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An extension of the Ising-Curie-Weiss model of self-organized
criticality with long range interactions

Nicolas Forien∗
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Abstract
In [CG16], Cerf and Gorny constructed a model of self-organized criticality, by introducing an auto-

matic control of the temperature parameter in the generalized Ising Curie-Weiss model. In this article,
we build upon this model by replacing the mean-field interaction of [CG16] with a one-dimensional
interaction with a certain range dn which varies as a function of the number n of particles. In the
Gaussian case, we show that, for a very long range of interaction (2dn ∼ λn), the model exhibits
the same behaviour as in the mean-field case, whereas in the case of a nearest neighbour interaction
(dn = 1), the behaviour highlighted by Cerf and Gorny breaks out.

Mathematics Subject Classification : 82B20 (Primary) 82B27, 60K35 (Secondary)

1 Introduction

1.1 Definition of the model
This article is devoted to the study in two different regimes of a one-dimensional spin model with long
range interactions and with a self-adjusted temperature. This model is defined as follows. First, we
choose a sequence of integers (dn)n>3 such that 0 < 2dn < n for every n > 3, and which will represent the
interaction range. Then, we define the Hamiltonian

Hn : (x1, . . . , xn) ∈ Rn 7−→ − 1

2dn

n∑
i=1

dn∑
j=1

xixi+j (1)

with the convention xn+k = xk for all k ∈ {1, . . . , n}. This Hamiltonian corresponds to a one-dimensional
chain of spins, with periodic boundary conditions, where every spin interacts with its 2dn nearest neigh-
bours. The model we consider is then given by the following probability distribution on Rn:

dµn(x1, . . . , xn) =
1

Zn
exp

(
−Hn(x1, . . . , xn)

Tn(x1, . . . , xn)

)
1{Tn> 0}

n∏
i=1

dν(xi) , (2)

where Zn is the normalization constant, ν is the standard normal distribution, and Tn is the self-adjusted
temperature given by

Tn : (x1, . . . , xn) ∈ Rn 7−→ x2
1 + · · ·+ x2

n

n
.

This model is well defined because

∀ (x1, . . . , xn) ∈ Rn
∣∣Hn(x1, . . . , xn)

∣∣ 6
1

2dn

n∑
i=1

dn∑
j=1

x2
i + x2

i+j

2
=

n

2
Tn(x1, . . . , xn) . (3)

∗Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

1



1.2 Results
In this article, we study the model defined by (2) in two extreme cases: on the one hand, in the case of very
long range interactions, with dn proportional to n, and on the other hand, in the case of nearest neighbour
interactions, which corresponds to dn = 1. In a subsequent article [For21], we will study an intermediate
regime of the interaction range, showing that there is a threshold phenomenon when the range dn is of
order n3/4.

1.2.1 The long range case

The following result indicates the asymptotic behaviour when the range of interaction is proportional to
the total number of particles:

Theorem 1. If the interaction range dn is chosen such that

2dn
n→∞∼ λn with 0 < λ < 1 , (4)

then, under the law µn defined by (2), we have the convergence in distribution

Sn
n3/4

L−→
n→+∞

√
2

Γ(1/4)
exp

(
−z

4

4

)
dz .

The particular case 2dn = n − 1, which corresponds to a mean-field interaction, was already studied
in [Gor14] (in fact there is a small difference, with a factor 1 − 1/n between our Hamiltonian and the
one studied by Gorny, but this does not change the behaviour of the model). Thus, the above theorem
shows that, as long as the interaction range remains proportional to n, the behaviour is the same as in the
mean-field case.

1.2.2 The case of a nearest neighbour interaction

When dn = 1, the Hamiltonian takes the simpler form

Hn(x1, . . . , xn) = −1

2

n∑
j=1

xjxj+1 ,

with the convention xn+1 = x1. In this case, the interaction is limited to the nearest neighbours, and
the behaviour is very different from the long range case. Indeed, the following theorem shows that the
phenomenon observed in the mean-field and long range cases does not occur in the nearest neighbour case,
where the fluctuations of Sn are Gaussian and of order

√
n:

Theorem 2. When dn = 1, under the law µn defined by (2), we have the convergence in distribution

Sn√
n

L−→
n→+∞

N
(
0,
√

2 + 1
)
.

1.3 Remarks and perspectives
1.3.1 A Curie-Weiss model of self-organized criticality

The initial motivation which lead us to consider this model comes from the work of Cerf and Gorny [Gor14,
CG16], who constructed a simple mean-field model of self-organized criticality. To recover their model, let
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us look at our Hamiltonian (1) in the extreme case 2dn = n − 1, where our model becomes a mean-field
model. In this case, we have

Hn(x1, . . . , xn) = − 1

n− 1

∑
i<j

xixj = − 1

2(n− 1)

[( n∑
j=1

xj

)2

−
n∑
j=1

x2
j

]
= −S

2
n − nTn

2(n− 1)
,

and thus our definition (2) becomes

dµn(x1, . . . , xn) =
1

Z̃n
exp

(
S2
n

2(n− 1)Tn

)
1{Tn> 0}

n∏
i=1

dν(xi) .

In [Gor14], Gorny studied this model (with n instead of n−1 in the denominator, but this does not change
much), and he proved theorem 1 in this mean-field setting. The idea of Gorny was to obtain a toy model
showing self-organized criticality, constructed as a variant of the generalized Ising Curie-Weiss model.

The concept of self-organized criticality was coined in by the physicists Bak, Tang and Wiesenfeld in
their seminal article [BTW87], to explain the widespread presence of fractal structures in nature. They
observed that some physical systems present a “critical-like” behaviour, with fractal structures and power-
law correlations, without the need to finely tune a parameter (e.g., the temperature) to a critical value.
They called this phenomenon “self-organized criticality”. The important difference with ordinary phase
transitions is that the critical regime, instead of being a very specific regime which only appears for a very
precise value of the parameters of the system, becomes an attracting point, the system being “forced” to
look critical. Several mathematical models of self-organized criticality have been studied, but these models
are often quite complex and not easily tractable [For20].

To construct a simple toy model of self-organized criticality, Gorny started from the generalized Ising
Curie-Weiss model and, following an idea explained by Sornette [Sor92], he replaced the temperature
parameter with a function of the spins, in order to introduce a kind of feedback from the configuration onto
the temperature parameter. Starting from a model of the form exp(−Hn(σ)/T ), with a phase transition
for a critical temperature Tc, the technique consists of replacing this temperature parameter T with a
function Tn(σ), which tends to concentrate around the critical value Tc when n→∞. In [Gor14], Gorny
proved that this construction indeed leads to a model exhibiting a behaviour similar to the critical regime
of the initial model, but without the need to finely tune a parameter to a critical value: this is why we
talk of self-organized criticality.

This work was then extended to more general distributions of the spins in [CG16], but still in a mean-
field setting. In fact, the model studied in the present article could also be defined with more general
distributions than only the standard normal law ν, but we chose to restrict ourselves to Gaussian spins,
as in [Gor14], to enable exact computations.

1.3.2 Different kinds of long range interactions

The first motivation to study this model was to try to extend the construction of Cerf and Gorny, which
was in a mean-field setting, to define a more geometrical model. Thus, we studied the behaviour of the
model in one of the simplest geometrical setting, namely a one-dimensional nearest neighbour interaction
with periodic boundary conditions. But, as theorem 2 shows, it turns out that this model does not
present the same critical-like asymptotic behaviour as observed for the mean-field model. At this point, a
natural question arises: if the interesting behaviour (with the fluctuations of order n3/4 and the limiting
distribution of the form exp(−λn3/4) is observed in the mean-field case, i.e., when each spin interacts with
all the other spins, but not when each spin only interacts with its two nearest neighbours, then what about
the intermediate cases between these two extreme situations?

This led us to consider a model with an intermediate interaction range. But there are many different
ways to interpolate between a mean-field interaction and a nearest neighbour interaction. Generally
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speaking, one can consider a Hamiltonian Hn of the form

Hn(x1, . . . , xn) = −
∑

16i,j6n

J(i, j)xi xj ,

where the coupling constants J(i, j) = J(|i − j|) are decreasing functions of the distance separating the
particles i and j (with periodic boundary conditions). The behaviour of the model then depends on the
decay rate of this coupling function. In [ACCN88], the key example of a coupling proportional to |i− j|−2

is studied, and it is proved that the resulting Ising model presents a phase transition, as well as models
constructed with a slower-decaying coupling function. Otherwise, if J(i, j) = o(|i−j|−2), then the obtained
Ising model does not anymore present a phase transition, which shows that a coupling of order |i − j|−2

plays a pivotal role for the appearance of a phase transition.
Another way to design intermediate models consists in drawing random couplings J(i, j). In [BG93],

Bovier and Gayrard constructed such a model by taking for the J(i, j) independent Bernoulli variables
of parameter p, which amounts to considering the Ising model on an Erdős-Rényi random graph. This
model exhibits different regimes characterized by different fluctuations of the sum of spins, depending
on how the parameter p varies with the number n of particles. These different regimes were studied by
Kabluchko, Löwe and Schubert [KLS19, KLS20] who proved in particular that, for a critical temperature
and a parameter pn chosen such that n−3/4 = o(pn), the behaviour resembles that of the critical Ising
Curie-Weiss model, i.e., the sum of the spins is of order n3/4 with fluctuations of the form C exp(−λs4).
When the parameter pn becomes of order n−3/4, still at the critical temperature, the limiting distribution
changes, and a quadratic term appears besides the term in s4. If pn = o(n−3/4) then this quadratic term
dominates, which results in Gaussian fluctuations of the sum of spins.

This approach was generalized by Deb and Mukherjee [DM20], who studied the fluctuations of an Ising
model defined on a more general set of graphs. Under certain conditions of homogeneity and connectivity,
they obtain the same fluctuations as in the mean-field model, when the mean degree dn in the graph
satisfies (n lnn)1/3 = o(dn) in the supercritical regime,

√
n = o(dn) in the subcritical regime, or

√
n lnn =

o(dn) at the critical point.
In our case, we chose an interaction of each spin with its 2dn nearest neighbours, where dn is a parameter

which evolves with n. This corresponds to a coupling function of the form

J(i, j) =
1

4dn
×

{
1 if j ∈ {i− dn, . . . , i− 1} ∪ {i+ 1, . . . , i+ dn}+ nZ ,

0 otherwise.

Let us remind that our model is different from the aforementioned models, because the spins are not valued
in {−1, +1} but are real-valued, and because our self-adjusted temperature in fact induces an interaction
between all the spins. Therefore, it is not a priori evident which scale of dn is relevant to observe a change
of behaviour. This question is (partially) solved in the forthcoming article [For21], where we prove that
the limiting distribution changes when dn is of order n3/4.

1.4 Strategy of proof
1.4.1 Diagonalization of the interaction Hamiltonian

The starting point to study our model is to diagonalize the interaction Hamiltonian. The matrix of the
quadratic form Hn given by (1) is a symmetric circulant matrix, which writes

M
(
Hn

)
= − 1

4dn

dn∑
m=1

(
Jm + J−m

)
,
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where the matrix J is given by

J =



0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0
0 0 1
1 0 · · · · · · 0

 =
(
1j=i+1 mod n

)
16i,j6n

.

The matrix J is diagonalizable, with eigenvalues

sp(J) =
{
e2ijπ/n : j ∈ {1, . . . , n}

}
.

Therefore, for every m > 1, we have

sp
(
Jm + J−m

)
=

{
2 cos

(
2jmπ

n

)
: j ∈ {1, . . . , n}

}
,

and thus the eigenvalues of our Hamiltonian Hn are

sp(Hn) =

{
−α

n
1

2
, . . . , −α

n
n

2

}
,

where

∀j ∈ {1, . . . , n} αnj =
1

dn

dn∑
m=1

cos

(
2jmπ

n

)
. (5)

1.4.2 Change of variables

Let P ∈ On(R) be an orthonormal matrix such that the matrix of the quadratic form Hn writes tPDP ,
where D is the diagonal matrix with diagonal coefficients −αn1/2, . . . , −αnn/2. We define the change of
variables

ϕ : (x1, . . . , xn) ∈ Rn 7−→

(
n∑
k=1

Pj,kxk

)
16j6n

.

With this change of variables (y1, . . . , yn) = ϕ(x1, . . . , xn), the Hamiltonian Hn and the self-adjusted
temperature Tn become

Hn(x1, . . . , xn) = −1

2

n∑
j=1

αnj y
2
j , and Tn(x1, . . . , xn) =

1

n

n∑
j=1

y2
j . (6)

To see what happens to the sum Sn = x1 + · · · + xn of the spins, note that αnn = 1 and that this
eigenvalue −αnn/2 = −1/2 of Hn corresponds to the eigenvector (1/

√
n, . . . , 1/

√
n), whence Pn,k = 1/

√
n

for all k ∈ {1, . . . , n}. Therefore, we have

(y1, . . . , yn) = ϕ(x1, . . . , xn) ⇒ Sn = x1 + · · ·+ xn =
√
n yn . (7)

Also, the change of variable being orthonormal, we have
n∏
i=1

dν(xi) = dν⊗n(x1, . . . , xn) = dν⊗nϕ−1(y1, . . . , yn) = dν⊗n(y1, . . . , yn) =

n∏
i=1

dν(yi) ,

which allows us to forget the variables x1, . . . , xn and to work only with the new variables y1, . . . , yn to
study the limiting behaviour of Sn, which is now Sn =

√
n yn.
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1.4.3 Competition between two terms

Using the fact that αnn = 1, we may write

Hn(x1, . . . , xn) = −1

2

n∑
j=1

αnj y
2
j = −y

2
n

2
− 1

2

n−1∑
j=1

αnj y
2
j = −S

2
n

2n
− 1

2

n−1∑
j=1

αnj y
2
j . (8)

The first term exactly corresponds to the Hamiltonian in the mean-field model of Cerf and Gorny, as
mentioned in section 1.3.1. When 2dn = n− 1 (mean-field case), we have αnj = −1/(2dn) for every j 6= n

so the second term almost disappears (in fact it contributes as −S2
n/(4ndn), but this has no significant

effect). The behaviour of our model therefore results from the competition between these two terms, and
we will see that, in the regime 2dn ∼ λn with λ ∈ (0, 1), the first term dominates, inducing a behaviour
similar to the mean-field case. Thus, the key point is to control these (n−1) first eigenvalues, and to show
that they are small enough to prevent this second term from perturbing the mean-field-like behaviour.
The computational estimates used to control these eigenvalues are gathered in section 2.1.

1.4.4 Fourier inversion and saddle-point method

Having chosen the initial distribution ν of the spins to be a standard normal distribution enables us
to perform exact computations. In section 2.2, we use the Fourier transform to obtain the distribution
of (Tn, Hn, Sn) in our model µn. This provides us with an explicit integral expression for this distribution,
involving the eigenvalues αnj defined above.

We then implement the saddle-point method (see for example [Cop04]), which consists in a judicious
change of integration contour in the complex plane in order to obtain an integrand with an appropri-
ate limiting behaviour. This idea to use the saddle-point method to study a long range Ising model,
after having diagonalized the interaction matrix, was already presented by Canning in a series of publica-
tions [Can92a, Can92b, Can93]. However, Canning only discusses the saddle-point method in cases where
the interaction matrix has a finite rank, and he does not give rigorous bounds on the precision of the
obtained approximation. In our computations, it turns out that details such as the domination hypothesis
to apply the dominated convergence theorem are not that evident and in fact require a precise control of
the asymptotic behaviour of the eigenvalues αnj .

1.4.5 Study of the model with nearest neighbour interactions

We start with the study of the model with nearest neighbour interactions, which corresponds to the
case dn = 1. Before implementing the saddle-point method, as described above, as a preliminary step,
we study the behaviour of Tn, Hn and Sn with a large-deviation approach. This approach seems natural
because our model µn is constructed with an exponential term exp(−Hn/Tn): thus, the rate function in
our model will easily follow from the rate function under the i.i.d. distribution ν⊗n.

This is done in section 3, where we prove the following large deviation principle for Tn, Hn and Sn,
using the Gärtner-Ellis theorem:

Theorem 3. Under the law µn, when dn = 1, the vector(
Tn,

Hn

n
,
Sn
n

)
satisfies a large deviation principle governed by the good rate function

J(x, y, z) =


1

2

[
C + x− 1− lnx− ln

(
1 +

2y

x

)
− ln

(
1− 2y + z2

x− z2

)
+

2y

x

]
if 2x > x− 2y > 2z2 ,

+∞ otherwise,
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where the constant C is given by

C = − ln
(√

2− 1
)
− ln 2−

√
2 + 1 .

