scPRS-v2 and scRRS-v2 pairs were distributed randomly across
the respective mating plates and tested at the same time. For a batch of pairwise testing
to be considered successful we required no more than 1% of RRS and between 10-25%

of PRS to be scored positive.

#14 Validation in orthogonal assays

To assess the precision of various datasets (Venkatesan et al., 2009), PPIls were
validated in two orthogonal assays: Mammalian protein-protein interaction trap
(MAPPIT) (Eyckerman et al., 2001) and Gaussia princeps luciferase protein
complementation assay (GPCA) (Cassonnet et al., 2011a). As positive and negative
controls, we used pairs of scPRS-v2 and scRRS-v2 respectively. For both assays,
expression clones were generated by Gateway LR recombination cloning as described
above. Expression clones for GPCA were generated by transferring ORFs into
pSPICA-N1 and pSPICA-N2 destination vectors (Cassonnet et al.,, 2011a), each
expressing a different fragment of humanized Gaussia princeps luciferase (GL1 and
GL2) (Tannous et al., 2005). MAPPIT expression clones were generated by LR transfer
of ORFs into pMBU-I-2994 and pMBU-I-4199 destination vectors (Eyckerman et al.,
2001). After transformation of all expression clones into DH5a E. coli cells, plasmid DNA
was extracted and purified using Qiagen 96 Turbo kits (Qiagen) on a BioRobot 8000
(Qiagen). Three different GPCA and two different MAPPIT experiments were performed.

GPCA

GPCA experiments were performed as described previously (Cassonnet et al., 2011b).
Briefly, on the first day of the assay, ~30,000 to 40,000 HEK293T cells were seeded in
each well of a 96 well microtiter plate (Greiner Bio-One). DNA concentration was
measured for all clones and samples were diluted to a final concentration of 25ng/ul.
After a 24-hour incubation at 37°C, confluent cells were transfected with 300ng of
pSPICA-N1-ORF and pSPICA-N2-ORF vectors using polyethylenimine (PEI). After a
second 24-hour incubation at 37°C, cells were washed with PBS supplemented with

calcium and magnesium chloride. To lyse the cells 40pul of 5x diluted Renilla lysis buffer
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(Promega) were added to each well. The plate was then covered with aluminum foil and
agitated at 900 rpm for 30 minutes at 37°C for cell lysis. Luciferase activity was
measured on a TriStar Berthold Microplate reader by adding 50ul per well of Renilla
luciferase substrate (Renilla Luciferase Assay System, Promega), with a measurement
time of 4 seconds. The measurement score, RLU (relative light unit), was assigned to

the tested pair.

MAPPIT

As an orthogonal validation assay, MAPPIT experiments were performed as described
elsewhere (Luck et al., 2020b; Rolland et al., 2014). In short, HEK293T cells were
grown in 384-well plates and co-transfected with a luciferase reporter and plasmids for
both bait and prey fusion proteins. Twenty-four hours post-transfection, cells were either
stimulated with ligand (erythropoietin) or left untreated, then incubated for an additional
24 hours before luciferase activity was measured in duplicate. The MAPPIT validation
experiment was deemed valid, if both bait and prey were successfully cloned into
expression vectors and bait expression was detected using a chemiluminescence
meter. “Fold-induction” values (signal from stimulated cells divided by signal from
unstimulated cells) were calculated for each tested pair, and two negative controls (no
bait with prey and bait with no prey). Each tested pair was assigned a quantitative
score: the fold-induction value of the pair divided by the maximum of the fold-induction

value of the two negative controls.

Experimental benchmarking of public PPI datasets

PPIs extracted from the biophysical maps described in STAR Methods Table 1 have
been tested in assays Y2H v4, GPCA and MAPPIT following the same experimental
procedures as described above. A summary of the number of tested pairs in each

dataset is available in STAR Methods Table 1. Samples, if used, were drawn randomly.

#15 Direct or indirect contact in a complex structure

We queried Interactome3D (version 2020 _01) (Mosca et al., 2013) for complexes

involving three or more proteins with an experimental structure available. For all
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combinations of protein pairs within a complex, Interactome3D calculated the number of
residue-residue contacts by accounting for hydrogen bonds, van der Waals interactions,
and salt and disulfide bridges. We defined protein pairs with five or more contacts as
direct, and remaining pairs as indirect. Using this annotation for each dataset, the
fraction of direct PPIs was calculated as the number of direct PPIs reported in the

dataset divided by the number of direct and indirect pairs reported in the dataset.

#16 K, dataset

Yeast PPIs with measured dissociation constant (K,) values were obtained from the
PDBbind database (Liu et al., 2015) 2017 release and from (Kastritis et al., 2011). In the

case where multiple values existed for a pair, the geometric mean was used.

#17 PPIs in KEGG pathways and in the four gold standard inner- and

outer-complexome datasets

We collected PPIs from KEGG annotated as activation, inhibition, phosphorylation,
dephosphorylation, ubiquitination, glycosylation, methylation, binding/association,
complex as defined by KEGG. Gene expression relations and enzyme-enzyme relations
were excluded. The four gold standard inner- and outer-complexome PPI datasets are:
i) direct co-complex PPls using the intersection between protein complex dataset
collected by Costanzo et al. 2016 filtered with three or more subunits and direct
interactions from Interactome3D (Direct co-complex); ii) co-complex pairs annotated in 5
KEGG yeast pathways Cell Cycle, Meiosis, MAPK Signaling pathway, Autophagy and
Mitophagy (KEGG co-complex); iii) PPIs regulating activation or inhibition from the
same 5 KEGG yeast pathways (KEGG regulation); and iv) high-quality kinase-substrate
pairs from the Yeast KID database (http://www.moseslab.csb.utoronto.ca/KID/)
(Sharifpoor et al., 2011) with score greater or equal to 6.4 (p-value < 0.01)
(Kinase-substrate).
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#18 List of genes of unknown function

A list of 979 S. cerevisiae genes of unknown function was obtained from Table S9 of
Wood et al. 2019 (Wood et al., 2019), of which 950 were within the list of yeast ORFs

considered for this study (see section Yeast protein-coding ORFs).

#19 Protein properties

1. Number of publications per gene was extracted from the gene2pubmed file from
NCBI, downloaded on 2018-08-01.
2. Protein abundance information was downloaded from PaxDB (https://pax-db.orq)

undetected pairs were given an abundance of 0.
3. Gene essentiality information was downloaded from the Saccharomyces

Genome Deletion Project (https://www.yeastgenome.orq).

4. Conservation score was derived by combining data from HomoloGene
(ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68) and (Carvunis et al., 2012). For a

gene with homologs in HomoloGene, its conservation score is the number of

distinct non-S. cerevisiae species that it shares the same homologene group with
plus 9, assuming that it is conserved in the 10 Ascomycota species. For genes
without homologs in HomoloGene, we used classification proposed in Carvunis
et al where genes were scored from 1-10 based on their conservation throughout
the Ascomycota phylogeny. Genes without homologs in HomoloGene and that
did not appear in the Carvunis data were given a score of 0.

5. Fraction of intrinsic disorder of a protein was calculated as the length of its

disordered region as predicted by IUPred2A (https://iupred2a.elte.hu) divided by

its total length.
6. Complex size was the number of different protein subunits taken from the
complexome dataset. If a protein was a member of multiple complexes, the size

of the largest complex was used.

QUANTIFICATION AND STATISTICAL ANALYSIS
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#20 Treatment of heterodimers and homodimers

Unless otherwise noted, homodimers were excluded from most analyses since
comparisons between physical interactions and functional relationships are obviously
not applicable to single genes (all PCC values of functional profiles would be 1.0 by

definition).

#21 Calculation of recovery rates in Y2H v4, MAPPIT and GPCA

In MAPPIT and GPCA assays, pairs were scored positive or negative based on
thresholds set by the highest scoring scRRS-v2 pair in the corresponding experiment.
For all three assays, pairs without valid quantitative scores were dropped, and recovery
rates were calculated as the number of positive pairs over the sum of the positive and
negative pairs. The error bars on the recovery rates were calculated using a Bayesian
model (a binomial likelihood with a uniform prior), taking the central 68.27% interval of
Beta (p + 1, n + 1), where p and n are the number of pairs testing positive and negative,
respectively. P-values for difference in recovery between two datasets tested in the
same experiment are calculated using Fisher’s exact test, two-sided in all cases except
when testing a dataset against the scPRS-v2 / scRRS-v2 positive or negative controls,

where a one-sided test is used.

#22 Calculation of interface areas of PPls

We retrieved experimental structures using Interactome3D version 2018_04 (Mosca et
al., 2013). For each subunit in a complex structure, we defined its interaction interface
as the residues for which the Accessible Surface Area (ASA) changed more than 1 A?2

between the bound and unbound state.