This large deviation principle is a first step forward, but it is not enough to obtain the convergence in
distribution of Sn/

√
n announced in theorem 2. To prove this theorem, we use the Fourier transform to

obtain an exact integral expression for the distribution of Sn, and we implement the saddle-point method to
study the asymptotic behaviour of this expression. In the regime dn = 1, the eigenvalues of the interaction
Hamiltonian have a simple expression: the formula (5) becomes

∀j ∈ {1, . . . , n} αnj = cos

(
2jπ

n

)
.

Hence, the sums involving the αnj can be written as Riemann sums, which yields an explicit integral
expression for the limit. The implementation of the saddle-point method in this case dn = 1 is detailed in
section 4.

1.4.6 Study of the model with long range interactions

To obtain theorem 1, we also use the Fourier inversion and the saddle-point method, but the eigenvalues αnj
have a more complex expression. Thus, the important ingredient is a precise control of the asymptotic
behaviour of these eigenvalues in the regime 2dn ∼ λn. In section 2.1, we study these eigenvalues and we
note that, in this regime,

lim
n→∞

αnj = sinc(jλπ) =
sin(jλπ)

jλπ

for every fixed j > 1. This allows us in section 5 to derive the limit of the integrand in the saddle-point
method, yielding the desired convergence in distribution.

In the intermediate regime when dn → ∞ with dn = o(n), which is studied in a subsequent arti-
cle [For21], the strategy of the proof is similar, but the behaviour of the eigenvalues changes, since αnj → 1
for every fixed j > 1. This forces to adapt the method and to change the scaling of the different variables,
and this is why we restrict here the presentation to the two extreme cases dn = 1 and dn ∼ λn, which
already require some work.

2 Preliminary computations

2.1 Estimates on the eigenvalues in the long range regime
We start with some preliminary computations on the eigenvalues −αnj /2 of the interaction Hamiltonian,
which are given by the formula (5). For every j ∈ {1, . . . , n− 1}, we can write

αnj =
1

dn
Re

dn∑
m=1

e2ijmπ/n

=
1

dn
Re

(
e2ijπ/n e

2ijdnπ/n − 1

e2ijπ/n − 1

)
=

cos
(
j(dn + 1)π/n

)
sin
(
jdnπ/n

)
dn sin

(
jπ/n

) (9)

=
1

2dn

(
sin
(
(2dn + 1)jπ/n

)
sin
(
jπ/n

) − 1

)
. (10)
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We will also be interested in the extrema of the spectrum (not counting the particular eigenvalue αnn = 1),
thus we define

Mn = max
{
αnj : 1 6 j 6 n− 1

}
and mn = max

{
− αnj : 1 6 j 6 n− 1

}
. (11)

Note that the eigenvalues are symmetric, that is to say, for any j ∈
{

1, . . . , n − 1
}
, we have αnn−j = αnj .

Besides, it follows from (9) that

∀j ∈
{

1, . . . ,
⌊n

2

⌋} ∣∣αnj ∣∣ 6
1

dn sin(jπ/n)
6

n

2dnj
. (12)

From this we can deduce that

n−1∑
j=1

∣∣αnj ∣∣ 6 2

bn/2c∑
j=1

n

2dnj
= O

(
n lnn

dn

)
, (13)

and, similarly,
n−1∑
j=1

(
αnj
)2

= O

(
n2

d2
n

)
. (14)

This last upper bound is not sharp, as can be seen by computing the trace of the square of the matrix
of the quadratic form Hn, but this bound will be enough for our needs (it will only be used in the
proof of lemma 14). We now prove some bounds on these eigenvalues in the regime (4), i.e., 2dn ∼ λn
with λ ∈ (0, 1).

Lemma 1. In this regime (4), for every fixed j > 1, we have

lim
n→∞

αnj = sinc(jλπ) ,

where sinc is the function x 7→ sinx/x. Furthermore, there exists K = Kλ > 0 such that

∀n > 3 ∀j ∈
{

1, . . . ,
⌊n

2

⌋} ∣∣αnj − sinc(jλπ)
∣∣ 6

Kj

n
+K

∣∣∣∣ 2dn
n
− λ

∣∣∣∣ .
Proof. Let us write, with a O which is uniform over all j 6 bn/2c,

sin

(
jπ

n

)
=

jπ

n

[
1 +O

(
j2

n2

) ]
.

Yet, the function x 7→ sinx/x is bounded away from 0 on [0, π/2] by a strictly positive constant, which
allows us to take the inverse of this Taylor expansion:

1

sin
(
jπ/n

) =
n

jπ

[
1 +O

(
j2

n2

) ]
.

In the meantime, also with a O which is uniform over all j 6 bn/2c, we have

sin

(
(2dn + 1)jπ

n

)
= sin

(
2dnjπ

n

)
+O

(
j

n

)
.
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Using the expression (10) of αnj , we deduce that

αnj =
sin
(
(2dn + 1)jπ/n

)
2dn sin

(
jπ/n

) − 1

2dn

=
sin
(
2dnjπ/n

)
+O

(
j/n
)

2dnjπ/n

[
1 +O

(
j2

n2

) ]
+O

(
1

n

)
= sinc

(
2dnjπ

n

)
+O

(
j

n

)
. (15)

We carry on by writing, using the mean value theorem,

sinc

(
2dnjπ

n

)
− sinc(jλπ) =

(
2dn
n
− λ
)
jπ sinc′(τn,j) , (16)

with
τn,j ∈

[
2dnjπ

n
, jλπ

]
∪
[
jλπ,

2dnjπ

n

]
.

Yet, for every x > 0, we have

∣∣x sinc′(x)
∣∣ =

∣∣∣∣x(cosx

x
− sinx

x2

) ∣∣∣∣ = |cosx− sincx| 6 2 .

Therefore, uniformly with respect to j and n, we have∣∣sinc′(τn,j)
∣∣ 6

2

τn,j
6

2

τn,1
= O(1) .

Plugging this into (16), we obtain

sinc

(
2dnjπ

n

)
− sinc(jλπ) = O

(
2dn
n
− λ
)
. (17)

Combining (15) and (17), we obtain

αnj − sinc(jλπ) = O

(
j

n

)
+O

(
2dn
n
− λ
)
,

which holds uniformly for all the j 6 bn/2c, concluding the proof of the lemma.

We now deal with the extrema of the spectrum, as defined by (11).

Lemma 2. In the regime (4), the smallest and largest eigenvalues satisfy:

lim
n→∞

Mn = sinc(λπ) and lim
n→∞

mn = Cλ ,

where Cλ is given by
Cλ = − inf

j>1
sinc(jλπ) . (18)

Proof. To begin with, note that, the eigenvalues being symmetric, we have

Mn = max
{
αn1 , . . . , α

n
bn/2c

}
and mn = −min

{
αn1 , . . . , α

n
bn/2c

}
.
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Since λ ∈ (0, 1), we have sin(λπ) > 0 and Cλ > 0, which allows us to define

j0 =

⌈
2π

sin(λπ)

⌉
∨
⌈

2

λCλ

⌉
.

Let n > 2j0. For any j ∈
{
j0, . . . , bn/2c

}
, the upper bound (12) entails that∣∣αnj ∣∣ 6

n

2dnj
6

n

2dnj0
.

Yet, when n −→∞, we have
n

2dnj0

n→∞−→ 1

λj0
.

Therefore, for n large enough, we have
n

2dnj0
6

2

λj0
,

implying that

max
j06j6bn/2c

∣∣αnj ∣∣ 6
2

λj0
.

From this we can deduce, using the limit given by lemma 1, that

Mn 6
(

max
16j6j0

αnj

)
∨ 2

λj0
6
(

max
16j6j0

αnj

)
∨ sinc(λπ)

n→∞−→
(

max
16j6j0

sinc(jλπ)
)
∨ sinc(λπ) = sinc(λπ) .

Yet, we also have
Mn > αn1

n→∞−→ sinc(λπ) ,

and therefore, the squeeze theorem implies that Mn → sinc(λπ). Similarly, we have

mn 6
(
− min

16j6j0
αnj

)
∨ 2

λj0
6
(
− min

16j6j0
αnj

)
∨ Cλ

n→∞−→
(
− min

16j6j0
sinc(jλπ)

)
∨ Cλ 6 Cλ .

Since Cλ > 0 and sinc(jλπ)→ 0 when j tends to infinity, there exists j1 > 1 such that Cλ = −sinc(j1λπ),
which allows us to write, for n > j1,

mn > −αnj1
n→∞−→ −sinc(j1λπ) = Cλ ,

and thus we find mn → Cλ.

We now turn to an inequality which will by useful to prove integrability properties:

Lemma 3. In the regime (4), there exists a constant K = Kλ > 0 such that

∀n > 3 ∀a ∈ (0, n] ∀ε ∈ {−1, 1}
∣∣∣∣{ j ∈ {1, . . . , n− 1} : ε αnj >

1

a

}∣∣∣∣ > Ka− 2 .

Proof. Let n > 3, a ∈ (0, n] and ε = (−1)η, with η ∈ {0, 1}. Let us define, for k > 1,

jn,k =

⌈
4nk + 2nη + n

2(2dn + 1)
− 1

2

⌉
.

10



Given that 4n > 2(2dn + 1), the sequence (jn,k)k>1 is strictly increasing. Let us now prove that

∀k ∈ {1, . . . , Kn} ε αnjn,k
>

1

a
, (19)

where
Kn =

⌊
dna

(n+ 2dn)π
cos

(
(2dn + 1)π

2n

)
− 1

4
− 2dn + 1

4n
− η

2

⌋
.

Let k ∈ {1, . . . , Kn}. Recalling formula (10), we can write

ε αnjn,k
=

ε

2dn

(
sin
(
(2dn + 1)jπ/n

)
sin
(
jπ/n

) − 1

)
>

ε sin
(
(2dn + 1)jπ/n

)
2dn sin

(
jπ/n

) − 1

2dn
. (20)

We first bound the numerator, using that

(2k + η)π +
π

2
− (2dn + 1)π

2n
6

(2dn + 1)jn,kπ

n
6 (2k + η)π +

π

2
+

(2dn + 1)π

2n
,

which ensures that

ε sin

(
(2dn + 1)jkπ

n

)
> sin

(
π

2
− (2dn + 1)π

2n

)
= cos

(
(2dn + 1)π

2n

)
. (21)

To deal with the denominator in (20), we write

jn,k 6
n(4Kn + 2η + 1)

2(2dn + 1)
+

1

2

6
n

2(2dn + 1)

[
4dna

(n+ 2dn)π
cos

(
(2dn + 1)π

2n

)
− 1− 2dn + 1

n
− 2η + 2η + 1

]
+

1

2

=
2andn

(2dn + 1)(n+ 2dn)π
cos

(
(2dn + 1)π

2n

)
6

an

(n+ 2dn)π
cos

(
(2dn + 1)π

2n

)
.

This implies that

2dn sin

(
jn,kπ

n

)
6 2dn

jn,kπ

n
6

2dna

n+ 2dn
cos

(
(2dn + 1)π

2n

)
. (22)

Plugging (21) and (22) into (20), we obtain

ε αnjn,k
>

n+ 2dn
2dna

− 1

2dn
=

1

2dn

(n
a
− 1
)

+
1

a
>

1

a
.

Thus, we have proved (19). Therefore, we have∣∣∣∣{ j ∈ {1, . . . , n− 1} : ε αnj >
1

a

}∣∣∣∣ > Kn >
dna

(n+ 2dn)π
cos

(
(2dn + 1)π

2n

)
− 2 .

Now notice that
lim
n→∞

dn
(n+ 2dn)π

cos

(
(2dn + 1)π

2n

)
=

λ

2(1 + λ)π
cos

(
λπ

2

)
,

11



which implies that, for n larger than a certain rank n0,

dn
(n+ 2dn)π

cos

(
(2dn + 1)π

2n

)
>

λ

4(1 + λ)π
cos

(
λπ

2

)
.

The lemma follows by taking

K =
λ

4(1 + λ)π
cos

(
λπ

2

)
∧ 2

n0
,

using the above argument if n > n0, and noting that, if n < n0 then Ka− 2 6 Kn0 − 2 6 0.

We now state another technical lemma, which will be useful in section 5.3:

Lemma 4. The series ∑
j>1

sinc(jλπ)

converges and, when j0 →∞, we have

+∞∑
j=j0

sinc(jλπ) = O

(
1

j0

)
.

Proof. Take 1 6 j0 6 j1. For every n > 0, writing

Sn =

n∑
j=0

sin(jλπ) = Im

(
ei(n+1)λπ − 1

eiλπ − 1

)
=

sin
(
(n+ 1)λπ/2

)
sin
(
nλπ/2

)
sin
(
λπ/2

) ,

we see that the sequence (Sn)n∈N is bounded. We now perform the Abel transformation:

j1∑
j=j0

sinc(jλπ) =

j1∑
j=j0

Sj − Sj−1

jλπ
=

j1∑
j=j0

Sj
jλπ

−
j1−1∑
j=j0−1

Sj
(j + 1)λπ

=

j1∑
j=j0

Sj
j(j + 1)λπ

− Sj0−1

j0λπ
+

Sj1
(j1 + 1)λπ

. (23)

The boundedness of (Sn)n∈N ensures that, when j →∞,

Sj
j(j + 1)λπ

= O

(
1

j2

)
implying that the series ∑

j>j0

Sj
j(j + 1)λπ

converges. Hence, letting j1 tend to infinity in (23) yields

+∞∑
j=j0

sinc(jλπ) =

+∞∑
j=j0

Sj
j(j + 1)λπ

− Sj0−1

j0λπ
= O

 +∞∑
j=j=0

1

j(j + 1)

+O

(
1

j0

)
= O

(
1

j0

)
,

which is the desired result.
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2.2 Fourier inversion
We now perform a Fourier inversion to obtain an integral formula for the distribution of (Tn, Hn, Sn) in
our model µn. The aim of this section is to prove the following result:

Lemma 5. Assume that the parameter dn is such that

lim
n→∞

2dn
n

= λ ∈ [0, 1) ,

which contains the two regimes studied in this article. Then, for n large enough, under the law µn defined
by (2), the vector (Tn, Hn, Sn) admits the following density with respect to the Lebesgue measure on R3:

fn : (x, y, z) ∈ R3 7−→ 1

(2π)5/2Zn
√
n

exp
(
−y
x

)
1Ω

(
x,

y

n
,
z

n

)
×
∫
R2

du dv exp

[
− iu

(
x− z2

n2

)
− iv

(
y +

z2

2n

)
− z2

2n
− 1

2

n−1∑
j=1

ln

(
1− 2iu

n
+ iv αnj

)]
,

where the domain Ω is defined by

Ω =
{

(x, y, z) ∈ R3 : 2x > x− 2y > 2z2
}
. (24)

Proof. We start by computing the characteristic function of (Tn, Hn, Sn) under ν⊗n, that is to say, when
the variables yj are i.i.d. standard normal variables. Using the expressions (6) and (7) obtained with our
change of variable, this characteristic function writes

φn : (u, v, w) ∈ R3 7−→ ν⊗n
(
eiuTn+ivHn+iwSn

)
=

∫
Rn

exp

(
iu

n

n∑
j=1

y2
j −

iv

2

n∑
j=1

αnj y
2
j + iw

√
n yn

)
n∏
j=1

dν(yj)

=

∫
R

exp

(
iuy2

n

n
− ivαnny

2
n

2
+ iw

√
n yn

)
dν(yn)

n−1∏
j=1

∫
R

exp

(
iuy2

j

n
−
ivαnj y

2
j

2

)
dν(yj)

= F

(
1− 2iu

n
+ ivαnn, iw

√
n

) n−1∏
j=1

F

(
1− 2iu

n
+ iv αnj , 0

)
,

where the function F is given by (29), which we recall here:

F : (a, b) 7−→ 1√
2π

∫
R

dx ebx−ax
2/2 .

For (a, b) ∈ C2 with Re a > 0, this integral is well defined, and it follows from lemma 4 in [Gor14] that

F (a, b) = exp

(
b2

2a
− ln(a)

2

)
, (25)

using the following determination of the logarithm:

ln :


C \ (−∞, 0] −→ C

z = x+ iy 7−→ 1

2
ln(x2 + y2) + 2i arctan

(
y

x+
√
x2 + y2

)
.

13



Therefore, for every (u, v, w) ∈ R3, we obtain

φn(u, v, w) = exp

[
− nw2

2(1− 2iu/n+ iv)
− 1

2

n∑
j=1

ln

(
1− 2iu

n
+ iv αnj

)]
, (26)

where we used the fact that αnn = 1. Before using the Fourier inversion formula, we have to check that
this function is integrable on R3. Let us write, for (u, v, w) ∈ R3,

∣∣φn(u, v, w)
∣∣ = exp

[
− nw2

2
(
1 + (2u/n− v)2

) − 1

4

n∑
j=1

ln

(
1 +

(
2u

n
− v αnj

)2
)]

.