#23 Interaction 2D histogram heat maps

For a particular gene/protein property and a network, we ranked all proteins using that
property. Tied values were sorted randomly. The proteins were split into an equal
number of bins, creating 2D bins of the protein-by-protein space. Number of edges in
the diagonal bins were multiplied by a factor of N°/ (N> /2 - N / 2), where N is the

number of proteins in the bin, to correct for the smaller number of possible pairwise
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combinations, since edges were undirected. Homodimeric interactions were excluded.
In the case where we corrected the CS-PSN heatmaps for the untested essential
genes, we divided the count in each bin by the fraction of pairs where both genes were
tested in generating the CS-PSN data.

To calculate the p-values for each 2D bin, we randomly shuffled the order of the
proteins 1,000 times. In each permutation of the proteome we calculated the 2D
histogram counts, recorded the maximum and minimum bin count (to account for the
multiple testing effect of having many bins) and calculated the p-value, for each bin, as
the fraction of the random maximum/minimum counts that the observed count is
above/below, multiplied by two to account for the two-tailed nature of the test. This was
done separately for diagonal and off-diagonal bins because there are a different number

of possible combinations of undirected edges between them.

#24 Sequence identification of interacting ORFs

We used an existing computational pipeline (Luck et al., 2020a) to process
demultiplexed paired-end reads returned from lllumina sequencing and identify the
interacting ORF pairs from the Y2H screen. Paired-end reads are in fastq format, with
one read, R1, containing a part of the ORF sequence and the other paired read, R2,
containing the well index. We used Bowtie 2'° (v2.2.3) to align all R1 reads to reference
sequences and extracted the well-identifying indices from the R2 reads. AD-ORFs and
DB-ORFs that shared the same well indices were paired together and called FiPPS. To
identify likely true AD/DB pairs, we developed a “SWIM score” (Luck et al., 2020a) S
that takes into account the AD and DB reads in each well, total reads returned from the

sequencing run, and other factors.

S=f
a+n{+d+h

where x and y are read counts of an AD-ORF and DB-OREF in a given well respectively,
a and d are total read counts of all aligned AD-ORF and DB-OREF in that well, and M
and N are pseudo-counts for AD and DB respectively, which were constant for each

sequencing batch but varied for different batches. We then selected FiPPs for pairwise
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testing using a cutoff that balances the risk of testing too many false positives FiPPs
versus not testing too many true positive FiPPs. The cutoff varied for different screens
and sequencing runs to adjust for slight variations in the screening and sequencing

protocol.

#25 Calculation of enrichment for connecting proteins in the same subcellular

compartment, pathway, and complex

Subcellular compartment data was (Koh et al., 2015) obtained from CYCLoPS (Koh et
al., 2015), using the WT data, annotating a protein to a compartment if it has any
non-zero value in any of the three repeats. Pathways were obtained from KEGG
(Kanehisa et al., 2019). Complexes were obtained from CYC2008 (Pu et al., 2009). The
number of PPIs that connected two different proteins in the same compartment,
pathway or complex was divided by the mean value for 1,000 degree-preserved
randomized networks, generated using the Viger and Latapy algorithm implementation
through python iGraph (Viger and Latapy, 2005), and CI values were taken from the

innermost 68.27% of the random networks.

#26 SAFE network visualization

We used the SAFE network visualization tool (v1.5) (Baryshnikova, 2016). The layouts
were generated with Cytoscape (v3.4.0) (Shannon et al.,, 2003) using the
edge-weighted spring embedded layout. GO terms were downloaded from SGD
database (version on Jan 17" 2019) and GO (Baryshnikova, 2016) terms enriched with
P < 0.05 were colored and labeled. SAFE analysis was run with the default option
except layoutAlgorithm = none (using layout generated by Cytoscape),

neighborhoodRadius = 200, and neighborhoodRadiusType = absolute.

#27 Estimates of the complete yeast interactome size

We used three estimates, relying on partially overlapping assumptions and data, made

by independent groups, that predicted the yeast protein binary interactome contains
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between ~18,000 and ~38,000 direct binary interactions, corresponding to ~0.1-0.2% of
all ~18,000,000 possible protein pair combinations (Yu et al., 2008).

- From Yu et al. 2008 (Yu et al., 2008) 18,000 (13,500-22,500 95% CIl). Taken from
Page 107: “we estimated that the yeast binary interactome consists of ~18,000 +-
4500 interactions (SOM VI)” From SOM VI the +/- refers to the 95% CI.

- From (Stumpf et al., 2008) 28,472 (26,650-30,460 95% CI). Taken from the Uetz
et al. numbers from Table 1. We use the estimate made using Uetz et al.
because three of the other datasets contain indirect protein-protein associations
(Ho et al., Gavin et al. and DIP) and the estimate using Ito et al. uses the full
dataset, mainly made up of the ‘Ito-noncore’ subset that was shown to be of poor
quality when retested Y2H and PCA (Yu et al., 2008).

- From (Sambourg and Thierry-Mieg, 2010) 37,600 (32,252-43,472 95% CI).
Taken from Page 6: “Taken together, this allows to estimate the size of the binary
yeast interactome at ~ 37,600 interactions (95% confidence inter- val:

32252-43472, constructed with the normal approximation method).”

One relatively minor difference between the estimates is that Stumpf et al. are
considering only heterodimeric PPIs whereas Yu et al. and Sambourg et al. are also
counting homodimeric PPls and so we account for this when estimating the fraction of
predicted interactome mapped by excluding homodimers for the Stumpf et al. estimate

and including them for the Yu et al. and Sambourg et al. estimates.

#28 Prediction of gene functions using guilt-by-association approach

In the guilt-by-association approach the function of a node is inferred from the function
of its neighbors. In particular, for each node we count the number of its neighbors
annotated with a given function (n). This score is then compared to a random

benchmark, obtained by randomizing the network 10,000 times in a degree-preserved
way. Calculating the z-score, z = (n —ﬁ) + o0, is the traditional way of such

comparison, obtained by standardizing the original score with the expectation value (71)

and standard deviation (o) of the score that would be expected by chance. Yet, the
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z-score is not free from degree biases and prefers low degree nodes with extremely

small o. We therefore apply a related measure, called the effect size. The effect size

n — (71+ ao)n is obtained by comparing the original score with the reasonably

expected value of the random benchmark, estimated as the mean value (71) and o-times
the standard deviation (o). In practice, we use a = 2, selecting the same candidates as
a traditional z-score threshold of z = 2, but ordering them based on the amount of signal
beyond random expectations to avoid a bias towards low-degree nodes. Functional
annotations of genes with GO Biological Process terms were obtained as described
above and further restricted to annotations with the experimental evidence codes EXP,
IDA, IPI, IMP, IGI, IEP, HTP, HDA, HMP, HGI, and HEP.

#29 Protein complex subnetworks

For each protein complex, direct interactions were defined by 13D-exp-20, described
above, indirect associations were all protein-protein combinations where both proteins

appeared in the same experimental structure but not in direct contact.

#30 Overlap calculation between biophysical and functional networks

For each biophysical network and several KEGG pathways, we measured the fraction of
interactions that are also connected in each of the functional networks defined above,
discarding homodimeric PPls. We calculated the overlap by dividing the number of
interactions in the PPl network also found in the functional network by the total number
of interactions in the PPl network where both proteins were present in the search space
of the functional network. The error bars were calculated using a Bayesian model (a
binomial likelihood with a uniform prior), taking the central 68.27% interval of Beta (p +
1, n + 1), where p and n are the number of pairs testing positive and negative,

respectively.

#31 Date and party hubs
Co-expression data was obtained from COXPRESdb (Obayashi et al., 2019). To ensure

robustness against the exact definition of date and party hubs, three different cutoffs
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were used, hubs were defined as proteins with a degree in the top 5% or 10% in each
network, or those with degree = 10. PCC cutoffs of 0.3 and 0.35 were used, where
proteins with a mean coexpression PCC across all partners above the cutoff were party

hubs and below the cutoff were date hubs.

#32 Overlap by degree plots

For each combination of a biophysical and functional network, we conducted a logistic
regression, on the dataset of biophysical interactions, where the binary dependent
variable represents whether or not the two proteins of the biophysical interaction are
also connected by an edge in the functional network, and the single independent
variable is the higher of the two degrees, in the biophysical network, of the interacting
proteins. The max degree per PPI variable is log2 transformed. Only PPls where the
pair of proteins were tested in generating the functional network were used. Shaded
error bands represent 95% CI. Binned data is also shown, with 10 evenly sized bins,

with the binned data displayed on the x-axis at the mean max degree value of the bin.
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