If λ > 0, we use lemma 3, which ensures that

∀n > 3

∣∣∣∣ { j ∈ {1, . . . , n− 1} : uv αnj 6 0 and
∣∣αnj ∣∣ > 1

n

} ∣∣∣∣ > Kn− 2 ,

where K > 0 is fixed. We can deduce that, for n > nI = 3 ∨ 9/K and for every (u, v, w) ∈ R3,

∣∣φn(u, v, w)
∣∣ 6 exp

[
− nw2

2
(
1 + 8u2/n2 + 2v2

) − Kn− 2

4
ln

(
1 +

4u2

n2
+
v2

n2

) ]

6 exp

[
− nw2

2
(
1 + 8(u2 + v2)/n2

) − 7

4
ln

(
1 +

u2 + v2

n2

) ]
. (27)

Now suppose that λ = 0, i.e. dn = o(n). If u and v have the same sign, then we only keep in the sum the
terms of indexes j 6 7. It follows from the formula (9) that, for any fixed j 6 7, we have

αnj =
cos
(
j(dn + 1)π/n

)
sin
(
jdnπ/n

)
dn sin

(
jπ/n

) n→∞−→ 1 ,

since dn = o(n). Thus, for n large enough, we have αnj > 1/2 for all j 6 7 and therefore, u and v having
the same sign,

n∑
j=1

ln

(
1 +

(
2u

n
− v αnj

)2
)

> 7 ln

(
1 +

4u2

n
+
v2

4

)
.

Otherwise, if u and v are of opposite signs, note that if j is such that⌈
n

2dn + 1

⌉
6 j 6

⌈
n

2dn + 1

⌉
+ 6 .

then we have
π 6

(2dn + 1)jπ

n
6 π +

7(2dn + 1)π

n
6 2π

for n large enough, because dn = o(n). We then have, for these indexes j, using the expression (10),

αnj =
1

2dn

(
sin((2dn + 1)jπ/n)

sin(jπ/n)
− 1

)
6 − 1

2dn
.

From this we deduce that, when u and v are of opposite signs, for n large enough, we have

n∑
j=1

ln

(
1 +

(
2u

n
− v αnj

)2
)

> 7 ln

(
1 +

4u2

n
+

v2

4d2
n

)
.

14



Thus, for n larger than a certain rank nI ∈ N, we have, for all (u, v, w) ∈ R3,

∣∣φn(u, v, w)
∣∣ 6 exp

[
− nw2

2
(
1 + 8(u2 + v2)/n2

) − 7

4
ln

(
1 +

4u2

n2
+

v2

4d2
n

) ]

6 exp

[
− nw2

2
(
1 + 8(u2 + v2)/n2

) − 7

4
ln

(
1 +

u2 + v2

n2

) ]
.

This upper bound, identical to (27), therefore holds whatever λ ∈ [0, 1), which allows us to write, in [0,+∞]:∫
R3

du dv dw
∣∣φn(u, v, w)

∣∣ 6
∫
R2

du dv

(
1 +

u2 + v2

n2

)−7/4 ∫
R

dw exp

(
− nw2

2
(
1 + 8(u2 + v2)/n2

))

=

√
2π

n

∫
R2

du dv

(
1 +

u2 + v2

n2

)−7/4
√

1 +
8(u2 + v2)

n2

=

√
2π

n

∫ +∞

0

2πr dr

(1 + r2/n2)7/4

√
1 +

8r2

n2

= n3/2
√

2π3

∫ +∞

0

√
1 + 8ρ

(1 + ρ)7/4
dρ ,

which is a converging integral, since
√

1 + 8ρ

(1 + ρ)7/4
= O

(
1

ρ5/4

)
when ρ→ +∞ .

The characteristic function of (Tn, Hn, Sn) is therefore integrable for n > nI . Hence, we can apply the
Fourier inversion formula to deduce that, for n > nI , under ν⊗n, the triplet (Tn, Hn, Sn) admits a density
with respect to the Lebesgue measure:

(x, y, z) 7−→ 1

(2π)3

∫
R3

du dv dw φn(u, v, w)e−iux−ivy−iwz .

Given the definition (2) of our model µn, it follows that, under µn, the triplet (Tn, Hn, Sn) has a density

fn : (x, y, z) ∈ R3 7−→ 1

(2π)3Zn
exp

(
−y
x

)∫
R3

du dv dw φn(u, v, w)e−iux−ivy−iwz .

Replacing the characteristic function φn with its expression given by (26), it follows that, for n > nI and
for any (x, y, z) ∈ R3,

fn(x, y, z) =
1

(2π)3Zn
exp

(
−y
x

)
×
∫
R3

du dv dw exp

[
− iux− ivy − iwz − nw2

2(1− 2iu/n+ iv)
− 1

2

n∑
j=1

ln

(
1− 2iu

n
+ iv αnj

)]
.

The integral over w is easily computed using the formula (25), yielding

1√
2π

∫
R

dw exp

(
−iwz − nw2

2(1− 2iu/n+ iv)

)
= F

(
n

1− 2iu/n+ iv
, −iz

)
=

1√
n

exp

(
ln(1− 2iu/n+ iv)

2
− z2

2n
+
iuz2

n2
− ivz2

2n

)
.
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Therefore, we obtain

fn(x, y, z) =
1

(2π)5/2Zn
√
n

exp
(
−y
x

)
×
∫
R2

du dv exp

[
− iu

(
x− z2

n2

)
− iv

(
y +

z2

2n

)
− z2

2n
− 1

2

n−1∑
j=1

ln

(
1− 2iu

n
+ iv αnj

)]
.

To obtain the claimed formula, there remains to show that fn(x, y, z) = 0 when (x, y/n, z/n) /∈ Ω. Recall
that, as noted in (3), we always have |2Hn/n| 6 Tn/2. This inequality is even strict, ν⊗n-almost surely and
therefore also µn-almost-surely. Similarly, with our change of variable, it follows from (8) that, ν⊗n-almost
surely and thus also µn-almost-surely,∣∣∣∣ 2Hn

n
+
S2
n

n2

∣∣∣∣ =
1

n

∣∣∣∣∣
n−1∑
j=1

αnj y
2
j

∣∣∣∣∣ < 1

n

n−1∑
j=1

y2
j = Tn −

S2
n

n2
.

Therefore, we have

∀n > 3 µn

[ (
Tn,

Hn

n
,
Sn
n

)
∈ Ω

]
= 1 ,

with
Ω =

{
|2y| < x

}
∩
{ ∣∣2y + z2

∣∣ < x− z2
}

=
{

2x > x− 2y > 2z2
}
,

which concludes the proof of the lemma.

3 Large deviation principle for the nearest neighbour model
In this section, we study the case dn = 1, where the interaction is limited to the nearest neighbours, and
we prove the large deviation principle of theorem 3. A consequence of this theorem, which will be useful
in section 4 to prove the convergence in distribution, is the following:

Theorem 4. Consider an infinite triangular array of random variables (Xn
j )16j6n such that for all n > 3,

the vector (X1, . . . , Xn) is distributed according to µn defined by (2), with dn = 1. Then, when n → ∞,
we have the convergences in probability:

Tn −→ 1 ,
Hn

n
−→ −

√
2− 1

2
and

Sn
n
−→ 0 .

3.1 Computation of the cumulant generating function
We wish to apply the Gärtner-Ellis theorem (theorem 2.3.6 in [DZ10]) to obtain a large deviation principle
for (Tn, Hn/n, Sn/n), first under the i.i.d. distribution ν⊗n. Our approach is similar to the method
suggested by Bercu, Gamboa and Rouault in [BGR97], to study quadratic forms defined in a similar way.
We consider the renormalized cumulant generating function of (Tn, Hn/n, Sn/n) under ν⊗n, which is
defined as

Λn : (λ, µ, ν) ∈ R3 7→ 1

n
ln ν⊗n

[
exp

(
nλTn + nµ

Hn

n
+ nν

Sn
n

) ]
.
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Let us compute, in [0,∞],

Λn(λ, µ, ν) =
1

n
ln

∫
Rn

exp

(
λ

n∑
j=1

y2
j −

µ

2

n∑
j=1

αnj y
2
j + ν

√
n yn

)
n∏
j=1

dν(yj)

=
1

n

n−1∑
j=1

ln

∫
R

exp

[(
λ−

µαnj
2

)
y2
j

]
dν(yj) +

1

n
ln

∫
R

exp

[(
λ− µαnn

2

)
y2
n + ν

√
n yn

]
dν(yn)

=
1

n

n−1∑
j=1

lnF
(
1− 2λ+ µαnj , 0

)
+

1

n
lnF

(
1− 2λ+ µαnn, ν

√
n
)

(28)

where the function F : R2 → [0,∞] is given by

F (a, b) =
1√
2π

∫
R

dx ebx−ax
2/2 . (29)

If a 6 0 then F (a, b) = +∞, whereas for a > 0, we have

F (a, b) =
1√
2π

∫
R

dx exp

[
−a

2

(
x− b

a

)2

+
b2

2a

]
=

1√
2π

∫
R

dy exp

(
−ay

2

2
+
b2

2a

)
=

1√
a

exp

(
b2

2a

)
. (30)

Thus, if 2λ+ |µ| < 1, which ensures that 1− 2λ+ µαnj > 0 for every j 6 n, the formula (30) yields

Λn(λ, µ, ν) = − 1

2n

n−1∑
j=1

ln
(
1− 2λ+ µαnj

)
− 1

2n
ln
(
1− 2λ+ µαnn

)
+

ν2

2
(
1− 2λ+ µαnn

)
= − 1

2n

n∑
j=1

ln

[
1− 2λ+ µ cos

(
2jπ

n

) ]
+

ν2

2(1− 2λ+ µ)
(31)

n→∞−→ − 1

4π

∫ π

−π
ln
(
1− 2λ+ µ cos t

)
dt+

ν2

2(1− 2λ+ µ)
, (32)

since the function
t 7−→ ln

(
1− 2λ+ µ cos t

)
in continuous and 2π-periodic. We now detail several exact computations which will be useful in the sequel:

Lemma 6. For all (a, b) ∈ R2 with |b| < a, we have

1

2π

∫ π

−π

dt

a+ b cos t
=

1√
a2 − b2

,

1

2π

∫ π

−π

cos t

a+ b cos t
dt =

1

b

(
1− 1√

1− b2/a2

)
1b 6=0 ,

and
1

2π

∫ π

−π
ln
(
a+ b cos t

)
dt = ln a+ 2 ln

[
cos

(
arcsin(b/a)

2

) ]
.
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Proof. Let a > 0 and let b ∈ (−a, a). We start with the first integral. The change of variable θ = tan(t/2)
gives

1

2π

∫ π

−π

dt

a+ b cos t
=

1

2π

∫
R

2 dθ

a
(
1 + θ2

)
+ b
(
1− θ2

) =
1

2π

∫
R

2 dθ

(a+ b) + (a− b)θ2
.

We carry on with the change of variable

θ = u

√
a+ b

a− b
,

which yields
1

2π

∫ π

−π

dt

a+ b cos t
=

1

2π
√
a2 − b2

∫
R

2 du

1 + u2
=

1√
a2 − b2

.

Thus, the first formula is proved. It implies that, for b 6= 0,

1

2π

∫ π

−π

cos t

a+ b cos t
dt =

1

2πb

∫ π

−π

(
1− a

a+ b cos t

)
dt =

1

b

(
1− 1√

1− b2/a2

)
.

To deal with the third integral, we define the function

fa : b ∈ (−a, a) 7−→ 1

2π

∫ π

−π
ln
(
a+ b cos t

)
dt .

This function is even and C1, and for 0 < b < a, we have

f ′a(b) =
1

2π

∫ π

−π

cos t

a+ b cos t
dt =

1

b

(
1− 1√

1− b2/a2

)
.

From this we deduce that, for 0 < b < a,

fa(b) = fa(0) +

∫ b

0

f ′a(x) dx = ln a+

∫ b

0

dx

x

(
1− 1√

1− x2/a2

)
= ln a+

∫ b
a

0

dt

t

(
1− 1√

1− t2

)
.

With the change of variable θ = arcsin t, we obtain

fa(b)− ln a =

∫ arcsin(b/a)

0

(cos θ) dθ

sin θ

(
1− 1

cos θ

)
=

∫ arcsin(b/a)

0

cos θ − 1

sin θ
dθ

= −
∫ arcsin(b/a)

0

sin
(
θ/2
)

cos
(
θ/2
) dθ = 2 ln

[
cos

(
arcsin(b/a)

2

) ]
,

which concludes the proof of the lemma.

It follows from this lemma that, for 2λ+ |µ| < 1,

lim
n→∞

Λn(λ, µ, ν) = Λ(λ, µ, ν) ,

with

Λ(λ, µ, ν) = − ln(1− 2λ)

2
− ln cos

[
1

2
arcsin

(
µ

1− 2λ

) ]
+

ν2

2(1− 2λ+ µ)
. (33)
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If 2λ− µ > 1 then we have 1− 2λ+ µ 6 0. whence for every n > 1,

F
(
1− 2λ+ µαnn, ν

√
n
)

= F
(
1− 2λ+ µ, ν

√
n
)

= +∞ .

Plugged into (28) this implies that Λn(λ, µ, ν) = +∞. If 2λ+ µ > 1, then we have

lim
n→∞

(
1− 2λ+ µαnbn/2c

)
= 1− 2λ− µ < 0 ,

whence Λn(λ, µ, ν) = +∞ for n large enough. In the last case, when 2λ − µ < 1 but 2λ + µ = 1, the
behaviour depends on the parity of n. For n even, we have αnn/2 = −1 whence Λn(λ, µ, ν) = +∞. In
contrast, for n odd, we have αnj > −1 for every j ∈ {1, . . . , n}, which leads to the same expression (31),
namely

Λn(λ, µ, ν) = − ln(1− 2λ)

2
− 1

2n

n∑
j=1

ln

[
1 + cos

(
2jπ

n

) ]
+

ν2

4
(
1− 2λ)

.

The sum is no longer the Riemann sum of a function which is continuous on a segment, because the
function f : t 7→ ln(1 + cos t) is not defined for t = π. However, n being odd, we can write

− 1

2n

n∑
j=1

ln

[
1 + cos

(
2jπ

n

) ]
=

ln 2

2n
− 1

n

bn/2c∑
j=0

fn

(
2jπ

n

)
,

where the function fn is given by

fn : t ∈ [0, π) 7−→ ln

[
1 + cos

(
2π

n

⌊
nt

2π

⌋) ]
.

We then have

1

n

bn/2c∑
j=0

fn

(
2jπ

n

)
=

1

2π

∫ π

0

fn(t) dt+
1

2n
fn

(
2π bn/2c

n

)
=

1

2π

∫ π

0

fn(t) dt+ o(1) ,

since

fn

(
2π bn/2c

n

)
= ln

[
1 + cos

(
2π bn/2c

n

) ]
= ln

[
1− cos

(π
n

) ]
= O

(
lnn

)
.

Yet, the function t 7→ ln(1 + cos t) being decreasing on [0, π), we have

∀t ∈ [0, π) ln(1 + cos t) 6 fn(t) 6 ln 2 .

When t→ π with t < π, we have ln(1 + cos t) = O
(

ln(π − t)
)
, so the function

t 7−→ (ln 2) ∨
(
− ln(1 + cos t)

)
is integrable on [0, π). Thereby, it follows from the dominated convergence theorem that

lim
n→∞

∫ π

0

fn(t) dt =

∫ π

0

lim
n→∞

fn(t) dt =

∫ π

0

ln
(
1 + cos t

)
dt ,

whence

lim
n→∞

Λn(λ, µ, ν) = − ln(1− 2λ)

2
− 1

2π

∫ π

0

ln
(
1 + cos t

)
dt+

ν2

4
(
1− 2λ)

.
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Next, we write∫ π

0

ln
(
1 + cos t

)
dt =

∫ π

0

lim
b→
<

1
ln
(
1 + b cos t

)
dt = lim

b→
<

1

∫ π

0

ln
(
1 + b cos t

)
dt ,

using for example the monotone convergence theorem separately on [0, π/2] and [π/2, π]. Using the last
formula of lemma 6, this leads to

1

2π

∫ π

0

ln
(
1 + cos t

)
dt = lim

b→
<

1
ln

[
cos

(
arcsin b

2

) ]
= ln cos

[
1

2
arcsin

(
µ

1− 2λ

) ]
.

Therefore, when n is odd and 2λ− µ < 1 but 2λ+ µ = 1, we recover the same limit Λ whose expression is
given by (33). To summarize, we obtain

∀(λ, µ, ν) ∈ R3 lim
n→∞

Λ2n(λ, µ, ν) = Λp(λ, µ, ν) and lim
n→∞

Λ2n+1(λ, µ, ν) = Λi(λ, µ, ν) ,

where the two limiting functions Λp and Λi are given by

Λp(λ, µ, ν) =

{
Λ(λ, µ, ν) if 2λ+ |µ| < 1 ,

+∞ otherwise,

and

Λi(λ, µ, ν) =

{
Λ(λ, µ, ν) if 2λ− µ < 1 and 2λ+ µ 6 1 ,

+∞ otherwise.

This small gap between even and odd indices is of no consequence, since the limiting functions Λi and Λp
only differ on the set {2λ+ µ = 1}. Yet, as we will see, these points are not “exposing hyperplanes”
(see [DZ10]), which ensures that both functions have the same Fenchel-Legendre transform. Thus, the
Gärtner-Ellis theorem applied on the one hand to (Λ2n)n and on the other hand to (Λ2n+1)n will lead
to two large deviation principles with the same rate function, which boil down to a single large deviation
principle for (Λn)n.

3.2 Fenchel-Legendre transform
We now determine the Fenchel-Legendre transform of the function Λp, which is defined by

Λ?p : (x, y, z) ∈ R3 7−→ sup
(λ, µ, ν)∈R3

(
λx+ µy + νz − Λp(λ, µ, ν)

)
, (34)

and which takes its values in (−∞,+∞]. To compute this Fenchel-Legendre transform, we use the fact
that the function Λp is differentiable on all the open set where it is finite. Let us recall the expression (32)
of Λp, which is valid when 2λ+ |µ| < 1:

Λp(λ, µ, ν) = − 1

4π

∫ π

−π
ln
(
1− 2λ+ µ cos t

)
dt+

ν2

2(1− 2λ+ µ)
.

Using the exact computations of lemma 6, we can write, when 2λ+ |µ| < 1,

∂Λp
∂λ

(λ, µ, ν) =
1

2π

∫ π

−π

dt

1− 2λ+ µ cos t
+

2ν2

2(1− 2λ+ µ)2
=

1√
(1− 2λ)2 − µ2

+
ν2

(1− 2λ+ µ)2
.
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Similarly, we have

∂Λp
∂µ

(λ, µ, ν) = − 1

4π

∫ π

−π

cos t dt

1− 2λ+ µ cos t
− ν2

2(1− 2λ+ µ)2

=
1

2µ

(
1− 2λ√

(1− 2λ)2 − µ2
− 1

)
1µ6=0 −

ν2

2(1− 2λ+ µ)2

and
∂Λp
∂ν

(λ, µ, ν) =
ν

1− 2λ+ µ
.

Let (x, y, z) ∈ R3. We search for the supremum of the application

(λ, µ, ν) ∈ R3 7−→ λx+ µy + νz − Λp(λ, µ, ν) . (35)

The cumulant generating function Λn is convex for every integer n, thus the limiting function Λp is also
convex. Therefore, the above function is concave, which implies that, if it admits a critical point then this
point must be a global maximum. For this reason, we look for a critical point of the function (35), that is
to say a solution of the system

x =
∂Λp
∂λ

=
1√

(1− 2λ)2 − µ2
+

ν2

(1− 2λ+ µ)2

y =
∂Λp
∂µ

=
1

2µ

(
1− 2λ√

(1− 2λ)2 − µ2
− 1

)
1µ6=0 −

ν2

2(1− 2λ+ µ)2

z =
∂Λp
∂ν

=
ν

1− 2λ+ µ
,

which is equivalent to the simplified system:

x− z2 =
1√

(1− 2λ)2 − µ2

2y + z2 =
1

µ

(
1− 2λ√

(1− 2λ)2 − µ2
− 1

)
1µ6=0

z =
ν

1− 2λ+ µ
.

To solve this system, we will limit ourselves to (x, y, z) ∈ Ω, where Ω is the open set defined by (24).
Let (x, y, z) ∈ Ω, and let us write x̃ = x− z2 and ỹ = 2y + z2. Thus, by definition of Ω, we have |ỹ| < x̃.
In this case, the above system admits a solution, which writes

λ?(x, y, z) =
1

2
− x̃2 + ỹ2

2x̃(x̃2 − ỹ2)

µ?(x, y, z) =
2ỹ

x̃2 − ỹ2

ν?(x, y, z) =
z(x̃+ ỹ)

x̃(x̃− ỹ)
.

We found a critical point of the function (35), which is therefore a global maximum, since this function is
concave. It follows that

∀(x, y, z) ∈ Ω Λ?p(x, y, z) = xλ? + yµ? + zν? − Λp
(
λ?, µ?, ν?

)
.
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We are left with the computation of, on the one hand,

xλ? + yµ? + zν? =
x

2
− x(x̃2 + ỹ2)

2x̃(x̃2 − ỹ2)
+

2yỹ

x̃2 − ỹ2
+
z2(x̃+ ỹ)

x̃(x̃− ỹ)

=
x

2
− x̃2 + ỹ2

2(x̃2 − ỹ2)
− z2(x̃2 + ỹ2)

2x̃(x̃2 − ỹ2)
+

ỹ2

x̃2 − ỹ2
− z2ỹ

x̃2 − ỹ2
+
z2(x̃+ ỹ)

x̃(x̃− ỹ)

=
x

2
− 1

2
+

z2

2x̃(x̃2 − ỹ2)

(
2(x̃+ ỹ)2 − 2x̃ỹ − x̃2 − ỹ2

)
=

x− 1

2
+
z2(x̃+ ỹ)

2x̃(x̃− ỹ)
, (36)

and, on the other hand,

Λp
(
λ?, µ?, ν?

)
= −

ln
(
1− 2λ?

)
2

− ln cos

[
1

2
arcsin

(
µ?

1− 2λ?

) ]
+

(
ν?
)2

2
(
1− 2λ? + µ?

)
= −1

2
ln

(
x̃2 + ỹ2

x̃(x̃2 − ỹ2)

)
− 1

2
ln cos2

[
1

2
arcsin

(
2x̃ỹ

x̃2 + ỹ2

) ]
+
z2(x̃+ ỹ)

2x̃(x̃− ỹ)
. (37)

We then write

cos2

[
1

2
arcsin

(
2x̃ỹ

x̃2 + ỹ2

) ]
=

1

2

[
1 + cos arcsin

(
2x̃ỹ

x̃2 + ỹ2

) ]

=
1

2

(
1 +

√
1− 4x̃2ỹ2

(x̃2 + ỹ2)2

)

=
1

2

(
1 +

x̃2 − ỹ2

x̃2 + ỹ2

)
=

x̃2

x̃2 + ỹ2
.

Plugging this into (37) yields

Λp
(
λ?, µ?, ν?

)
= − ln x̃

2
+

ln
(
x̃2 − ỹ2

)
2

+
z2(x̃+ ỹ)

2x̃(x̃− ỹ)
. (38)

Replacing (36) and (38) in the expression (34) of Λ?p, we obtain

∀(x, y, z) ∈ Ω Λ?p(x, y, z) = xλ? + yµ? + zν? − Λp
(
λ?, µ?, ν?

)
=

x− 1

2
+

ln x̃

2
−

ln
(
x̃2 − ỹ2

)
2

=
x− 1

2
+

ln x̃

2
− ln(x̃+ ỹ)

2
− ln(x̃− ỹ)

2

=
x− 1

2
+

ln x̃

2
− ln(x+ 2y)

2
− ln x̃

2
− 1

2
ln

(
1− ỹ

x̃

)
=

x− 1

2
− ln(x+ 2y)

2
− 1

2
ln

(
1− 2y + z2

x− z2

)
.
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Note that this expression tends to +∞ when x+ 2y → 0 or when x− 2y − 2z2 → 0, that is to say at the
borders of the domain Ω. In addition, the Fenchel-Legendre transform of a convex function being convex,
the function Λ?p : R3 → (−∞,+∞] is convex. Thus, for every (x, y, z) ∈ R3\Ω, by considering the convex
function

f : t ∈ [0, 1] 7−→ Λ?p(1− t+ tx, ty, tz) ,

which tends to +∞ when t tends to

τ = sup
{
t ∈ [0, 1] : (1− t+ tx, ty, tz) ∈ Ω

}
,

we can deduce that Λ?p(x, y, z) = f(1) = +∞. This is not surprising since, as we have seen, the distribution
of the triplet (Tn, Hn, Sn)/n does not charge the set R3\Ω. Lastly, our computation also holds for Λi,
since the critical point (λ?, µ?, ν?) stays inside of the domain {2λ+ |µ| < 1}, on which the functions Λp
and Λi are equal. Therefore, for all (x, y, z) ∈ R3, we have

Λ?p(x, y, z) = Λ?i (x, y, z) =


x− 1− ln

(
x+ 2y

)
+ ln

(
x− z2

)
− ln

(
x− 2y − 2z2

)
2

if (x, y, z) ∈ Ω ,

+∞ otherwise.

3.3 Large deviation principle
We now apply the Gärtner-Ellis theorem (theorem 2.3.6 in [DZ10], last point of the theorem), separately
to the even and the odd indices. But, the two resulting rate functions being equal, we obtain that,
under the i.i.d. law ν⊗n, the triplet (Tn, Hn/n, Sn/n) follows a large deviation principle with good rate
function Λ?p = Λ?i .

To infer a large deviation principle in our model µn defined by (2), we use corollary B.8 of [Gor15],
which is a consequence of Varadhan’s lemma. Using this corollary, we obtain that, under µn, the
triplet (Tn, Hn/n, Sn/n) follows a large deviation principle with good rate function

J : (x, y, z) ∈ R3 7−→

{
I(x, y, z)− inf

Ω
I if (x, y, z) ∈ Ω ,

+∞ otherwise,
(39)

where

I(x, y, z) = Λ?p(x, y, z) +
y

x
=

x− 1− ln
(
x+ 2y

)
+ ln

(
x− z2

)
− ln

(
x− 2y − 2z2

)
2

+
y

x
.

We now search for the infinimum of this function I over the domain Ω. For every (x, y, z) ∈ Ω, we have

∂I

∂z
(x, y, z) =

2z

x− 2y − 2z2
− z

x− z2
=

z(x+ 2y)

(x− z2)(x− 2y − 2z2)
,

which has the same sign as z because, by the definition (24) of Ω, we have x + 2y > 0, x − z2 > 0
and x − 2y − 2z2 > 0. Thus, for any fixed x and y, the function z 7→ I(x, y, z) is minimal for z = 0,
whence

inf
Ω
I = inf

|2y|<x
I(x, y, 0) .

For any x > 0 and y ∈ (−x/2, x/2), we have

∂I

∂y
(x, y, 0) =

1

x− 2y
− 1

x+ 2y
+

1

x
=

x2 + 4xy − 4y2

x(x+ 2y)(x− 2y)
=

[
2y +

(√
2− 1

)
x
][ (√

2 + 1
)
x− 2y

]
x(x+ 2y)(x− 2y)

.
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which has the sign of 2y +
(√

2− 1
)
x because

(√
2 + 1

)
x− 2y > x− 2y > 0. Therefore, for every fixed x >

0, the function (y, z) 7→ I(x, y, z) is minimal for y =
(√

2− 1
)
x and z = 0. There remains to compute,

for x > 0,

∂

∂x
I

(
x, −

(√
2− 1

)
x

2
, 0

)
=

∂

∂x

(
x− 1− lnx− ln

(
2−
√

2
)
− ln

√
2

2
−
√

2− 1

2

)
=

1

2
− 1

2x
,

which implies that

inf
Ω
I = I

(
1, −

√
2− 1

2
, 0

)
=
− ln

(
2−
√

2
)
− ln

√
2

2
−
√

2− 1

2
= −

ln
(√

2− 1
)

2
− ln 2

2
−
√

2− 1

2
.

Replacing this in (39), we obtain the large deviation principle announced in theorem 3. Furthermore, this
point being the only critical point of J , the convergence in distribution claimed in theorem 4 follows from
this large deviation principle. To go further, we can compute the Hessian of J at this minimum, which is

Hess J

(
1, −

√
2− 1

2
, 0

)
=

1

2

3−
√

2 2
√

2 0

2
√

2 8 + 4
√

2 0

0 0 2
√

2− 2

 . (40)

The last coefficient of this matrix leads to guess the result of theorem 2, that is to say

Sn√
n

L−→
n→+∞

N
(

0,
1√

2− 1

)
= N

(
0,
√

2 + 1
)
.

The proof of this convergence in distribution is given in section 4 below.

4 Convergence for the nearest neighbour model (proof of theo-
rem 2)

In this section, we prove theorem 2, i.e., we study the limit in distribution of Sn/
√
n in the case dn = 1.

The method we implement here is maybe not optimal for this very particular case but, as we will see in
the following section, it can be generalized to deal with other regimes of the interaction range. This part
is therefore an occasion to present the approach in a setting where, in the end, no interesting unexpected
behaviour arises.

Let g : R → R be a continuous and bounded function. According to the convergence in probability
given by theorem 4, we have

∀ ε > 0 lim
n→∞

µn

(
|Tn − 1| > ε or

∣∣∣∣∣Hn

n
+

√
2− 1

2

∣∣∣∣∣ > ε

)
= 0 .

This restriction of the domain of Tn andHn will help us to obtain an integral expression where the integrand
can be bounded from above by an integrable function, enabling us to apply the dominated convergence
theorem. Thus, we fix ε = 2−25, which will be enough to obtain the upper bounds we will need, and we
look at the limit when n→∞ of

En = µn

 g( Sn√
n

)
1

{
|Tn − 1| 6 ε

}
1

{ ∣∣∣∣∣Hn

n
+

√
2− 1

2

∣∣∣∣∣ 6 ε

} = µ̂n

[
g

(
Sn√
n

) ]
+ o(1) . (41)
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4.1 Right Riemann sum
We will need the following elementary result, which gives a bound on the approximation of an integral
with a sum of rectangles:

Lemma 7. Let f : [0, 1] → C be a Lipschitz-continuous function with a Lipschitz constant K > 0. For
every n > 1, we have ∣∣∣∣∣∣ 1

n

n∑
j=1

f

(
j

n

)
−
∫ 1

0

f(t) dt

∣∣∣∣∣∣ 6
K

2n
.

Proof. We write∣∣∣∣∣∣ 1

n

n∑
j=1

f

(
j

n

)
−
∫ 1

0

f(t) dt

∣∣∣∣∣∣ 6
n∑
j=1

∫ j
n

j−1
n

∣∣∣∣ f ( jn
)
− f(t)

∣∣∣∣ dt 6
n∑
j=1

∫ j
n

j−1
n

K

∣∣∣∣ jn − t
∣∣∣∣ =

K

2n
,

which is the desired inequality.

4.2 Exact integral expression
Plugging into (41) the density of (Tn, Hn, Sn) under µn which we have computed by Fourier inversion in
lemma 5, we obtain, for all n > nI ,

En =
1

(2π)5/2Zn
√
n

∫ 1+ε

1−ε
dx

∫ (−
√

2−1
2 +ε)n

(−
√

2−1
2 −ε)n

dy

∫ √n2x/2−ny

−
√
n2x/2−ny

dz g

(
z√
n

)
exp

(
−y
x

)
×
∫
R2

du dv exp

[
− iu

(
x− z2

n2

)
− iv

(
y +

z2

2n

)
− z2

2n
− 1

2

n−1∑
j=1

ln

(
1− 2iu

n
+ iv αnj

) ]
. (42)

Thanks to the large deviation calculus of the previous section, we expect that Tn−1 will be of order 1/
√
n,

and Hn+n(
√

2−1)/2 and Sn will both be of order
√
n. This leads us to proceed to the change of variables:

x = 1 +
x′√
n
, y = −

√
2− 1

2
n+ y′

√
n , z = z′

√
n , u = u′

√
n , v =

v′√
n
.

We obtain
∀n > nI En =

1

(2π)5/2Zn

∫
Dn

dx dy dz g(z)

∫
R2

du dv eAn(x,y,z, u,v) , (43)

where the domain Dn is defined by

Dn =
{

(x, y, z) ∈ R3 : |x| 6 ε
√
n , |y| 6 ε

√
n and 2z2 6 n

√
2 + x

√
n− 2y

√
n
}
, (44)

and where we let

An(x, y, z, u, v) =

(√
2− 1

)
n− 2y

√
n

2(1 + x/
√
n)

− iu
√
n− iux+

iuz2

√
n

+
iv
(√

2− 1
)√
n

2
− ivy − ivz2

2
√
n
− z2

2

− 1

2

n−1∑
j=1

ln

(
1− 2iu√

n
+
iv αnj√
n

)
.
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−M M v ∈ R

v ∈ i
√
n+ RC1

C2

C3
•

+i
√
n

•
0

Figure 1: Cauchy’s theorem allows us to replace the integral on the segment [−M,M ] by the integral along
the three segments C1, C2 and C3.

To get rid of the term −2y
√
n, we wish to move the integration contour of the variable v from R to v ∈

i
√
n + R. Had we made this displacement of the integration contour before the change of variables, it

would have been equivalent to adding a term +y in the exponential. We could have guessed from the
beginning that the quotient −y/x in the exponential would bring a term −y to be compensated, since x
concentrates around 1. This displacement of the integration contour could therefore have been avoided if,
in the computation of lemma 5, we had expressed the characteristic function of (Tn, Hn, Sn) under the
distribution

e−Hn

µn
(
e−Hn

) dν⊗n ,
instead of the law ν⊗n (recall that ν is the standard normal distribution). Indeed, we would have obtained

φn(u, v, w) =
1

µn
(
e−Hn

) ν⊗n( eiuTn+i(v+i)Hn+iwSn

)
,

which amounts to moving the integration contour from v ∈ R to v ∈ i + R in equation (42). After our
change of variable v = v′/

√
n, this is equivalent to our displacement from v ∈ R to v ∈ i

√
n + R. Let us

now check that we have the right to move this integration contour in the complex plane. Let us fix n > nI
and (x, y, z, u) ∈ Dn × R. The function v 7→ An(x, y, z, u, v) is well defined and holomorphic on the open
set {

v ∈ C : −
√
n

mn
< Im v < −

√
n

Mn

}
,

where mn and Mn are the largest and smallest eigenvalues, as defined in (11). Since Mn < 1, the closed
contour represented on figure 1 is contained in this open set, and thus Cauchy’s theorem ensures that, for
any M > 0, we have∫ M

−M
dv eAn(x,y,z, u,v)

=

∫
C1
dv eAn(x,y,z, u,v) +

∫
C2
dv eAn(x,y,z, u,v) +

∫
C3
dv eAn(x,y,z, u,v)

=

∫ 1

0

i
√
ndt eAn(x,y,z, u,−M+ti

√
n) +

∫ M

−M
dv eAn(x,y,z, u,v+i

√
n) +

∫ 0

1

i
√
ndt eAn(x,y,z, u,M+ti

√
n) .

We then write, for M > 0 and t ∈ [0, 1],
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ReAn
(
x, y, z, u,±M + ti

√
n
)

= An(x, y, z, 0, 0)− t
√

2− 1

2
n+ ty

√
n+

tz2

2
− 1

2

n−1∑
j=1

ln

∣∣∣∣ 1− 2iu√
n
±
iMαnj√

n
− tαnj

∣∣∣∣
= An(x, y, z, 0, 0)− t

√
2− 1

2
n+ ty

√
n+

tz2

2
− 1

4

n−1∑
j=1

ln

[ (
1− t αnj

)2
+

(
2u∓Mαnj√

n

)2
]

6 An(x, y, z, 0, 0)− t
√

2− 1

2
n+ ty

√
n+

tz2

2
− n ln(1−Mn)

2
− 1

2
ln

∣∣∣∣ 2u∓MnM√
n

∣∣∣∣
M→∞−→ −∞ ,

uniformly for all t ∈ [0, 1]. It follows that

lim
M→+∞

∫ 1

0

i
√
ndt eAn(x,y,z, u,−M+ti

√
n) = lim

M→+∞

∫ 0

1

i
√
ndt eAn(x,y,z, u,M+ti

√
n) = 0 ,

whence ∫
R

dv eAn(x,y,z, u,v) =

∫
R

dv eAn(x,y,z, u,v+i
√
n) .

Thereby, our computation (43) becomes

∀n > nI En =
1

(2π)5/2Zn

∫
Dn

dx dy dz g(z)

∫
R

du

∫
R

dv eBn(x,y,z, u,v) , (45)

where

Bn(x, y, z, u, v) = −
(√

2− 1
)
x
√
n

2(1 + x/
√
n)

+
xy

1 + x/
√
n
− iu
√
n− iux+

iuz2

√
n

+
iv
(√

2− 1
)√
n

2
− ivy − ivz2

2
√
n

− 1

2

n−1∑
j=1

ln

(
1− αnj −

2iu√
n

+
iv αnj√
n

)
.

We now wish to change the order of integration between u and v, in order to be able to move the
integration contour of the variable u. For every (x, y, z, u, v) ∈ Dn × R2, we have

ReBn(x, y, z, u, v) = Bn(x, y, z, 0, 0)− 1

4

n−1∑
j=1

ln

(
1 +

(
2u− v αnj

)2
n
(
1− αnj

)2
)

6 Bn(x, y, z, 0, 0)− 1

4

n−1∑
j=1

ln

(
1 +

(
2u− v αnj

)2
4n

)
,

because
∣∣1− αnj ∣∣ 6 2 for all i ∈ {1, . . . , n− 1}. If u and v have opposite signs, in the sum we only keep

the terms with indices j 6 bn/6c, which are such that

αnj = cos

(
2jπ

n

)
> cos

(π
3

)
=

1

2
,

and we obtain

ReBn(x, y, z, u, v) 6 Bn(x, y, z, 0, 0)− 1

4

⌊n
6

⌋
ln

(
1 +

4u2 + v2/4

4n

)
.
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Otherwise, if u and v have the same sign, then we obtain the same lower bound by keeping only the terms
with indices ⌊n

2

⌋
6 j 6

⌊n
2

⌋
+
⌊n

6

⌋
.

It follows that, for all (x, y, z, u, v) ∈ Dn × R2, we have

∣∣∣ eBn(x,y,z, u,v)
∣∣∣ 6 eBn(x,y,z, 0,0)

(
1 +

16u2 + v2

16n

)−bn/6c/4
,

which is integrable over (u, v) ∈ R2 as soon as n > 30. Thus, Fubini’s theorem allows us to swap the
summations over u and v in (45), leading to

∀n > 30 ∨ nI En =
1

(2π)5/2Zn

∫
Dn

dx dy dz g(z)

∫
R

dv

∫
R

du eBn(x,y,z, u,v) ,

To compensate the exploding term −
(√

2− 1
)
x
√
n/2 in the expression of Bn, we now wish to move the

integration contour of the variable u from R to R + i
(√

2 − 1
)√
n/2. For any fixed (x, y, z, v) ∈ Dn × R,

the function u 7→ Bn(x, y, z, u, v) is well defined and holomorphic on the open set{
u ∈ C : Imu > − (1−Mn)

√
n

2

}
.

This allows us to move the integration contour inside this open set using Cauchy’s theorem, and with the
same method as above, we can check that

∫
R

du exp
[
Bn(x, y, z, u, v)

]
=

∫
R

du exp

Bn(x, y, z, u+
i
(√

2− 1
)√
n

2
, v

)  ,
which implies that, for n large enough,

En = Cn

∫
Dn

dx dy dz g(z)

∫
R

dv

∫
R

du eFn(x,y,z, u,v)+Gn(u, v) , (46)

where the constant Cn is given by

Cn =
1

(2π)5/2Zn
exp

((√
2− 1

)
n

2

)
n−1∏
j=1

1√√
2− αnj

and the functions Fn and Gn are given by

Fn(x, y, z, u, v) =

(√
2− 1

)
x2

2(1 + x/
√
n)

+
xy

1 + x/
√
n
− iux− ivy +

iuz2

√
n
− ivz2

2
√
n
−
(√

2− 1
)
z2

2

and

Gn(u, v) = −iu
√
n+

iv
(√

2− 1
)√
n

2
− 1

2

n−1∑
j=1

ln

(
1−

2iu− iv αnj√
n
(√

2− αnj
) ) .
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4.3 Pointwise convergence of the integrand
We wish to study the convergence of Fn +Gn. In order to implement the saddle-point method, we study
this function on a domain extended to complex values of the parameters u and v. For all (x, y, z, u, v) ∈
R3 × C2, Fn(x, y, z, u, v) is well defined for every n > x2 and a simple Taylor expansion shows that

lim
n→∞

Fn(x, y, z, u, v) = F∞(x, y, z, u, v) ,

where

F∞(x, y, z, u, v) =

(√
2− 1

)
x2

2
+ xy − iux− ivy −

(√
2− 1

)
z2

2
.

Concerning the function Gn, we will prove the following:

Lemma 8. We have the pointwise convergence:

∀(u, v) ∈ C2 lim
n→∞

Gn(u, v) = G∞(u, v) ,

where the limit G∞ is given by

G∞(u, v) = −
√

2u2 + uv − v2

4
.

Proof. Let us fix (u, v) ∈ C2. Let n0 ∈ N be large enough such that

2|u|+ |v|
√
n0

(√
2− 1

) 6
1

2
.

Then for every n > n0 and every j ∈ {1, . . . , n− 1}, we have∣∣∣∣∣ 2iu− iv αnj√
n
(√

2− αnj
) ∣∣∣∣∣ 6

1

2
. (47)

Therefore, Gn(u, v) is well defined for n > n0. Applying Taylor’s theorem to the function

fn : t ∈ [0, 1] 7−→ Gn(tu, tv) ,

we obtain ∣∣∣∣ fn(1)− fn(0)− f ′n(0)− f ′′n (0)

2

∣∣∣∣ 6
1

6
sup
t∈[0,1]

∣∣∣f (3)
n (t)

∣∣∣ . (48)

First note that fn(1) = Gn(u, v) and fn(0) = Gn(0, 0) = 0. Next, we look at

f ′n(0) = u
∂Gn
∂u

(0, 0) + v
∂Gn
∂v

(0, 0) . (49)

We have

∂Gn
∂u

(0, 0) = −i
√
n+

i√
n

n−1∑
j=1

1√
2− αnj

= i
√
n

−1 +
1

n

n−1∑
j=1

(
√

2− cos

(
2jπ

n

) )−1
 .

Using lemma 7 about the error of the right Riemann sum and the first integral formula from lemma 6, we
obtain that, when n→∞,

∂Gn
∂u

(0, 0) = i
√
n

(∫ 1

0

dt√
2− cos(2πt)

− 1

)
+O

(
1√
n

)
= O

(
1√
n

)
. (50)
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Similarly, we can write

∂Gn
∂v

(0, 0) =
i
(√

2− 1
)√
n

2
− i

2
√
n

n−1∑
j=1

αnj√
2− αnj

=
i
√
n

2

(√2− 1
)
− 1

n

n−1∑
j=1

cos
(
2jπ/n

)
√

2− cos
(
2jπ/n

)


=
i
√
n

2

((√
2− 1

)
−
∫ 1

0

cos(2πt) dt√
2− cos(2πt)

)
+O

(
1√
n

)
= O

(
1√
n

)
, (51)

where we used again lemma 7, along with the second integral formula of lemma 6. Plugging (50) and (51)
in the expression (49) of f ′n(0), we obtain

f ′n(0) = O

(
1√
n

)
. (52)

We now turn to

f ′′n (0) = u2 ∂
2Gn
∂u2

(0, 0) + 2uv
∂2Gn
∂u∂v

(0, 0)− v2 ∂
2Gn
∂v2

(0, 0) . (53)

Thus, we compute

∂2Gn
∂u2

(0, 0) = − 2

n

n−1∑
j=1

1(√
2− αnj

)2 = −2

∫ 1

0

dt(√
2− cos(2πt)

)2 +O

(
1

n

)
. (54)

With the change of variable τ = tan(πt) followed by

τ = s

√√
2− 1√
2 + 1

=
s√

2 + 1
,

we obtain ∫ 1

0

dt(√
2− cos(2πt)

)2 =
1

π

∫
R

(
1 + τ2

)
dτ[ (√

2− 1
)

+
(√

2 + 1
)
τ2
]2

=
1

π

∫
R

1(√
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)2
(1 + s2)2

(
1 +

√
2− 1√
2 + 1

s2

)
ds√
2 + 1

ds

=
1

π

∫
R

(√
2− 1

)
+
(√

2− 1
)
s2

(1 + s2)2
ds

=
1

π

∫
R

√
2 ds

1 + s2
+

1

π

∫
R

(1− s2) ds

(1 + s2)2

=
√

2 +
1

2π

∫
R

1− s2

1 + s2

2 ds

1 + s2
.

Carrying out the change of variable s = tan(θ/2) now leads to∫ 1

0

dt(√
2− cos(2πt)

)2 =
√

2 +
1

2π

∫ π

−π
(cos θ) dθ =

√
2 . (55)

Thus, equation (54) becomes
∂2Gn
∂u2

(0, 0) = −2
√

2 +O

(
1

n

)
. (56)
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Let us proceed by writing

∂2Gn
∂u∂v

(0, 0) =
1

n

n−1∑
j=1

αnj(√
2− αnj

)2
=

∫ 1

0

cos(2πt) dt(√
2− cos(2πt)

)2 +O

(
1

n

)

=

∫ 1

0

√
2 dt(√

2− cos(2πt)
)2 + 2

∫ 1

0

dt√
2− cos(2πt)

+O

(
1

n

)
= 1 +O

(
1

n

)
, (57)

using the first formula of lemma 6 and our computation (55). Similarly, we have

∂2Gn
∂v2

(0, 0) = − 1

2n

n−1∑
j=1

(
αnj
)2(√

2− αnj
)2

= −1

2

∫ 1

0

cos(2πt)2 dt(√
2− cos(2πt)

)2 +O

(
1

n

)

= −1

2

∫ 1

0

√
2 cos(2πt) dt(√
2− cos(2πt)

)2 + 2

∫ 1

0

cos(2πt)dt√
2− cos(2πt)

+O

(
1

n

)

= −
√

2

2
+

√
2− 1

2
+O

(
1

n

)
= −1

2
+O

(
1

n

)
, (58)

Replacing (56), (57) and (58) into (53), we get

f ′′n (0) = −2
√

2u2 + 2uv − v2

2
+O

(
1

n

)
. (59)

Lastly, for all t ∈ [0, 1], we have

f (3)
n (t) =

3∑
k=0

(
3
k

)
u3−kvk

∂3Gn
∂u3−k∂vk

(tu, tv) . (60)

Let k ∈ {0, . . . , 3}, and let t ∈ [0, 1]. We have

∂3Gn
∂u3−k∂vk

(tu, tv) = − 8i

n3/2

n−1∑
j=1

(
− αnj /2

)k(√
2− αnj

)3
(

1−
2itu− itv αnj√
n
(√

2− αnj
) )−3

. (61)

Using our upper bound (47) and the fact that
∣∣αnj ∣∣ 6 1, we get, for all n > n0,∣∣∣∣ ∂3Gn

∂u3−k∂vk
(tu, tv)

∣∣∣∣ 6
8

n3/2

n−1∑
j=1

1(√
2− 1

)3 ( 1− 1

2

)−3

6
64

√
n
(√

2− 1
)3 .

Plugging this into (60) yields

sup
t∈[0,1]

∣∣∣f (3)
n (t)

∣∣∣ 6
64
(
|u|+ |v|

)3
√
n
(√

2− 1
)3 . (62)
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Thus, combining (52), (59) and (62) with our Taylor expansion (48), we obtain that, for every fixed (u, v) ∈
C2, ∣∣Gn(u, v)−G∞(u, v)

∣∣ = O

(
1√
n

)
,

which proves the claimed pointwise convergence.

4.4 Displacement of the integration contour
We now wish to implement the saddle-point method to obtain an approximation of the integral in equa-
tion (46). This method consists in changing the integration contour in the complex plane to make it pass
through a saddle-point, that is to say a critical point of the function

(u, v) 7−→ F∞(x, y, z, u, v) +G∞(u, v) ,

which is holomorphic on C2. This change of contour gives us an integral on which we may apply the
dominated convergence theorem. Indeed, in the formula (46), it is manifest that the integrand is not
an integrable function of (x, y, z, u, v) ∈ R5, hence there is no hope to apply the dominated convergence
theorem if we do not change the integration contour. Thus, for every (x, y, z) ∈ R3, we search for a
couple (u, v) ∈ C2 solution of the system

0 =
∂F∞
∂u

(x, y, z, u, v) +
∂G∞
∂u

(u, v) = −ix− 2
√

2u+ v ,

0 =
∂F∞
∂v

(x, y, z, u, v) +
∂G∞
∂v

(u, v) = −iy + u− v

2
.

This solution is given by

u? = u?(x, y) = −
i
(√

2 + 1
)(
x+ 2y

)
2

and v? = v?(x, y) = −i
(√

2 + 1
)(
x+ 2

√
2 y
)
.

We start by moving the integration contour of the variable u, to integrate over u ∈ u?+R instead of u ∈ R.
To do so, we fix (x, y, z) ∈ Dn and v ∈ C. The function u 7→ Fn(x, y, z, u, v) + Gn(u, v) is defined and
holomorphic on the open set {

u ∈ C : Imu > −
(√

2− 1
)√
n

2

}
.

It follows from the definition (44) of the domain Dn that

|u?| =

(√
2 + 1

)
|x+ 2y|

2
6

3

2

( √
n

225
+

√
n

224

)
6

√
n

222
<

(√
2− 1

)√
n

4
. (63)

Thus, we may change the integration contour from u ∈ R to u ∈ R + u?, using the same method as in
section 4.2 to obtain, for n large enough,

En = Cn

∫
Dn

dx dy dz g(z)

∫
R

dv

∫
R

du exp
(
Fn
(
x, y, z, u? + u, v

)
+Gn

(
u? + u, v

) )
.

It is then possible to check, as we did in section 4.2, that we have an integrable function of (u, v) ∈ R2,
which allows us to swap the two last integrals using Fubini’s theorem. Thus, for n large enough, we get

En = Cn

∫
Dn

dx dy dz g(z)

∫
R

du

∫
R

dv exp
(
Fn
(
x, y, z, u? + u, v

)
+Gn

(
u? + u, v

) )
.
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For every fixed (x, y, z, u) ∈ Dn ×R, the function v 7→ Gn
(
u? + u, v

)
is now holomorphic on the open set{

v ∈ C : 2 |Imu?|+ |Im v| <
(√

2− 1
)√
n
}
. (64)

Again, it follows from the definition of the domain Dn that
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√
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)√
n

2
. (65)

Combined with (63), this ensures that for all (x, y, z) ∈ Dn, the saddle-point v? belongs to the open
set (64). This allows us to move the integral over v from v ∈ R to v ∈ R + v?, which yields, for n large
enough,

En = Cn

∫
Dn

dx dy dz g(z)

∫
R

du

∫
R

dv exp
(
Fn(x, y, z, u? + u, v? + v) +Gn(u? + u, v? + v)

)
. (66)

Let us now examine more closely the limit function which we obtain after this change of the integration
contour. It follows from the results of section 4.3 that, for all (x, y, z, u, v) ∈ R5, we have the pointwise
convergence

lim
n→∞
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√
2 y
)

2

−
iv
(√

2 + 1
)(
x+ 2y

)
2

− iu
(√

2 + 1
)(
x+ 2

√
2 y
)

+ uv +

(√
2 + 1

)2(
x+ 2

√
2 y
)2

4

+
iv
(√

2 + 1
)(
x+ 2

√
2 y
)

2
− v2

4

=

√
2 + 1

4
x2 +

(√
2 + 1

)
xy +

(√
2 + 2

)
y2 + iux+ ivy −

√
2u2 + uv − v2

4
.

Summing all this yields

F∞
(
x, y, z, u? + u, v? + v

)
+G∞

(
u? + u, v? + v

)
= Q(x, y, z, u, v) ,

where the quadratic form Q is given by

Q(x, y, z, u, v) = −3−
√

2

4
x2 −

√
2xy −

(√
2 + 2

)
y2 −

√
2− 1

2
z2 −

√
2u2 − 2uv − v2 . (67)

There is no surprise here, since we recover the Hessian of the rate function that we computed in (40).
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4.5 Domination
We plan to use the dominated convergence theorem to obtain the limit of the integral in (66). To this end,
we prove the following upper bound:

Lemma 9. There exists K > 0 such that, for n large enough, for all (x, y, z, u, v) ∈ Dn × R2,

Re
(
Fn(x, y, z, u? + u, v? + v) +Gn

(
u? + u, v? + v)

)
6 M(x, y, z, u, v) ,

where the function M is given by

M(x, y, z, u, v) = Q(x, y, z, 0, 0) +
x2

8
+
y2

8
+

z2

221
− 9

8
ln

(
1 +

u2 + v2

120

)
+K . (68)

Proof. Let (x, y, z, u, v) ∈ Dn × R2. We start by writing

ReFn(x, y, z, u? + u, v? + v)− F∞(x, y, z, u?, v?) = Fn(x, y, z, u?, v?)− F∞(x, y, z, u?, v?)

= −
(√

2− 1
)
x3

2
(
x+
√
n
) − x2y

x+
√
n

+
iu?z2

√
n
− iv?z2

2
√
n
.

Yet, it follows from the definition (44) of the domain Dn that |x| 6 2−22
√
n and |y| 6 2−22

√
n, whence

−
(√

2− 1
)
x3

2
(
x+
√
n
) − x2y

x+
√
n

6
|x|3√
n

+
2x2|y|√

n
6

x2

223
.

Using the upper bounds (63) and (65) on |u?| and |v?|, we may write

iu?z2

√
n
− iv?z2

2
√
n

6
z2

221
.

Therefore, we obtain

ReFn(x, y, z, u? + u, v? + v) 6 F∞(x, y, z, u?, v?) +
x2

223
+

z2

221
. (69)

Using again (63) and (65), we obtain that, for all j ∈ {1, . . . , n− 1},∣∣∣∣∣ 2iu? − iv? αnj√
n
(√

2− αnj
) ∣∣∣∣∣ 6

2 |u?|+ |v?|
√
n
(√

2− 1
) 6

1

218
<

1

2
. (70)
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This allows us to write

ReGn(u? + u, v? + v)−Gn(u?, v?) = −1

2

n−1∑
j=1

ln

∣∣∣∣∣∣ 1−
2i
(
u? + u

)
− i
(
v? + v

)
αnj√

n
(√

2− αnj
)

∣∣∣∣∣∣
+

1

2

n−1∑
j=1

ln

 1−
2iu? − iv? αnj√
n
(√

2− αnj
)


= −1

2

n−1∑
j=1

ln

∣∣∣∣∣∣ 1−

(
1−

2iu? − iv? αnj√
n
(√

2− αnj
) )−1

2iu− iv αnj√
n
(√

2− αnj
)
∣∣∣∣∣∣

6 −1

4

n−1∑
j=1

ln

 1 +
4
(
2u− v αnj

)2
n
(√

2 + 1
)2


6 −1

4

n−1∑
j=1

ln

(
1 +

(
2u− v αnj

)2
n

)
.

Proceeding as in section 4.2, that is, keeping only the terms with uv αnj < 0 and
∣∣αnj ∣∣ > 1/2, we get

ReGn(u?+u, v?+v)−Gn(u?, v?) 6 −1

4

⌊n
6

⌋
ln

(
1 +

4u2 + v2/4

n

)
6 − 30

4n

⌊n
6

⌋
ln

(
1 +

4u2 + v2/4

30

)
,

as soon as n > 30, using the concavity of the logarithm function. For n > 60, we have

30

4n

⌊n
6

⌋
>

30

4n

( n
6
− 1
)

>
30

4n

( n
6
− n

60

)
=

9

8
,

whence

ReGn(u? + u, v? + v)−Gn(u?, v?) 6 −9

8
ln

(
1 +

u2 + v2

120

)
, (71)

Lastly, we deal with the term Gn(u?, v?), using the same Taylor expansion as in the proof of lemma 8.
Thus, we consider the (real-valued) function

fn : t ∈ [0, 1] 7−→ Gn
(
tu?, tv?

)
.

It follows from (63) and (65) that

u? = O
(√
n
)

and v? = O
(√
n
)
,

with a O which is uniform over all the domain Dn. Combining this with our computations (50) and (51)
of the partial derivatives of Gn, we deduce that f ′n(0) = O(1), uniformly over Dn. Similarly, thanks to our
estimates (56), (57) and (58) on the second partial derivatives of Gn, we know that

f ′′n (0) = G∞(u?, v?) +O(1) ,

with again a uniform O for all (x, y, z) ∈ Dn. Lastly, plugging the uniform bound (70) into our computa-
tion (61) of the third partial derivatives of Gn, we get

sup
t∈[0,1]

∣∣∣f (3)
n (t)

∣∣∣ 6
64
(
|u?|+ |v?|

)3
√
n
(√

2− 1
)3 .
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Using the bounds (63) and (65) on the saddle-points u? and v?, we can write

sup
t∈[0,1]

∣∣∣f (3)
n (t)

∣∣∣ 6
3
(
|u?|+ |v?|

)2
216
(√

2− 1
)3 6

3
(√

2 + 1
)2(

2|x|+ 4|y|
)2

216
(√

2− 1
)3 6

3
(√

2 + 1
)5(

x2 + y2
)

212
6

x2 + y2

16
.

Going back to our Taylor formula (48), we deduce that there exists K > 0 such that, for all (x, y, z) ∈ Dn,

Gn(u?, v?) 6 G∞(u?, v?) +
x2 + y2

16
+K . (72)

Lastly, the addition of (69), (71) and (72) yields the desired result.

It remains to check the integrability hypothesis:

Lemma 10. The function eM , where M is defined by (68), is integrable on R5.

Proof. Let us write, in [0, +∞],

∫
R5

dx dy dz du dv eM(x,y,z, u,v) = eK
∫
R2

dx dy exp

(
−5− 2

√
2

8
x2 −

√
2xy − 4

√
2 + 15

8
y2

)

×
∫
R

dz exp

(
−
√

2− 1

2
z2 +

z2

221

)
×
∫
R2

du dv

(
1 +

u2 + v2

120

)−9/8

.

We have

−5− 2
√

2

8
x2 −

√
2xy − 4

√
2 + 15

8
y2 = −3− 2

√
2

8
x2 − 4

√
2− 1

8
y2 −

(
x+ 2

√
2 y
)2

4

6 −3− 2
√

2

8
x2 − 4

√
2− 1

8
y2 ,

which shows that ∫
R2

dx dy exp

(
−5− 2

√
2

8
x2 −

√
2xy − 4

√
2 + 15

8
y2

)
< +∞ .

Next, we can note that

−
√

2− 1

2
+

1

221
< 0 ,

whence ∫
R

dz exp

(
−
√

2− 1

2
z2 +

z2

221

)
< +∞ .

To conclude, we write∫
R2

du dv

(
1 +

u2 + v2

120

)−9/8

=

∫ +∞

0

2πr dr

(
1 +

r2

120

)−9/8

= 120π

∫ +∞

0

dρ

(1 + ρ)9/8
< +∞ ,

since 9/8 > 1. Thus, we have proved that the function eM is integrable on R5.
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4.6 Dominated convergence
We are now in a position to apply the dominated convergence theorem to the integral in the formula (66),
which we recall here:

En = Cn

∫
R5

dx dy dz du dv g(z) exp
(
Fn(x, y, z, u? + u, v? + v) +Gn(u? + u, v? + v)

)
1(x, y, z)∈Dn

.

It stems from the definition (44) of the domain Dn that

lim inf
n→∞

Dn =
⋃
n>3

⋂
k>n

Dk = R
3 ,

that is to say, for every (x, y, z) ∈ R3, we have (x, y, z) ∈ Dn for n large enough. Thus, for ev-
ery (x, y, z, u, v) ∈ R5, following the results of section 4.3, we have the pointwise convergence

lim
n→∞

g(z) exp
(
Fn(x, y, z, u? + u, v? + v) +Gn(u? + u, v? + v)

)
1(x, y, z)∈Dn

= g(z)eQ(x,y,z, u,v) ,

where Q is the quadratic form given (67). According to lemmas 9 and 10, the domination hypothesis is
satisfied for n large enough. By virtue of the dominated convergence theorem, we can deduce that

En
n→∞∼ Cn

∫
R5

dx dy dz du dv g(z) exp
(
Q(x, y, z, u, v)

)
= CnD

∫
R

dz g(x) exp

(
−
√

2− 1

2
z2

)
,

where
D =

∫
R4

dx dy du dv exp
(
Q(x, y, 0, u, v)

)
.

Yet, as written in (41), we have

µn

[
g

(
Sn√
n

) ]
= En + o(1) .

Applying this with the constant function g ≡ 1 yields

1
n→∞∼ En

n→∞∼ CnD

∫
R

dz exp

(
−
√

2− 1

2
z2

)
= CnD

√
2π√
2− 1

.

At the end of the day, we obtain that for every bounded and continuous function g : R→ R,

lim
n→∞

µn

[
g

(
Sn√
n

) ]
=

√√
2− 1

2π

∫
R

dz g(x) exp

(
−
√

2− 1

2
z2

)

=
1√

2π
(√

2 + 1
) ∫

R

dz g(x) exp

(
− z2

2
(√

2 + 1
) ) ,

which proves the convergence in distribution announced in theorem 2.

5 Convergence for the long range model (proof of theorem 1)
We now turn to the proof of theorem 1. Thus, we assume that the interaction range dn is such that

lim
n→∞

2dn
n

= λ ∈ (0, 1) ,
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we consider a bounded and continuous function g : R→ R, and we study the limit when n tends to infinity
of the quantity

µn

[
g

(
Sn
n3/4

) ]
.

5.1 Behaviour of the temperature
As we have seen in theorem 4, in the case dn = 1 we have the convergence Tn −→ 1 in probability. But in
fact we can be much more precise: indeed, as shown by the lemma below, the temperature has the same
behaviour in our model µn as in the case of independent Gaussian variables, whatever the interaction
range dn.

Lemma 11. Under µn, we have the convergence in distribution
√
n
(
Tn − 1

) L−→
n→+∞

N (0, 2) .

Proof. If Y1, . . . , Yn are i.i.d. standard Gaussian variables, then we will prove that the variables

Tn =
Y 2

1 + · · ·+ Y 2
n

n
and

(
Y 2

1

Tn
, . . . ,

Y 2
n

Tn

)
are independent. We take two bounded and continuous functions g : R→ R and h : Rn → R, and we let

In = E

[
g
(
Tn
)
h

(
Y 2

1

Tn
, . . . ,

Y 2
n

Tn

) ]
.

Writing Tn = (y2
1 + · · ·+ y2

n)/n, we have

In =
1

(2π)n/2

∫
Rn

dy1 . . . dyn g
(
Tn
)
h

(
y2

1

Tn
, . . . ,

y2
n

Tn

)
e−nTn/2

=

(
2

π

)n/2 ∫
(0,∞)n

dy1 . . . dyn g
(
Tn
)
h

(
y2

1

Tn
, . . . ,

y2
n

Tn

)
e−nTn/2 .

We now perform the change of variable zi = y2
i for every i ∈ {1, . . . , n}, which yields

In =
1

(2π)n/2

∫
(0,∞)n

dz1 . . . dzn√
z1 . . .

√
zn
g

(
z1 + · · ·+ zn

n

)
h

(
nz1

z1 + · · ·+ zn
, . . . ,

nzn
z1 + · · ·+ zn

)
× exp

(
−z1 + · · ·+ zn

2

)
.

Letting zn = nt− z1 − · · · − zn−1, we obtain

In =
n

(2π)n/2

∫
(0,∞)n−1

dz1 . . . dzn−1√
z1 . . .

√
zn−1

∫ +∞

0

dt
1z1+···+zn−1<nt√

nt− z1 − · · · − zn−1
g(t)

× h
(
nz1

t
, . . . ,

nzn−1

t
, n− nz1 + · · ·+ nzn−1

t

)
e−nt/2 .

We may now swap the two summation symbols, using Fubini’s theorem, because the function

(z1, . . . , zn−1, t) ∈ (0,∞)n 7−→
e−nt/2 1z1+···+zn−1<nt√

z1 . . .
√
zn−1

√
nt− z1 − · · · − zn−1
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is integrable. We then obtain

In =
n

(2π)n/2

∫ +∞

0

dt g(t)e−nt/2
∫

(0,∞)n−1

1z1+···+zn−1<nt dz1 . . . dzn−1√
z1 . . .

√
zn−1

√
nnt− z1 − · · · − zn−1

× h
(
z1

t
, . . . ,

zn−1

t
, n− z1 + · · ·+ zn−1

t

)
.

Lastly, with the change of variable zi = tui for every i = 1, . . . , n− 1, this becomes

In =
n

(2π)n/2

∫ +∞

0

dt g(t)e−nt/2t(n−2)/2

×
∫

(0,∞)n−1

1u1+···+un−1<n du1 . . . dun−1√
u1 . . .

√
un−1

√
n− u1 − · · · − un−1

h
(
u1, . . . , un−1, n− u1 − · · · − un−1

)
.

Applying this on the one hand to the constant function g ≡ 1, and on the other hand to h ≡ 1, we deduce
that

In = E

[
g
(
Tn
)]
E

[
h

(
Y 2

1

Tn
, . . . ,

Y 2
n

Tn

) ]
,

which proves that the variables Tn and (
Y 2

1

Tn
, . . . ,

Y 2
n

Tn

)
are independent. It follows that, under ν⊗n, that is to say when the variables Yj are i.i.d. standard
Gaussian variables, the variable Tn is independent of

exp

(
−Hn

Tn

)
= exp

 1

2

n∑
j=1

αnj
Y 2
j

Tn

 .

Therefore, for every bounded and continuous function g : R→ R, we have

µn

[
g
(
Tn
)]

=
1

Zn
ν⊗n

[
exp

(
−Hn

Tn

)
g
(
Tn
) ]

=
1

Zn
ν⊗n

[
exp

(
−Hn

Tn

)]
ν⊗n

[
g
(
Tn
)]

= ν⊗n
[
g
(
Tn
)]
.

Thus, the variable Tn has the same distribution in our model µn as if the variables Yj were i.i.d. standard
Gaussian variables, so the central limit theorem ensures that

√
n
(
Tn − 1

)
=

Y 2
1 + · · ·Y 2

n − n√
n

L−→
n→+∞

N
(
0, σ2

)
,

where
σ2 = ν

(
Y 4

1

)
− ν
(
Y 2

1

)2
= 3− 1 = 2 ,

whence the claimed convergence result.

5.2 Exact integral expression
According to lemma 11, we have √

n
(
Tn − 1

) L−→
n→+∞

N (0, 2) . (73)
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This implies that
lim
n→∞

µn

(
|Tn − 1| > n−3/8

)
= 0 .

Thus, we may study the limit when n→∞ of

En = µn

[
g

(
Sn
n3/4

)
1|Tn−1|6n−3/8

]
.

As in section 4.2, this limitation is important to enable us to obtain an integral expression satisfying
the domination hypothesis. The Fourier inversion formula given by lemma 5 enables us to write, for
every n > nI ,

En =

∫ 1+n−3/8

1−n−3/8

dx

∫
R

dy

∫
R

dz g
( z

n3/4

)
fn(x, y, z)

=
1

(2π)5/2Zn
√
n

∫ 1+n−3/8

1−n−3/8

dx

∫
R

dy

∫
R

dz g
( z

n3/4

)
exp

(
−y
x

)
12nx>nx+y>2z2/n

×
∫
R2

du dv exp

[
− iu

(
x− z2

n2

)
− iv

(
y +

z2

2n

)
− z2

2n
− 1

2

n−1∑
j=1

ln

(
1− 2iu

n
+ iv αnj

) ]
.

The behaviour (73) of Tn and the expected order of magnitude of Sn lead us to make the change of variable

x = 1 +
x′√
n
, z = z′n3/4 , u = u′

√
n ,

To choose the change of variable for y and v, recall that

Hn = −1

2

n−1∑
j=1

αnj Y
2
j −

S2
n

2n
, (74)

with αnj → sinc(jλπ) for every fixed j, when n→∞. Thus, we opt for the change of variable

y = y′ − z′2
√
n

2
, v = v′ ,

which amounts to betting that the first term in (74) will be of order O(1), while the term −S2
n/(2n) will

be of order
√
n. Yet, the term −S2

n/(2n) precisely corresponds to the Hamiltonian of the model described
in paragraph 1.3.1, which explains that, provided that we obtain a non-degenerate limit at the end of our
computation, we expect to recover the behaviour of the mean-field model. With these changes of variables,
we obtain

En =
n1/4

(2π)5/2Zn

∫
Dn

dx dy dz g(z)

∫
R2

du dv eFn(x,y,z, u,v)+Gn(u, v) , (75)

where the set Dn is defined by

Dn =

{
(x, y, z) ∈ R3 : |x| 6 n1/8 and 2

√
n+ 2x >

√
n+ x+

y√
n
− z2

2
> 2z2

}
, (76)

and the functions Fn and Gn are given by

Fn(x, y, z, u, v) = −iu
(
x− z2

)
− ivy − xz2

2(1 + x/
√
n)
− y

1 + x/
√
n

and

Gn(u, v) = −iu
√
n− 1

2

n−1∑
j=1

ln

(
1− 2iu√

n
+ iv αnj

)
. (77)
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5.3 Pointwise convergence of the integrand
First, we have the convergence:

∀(x, y, z, u, v) ∈ R3 × C2 lim
n→∞

Fn(x, y, z, u, v) = F∞(x, y, z, u, v) , (78)

where

F∞(x, y, z, u, v) = −iu
(
x− z2

)
− ivy − xz2

2
− y .

We now study the pointwise limit of the function Gn. Recall that we study this function on a domain
extended to complex values of u and v. For Gn(u, v) to be well defined, we require the complex variable v
to satisfy the condition

∀j ∈ {1, . . . , n− 1} Re

(
1− 2iu√

n
+ iv αnj

)
> 0 .

According to lemma 2 about the largest and smallest eigenvalues, the above condition is satisfied for n
large enough if

Re
(
1 + iv sinc(λπ)

)
> 0 and Re

(
1− iv Cλ

)
> 0 ,

where Cλ is the constant defined by (18). This leads us to consider the domain

V =

{
v ∈ C : ∀j ∈ N\ {0} Re

(
1 + iv sinc(jλπ)

)
> 0

}
=

{
v ∈ C : − 1

Cλ
< Imv <

1

sinc(λπ)

}
.

Thus, for all (u, v) ∈ C× V , the function Gn(u, v) is well defined for n large enough, so it makes sense to
study its pointwise limit. We now prove the following result:

Lemma 12. We have the pointwise convergence:

∀(u, v) ∈ C× V lim
n→∞

Gn(u, v) = G∞(u, v) ,

where the function G∞ is given by

G∞ : (u, v) ∈ C× V 7−→ −u2 +
iv

2λ
−

+∞∑
j=1

ln
(
1 + iv sinc(jλπ)

)
.

Proof. We fix (u, v) ∈ C× V . When j →∞, we have

ln
(
1 + iv sinc(jλπ)

)
= iv sinc(jλπ) +O

(
1

j2

)
.

Yet, lemma 4 ensures that the series
∑

sinc(jλπ) converges, therefore the series in the definition of G∞ is
also convergent. As a first step, we study the limit of Gn(0, v). We define

h =
1

2
inf
j>1

Re
(
1 + iv sinc(jλπ)

)
=

(
1− sinc(λπ)Im v

)
∧
(
1 + CλIm v

)
2

,

which is positive because v ∈ V . It follows from lemma 2 on the smallest and largest eigenvalues that

lim
n→∞

min
16j6n−1

Re
(

1 + iv αnj
)

= 2h ,
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whence, from a certain rank n0,

∀j ∈ {1, . . . , n− 1} Re
(

1 + iv αnj
)

> h .

Let n > n0. We now define

un =

⌊
n1/4

2
∧
(

2dn
n
− λ
)−1/2

⌋
.

This sequence (un) tends to infinity because 2dn ∼ λn. Using the symmetry relation αnn−j = αnj , we can
write

Gn(0, v)−G∞(0, v) = δ1
n(v) + δ2

n(v)− δ3
n(v) ,

with

δ1
n(v) =

un∑
j=1

[
− ln

(
1 + iv αnj

)
+ ln

(
1 + iv sinc(jλπ)

) ]
,

δ2
n(v) = − iv

2λ
− 1

2

n−un−1∑
j=un+1

ln
(
1 + iv αnj

)
,

δ3
n(v) = −

+∞∑
j=un+1

ln
(
1 + iv sinc(jλπ)

)
.

Control of the first term: Let us start with δ1
n. For all z, z′ ∈ C, it follows from the mean value theorem

that

Re z > h and Re z′ > h ⇒ |ln z′ − ln z| 6 |z′ − z| sup
t∈[0,1]

1

|(1− t)z + tz′|
6
|z′ − z|
h

.

Therefore, for every j ∈ {1, . . . , un}, we have∣∣∣ ln
(
1 + iv αnj

)
− ln

(
1 + iv sinc(jλπ)

) ∣∣∣ 6
|v|
h

∣∣αnj − sinc(jλπ)
∣∣ .

We can deduce that ∣∣δ1
n(v)

∣∣ 6
|v|
h

un∑
j=1

∣∣αnj − sinc(jλπ)
∣∣ .

Using the upper bound of lemma 1, this implies

∣∣δ1
n(v)

∣∣ 6
K|v|
h

un∑
j=1

(
j

n
+

∣∣∣∣ 2dn
n
− λ

∣∣∣∣
)

= O

(
u2
n

n

)
+O

(
un

∣∣∣∣ 2dn
n
− λ

∣∣∣∣
)

= O

(
1√
n

)
+O

(∣∣∣∣ 2dn
n
− λ

∣∣∣∣1/2
)

= o(1) .

Control of the second term: We now deal with δ2
n. Let us rewrite this term as

δ2
n(v) = −

n−un−1∑
j=un+1

(
ln
(
1 + iv αnj

)
− iv αnj

)
− iv

 1

λ
+

n−un−1∑
j=un+1

αnj

 .
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Taylor’s theorem ensures that for all z ∈ C, we have

Re z > h and 1 > h ⇒
∣∣ ln z − (z − 1)

∣∣ 6
|z − 1|2

2
sup
t∈[0,1]

1∣∣1 + t(z − 1)
∣∣2 6

|z − 1|2

2h2
.

This entails that ∣∣∣∣∣∣
n−un−1∑
j=un+1

(
ln
(
1 + iv αnj

)
− iv αnj

) ∣∣∣∣∣∣ 6
|v|2

2h2

n−un−1∑
j=un+1

∣∣αnj ∣∣2 ,
implying that ∣∣δ2

n(v)
∣∣ 6

|v|2

2h2

n−un−1∑
j=un+1

∣∣αnj ∣∣2 + |v|

∣∣∣∣∣∣ 1

λ
+

n−un−1∑
j=un+1

αnj

∣∣∣∣∣∣ . (79)

Using the formula (10) for αnj , we obtain

1

λ
+

n−un−1∑
j=un+1

αnj =
1

λ
− n− 2un − 1

2dn
+

n−un−1∑
j=un+1

sin
(
(2dn + 1)jπ/n

)
2dn sin(jπ/n)

= o(1) +
1

2dn

n−un−1∑
j=un+1

sin
(
(2dn + 1)jπ/n

)
sin(jπ/n)

,

where we used the the fact that n/(2dn) → 1/λ and un = o(n) whence un = o(dn). Using the symmetry
property of the eigenvalues, this becomes

1

λ
+

n−un−1∑
j=un+1

αnj = o(1) +
1

dn

bn/2c∑
j=un+1

sin
(
(2dn + 1)jπ/n

)
sin(jπ/n)

, (80)

where the term j = bn/2c was counted two times if n is even, but it tends to 0 anyway. We then perform
an Abel transform, letting, for j > 0,

σn,j =

j∑
k=0

sin
(
(2dn + 1)kπ/n

)
.

We have

|σn,j | =

∣∣∣∣∣ sin
(
(2dn + 1)jπ/(2n)

)
sin
(
(2dn + 1)(j + 1)π/(2n)

)
sin
(
(2dn + 1)π/(2n

) ∣∣∣∣∣
6

1

sin
(
(2dn + 1)π/(2n

) 6
n

2dn + 1

n→∞−→ 1

λ
,

hence there exists a constant M > 0 such that |σn,j | 6M for all n > 1 and all j > 0. We then write

bn/2c∑
j=un+1

sin
(
(2dn + 1)jπ/n

)
sin(jπ/n)

=

bn/2c∑
j=un+1

σn,j − σn,j−1

sin(jπ/n)

=

bn/2c−1∑
j=un

σn,j

(
1

sin(jπ/n)
− 1

sin
(
(j + 1)π/n

))− σn,un

sin(unπ/n)
+

σn,bn/2c

sin(bn/2cπ/n)
.

43



Therefore, we get∣∣∣∣∣∣
bn/2c∑
j=un+1

sin
(
(2dn + 1)jπ/n

)
sin(jπ/n)

∣∣∣∣∣∣ 6
2M

sin(unπ/n)
+

2M

sin(bn/2cπ/n)
6

2Mn

un
.

Going back to (80), we obtain

1

λ
+

n−un−1∑
j=un+1

αnj = o(1) +O

(
1

un

)
= o(1) . (81)

Eventually, using the upper bound (12) on αnj , we have

n−un−1∑
j=un+1

∣∣αnj ∣∣2 6
n2

2d2
n

bn/2c∑
j=un+1

1

j2
= O

(
1

un

)
= o(1) . (82)

Plugging (81) and (82) into (79) yields
lim
n→∞

δ2
n(v) = 0 .

Control of the third term: The convergence of the series∑
j>0

ln
(
1 + iv sinc(jλπ)

)
implies that δ3

n(v) tends to 0, since un →∞ when n tends to infinity. Thus, we have checked that

lim
n→∞

Gn(0, v) = G∞(0, v) .

Dependence on u: Let n′0 = n0 ∨ 16 |u| /h2, and let n > n′0. We have∣∣∣∣2iu√n
∣∣∣∣ 6

h

2
,

which ensures that

∀j ∈ {1, . . . , n− 1} Re

(
1− 2iu√

n
+ iv αnj

)
∧ Re

(
1− 2iu√

n
+ iv sinc(jλπ)

)
>

h

2
. (83)

It follows from Taylor’s theorem that∣∣∣∣Gn(u, v)−Gn(0, v)− u∂Gn
∂u

(0, v)− u2

2

∂2Gn
∂u2

(0, v)

∣∣∣∣ 6
|u|3

6
sup
t∈[0,1]

∣∣∣∣∂3Gn
∂u3

(tu)

∣∣∣∣ . (84)

Thus, we study the successive derivatives of Gn with respect to u. First, we write

∂Gn
∂u

(0, v) = −i
√
n+

i√
n

n−1∑
j=1

1

1 + iv αnj
= − i√

n
+

i√
n

n−1∑
j=1

(
1

1 + iv αnj
− 1

)
.

44



This implies that ∣∣∣∣ ∂Gn∂u
(0, v)

∣∣∣∣ 6
1√
n

+
1√
n

n−1∑
j=1

∣∣∣∣∣ iv αnj
1 + iv αnj

∣∣∣∣∣ 6
1√
n

+
2|v|
h
√
n

n−1∑
j=1

∣∣αnj ∣∣ .
Using our upper bound (13), this becomes

∂Gn
∂u

(0, v) = O

(
1√
n

)
+O

(
lnn√
n

)
= o(1) .

Similarly, we have

∂2Gn
∂u2

(0, v) = − 2

n

n−1∑
j=1

1(
1 + iv αnj

)2 = −2 +
2

n
− 2

n

n−1∑
j=1

(
1(

1 + iv αnj
)2 − 1

)
.

From this we can deduce that∣∣∣∣ ∂2Gn
∂u2

(0, v) + 2

∣∣∣∣ 6
2

n
+

2

n

n−1∑
j=1

∣∣∣2iv αnj − v2
(
αnj
)2∣∣∣∣∣1 + iv αnj

∣∣2 6
2

n
+

16|v|
nh

n−1∑
j=1

∣∣αnj ∣∣+
8|v|2

nh2

n−1∑
j=1

∣∣αnj ∣∣2
= O

(
lnn

n

)
+O

(
1

n

)
= o(1) .

Lastly, we have

sup
06t61

∣∣∣∣ ∂3Gn
∂u3

(tu)

∣∣∣∣ = sup
06t61

∣∣∣∣∣∣ 8

n3/2

n−1∑
j=1

1(
1− 2iut/

√
n+ iv αnj

)3
∣∣∣∣∣∣ 6

64

h3
√
n

n→∞−→ 0 .

Therefore, the inequality (84) becomes

Gn(u, v) = G∞(0, v) + o(1)− u2 + o(1) = G∞(u, v) + o(1) ,

concluding the proof of the lemma.

5.4 Displacement of the integration contour
We wish to implement the saddle-point method to approximate the integral in (75). To this end, we
take (x, y, z, u, v) ∈ R3 × C× V , and we look for a zero of the partial derivative:

∂F∞
∂u

(x, y, z, u, v) +
∂G∞
∂u

(u, v) = −i
(
x− z2

)
− 2u .

Thus, the saddle-point in u is

u? = u?(x, z) = −
i
(
x− z2

)
2

.

As for the second complex variable, we choose to consider

v? = v?(y) = − i sg(y)

2

(
1 +

1

sinc(γπ)

)
,

which is not the saddle-point, but which will be more convenient for our computations. We now check
that we have the right to move the integration contour of the variables u and v to pass through u? and v?,
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as we did in section 4.4. We start with the variable v: let us fix n > nI , (x, y, z) ∈ Dn and u ∈ R. The
function v 7→ Fn(x, y, z, u, v) +Gn(u, v) is defined and holomorphic on the open set{

v ∈ C : − 1

mn
< Im v <

1

Mn

}
. (85)

Yet, according to lemma 2, we have

lim
n→∞

1

Mn
=

1

sinc(λπ)
and lim

n→∞

1

mn
=

1

Cλ
>

1

sinc(λπ)
. (86)

Since λ > 0, we have sinc(λπ) < 1, whence

1

sinc(λπ)
>

1

2

(
1 +

1

sinc(λπ)

)
=
∣∣Im v?∣∣ . (87)

Therefore, (86) and (87) ensure that, for n large enough, the point v? belongs to the open set (85). This
allows us to move the integration contour using Cauchy’s theorem, to obtain, for all M > 0,∫ M

−M
dv eFn(x,y,z, u,v)+Gn(u, v) =

∫ 1

0

v? dt eFn(x,y,z, u,−M+tv?)+Gn(u,−M+tv?)

+

∫ M

−M
dv eFn(x,y,z, u, v?+v)+Gn(u, v?+v)

+

∫ 0

1

v? dt eFn(x,y,z, u,M+tv?)+Gn(u,M+tv?) .

As in section 4.4, we have

lim
M→∞

∫ 1

0

v? dt eFn(x,y,z, u,±M+tv?)+Gn(u,±M+tv?) = 0 ,

thus, letting M tend to infinity, we obtain∫
R

dv eFn(x,y,z, u,v)+Gn(u, v) =

∫
R

dv eFn(x,y,z, u, v?+v)+Gn(u, v?+v) .

Therefore, our formula (75) becomes

∀n > nI En =
n1/4

(2π)5/2Zn

∫
Dn

dx dy dz g(z)

∫
R

du

∫
R

dv eFn(x,y,z, u, v?+v)+Gn(u, v?+v) . (88)

Next, we wish to swap the integrations on the two variables u and v, in order to be able to move the
integration contour in u. To do so, we need to check that, for every fixed (x, y, z) ∈ Dn, the function

(u, v) ∈ R2 7−→ eFn(x,y,z, u, v?+v)+Gn(u, v?+v)

is integrable. Since ∣∣∣eFn(x,y,z, u, v?+v)
∣∣∣ = eReFn(x,y,z, u, v?+v) = eFn(x,y,z, 0, v?) ,

we only need to bound
∣∣eGn(u, v?+v)

∣∣ by an integrable function. Given that later on, we will also need to
bound

∣∣eGn(u?+u, v?+v)
∣∣ and the computations are very similar, the following lemma is formulated with a

parameter t which allows us to treat both cases at the same time:

46



Lemma 13. There exists K > 0 such that, for n large enough, for all (x, y, z, u, v) ∈ Dn × R2 and for
all t ∈ [0, 1],

ReGn(tu? + u, v? + v) 6 Gn(tu?, v?)− ln
(
1 +Ku2

)
− ln

(
1 +Kv2

)
.

Proof. Let (x, y, z, u, v) ∈ Dn × R2, and let t ∈ [0, 1]. Note that, u? and v? being pure imaginary, we
have Gn(tu?, v?) ∈ R. Thus, we start by writing

ReGn(tu? + u, v? + v)−Gn(tu?, v?) = −1

4

n−1∑
j=1

ln

(
1 +

(
2u/
√
n− v αnj

)2(
1− 2itu?/

√
n− iv? αnj

)2
)
.

It follows from the definition (76) of the domain Dn that z2 − x 6
√
n, implying that for all j ∈

{1, . . . , n− 1},

1− 2itu?√
n

+ iv? αnj = 1 +
t
(
z2 − x

)
√
n

+
sg(y)

2

(
1 +

1

sinc(λπ)

)
αnj 6 Bλ ,

with
Bλ =

5

2
+

1

2 sinc(λπ)
.

Therefore, we have

ReGn(tu? + u, v? + v)−Gn(tu?, v?) 6 −1

4

n−1∑
j=1

ln

[
1 +

1

B2
λ

(
2u√
n
− v αnj

)2
]
. (89)

According to lemma 3, there exists a constant K0 > 0 such that, for n large enough,

|In,u,v| > K0
6

K0
− 2 = 4 ,

where
In,u,v =

{
j ∈ {1, . . . , n− 1} : uv αnj 6 0 and

∣∣αnj ∣∣ > K0

6

}
.

Applying again lemma 3 but this time with a = n, we obtain that, for n > 12/K0,

|Jn,u,v| > K0n− 6 >
K0n

2
,

with
Jn,u,v =

{
j ∈ {1, . . . , n− 1} \ In,u,v : uv αnj 6 0

}
.

Using this, the inequality (89) becomes

ReGn(tu? + u, v? + v)−Gn(tu?, v?) 6 −1

4

∑
j∈In,u,v

ln

(
1 +

K2
0v

2

6B2
λ

)
− 1

4

∑
j∈Jn,u,v

ln

(
1 +

4u2

B2
λn

)

6 − ln

(
1 +

K2
0v

2

6B2
λ

)
− K0n

8
ln

(
1 +

4u2

B2
λn

)
.

If moreover n > 8/K0, then the concavity of the logarithm function implies that

ln

(
1 +

4u2

B2
λn

)
>

8

K0n
ln

(
1 +

4K0u
2

8B2
λ

)
,
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whence

ReGn(tu? + u, v? + v)−Gn(tu?, v?) 6 − ln

(
1 +

K2
0v

2

6B2
λ

)
− ln

(
1 +

K0u
2

2B2
λ

)
.

Letting

K =
K2

0

6B2
λ

∧ K0

2B2
λ

,

we obtain the upper bound announced in the lemma.

The function
(u, v) ∈ R2 7−→ 1(

1 +Ku2
)(

1 +Kv2
)

being integrable, Fubini’s theorem allows us to swap the integral over u and the integral over v in the
equation (88) to obtain, for n large enough,

En =
n1/4

(2π)5/2Zn

∫
Dn

dx dy dz g(z)

∫
R

dv

∫
R

du eFn(x,y,z, u, v?+v)+Gn(u, v?+v) .

We now fix (x, y, z) ∈ Dn and v ∈ R and we want to move the integration contour of the variable u. The
function u 7→ Fn(x, y, z, u, v? + v) +Gn(u, v? + v) is defined and holomorphic on the open set{

u ∈ C : ∀j ∈ {1, . . . , n− 1} Re

(
1− 2iu√

n
+ iv? αnj

)
> 0

}
.

Yet, for all j ∈ {1, . . . , n− 1}, we have

1− 2iu?√
n

+ iv? αnj = 1 +
z2 − x√

n
+

sg(y)αnj
2

(
1 +

1

sinc(λπ)

)
> 1− x√

n
− Mn

2

(
1 +

1

sinc(λπ)

)
> 1− 1

n3/8
− Mn

2
− Mn

2 sinc(λπ)

n→∞−→ 1− sinc(λπ)

2
> 0 ,

where we have used the fact that |x| 6 n1/8 and Mn → sinc(λπ), as proved in lemma 2. Therefore, for n
large enough, we have for all (x, y, z) ∈ Dn,

1− 2iu?√
n

+ iv? αnj >
1− sinc(λπ)

4
> 0 , (90)

so that we can change the integration contour from u ∈ R to u ∈ u? + R. This change of contour can be
justified exactly as the previous changes of contour, and we obtain, for n large enough,

En =
n1/4

(2π)5/2Zn

∫
Dn

dx dy dz g(z)

∫
R

dv

∫
R

du eFn(x,y,z, u?+u, v?+v)+Gn(u?+u, v?+v) . (91)

5.5 Domination
We now search for an upper bound on the integrand in (91). We prove the following result:
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Lemma 14. There exist constants K1, K2 > 0 such that, for n large enough,

∀(x, y, z, u, v) ∈ Dn × R2 Re
(
Fn(x, y, z, u? + u, v? + v) +Gn(u? + u, v? + v)

)
6 M(x, y, z, u, v) ,

where the function M : R5 → R is defined by

M(x, y, z, u, v) = K1+|x|−3x2

16
−xz

2

8
−3z4

16
−|y|

8

(
1

sinc(λπ)
− 1

)
+2z2−ln

(
1+K2u

2
)
−ln

(
1+K2v

2
)
.

(92)

Proof. Upper bound on the first term: We first deal with ReFn. For every (x, y, z, u, v) ∈ Dn × R2,
we have

ReFn(x, y, z, u? + u, v? + v) = −i
(
x− z2

)
u? − iyv? − xz2

2(1 + x/
√
n)
− y

1 + x/
√
n

= −
(
x− z2

)2
2

− |y|
2

(
1 +

1

sinc(λπ)

)
− xz2

2
+

x2z2

2(x+
√
n)
− y +

xy√
n+ x

6 −x
2

2
+
xz2

2
− z4

2
− |y|

2

(
1

sinc(λπ)
− 1

)
+

x2z2

2(x+
√
n)

+
|xy|√
n+ x

Yet, with our definition (76) of the set Dn, we have |x| 6 n1/4, whence

√
n+ x >

√
n− n1/4 >

√
n

2
,

as soon as n > 16. Thus we have, on the one hand,

x2z2

2(x+
√
n)

6
z2

n1/4
6 z2 ,

and on the other hand,
|xy|

x+
√
n

6
2|y|
n3/8

6
|y|
4

(
1

sinc(λπ)
− 1

)
,

for n large enough. Combining all this, we obtain that for n large enough, we have for all (x, y, z, u, v) ∈
Dn × R2,

ReFn(x, y, z, u? + u, v? + v) 6 −x
2

2
+
xz2

2
− z4

2
− |y|

8

(
1

sinc(λπ)
− 1

)
+ z2 . (93)

Upper bound on the second term: We now turn to the term Gn(u? +u, v? + v). Following lemma 13
applied with t = 1, we have

ReGn(u? + u, v? + v) 6 Gn(u?, v?)− ln
(
1 +Ku2

)
− ln

(
1 +Kv2

)
.

Therefore, we only need to bound the (real) term Gn(u?, v?). With our lower bound (90), we know that
for n large enough,

∀(x, y, z) ∈ Dn ∀t ∈ [0, 1] 1− 2itu?√
n

+ iv? αnj >
1− sinc(λπ)

4
, (94)
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which corresponds to the upper bound (83) that we used to establish the pointwise convergence, but now
holds uniformly over all the domain Dn. Going back to the expression (77) of the function Gn, we have,
for all t ∈ [0, 1],

∂Gn
∂u

(
tu?, v?

)
= −i

√
n+

i√
n

n−1∑
j=1

1

1− 2itu?/
√
n+ iv? αnj

= −i
√
n+

i√
n

n−1∑
j=1

(
1

1− 2itu?/
√
n+ iv? αnj

− 1

)

= − i√
n
− 1√

n

n−1∑
j=1

2tu?/
√
n− v? αnj

1− 2itu?/
√
n+ iv? αnj

= − i√
n
− 1√

n

n−1∑
j=1

2tu?/
√
n− v? αnj

1− 2itu?/
√
n

+
v?√
n

n−1∑
j=1

2tu?αnj /
√
n− v?

(
αnj
)2(

1− 2itu?/
√
n
)(

1− 2itu?/
√
n+ iv? αnj

) .
Using (94) and the fact that

1− 2itu?√
n

= 1 +
t
(
z2 − x

)
√
n

> 1− 1

n3/8
>

1

2
,

we deduce that∣∣∣∣ ∂Gn∂u

(
tu?, v?

) ∣∣∣∣ 6
1√
n

+
2t |u?|

1− n−3/8
+

2 |v?|√
n

n−1∑
j=1

∣∣αnj ∣∣
+

16t |u?| |v?|(
1− sinc(λπ)

)
n

n−1∑
j=1

∣∣αnj ∣∣+
8 |v?|2(

1− sinc(λπ)
)√
n

n−1∑
j=1

(
αnj
)2
.

According to the upper bounds (13) and (14), in our regime 2dn ∼ λn we have

n−1∑
j=1

∣∣αnj ∣∣ = O
(

lnn
)

and
n−1∑
j=1

(
αnj
)2

= O(1) .

What’s more, we have v? = O(1) uniformly over all the domain Dn (since v? can only take two different
values). Therefore, we can write, uniformly for all (x, y, z) ∈ Dn,

2 |v?|√
n

n−1∑
j=1

∣∣αnj ∣∣ = O

(
lnn√
n

)
= o(1) ,

along with
16 |v?|(

1− sinc(λπ)
)
n

n−1∑
j=1

∣∣αnj ∣∣ = O

(
lnn

n

)
= o(1) ,

and
8 |v?|2(

1− sinc(λπ)
)√
n

n−1∑
j=1

(
αnj
)2

= O

(
1√
n

)
= o(1) .
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Therefore, for n large enough, we have for all (x, y, z) ∈ Dn

2

1− n−3/8
+

16 |v?|(
1− sinc(λπ)

)
n

n−1∑
j=1

∣∣αnj ∣∣ 6
5

2
,

and
1√
n

+
2 |v?|√
n

n−1∑
j=1

∣∣αnj ∣∣+
8 |v?|2(

1− sinc(λπ)
)√
n

n−1∑
j=1

(
αnj
)2

6 2 ,

which implies that for all t ∈ [0, 1], ∣∣∣∣ ∂Gn∂u

(
tu?, v?

) ∣∣∣∣ 6 2 +
5t |u?|

2
.

Integrating this, we deduce that, for n large enough, for all (x, y, z) ∈ Dn, we have

|Gn(u?, v?)| =

∣∣∣∣Gn(0, v?) + u?
∫ 1

0

∂Gn
∂u

(
tu?, v?

)
dt

∣∣∣∣ 6 |Gn(0, v?)|+ 2 |u?|+ 5 |u?|2

4
.

Since v? can only take two different values, the term Gn(0, v?) is bounded from above by a constantK1 > 0,
uniformly for all (x, y, z) ∈ Dn. Thus, we obtain that for n large enough, for all (x, y, z) ∈ Dn,

|Gn(u?, v?)| 6 K1 +
∣∣x− z2

∣∣+
5
(
x− z2

)2
16

6 K1 + |x|+ z2 +
5
(
x− z2

)2
16

.

Combining this with (93) and with the result of lemma 13 (applied this time with t = 1), we obtain the
announced domination.

Now there remains to check:

Lemma 15. The function eM , where M is given by (92), is integrable on R5.

Proof. Let us write, in [0, +∞],∫
R5

eM = eK1

∫
R2

dx dz exp

(
|x| − 3x2

16
− xz2

8
− 3z4

16
+ 2z2

)
×
∫
R

dy exp

[
− |y|

8

(
1

sinc(λπ)
− 1

) ]

×
(∫

R

du

1 +K2u2

)2

= eK1

∫
R2

dx dz exp

[
|x| − 1

16

(
3x+

z2

3

)2

− z4

18
+ 2z2

]
× 16 sinc(λπ)

1− sinc(λπ)
× π2

K2
,

which shows that the integral is indeed finite.

5.6 Dominated convergence
We are now in a position to apply the dominated convergence theorem. Let us recall that

En =
n1/4

(2π)5/2Zn

∫
R5

g(z)eFn(x,y,z, u?+u, v?+v)+Gn(u?+u, v?+v)
1(x, y, z)∈Dn

.
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It follows from equation (78) and lemma 12that for all (x, y, z, u, v) ∈ R5, we have the pointwise convergence

lim
n→∞

Fn(x, y, z, u? + u, v? + v) +Gn(u? + u, v? + v) = F∞(x, y, z, u? + u, v? + v) +G∞(u? + u, v? + v) ,

where

F∞(x, y, z, u? + u, v? + v) = −
(
x− z2

)2
2

− iu
(
x− z2

)
− i
(
v? + v

)
y − xz2

2
− y

and

G∞(u? + u, v? + v) =

(
x− z2

)2
4

+ iu
(
x− z2

)
− u2 +

i
(
v? + v

)
2λ

−
+∞∑
j=1

ln
(
1 + i(v? + v)sinc(jλπ)

)
.

Summing these, we obtain

lim
n→∞

Fn(x, y, z, u? + u, v? + v) +Gn(u? + u, v? + v) = J(x, y, z, u, v) ,

with

J(x, y, z, u, v) = −x
2

4
− z4

4
− u2 − y − i

(
y − 1

2λ

)
(v? + v)−

+∞∑
j=1

ln
(
1− 2i(v? + v)sinc(jλπ)

)
.

Note that, in this function J , the only term where the variable z (which is the variable we are interested in,
since it corresponds to Sn) appears is −z4/4. This is the reason why we obtain the same behaviour as in
the mean-field case. In the subsequent article [For21], we will study a regime where there is another term
combining z and v, therefore leading to a different limit theorem. According to lemmas 14 and 15, the
domination hypothesis is satisfied for n large enough. Thus, the dominated convergence theorem entails
that

En
n→∞∼ n1/4

(2π)5/2Zn

∫
R5

dx dy dz du dv g(z) eJ(x,y,z, u,v) = Cn

∫
R

dz g(z) e−z
4/4 ,

where

Cn =
n1/4

(2π)5/2Zn

∫
R4

dx dy du dv eJ(x,y,0, u,v) .

Yet, going back to our computations at the beginning of section 5.2, we know that

µn

[
g

(
Sn
n3/4

) ]
= En + o(1) .

In the case of the constant function g = 1, this yields

1 = µn

[
g

(
Sn
n3/4

) ]
n→∞∼ En

n→∞∼ Cn

∫
R

dz g(z) e−z
4/4 =

CnΓ(1/4)√
2

.

Turning back to the general case of a bounded and continuous function g : R→ R, we obtain

lim
n→∞

µn

[
g

(
Sn
n3/4

) ]
=

√
2

Γ(1/4)

∫
R

dz g(z) e−z
4/4 ,

which concludes the proof of the convergence in distribution announced in theorem 1.
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